add isl_maybe_isl_map
[isl.git] / isl_scheduler.c
blob7cb3b758614d7d70f29b349558a81bbbb2a9a2a3
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
29 #include <isl/set.h>
30 #include <isl_union_set_private.h>
31 #include <isl_seq.h>
32 #include <isl_tab.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
35 #include <isl_sort.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
39 #include <isl/ilp.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
50 * of a schedule.
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
60 * of sched
61 * the rows of "vmap" represent a change of basis for the node
62 * variables; the first rank rows span the linear part of
63 * the schedule rows; the remaining rows are linearly independent
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * start is the first variable in the LP problem in the sequences that
68 * represents the schedule coefficients of this node
69 * nvar is the dimension of the domain
70 * nparam is the number of parameters or 0 if we are not constructing
71 * a parametric schedule
73 * If compressed is set, then hull represents the constraints
74 * that were used to derive the compression, while compress and
75 * decompress map the original space to the compressed space and
76 * vice versa.
78 * scc is the index of SCC (or WCC) this node belongs to
80 * "cluster" is only used inside extract_clusters and identifies
81 * the cluster of SCCs that the node belongs to.
83 * coincident contains a boolean for each of the rows of the schedule,
84 * indicating whether the corresponding scheduling dimension satisfies
85 * the coincidence constraints in the sense that the corresponding
86 * dependence distances are zero.
88 * If the schedule_treat_coalescing option is set, then
89 * "sizes" contains the sizes of the (compressed) instance set
90 * in each direction. If there is no fixed size in a given direction,
91 * then the corresponding size value is set to infinity.
92 * If the schedule_treat_coalescing option or the schedule_max_coefficient
93 * option is set, then "max" contains the maximal values for
94 * schedule coefficients of the (compressed) variables. If no bound
95 * needs to be imposed on a particular variable, then the corresponding
96 * value is negative.
97 * If not NULL, then "bounds" contains a non-parametric set
98 * in the compressed space that is bounded by the size in each direction.
100 struct isl_sched_node {
101 isl_space *space;
102 int compressed;
103 isl_set *hull;
104 isl_multi_aff *compress;
105 isl_multi_aff *decompress;
106 isl_mat *sched;
107 isl_map *sched_map;
108 int rank;
109 isl_mat *indep;
110 isl_mat *vmap;
111 int start;
112 int nvar;
113 int nparam;
115 int scc;
116 int cluster;
118 int *coincident;
120 isl_multi_val *sizes;
121 isl_basic_set *bounds;
122 isl_vec *max;
125 static int node_has_tuples(const void *entry, const void *val)
127 struct isl_sched_node *node = (struct isl_sched_node *)entry;
128 isl_space *space = (isl_space *) val;
130 return isl_space_has_equal_tuples(node->space, space);
133 static int node_scc_exactly(struct isl_sched_node *node, int scc)
135 return node->scc == scc;
138 static int node_scc_at_most(struct isl_sched_node *node, int scc)
140 return node->scc <= scc;
143 static int node_scc_at_least(struct isl_sched_node *node, int scc)
145 return node->scc >= scc;
148 /* An edge in the dependence graph. An edge may be used to
149 * ensure validity of the generated schedule, to minimize the dependence
150 * distance or both
152 * map is the dependence relation, with i -> j in the map if j depends on i
153 * tagged_condition and tagged_validity contain the union of all tagged
154 * condition or conditional validity dependence relations that
155 * specialize the dependence relation "map"; that is,
156 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
157 * or "tagged_validity", then i -> j is an element of "map".
158 * If these fields are NULL, then they represent the empty relation.
159 * src is the source node
160 * dst is the sink node
162 * types is a bit vector containing the types of this edge.
163 * validity is set if the edge is used to ensure correctness
164 * coincidence is used to enforce zero dependence distances
165 * proximity is set if the edge is used to minimize dependence distances
166 * condition is set if the edge represents a condition
167 * for a conditional validity schedule constraint
168 * local can only be set for condition edges and indicates that
169 * the dependence distance over the edge should be zero
170 * conditional_validity is set if the edge is used to conditionally
171 * ensure correctness
173 * For validity edges, start and end mark the sequence of inequality
174 * constraints in the LP problem that encode the validity constraint
175 * corresponding to this edge.
177 * During clustering, an edge may be marked "no_merge" if it should
178 * not be used to merge clusters.
179 * The weight is also only used during clustering and it is
180 * an indication of how many schedule dimensions on either side
181 * of the schedule constraints can be aligned.
182 * If the weight is negative, then this means that this edge was postponed
183 * by has_bounded_distances or any_no_merge. The original weight can
184 * be retrieved by adding 1 + graph->max_weight, with "graph"
185 * the graph containing this edge.
187 struct isl_sched_edge {
188 isl_map *map;
189 isl_union_map *tagged_condition;
190 isl_union_map *tagged_validity;
192 struct isl_sched_node *src;
193 struct isl_sched_node *dst;
195 unsigned types;
197 int start;
198 int end;
200 int no_merge;
201 int weight;
204 /* Is "edge" marked as being of type "type"?
206 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
208 return ISL_FL_ISSET(edge->types, 1 << type);
211 /* Mark "edge" as being of type "type".
213 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
215 ISL_FL_SET(edge->types, 1 << type);
218 /* No longer mark "edge" as being of type "type"?
220 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
222 ISL_FL_CLR(edge->types, 1 << type);
225 /* Is "edge" marked as a validity edge?
227 static int is_validity(struct isl_sched_edge *edge)
229 return is_type(edge, isl_edge_validity);
232 /* Mark "edge" as a validity edge.
234 static void set_validity(struct isl_sched_edge *edge)
236 set_type(edge, isl_edge_validity);
239 /* Is "edge" marked as a proximity edge?
241 static int is_proximity(struct isl_sched_edge *edge)
243 return is_type(edge, isl_edge_proximity);
246 /* Is "edge" marked as a local edge?
248 static int is_local(struct isl_sched_edge *edge)
250 return is_type(edge, isl_edge_local);
253 /* Mark "edge" as a local edge.
255 static void set_local(struct isl_sched_edge *edge)
257 set_type(edge, isl_edge_local);
260 /* No longer mark "edge" as a local edge.
262 static void clear_local(struct isl_sched_edge *edge)
264 clear_type(edge, isl_edge_local);
267 /* Is "edge" marked as a coincidence edge?
269 static int is_coincidence(struct isl_sched_edge *edge)
271 return is_type(edge, isl_edge_coincidence);
274 /* Is "edge" marked as a condition edge?
276 static int is_condition(struct isl_sched_edge *edge)
278 return is_type(edge, isl_edge_condition);
281 /* Is "edge" marked as a conditional validity edge?
283 static int is_conditional_validity(struct isl_sched_edge *edge)
285 return is_type(edge, isl_edge_conditional_validity);
288 /* Internal information about the dependence graph used during
289 * the construction of the schedule.
291 * intra_hmap is a cache, mapping dependence relations to their dual,
292 * for dependences from a node to itself, possibly without
293 * coefficients for the parameters
294 * intra_hmap_param is a cache, mapping dependence relations to their dual,
295 * for dependences from a node to itself, including coefficients
296 * for the parameters
297 * inter_hmap is a cache, mapping dependence relations to their dual,
298 * for dependences between distinct nodes
299 * if compression is involved then the key for these maps
300 * is the original, uncompressed dependence relation, while
301 * the value is the dual of the compressed dependence relation.
303 * n is the number of nodes
304 * node is the list of nodes
305 * maxvar is the maximal number of variables over all nodes
306 * max_row is the allocated number of rows in the schedule
307 * n_row is the current (maximal) number of linearly independent
308 * rows in the node schedules
309 * n_total_row is the current number of rows in the node schedules
310 * band_start is the starting row in the node schedules of the current band
311 * root is set if this graph is the original dependence graph,
312 * without any splitting
314 * sorted contains a list of node indices sorted according to the
315 * SCC to which a node belongs
317 * n_edge is the number of edges
318 * edge is the list of edges
319 * max_edge contains the maximal number of edges of each type;
320 * in particular, it contains the number of edges in the inital graph.
321 * edge_table contains pointers into the edge array, hashed on the source
322 * and sink spaces; there is one such table for each type;
323 * a given edge may be referenced from more than one table
324 * if the corresponding relation appears in more than one of the
325 * sets of dependences; however, for each type there is only
326 * a single edge between a given pair of source and sink space
327 * in the entire graph
329 * node_table contains pointers into the node array, hashed on the space tuples
331 * region contains a list of variable sequences that should be non-trivial
333 * lp contains the (I)LP problem used to obtain new schedule rows
335 * src_scc and dst_scc are the source and sink SCCs of an edge with
336 * conflicting constraints
338 * scc represents the number of components
339 * weak is set if the components are weakly connected
341 * max_weight is used during clustering and represents the maximal
342 * weight of the relevant proximity edges.
344 struct isl_sched_graph {
345 isl_map_to_basic_set *intra_hmap;
346 isl_map_to_basic_set *intra_hmap_param;
347 isl_map_to_basic_set *inter_hmap;
349 struct isl_sched_node *node;
350 int n;
351 int maxvar;
352 int max_row;
353 int n_row;
355 int *sorted;
357 int n_total_row;
358 int band_start;
360 int root;
362 struct isl_sched_edge *edge;
363 int n_edge;
364 int max_edge[isl_edge_last + 1];
365 struct isl_hash_table *edge_table[isl_edge_last + 1];
367 struct isl_hash_table *node_table;
368 struct isl_trivial_region *region;
370 isl_basic_set *lp;
372 int src_scc;
373 int dst_scc;
375 int scc;
376 int weak;
378 int max_weight;
381 /* Initialize node_table based on the list of nodes.
383 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
385 int i;
387 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
388 if (!graph->node_table)
389 return -1;
391 for (i = 0; i < graph->n; ++i) {
392 struct isl_hash_table_entry *entry;
393 uint32_t hash;
395 hash = isl_space_get_tuple_hash(graph->node[i].space);
396 entry = isl_hash_table_find(ctx, graph->node_table, hash,
397 &node_has_tuples,
398 graph->node[i].space, 1);
399 if (!entry)
400 return -1;
401 entry->data = &graph->node[i];
404 return 0;
407 /* Return a pointer to the node that lives within the given space,
408 * or NULL if there is no such node.
410 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
411 struct isl_sched_graph *graph, __isl_keep isl_space *space)
413 struct isl_hash_table_entry *entry;
414 uint32_t hash;
416 hash = isl_space_get_tuple_hash(space);
417 entry = isl_hash_table_find(ctx, graph->node_table, hash,
418 &node_has_tuples, space, 0);
420 return entry ? entry->data : NULL;
423 static int edge_has_src_and_dst(const void *entry, const void *val)
425 const struct isl_sched_edge *edge = entry;
426 const struct isl_sched_edge *temp = val;
428 return edge->src == temp->src && edge->dst == temp->dst;
431 /* Add the given edge to graph->edge_table[type].
433 static isl_stat graph_edge_table_add(isl_ctx *ctx,
434 struct isl_sched_graph *graph, enum isl_edge_type type,
435 struct isl_sched_edge *edge)
437 struct isl_hash_table_entry *entry;
438 uint32_t hash;
440 hash = isl_hash_init();
441 hash = isl_hash_builtin(hash, edge->src);
442 hash = isl_hash_builtin(hash, edge->dst);
443 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
444 &edge_has_src_and_dst, edge, 1);
445 if (!entry)
446 return isl_stat_error;
447 entry->data = edge;
449 return isl_stat_ok;
452 /* Allocate the edge_tables based on the maximal number of edges of
453 * each type.
455 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
457 int i;
459 for (i = 0; i <= isl_edge_last; ++i) {
460 graph->edge_table[i] = isl_hash_table_alloc(ctx,
461 graph->max_edge[i]);
462 if (!graph->edge_table[i])
463 return -1;
466 return 0;
469 /* If graph->edge_table[type] contains an edge from the given source
470 * to the given destination, then return the hash table entry of this edge.
471 * Otherwise, return NULL.
473 static struct isl_hash_table_entry *graph_find_edge_entry(
474 struct isl_sched_graph *graph,
475 enum isl_edge_type type,
476 struct isl_sched_node *src, struct isl_sched_node *dst)
478 isl_ctx *ctx = isl_space_get_ctx(src->space);
479 uint32_t hash;
480 struct isl_sched_edge temp = { .src = src, .dst = dst };
482 hash = isl_hash_init();
483 hash = isl_hash_builtin(hash, temp.src);
484 hash = isl_hash_builtin(hash, temp.dst);
485 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
486 &edge_has_src_and_dst, &temp, 0);
490 /* If graph->edge_table[type] contains an edge from the given source
491 * to the given destination, then return this edge.
492 * Otherwise, return NULL.
494 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
495 enum isl_edge_type type,
496 struct isl_sched_node *src, struct isl_sched_node *dst)
498 struct isl_hash_table_entry *entry;
500 entry = graph_find_edge_entry(graph, type, src, dst);
501 if (!entry)
502 return NULL;
504 return entry->data;
507 /* Check whether the dependence graph has an edge of the given type
508 * between the given two nodes.
510 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
511 enum isl_edge_type type,
512 struct isl_sched_node *src, struct isl_sched_node *dst)
514 struct isl_sched_edge *edge;
515 isl_bool empty;
517 edge = graph_find_edge(graph, type, src, dst);
518 if (!edge)
519 return 0;
521 empty = isl_map_plain_is_empty(edge->map);
522 if (empty < 0)
523 return isl_bool_error;
525 return !empty;
528 /* Look for any edge with the same src, dst and map fields as "model".
530 * Return the matching edge if one can be found.
531 * Return "model" if no matching edge is found.
532 * Return NULL on error.
534 static struct isl_sched_edge *graph_find_matching_edge(
535 struct isl_sched_graph *graph, struct isl_sched_edge *model)
537 enum isl_edge_type i;
538 struct isl_sched_edge *edge;
540 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
541 int is_equal;
543 edge = graph_find_edge(graph, i, model->src, model->dst);
544 if (!edge)
545 continue;
546 is_equal = isl_map_plain_is_equal(model->map, edge->map);
547 if (is_equal < 0)
548 return NULL;
549 if (is_equal)
550 return edge;
553 return model;
556 /* Remove the given edge from all the edge_tables that refer to it.
558 static void graph_remove_edge(struct isl_sched_graph *graph,
559 struct isl_sched_edge *edge)
561 isl_ctx *ctx = isl_map_get_ctx(edge->map);
562 enum isl_edge_type i;
564 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
565 struct isl_hash_table_entry *entry;
567 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
568 if (!entry)
569 continue;
570 if (entry->data != edge)
571 continue;
572 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
576 /* Check whether the dependence graph has any edge
577 * between the given two nodes.
579 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
580 struct isl_sched_node *src, struct isl_sched_node *dst)
582 enum isl_edge_type i;
583 isl_bool r;
585 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
586 r = graph_has_edge(graph, i, src, dst);
587 if (r < 0 || r)
588 return r;
591 return r;
594 /* Check whether the dependence graph has a validity edge
595 * between the given two nodes.
597 * Conditional validity edges are essentially validity edges that
598 * can be ignored if the corresponding condition edges are iteration private.
599 * Here, we are only checking for the presence of validity
600 * edges, so we need to consider the conditional validity edges too.
601 * In particular, this function is used during the detection
602 * of strongly connected components and we cannot ignore
603 * conditional validity edges during this detection.
605 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
606 struct isl_sched_node *src, struct isl_sched_node *dst)
608 isl_bool r;
610 r = graph_has_edge(graph, isl_edge_validity, src, dst);
611 if (r < 0 || r)
612 return r;
614 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
617 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
618 int n_node, int n_edge)
620 int i;
622 graph->n = n_node;
623 graph->n_edge = n_edge;
624 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
625 graph->sorted = isl_calloc_array(ctx, int, graph->n);
626 graph->region = isl_alloc_array(ctx,
627 struct isl_trivial_region, graph->n);
628 graph->edge = isl_calloc_array(ctx,
629 struct isl_sched_edge, graph->n_edge);
631 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
632 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
633 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
635 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
636 !graph->sorted)
637 return -1;
639 for(i = 0; i < graph->n; ++i)
640 graph->sorted[i] = i;
642 return 0;
645 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
647 int i;
649 isl_map_to_basic_set_free(graph->intra_hmap);
650 isl_map_to_basic_set_free(graph->intra_hmap_param);
651 isl_map_to_basic_set_free(graph->inter_hmap);
653 if (graph->node)
654 for (i = 0; i < graph->n; ++i) {
655 isl_space_free(graph->node[i].space);
656 isl_set_free(graph->node[i].hull);
657 isl_multi_aff_free(graph->node[i].compress);
658 isl_multi_aff_free(graph->node[i].decompress);
659 isl_mat_free(graph->node[i].sched);
660 isl_map_free(graph->node[i].sched_map);
661 isl_mat_free(graph->node[i].indep);
662 isl_mat_free(graph->node[i].vmap);
663 if (graph->root)
664 free(graph->node[i].coincident);
665 isl_multi_val_free(graph->node[i].sizes);
666 isl_basic_set_free(graph->node[i].bounds);
667 isl_vec_free(graph->node[i].max);
669 free(graph->node);
670 free(graph->sorted);
671 if (graph->edge)
672 for (i = 0; i < graph->n_edge; ++i) {
673 isl_map_free(graph->edge[i].map);
674 isl_union_map_free(graph->edge[i].tagged_condition);
675 isl_union_map_free(graph->edge[i].tagged_validity);
677 free(graph->edge);
678 free(graph->region);
679 for (i = 0; i <= isl_edge_last; ++i)
680 isl_hash_table_free(ctx, graph->edge_table[i]);
681 isl_hash_table_free(ctx, graph->node_table);
682 isl_basic_set_free(graph->lp);
685 /* For each "set" on which this function is called, increment
686 * graph->n by one and update graph->maxvar.
688 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
690 struct isl_sched_graph *graph = user;
691 int nvar = isl_set_dim(set, isl_dim_set);
693 graph->n++;
694 if (nvar > graph->maxvar)
695 graph->maxvar = nvar;
697 isl_set_free(set);
699 return isl_stat_ok;
702 /* Compute the number of rows that should be allocated for the schedule.
703 * In particular, we need one row for each variable or one row
704 * for each basic map in the dependences.
705 * Note that it is practically impossible to exhaust both
706 * the number of dependences and the number of variables.
708 static isl_stat compute_max_row(struct isl_sched_graph *graph,
709 __isl_keep isl_schedule_constraints *sc)
711 int n_edge;
712 isl_stat r;
713 isl_union_set *domain;
715 graph->n = 0;
716 graph->maxvar = 0;
717 domain = isl_schedule_constraints_get_domain(sc);
718 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
719 isl_union_set_free(domain);
720 if (r < 0)
721 return isl_stat_error;
722 n_edge = isl_schedule_constraints_n_basic_map(sc);
723 if (n_edge < 0)
724 return isl_stat_error;
725 graph->max_row = n_edge + graph->maxvar;
727 return isl_stat_ok;
730 /* Does "bset" have any defining equalities for its set variables?
732 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
734 int i, n;
736 if (!bset)
737 return isl_bool_error;
739 n = isl_basic_set_dim(bset, isl_dim_set);
740 for (i = 0; i < n; ++i) {
741 isl_bool has;
743 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
744 NULL);
745 if (has < 0 || has)
746 return has;
749 return isl_bool_false;
752 /* Set the entries of node->max to the value of the schedule_max_coefficient
753 * option, if set.
755 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
757 int max;
759 max = isl_options_get_schedule_max_coefficient(ctx);
760 if (max == -1)
761 return isl_stat_ok;
763 node->max = isl_vec_alloc(ctx, node->nvar);
764 node->max = isl_vec_set_si(node->max, max);
765 if (!node->max)
766 return isl_stat_error;
768 return isl_stat_ok;
771 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
772 * option (if set) and half of the minimum of the sizes in the other
773 * dimensions. Round up when computing the half such that
774 * if the minimum of the sizes is one, half of the size is taken to be one
775 * rather than zero.
776 * If the global minimum is unbounded (i.e., if both
777 * the schedule_max_coefficient is not set and the sizes in the other
778 * dimensions are unbounded), then store a negative value.
779 * If the schedule coefficient is close to the size of the instance set
780 * in another dimension, then the schedule may represent a loop
781 * coalescing transformation (especially if the coefficient
782 * in that other dimension is one). Forcing the coefficient to be
783 * smaller than or equal to half the minimal size should avoid this
784 * situation.
786 static isl_stat compute_max_coefficient(isl_ctx *ctx,
787 struct isl_sched_node *node)
789 int max;
790 int i, j;
791 isl_vec *v;
793 max = isl_options_get_schedule_max_coefficient(ctx);
794 v = isl_vec_alloc(ctx, node->nvar);
795 if (!v)
796 return isl_stat_error;
798 for (i = 0; i < node->nvar; ++i) {
799 isl_int_set_si(v->el[i], max);
800 isl_int_mul_si(v->el[i], v->el[i], 2);
803 for (i = 0; i < node->nvar; ++i) {
804 isl_val *size;
806 size = isl_multi_val_get_val(node->sizes, i);
807 if (!size)
808 goto error;
809 if (!isl_val_is_int(size)) {
810 isl_val_free(size);
811 continue;
813 for (j = 0; j < node->nvar; ++j) {
814 if (j == i)
815 continue;
816 if (isl_int_is_neg(v->el[j]) ||
817 isl_int_gt(v->el[j], size->n))
818 isl_int_set(v->el[j], size->n);
820 isl_val_free(size);
823 for (i = 0; i < node->nvar; ++i)
824 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
826 node->max = v;
827 return isl_stat_ok;
828 error:
829 isl_vec_free(v);
830 return isl_stat_error;
833 /* Compute and return the size of "set" in dimension "dim".
834 * The size is taken to be the difference in values for that variable
835 * for fixed values of the other variables.
836 * In particular, the variable is first isolated from the other variables
837 * in the range of a map
839 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
841 * and then duplicated
843 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
845 * The shared variables are then projected out and the maximal value
846 * of i_dim' - i_dim is computed.
848 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
850 isl_map *map;
851 isl_local_space *ls;
852 isl_aff *obj;
853 isl_val *v;
855 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
856 map = isl_map_project_out(map, isl_dim_in, dim, 1);
857 map = isl_map_range_product(map, isl_map_copy(map));
858 map = isl_set_unwrap(isl_map_range(map));
859 set = isl_map_deltas(map);
860 ls = isl_local_space_from_space(isl_set_get_space(set));
861 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
862 v = isl_set_max_val(set, obj);
863 isl_aff_free(obj);
864 isl_set_free(set);
866 return v;
869 /* Compute the size of the instance set "set" of "node", after compression,
870 * as well as bounds on the corresponding coefficients, if needed.
872 * The sizes are needed when the schedule_treat_coalescing option is set.
873 * The bounds are needed when the schedule_treat_coalescing option or
874 * the schedule_max_coefficient option is set.
876 * If the schedule_treat_coalescing option is not set, then at most
877 * the bounds need to be set and this is done in set_max_coefficient.
878 * Otherwise, compress the domain if needed, compute the size
879 * in each direction and store the results in node->size.
880 * Finally, set the bounds on the coefficients based on the sizes
881 * and the schedule_max_coefficient option in compute_max_coefficient.
883 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
884 __isl_take isl_set *set)
886 int j, n;
887 isl_multi_val *mv;
889 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
890 isl_set_free(set);
891 return set_max_coefficient(ctx, node);
894 if (node->compressed)
895 set = isl_set_preimage_multi_aff(set,
896 isl_multi_aff_copy(node->decompress));
897 mv = isl_multi_val_zero(isl_set_get_space(set));
898 n = isl_set_dim(set, isl_dim_set);
899 for (j = 0; j < n; ++j) {
900 isl_val *v;
902 v = compute_size(isl_set_copy(set), j);
903 mv = isl_multi_val_set_val(mv, j, v);
905 node->sizes = mv;
906 isl_set_free(set);
907 if (!node->sizes)
908 return isl_stat_error;
909 return compute_max_coefficient(ctx, node);
912 /* Add a new node to the graph representing the given instance set.
913 * "nvar" is the (possibly compressed) number of variables and
914 * may be smaller than then number of set variables in "set"
915 * if "compressed" is set.
916 * If "compressed" is set, then "hull" represents the constraints
917 * that were used to derive the compression, while "compress" and
918 * "decompress" map the original space to the compressed space and
919 * vice versa.
920 * If "compressed" is not set, then "hull", "compress" and "decompress"
921 * should be NULL.
923 * Compute the size of the instance set and bounds on the coefficients,
924 * if needed.
926 static isl_stat add_node(struct isl_sched_graph *graph,
927 __isl_take isl_set *set, int nvar, int compressed,
928 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
929 __isl_take isl_multi_aff *decompress)
931 int nparam;
932 isl_ctx *ctx;
933 isl_mat *sched;
934 isl_space *space;
935 int *coincident;
936 struct isl_sched_node *node;
938 if (!set)
939 return isl_stat_error;
941 ctx = isl_set_get_ctx(set);
942 nparam = isl_set_dim(set, isl_dim_param);
943 if (!ctx->opt->schedule_parametric)
944 nparam = 0;
945 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
946 node = &graph->node[graph->n];
947 graph->n++;
948 space = isl_set_get_space(set);
949 node->space = space;
950 node->nvar = nvar;
951 node->nparam = nparam;
952 node->sched = sched;
953 node->sched_map = NULL;
954 coincident = isl_calloc_array(ctx, int, graph->max_row);
955 node->coincident = coincident;
956 node->compressed = compressed;
957 node->hull = hull;
958 node->compress = compress;
959 node->decompress = decompress;
960 if (compute_sizes_and_max(ctx, node, set) < 0)
961 return isl_stat_error;
963 if (!space || !sched || (graph->max_row && !coincident))
964 return isl_stat_error;
965 if (compressed && (!hull || !compress || !decompress))
966 return isl_stat_error;
968 return isl_stat_ok;
971 /* Construct an identifier for node "node", which will represent "set".
972 * The name of the identifier is either "compressed" or
973 * "compressed_<name>", with <name> the name of the space of "set".
974 * The user pointer of the identifier points to "node".
976 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
977 struct isl_sched_node *node)
979 isl_bool has_name;
980 isl_ctx *ctx;
981 isl_id *id;
982 isl_printer *p;
983 const char *name;
984 char *id_name;
986 has_name = isl_set_has_tuple_name(set);
987 if (has_name < 0)
988 return NULL;
990 ctx = isl_set_get_ctx(set);
991 if (!has_name)
992 return isl_id_alloc(ctx, "compressed", node);
994 p = isl_printer_to_str(ctx);
995 name = isl_set_get_tuple_name(set);
996 p = isl_printer_print_str(p, "compressed_");
997 p = isl_printer_print_str(p, name);
998 id_name = isl_printer_get_str(p);
999 isl_printer_free(p);
1001 id = isl_id_alloc(ctx, id_name, node);
1002 free(id_name);
1004 return id;
1007 /* Add a new node to the graph representing the given set.
1009 * If any of the set variables is defined by an equality, then
1010 * we perform variable compression such that we can perform
1011 * the scheduling on the compressed domain.
1012 * In this case, an identifier is used that references the new node
1013 * such that each compressed space is unique and
1014 * such that the node can be recovered from the compressed space.
1016 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1018 int nvar;
1019 isl_bool has_equality;
1020 isl_id *id;
1021 isl_basic_set *hull;
1022 isl_set *hull_set;
1023 isl_morph *morph;
1024 isl_multi_aff *compress, *decompress;
1025 struct isl_sched_graph *graph = user;
1027 hull = isl_set_affine_hull(isl_set_copy(set));
1028 hull = isl_basic_set_remove_divs(hull);
1029 nvar = isl_set_dim(set, isl_dim_set);
1030 has_equality = has_any_defining_equality(hull);
1032 if (has_equality < 0)
1033 goto error;
1034 if (!has_equality) {
1035 isl_basic_set_free(hull);
1036 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1039 id = construct_compressed_id(set, &graph->node[graph->n]);
1040 morph = isl_basic_set_variable_compression_with_id(hull,
1041 isl_dim_set, id);
1042 isl_id_free(id);
1043 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1044 compress = isl_morph_get_var_multi_aff(morph);
1045 morph = isl_morph_inverse(morph);
1046 decompress = isl_morph_get_var_multi_aff(morph);
1047 isl_morph_free(morph);
1049 hull_set = isl_set_from_basic_set(hull);
1050 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1051 error:
1052 isl_basic_set_free(hull);
1053 isl_set_free(set);
1054 return isl_stat_error;
1057 struct isl_extract_edge_data {
1058 enum isl_edge_type type;
1059 struct isl_sched_graph *graph;
1062 /* Merge edge2 into edge1, freeing the contents of edge2.
1063 * Return 0 on success and -1 on failure.
1065 * edge1 and edge2 are assumed to have the same value for the map field.
1067 static int merge_edge(struct isl_sched_edge *edge1,
1068 struct isl_sched_edge *edge2)
1070 edge1->types |= edge2->types;
1071 isl_map_free(edge2->map);
1073 if (is_condition(edge2)) {
1074 if (!edge1->tagged_condition)
1075 edge1->tagged_condition = edge2->tagged_condition;
1076 else
1077 edge1->tagged_condition =
1078 isl_union_map_union(edge1->tagged_condition,
1079 edge2->tagged_condition);
1082 if (is_conditional_validity(edge2)) {
1083 if (!edge1->tagged_validity)
1084 edge1->tagged_validity = edge2->tagged_validity;
1085 else
1086 edge1->tagged_validity =
1087 isl_union_map_union(edge1->tagged_validity,
1088 edge2->tagged_validity);
1091 if (is_condition(edge2) && !edge1->tagged_condition)
1092 return -1;
1093 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1094 return -1;
1096 return 0;
1099 /* Insert dummy tags in domain and range of "map".
1101 * In particular, if "map" is of the form
1103 * A -> B
1105 * then return
1107 * [A -> dummy_tag] -> [B -> dummy_tag]
1109 * where the dummy_tags are identical and equal to any dummy tags
1110 * introduced by any other call to this function.
1112 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1114 static char dummy;
1115 isl_ctx *ctx;
1116 isl_id *id;
1117 isl_space *space;
1118 isl_set *domain, *range;
1120 ctx = isl_map_get_ctx(map);
1122 id = isl_id_alloc(ctx, NULL, &dummy);
1123 space = isl_space_params(isl_map_get_space(map));
1124 space = isl_space_set_from_params(space);
1125 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1126 space = isl_space_map_from_set(space);
1128 domain = isl_map_wrap(map);
1129 range = isl_map_wrap(isl_map_universe(space));
1130 map = isl_map_from_domain_and_range(domain, range);
1131 map = isl_map_zip(map);
1133 return map;
1136 /* Given that at least one of "src" or "dst" is compressed, return
1137 * a map between the spaces of these nodes restricted to the affine
1138 * hull that was used in the compression.
1140 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1141 struct isl_sched_node *dst)
1143 isl_set *dom, *ran;
1145 if (src->compressed)
1146 dom = isl_set_copy(src->hull);
1147 else
1148 dom = isl_set_universe(isl_space_copy(src->space));
1149 if (dst->compressed)
1150 ran = isl_set_copy(dst->hull);
1151 else
1152 ran = isl_set_universe(isl_space_copy(dst->space));
1154 return isl_map_from_domain_and_range(dom, ran);
1157 /* Intersect the domains of the nested relations in domain and range
1158 * of "tagged" with "map".
1160 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1161 __isl_keep isl_map *map)
1163 isl_set *set;
1165 tagged = isl_map_zip(tagged);
1166 set = isl_map_wrap(isl_map_copy(map));
1167 tagged = isl_map_intersect_domain(tagged, set);
1168 tagged = isl_map_zip(tagged);
1169 return tagged;
1172 /* Return a pointer to the node that lives in the domain space of "map"
1173 * or NULL if there is no such node.
1175 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1176 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1178 struct isl_sched_node *node;
1179 isl_space *space;
1181 space = isl_space_domain(isl_map_get_space(map));
1182 node = graph_find_node(ctx, graph, space);
1183 isl_space_free(space);
1185 return node;
1188 /* Return a pointer to the node that lives in the range space of "map"
1189 * or NULL if there is no such node.
1191 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1192 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1194 struct isl_sched_node *node;
1195 isl_space *space;
1197 space = isl_space_range(isl_map_get_space(map));
1198 node = graph_find_node(ctx, graph, space);
1199 isl_space_free(space);
1201 return node;
1204 /* Add a new edge to the graph based on the given map
1205 * and add it to data->graph->edge_table[data->type].
1206 * If a dependence relation of a given type happens to be identical
1207 * to one of the dependence relations of a type that was added before,
1208 * then we don't create a new edge, but instead mark the original edge
1209 * as also representing a dependence of the current type.
1211 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1212 * may be specified as "tagged" dependence relations. That is, "map"
1213 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1214 * the dependence on iterations and a and b are tags.
1215 * edge->map is set to the relation containing the elements i -> j,
1216 * while edge->tagged_condition and edge->tagged_validity contain
1217 * the union of all the "map" relations
1218 * for which extract_edge is called that result in the same edge->map.
1220 * If the source or the destination node is compressed, then
1221 * intersect both "map" and "tagged" with the constraints that
1222 * were used to construct the compression.
1223 * This ensures that there are no schedule constraints defined
1224 * outside of these domains, while the scheduler no longer has
1225 * any control over those outside parts.
1227 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1229 isl_ctx *ctx = isl_map_get_ctx(map);
1230 struct isl_extract_edge_data *data = user;
1231 struct isl_sched_graph *graph = data->graph;
1232 struct isl_sched_node *src, *dst;
1233 struct isl_sched_edge *edge;
1234 isl_map *tagged = NULL;
1236 if (data->type == isl_edge_condition ||
1237 data->type == isl_edge_conditional_validity) {
1238 if (isl_map_can_zip(map)) {
1239 tagged = isl_map_copy(map);
1240 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1241 } else {
1242 tagged = insert_dummy_tags(isl_map_copy(map));
1246 src = find_domain_node(ctx, graph, map);
1247 dst = find_range_node(ctx, graph, map);
1249 if (!src || !dst) {
1250 isl_map_free(map);
1251 isl_map_free(tagged);
1252 return isl_stat_ok;
1255 if (src->compressed || dst->compressed) {
1256 isl_map *hull;
1257 hull = extract_hull(src, dst);
1258 if (tagged)
1259 tagged = map_intersect_domains(tagged, hull);
1260 map = isl_map_intersect(map, hull);
1263 graph->edge[graph->n_edge].src = src;
1264 graph->edge[graph->n_edge].dst = dst;
1265 graph->edge[graph->n_edge].map = map;
1266 graph->edge[graph->n_edge].types = 0;
1267 graph->edge[graph->n_edge].tagged_condition = NULL;
1268 graph->edge[graph->n_edge].tagged_validity = NULL;
1269 set_type(&graph->edge[graph->n_edge], data->type);
1270 if (data->type == isl_edge_condition)
1271 graph->edge[graph->n_edge].tagged_condition =
1272 isl_union_map_from_map(tagged);
1273 if (data->type == isl_edge_conditional_validity)
1274 graph->edge[graph->n_edge].tagged_validity =
1275 isl_union_map_from_map(tagged);
1277 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1278 if (!edge) {
1279 graph->n_edge++;
1280 return isl_stat_error;
1282 if (edge == &graph->edge[graph->n_edge])
1283 return graph_edge_table_add(ctx, graph, data->type,
1284 &graph->edge[graph->n_edge++]);
1286 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1287 return -1;
1289 return graph_edge_table_add(ctx, graph, data->type, edge);
1292 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1294 * The context is included in the domain before the nodes of
1295 * the graphs are extracted in order to be able to exploit
1296 * any possible additional equalities.
1297 * Note that this intersection is only performed locally here.
1299 static isl_stat graph_init(struct isl_sched_graph *graph,
1300 __isl_keep isl_schedule_constraints *sc)
1302 isl_ctx *ctx;
1303 isl_union_set *domain;
1304 isl_union_map *c;
1305 struct isl_extract_edge_data data;
1306 enum isl_edge_type i;
1307 isl_stat r;
1309 if (!sc)
1310 return isl_stat_error;
1312 ctx = isl_schedule_constraints_get_ctx(sc);
1314 domain = isl_schedule_constraints_get_domain(sc);
1315 graph->n = isl_union_set_n_set(domain);
1316 isl_union_set_free(domain);
1318 if (graph_alloc(ctx, graph, graph->n,
1319 isl_schedule_constraints_n_map(sc)) < 0)
1320 return isl_stat_error;
1322 if (compute_max_row(graph, sc) < 0)
1323 return isl_stat_error;
1324 graph->root = 1;
1325 graph->n = 0;
1326 domain = isl_schedule_constraints_get_domain(sc);
1327 domain = isl_union_set_intersect_params(domain,
1328 isl_schedule_constraints_get_context(sc));
1329 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1330 isl_union_set_free(domain);
1331 if (r < 0)
1332 return isl_stat_error;
1333 if (graph_init_table(ctx, graph) < 0)
1334 return isl_stat_error;
1335 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1336 c = isl_schedule_constraints_get(sc, i);
1337 graph->max_edge[i] = isl_union_map_n_map(c);
1338 isl_union_map_free(c);
1339 if (!c)
1340 return isl_stat_error;
1342 if (graph_init_edge_tables(ctx, graph) < 0)
1343 return isl_stat_error;
1344 graph->n_edge = 0;
1345 data.graph = graph;
1346 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1347 isl_stat r;
1349 data.type = i;
1350 c = isl_schedule_constraints_get(sc, i);
1351 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1352 isl_union_map_free(c);
1353 if (r < 0)
1354 return isl_stat_error;
1357 return isl_stat_ok;
1360 /* Check whether there is any dependence from node[j] to node[i]
1361 * or from node[i] to node[j].
1363 static isl_bool node_follows_weak(int i, int j, void *user)
1365 isl_bool f;
1366 struct isl_sched_graph *graph = user;
1368 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1369 if (f < 0 || f)
1370 return f;
1371 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1374 /* Check whether there is a (conditional) validity dependence from node[j]
1375 * to node[i], forcing node[i] to follow node[j].
1377 static isl_bool node_follows_strong(int i, int j, void *user)
1379 struct isl_sched_graph *graph = user;
1381 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1384 /* Use Tarjan's algorithm for computing the strongly connected components
1385 * in the dependence graph only considering those edges defined by "follows".
1387 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1388 isl_bool (*follows)(int i, int j, void *user))
1390 int i, n;
1391 struct isl_tarjan_graph *g = NULL;
1393 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1394 if (!g)
1395 return -1;
1397 graph->scc = 0;
1398 i = 0;
1399 n = graph->n;
1400 while (n) {
1401 while (g->order[i] != -1) {
1402 graph->node[g->order[i]].scc = graph->scc;
1403 --n;
1404 ++i;
1406 ++i;
1407 graph->scc++;
1410 isl_tarjan_graph_free(g);
1412 return 0;
1415 /* Apply Tarjan's algorithm to detect the strongly connected components
1416 * in the dependence graph.
1417 * Only consider the (conditional) validity dependences and clear "weak".
1419 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1421 graph->weak = 0;
1422 return detect_ccs(ctx, graph, &node_follows_strong);
1425 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1426 * in the dependence graph.
1427 * Consider all dependences and set "weak".
1429 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1431 graph->weak = 1;
1432 return detect_ccs(ctx, graph, &node_follows_weak);
1435 static int cmp_scc(const void *a, const void *b, void *data)
1437 struct isl_sched_graph *graph = data;
1438 const int *i1 = a;
1439 const int *i2 = b;
1441 return graph->node[*i1].scc - graph->node[*i2].scc;
1444 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1446 static int sort_sccs(struct isl_sched_graph *graph)
1448 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1451 /* Return a non-parametric set in the compressed space of "node" that is
1452 * bounded by the size in each direction
1454 * { [x] : -S_i <= x_i <= S_i }
1456 * If S_i is infinity in direction i, then there are no constraints
1457 * in that direction.
1459 * Cache the result in node->bounds.
1461 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1463 isl_space *space;
1464 isl_basic_set *bounds;
1465 int i;
1466 unsigned nparam;
1468 if (node->bounds)
1469 return isl_basic_set_copy(node->bounds);
1471 if (node->compressed)
1472 space = isl_multi_aff_get_domain_space(node->decompress);
1473 else
1474 space = isl_space_copy(node->space);
1475 nparam = isl_space_dim(space, isl_dim_param);
1476 space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
1477 bounds = isl_basic_set_universe(space);
1479 for (i = 0; i < node->nvar; ++i) {
1480 isl_val *size;
1482 size = isl_multi_val_get_val(node->sizes, i);
1483 if (!size)
1484 return isl_basic_set_free(bounds);
1485 if (!isl_val_is_int(size)) {
1486 isl_val_free(size);
1487 continue;
1489 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1490 isl_val_copy(size));
1491 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1492 isl_val_neg(size));
1495 node->bounds = isl_basic_set_copy(bounds);
1496 return bounds;
1499 /* Drop some constraints from "delta" that could be exploited
1500 * to construct loop coalescing schedules.
1501 * In particular, drop those constraint that bound the difference
1502 * to the size of the domain.
1503 * First project out the parameters to improve the effectiveness.
1505 static __isl_give isl_set *drop_coalescing_constraints(
1506 __isl_take isl_set *delta, struct isl_sched_node *node)
1508 unsigned nparam;
1509 isl_basic_set *bounds;
1511 bounds = get_size_bounds(node);
1513 nparam = isl_set_dim(delta, isl_dim_param);
1514 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1515 delta = isl_set_remove_divs(delta);
1516 delta = isl_set_plain_gist_basic_set(delta, bounds);
1517 return delta;
1520 /* Given a dependence relation R from "node" to itself,
1521 * construct the set of coefficients of valid constraints for elements
1522 * in that dependence relation.
1523 * In particular, the result contains tuples of coefficients
1524 * c_0, c_n, c_x such that
1526 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1528 * or, equivalently,
1530 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1532 * We choose here to compute the dual of delta R.
1533 * Alternatively, we could have computed the dual of R, resulting
1534 * in a set of tuples c_0, c_n, c_x, c_y, and then
1535 * plugged in (c_0, c_n, c_x, -c_x).
1537 * If "need_param" is set, then the resulting coefficients effectively
1538 * include coefficients for the parameters c_n. Otherwise, they may
1539 * have been projected out already.
1540 * Since the constraints may be different for these two cases,
1541 * they are stored in separate caches.
1542 * In particular, if no parameter coefficients are required and
1543 * the schedule_treat_coalescing option is set, then the parameters
1544 * are projected out and some constraints that could be exploited
1545 * to construct coalescing schedules are removed before the dual
1546 * is computed.
1548 * If "node" has been compressed, then the dependence relation
1549 * is also compressed before the set of coefficients is computed.
1551 static __isl_give isl_basic_set *intra_coefficients(
1552 struct isl_sched_graph *graph, struct isl_sched_node *node,
1553 __isl_take isl_map *map, int need_param)
1555 isl_ctx *ctx;
1556 isl_set *delta;
1557 isl_map *key;
1558 isl_basic_set *coef;
1559 isl_maybe_isl_basic_set m;
1560 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1561 int treat;
1563 if (!map)
1564 return NULL;
1566 ctx = isl_map_get_ctx(map);
1567 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1568 if (!treat)
1569 hmap = &graph->intra_hmap_param;
1570 m = isl_map_to_basic_set_try_get(*hmap, map);
1571 if (m.valid < 0 || m.valid) {
1572 isl_map_free(map);
1573 return m.value;
1576 key = isl_map_copy(map);
1577 if (node->compressed) {
1578 map = isl_map_preimage_domain_multi_aff(map,
1579 isl_multi_aff_copy(node->decompress));
1580 map = isl_map_preimage_range_multi_aff(map,
1581 isl_multi_aff_copy(node->decompress));
1583 delta = isl_map_deltas(map);
1584 if (treat)
1585 delta = drop_coalescing_constraints(delta, node);
1586 delta = isl_set_remove_divs(delta);
1587 coef = isl_set_coefficients(delta);
1588 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1590 return coef;
1593 /* Given a dependence relation R, construct the set of coefficients
1594 * of valid constraints for elements in that dependence relation.
1595 * In particular, the result contains tuples of coefficients
1596 * c_0, c_n, c_x, c_y such that
1598 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1600 * If the source or destination nodes of "edge" have been compressed,
1601 * then the dependence relation is also compressed before
1602 * the set of coefficients is computed.
1604 static __isl_give isl_basic_set *inter_coefficients(
1605 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1606 __isl_take isl_map *map)
1608 isl_set *set;
1609 isl_map *key;
1610 isl_basic_set *coef;
1611 isl_maybe_isl_basic_set m;
1613 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1614 if (m.valid < 0 || m.valid) {
1615 isl_map_free(map);
1616 return m.value;
1619 key = isl_map_copy(map);
1620 if (edge->src->compressed)
1621 map = isl_map_preimage_domain_multi_aff(map,
1622 isl_multi_aff_copy(edge->src->decompress));
1623 if (edge->dst->compressed)
1624 map = isl_map_preimage_range_multi_aff(map,
1625 isl_multi_aff_copy(edge->dst->decompress));
1626 set = isl_map_wrap(isl_map_remove_divs(map));
1627 coef = isl_set_coefficients(set);
1628 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1629 isl_basic_set_copy(coef));
1631 return coef;
1634 /* Return the position of the coefficients of the variables in
1635 * the coefficients constraints "coef".
1637 * The space of "coef" is of the form
1639 * { coefficients[[cst, params] -> S] }
1641 * Return the position of S.
1643 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1645 int offset;
1646 isl_space *space;
1648 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1649 offset = isl_space_dim(space, isl_dim_in);
1650 isl_space_free(space);
1652 return offset;
1655 /* Return the offset of the coefficient of the constant term of "node"
1656 * within the (I)LP.
1658 * Within each node, the coefficients have the following order:
1659 * - positive and negative parts of c_i_x
1660 * - c_i_n (if parametric)
1661 * - c_i_0
1663 static int node_cst_coef_offset(struct isl_sched_node *node)
1665 return node->start + 2 * node->nvar + node->nparam;
1668 /* Return the offset of the coefficients of the parameters of "node"
1669 * within the (I)LP.
1671 * Within each node, the coefficients have the following order:
1672 * - positive and negative parts of c_i_x
1673 * - c_i_n (if parametric)
1674 * - c_i_0
1676 static int node_par_coef_offset(struct isl_sched_node *node)
1678 return node->start + 2 * node->nvar;
1681 /* Return the offset of the coefficients of the variables of "node"
1682 * within the (I)LP.
1684 * Within each node, the coefficients have the following order:
1685 * - positive and negative parts of c_i_x
1686 * - c_i_n (if parametric)
1687 * - c_i_0
1689 static int node_var_coef_offset(struct isl_sched_node *node)
1691 return node->start;
1694 /* Return the position of the pair of variables encoding
1695 * coefficient "i" of "node".
1697 * The order of these variable pairs is the opposite of
1698 * that of the coefficients, with 2 variables per coefficient.
1700 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1702 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1705 /* Construct an isl_dim_map for mapping constraints on coefficients
1706 * for "node" to the corresponding positions in graph->lp.
1707 * "offset" is the offset of the coefficients for the variables
1708 * in the input constraints.
1709 * "s" is the sign of the mapping.
1711 * The input constraints are given in terms of the coefficients
1712 * (c_0, c_x) or (c_0, c_n, c_x).
1713 * The mapping produced by this function essentially plugs in
1714 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1715 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1716 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1717 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1718 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1719 * Furthermore, the order of these pairs is the opposite of that
1720 * of the corresponding coefficients.
1722 * The caller can extend the mapping to also map the other coefficients
1723 * (and therefore not plug in 0).
1725 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1726 struct isl_sched_graph *graph, struct isl_sched_node *node,
1727 int offset, int s)
1729 int pos;
1730 unsigned total;
1731 isl_dim_map *dim_map;
1733 if (!node)
1734 return NULL;
1736 total = isl_basic_set_total_dim(graph->lp);
1737 pos = node_var_coef_pos(node, 0);
1738 dim_map = isl_dim_map_alloc(ctx, total);
1739 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1740 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1742 return dim_map;
1745 /* Construct an isl_dim_map for mapping constraints on coefficients
1746 * for "src" (node i) and "dst" (node j) to the corresponding positions
1747 * in graph->lp.
1748 * "offset" is the offset of the coefficients for the variables of "src"
1749 * in the input constraints.
1750 * "s" is the sign of the mapping.
1752 * The input constraints are given in terms of the coefficients
1753 * (c_0, c_n, c_x, c_y).
1754 * The mapping produced by this function essentially plugs in
1755 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1756 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1757 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1758 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1759 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1760 * Furthermore, the order of these pairs is the opposite of that
1761 * of the corresponding coefficients.
1763 * The caller can further extend the mapping.
1765 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1766 struct isl_sched_graph *graph, struct isl_sched_node *src,
1767 struct isl_sched_node *dst, int offset, int s)
1769 int pos;
1770 unsigned total;
1771 isl_dim_map *dim_map;
1773 if (!src || !dst)
1774 return NULL;
1776 total = isl_basic_set_total_dim(graph->lp);
1777 dim_map = isl_dim_map_alloc(ctx, total);
1779 pos = node_cst_coef_offset(dst);
1780 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1781 pos = node_par_coef_offset(dst);
1782 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1783 pos = node_var_coef_pos(dst, 0);
1784 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1785 dst->nvar, -s);
1786 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1787 dst->nvar, s);
1789 pos = node_cst_coef_offset(src);
1790 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1791 pos = node_par_coef_offset(src);
1792 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1793 pos = node_var_coef_pos(src, 0);
1794 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1795 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1797 return dim_map;
1800 /* Add the constraints from "src" to "dst" using "dim_map",
1801 * after making sure there is enough room in "dst" for the extra constraints.
1803 static __isl_give isl_basic_set *add_constraints_dim_map(
1804 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1805 __isl_take isl_dim_map *dim_map)
1807 int n_eq, n_ineq;
1809 n_eq = isl_basic_set_n_equality(src);
1810 n_ineq = isl_basic_set_n_inequality(src);
1811 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1812 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1813 return dst;
1816 /* Add constraints to graph->lp that force validity for the given
1817 * dependence from a node i to itself.
1818 * That is, add constraints that enforce
1820 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1821 * = c_i_x (y - x) >= 0
1823 * for each (x,y) in R.
1824 * We obtain general constraints on coefficients (c_0, c_x)
1825 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1826 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1827 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1828 * Note that the result of intra_coefficients may also contain
1829 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1831 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1832 struct isl_sched_edge *edge)
1834 int offset;
1835 isl_map *map = isl_map_copy(edge->map);
1836 isl_ctx *ctx = isl_map_get_ctx(map);
1837 isl_dim_map *dim_map;
1838 isl_basic_set *coef;
1839 struct isl_sched_node *node = edge->src;
1841 coef = intra_coefficients(graph, node, map, 0);
1843 offset = coef_var_offset(coef);
1845 if (!coef)
1846 return isl_stat_error;
1848 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1849 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1851 return isl_stat_ok;
1854 /* Add constraints to graph->lp that force validity for the given
1855 * dependence from node i to node j.
1856 * That is, add constraints that enforce
1858 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1860 * for each (x,y) in R.
1861 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1862 * of valid constraints for R and then plug in
1863 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1864 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1865 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1867 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1868 struct isl_sched_edge *edge)
1870 int offset;
1871 isl_map *map;
1872 isl_ctx *ctx;
1873 isl_dim_map *dim_map;
1874 isl_basic_set *coef;
1875 struct isl_sched_node *src = edge->src;
1876 struct isl_sched_node *dst = edge->dst;
1878 if (!graph->lp)
1879 return isl_stat_error;
1881 map = isl_map_copy(edge->map);
1882 ctx = isl_map_get_ctx(map);
1883 coef = inter_coefficients(graph, edge, map);
1885 offset = coef_var_offset(coef);
1887 if (!coef)
1888 return isl_stat_error;
1890 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1892 edge->start = graph->lp->n_ineq;
1893 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1894 if (!graph->lp)
1895 return isl_stat_error;
1896 edge->end = graph->lp->n_ineq;
1898 return isl_stat_ok;
1901 /* Add constraints to graph->lp that bound the dependence distance for the given
1902 * dependence from a node i to itself.
1903 * If s = 1, we add the constraint
1905 * c_i_x (y - x) <= m_0 + m_n n
1907 * or
1909 * -c_i_x (y - x) + m_0 + m_n n >= 0
1911 * for each (x,y) in R.
1912 * If s = -1, we add the constraint
1914 * -c_i_x (y - x) <= m_0 + m_n n
1916 * or
1918 * c_i_x (y - x) + m_0 + m_n n >= 0
1920 * for each (x,y) in R.
1921 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1922 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1923 * with each coefficient (except m_0) represented as a pair of non-negative
1924 * coefficients.
1927 * If "local" is set, then we add constraints
1929 * c_i_x (y - x) <= 0
1931 * or
1933 * -c_i_x (y - x) <= 0
1935 * instead, forcing the dependence distance to be (less than or) equal to 0.
1936 * That is, we plug in (0, 0, -s * c_i_x),
1937 * intra_coefficients is not required to have c_n in its result when
1938 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
1939 * Note that dependences marked local are treated as validity constraints
1940 * by add_all_validity_constraints and therefore also have
1941 * their distances bounded by 0 from below.
1943 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1944 struct isl_sched_edge *edge, int s, int local)
1946 int offset;
1947 unsigned nparam;
1948 isl_map *map = isl_map_copy(edge->map);
1949 isl_ctx *ctx = isl_map_get_ctx(map);
1950 isl_dim_map *dim_map;
1951 isl_basic_set *coef;
1952 struct isl_sched_node *node = edge->src;
1954 coef = intra_coefficients(graph, node, map, !local);
1956 offset = coef_var_offset(coef);
1958 if (!coef)
1959 return isl_stat_error;
1961 nparam = isl_space_dim(node->space, isl_dim_param);
1962 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1964 if (!local) {
1965 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1966 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1967 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1969 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1971 return isl_stat_ok;
1974 /* Add constraints to graph->lp that bound the dependence distance for the given
1975 * dependence from node i to node j.
1976 * If s = 1, we add the constraint
1978 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1979 * <= m_0 + m_n n
1981 * or
1983 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1984 * m_0 + m_n n >= 0
1986 * for each (x,y) in R.
1987 * If s = -1, we add the constraint
1989 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1990 * <= m_0 + m_n n
1992 * or
1994 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1995 * m_0 + m_n n >= 0
1997 * for each (x,y) in R.
1998 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1999 * of valid constraints for R and then plug in
2000 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2001 * s*c_i_x, -s*c_j_x)
2002 * with each coefficient (except m_0, c_*_0 and c_*_n)
2003 * represented as a pair of non-negative coefficients.
2006 * If "local" is set (and s = 1), then we add constraints
2008 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2010 * or
2012 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2014 * instead, forcing the dependence distance to be (less than or) equal to 0.
2015 * That is, we plug in
2016 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2017 * Note that dependences marked local are treated as validity constraints
2018 * by add_all_validity_constraints and therefore also have
2019 * their distances bounded by 0 from below.
2021 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2022 struct isl_sched_edge *edge, int s, int local)
2024 int offset;
2025 unsigned nparam;
2026 isl_map *map = isl_map_copy(edge->map);
2027 isl_ctx *ctx = isl_map_get_ctx(map);
2028 isl_dim_map *dim_map;
2029 isl_basic_set *coef;
2030 struct isl_sched_node *src = edge->src;
2031 struct isl_sched_node *dst = edge->dst;
2033 coef = inter_coefficients(graph, edge, map);
2035 offset = coef_var_offset(coef);
2037 if (!coef)
2038 return isl_stat_error;
2040 nparam = isl_space_dim(src->space, isl_dim_param);
2041 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2043 if (!local) {
2044 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2045 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2046 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2049 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2051 return isl_stat_ok;
2054 /* Should the distance over "edge" be forced to zero?
2055 * That is, is it marked as a local edge?
2056 * If "use_coincidence" is set, then coincidence edges are treated
2057 * as local edges.
2059 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2061 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2064 /* Add all validity constraints to graph->lp.
2066 * An edge that is forced to be local needs to have its dependence
2067 * distances equal to zero. We take care of bounding them by 0 from below
2068 * here. add_all_proximity_constraints takes care of bounding them by 0
2069 * from above.
2071 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2072 * Otherwise, we ignore them.
2074 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2075 int use_coincidence)
2077 int i;
2079 for (i = 0; i < graph->n_edge; ++i) {
2080 struct isl_sched_edge *edge = &graph->edge[i];
2081 int zero;
2083 zero = force_zero(edge, use_coincidence);
2084 if (!is_validity(edge) && !zero)
2085 continue;
2086 if (edge->src != edge->dst)
2087 continue;
2088 if (add_intra_validity_constraints(graph, edge) < 0)
2089 return -1;
2092 for (i = 0; i < graph->n_edge; ++i) {
2093 struct isl_sched_edge *edge = &graph->edge[i];
2094 int zero;
2096 zero = force_zero(edge, use_coincidence);
2097 if (!is_validity(edge) && !zero)
2098 continue;
2099 if (edge->src == edge->dst)
2100 continue;
2101 if (add_inter_validity_constraints(graph, edge) < 0)
2102 return -1;
2105 return 0;
2108 /* Add constraints to graph->lp that bound the dependence distance
2109 * for all dependence relations.
2110 * If a given proximity dependence is identical to a validity
2111 * dependence, then the dependence distance is already bounded
2112 * from below (by zero), so we only need to bound the distance
2113 * from above. (This includes the case of "local" dependences
2114 * which are treated as validity dependence by add_all_validity_constraints.)
2115 * Otherwise, we need to bound the distance both from above and from below.
2117 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2118 * Otherwise, we ignore them.
2120 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2121 int use_coincidence)
2123 int i;
2125 for (i = 0; i < graph->n_edge; ++i) {
2126 struct isl_sched_edge *edge = &graph->edge[i];
2127 int zero;
2129 zero = force_zero(edge, use_coincidence);
2130 if (!is_proximity(edge) && !zero)
2131 continue;
2132 if (edge->src == edge->dst &&
2133 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2134 return -1;
2135 if (edge->src != edge->dst &&
2136 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2137 return -1;
2138 if (is_validity(edge) || zero)
2139 continue;
2140 if (edge->src == edge->dst &&
2141 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2142 return -1;
2143 if (edge->src != edge->dst &&
2144 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2145 return -1;
2148 return 0;
2151 /* Normalize the rows of "indep" such that all rows are lexicographically
2152 * positive and such that each row contains as many final zeros as possible,
2153 * given the choice for the previous rows.
2154 * Do this by performing elementary row operations.
2156 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2158 indep = isl_mat_reverse_gauss(indep);
2159 indep = isl_mat_lexnonneg_rows(indep);
2160 return indep;
2163 /* Compute a basis for the rows in the linear part of the schedule
2164 * and extend this basis to a full basis. The remaining rows
2165 * can then be used to force linear independence from the rows
2166 * in the schedule.
2168 * In particular, given the schedule rows S, we compute
2170 * S = H Q
2171 * S U = H
2173 * with H the Hermite normal form of S. That is, all but the
2174 * first rank columns of H are zero and so each row in S is
2175 * a linear combination of the first rank rows of Q.
2176 * The matrix Q can be used as a variable transformation
2177 * that isolates the directions of S in the first rank rows.
2178 * Transposing S U = H yields
2180 * U^T S^T = H^T
2182 * with all but the first rank rows of H^T zero.
2183 * The last rows of U^T are therefore linear combinations
2184 * of schedule coefficients that are all zero on schedule
2185 * coefficients that are linearly dependent on the rows of S.
2186 * At least one of these combinations is non-zero on
2187 * linearly independent schedule coefficients.
2188 * The rows are normalized to involve as few of the last
2189 * coefficients as possible and to have a positive initial value.
2191 static int node_update_vmap(struct isl_sched_node *node)
2193 isl_mat *H, *U, *Q;
2194 int n_row = isl_mat_rows(node->sched);
2196 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2197 1 + node->nparam, node->nvar);
2199 H = isl_mat_left_hermite(H, 0, &U, &Q);
2200 isl_mat_free(node->indep);
2201 isl_mat_free(node->vmap);
2202 node->vmap = Q;
2203 node->indep = isl_mat_transpose(U);
2204 node->rank = isl_mat_initial_non_zero_cols(H);
2205 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2206 node->indep = normalize_independent(node->indep);
2207 isl_mat_free(H);
2209 if (!node->indep || !node->vmap || node->rank < 0)
2210 return -1;
2211 return 0;
2214 /* Is "edge" marked as a validity or a conditional validity edge?
2216 static int is_any_validity(struct isl_sched_edge *edge)
2218 return is_validity(edge) || is_conditional_validity(edge);
2221 /* How many times should we count the constraints in "edge"?
2223 * We count as follows
2224 * validity -> 1 (>= 0)
2225 * validity+proximity -> 2 (>= 0 and upper bound)
2226 * proximity -> 2 (lower and upper bound)
2227 * local(+any) -> 2 (>= 0 and <= 0)
2229 * If an edge is only marked conditional_validity then it counts
2230 * as zero since it is only checked afterwards.
2232 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2233 * Otherwise, we ignore them.
2235 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2237 if (is_proximity(edge) || force_zero(edge, use_coincidence))
2238 return 2;
2239 if (is_validity(edge))
2240 return 1;
2241 return 0;
2244 /* How many times should the constraints in "edge" be counted
2245 * as a parametric intra-node constraint?
2247 * Only proximity edges that are not forced zero need
2248 * coefficient constraints that include coefficients for parameters.
2249 * If the edge is also a validity edge, then only
2250 * an upper bound is introduced. Otherwise, both lower and upper bounds
2251 * are introduced.
2253 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2254 int use_coincidence)
2256 if (edge->src != edge->dst)
2257 return 0;
2258 if (!is_proximity(edge))
2259 return 0;
2260 if (force_zero(edge, use_coincidence))
2261 return 0;
2262 if (is_validity(edge))
2263 return 1;
2264 else
2265 return 2;
2268 /* Add "f" times the number of equality and inequality constraints of "bset"
2269 * to "n_eq" and "n_ineq" and free "bset".
2271 static isl_stat update_count(__isl_take isl_basic_set *bset,
2272 int f, int *n_eq, int *n_ineq)
2274 if (!bset)
2275 return isl_stat_error;
2277 *n_eq += isl_basic_set_n_equality(bset);
2278 *n_ineq += isl_basic_set_n_inequality(bset);
2279 isl_basic_set_free(bset);
2281 return isl_stat_ok;
2284 /* Count the number of equality and inequality constraints
2285 * that will be added for the given map.
2287 * The edges that require parameter coefficients are counted separately.
2289 * "use_coincidence" is set if we should take into account coincidence edges.
2291 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2292 struct isl_sched_edge *edge, __isl_take isl_map *map,
2293 int *n_eq, int *n_ineq, int use_coincidence)
2295 isl_map *copy;
2296 isl_basic_set *coef;
2297 int f = edge_multiplicity(edge, use_coincidence);
2298 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2300 if (f == 0) {
2301 isl_map_free(map);
2302 return isl_stat_ok;
2305 if (edge->src != edge->dst) {
2306 coef = inter_coefficients(graph, edge, map);
2307 return update_count(coef, f, n_eq, n_ineq);
2310 if (fp > 0) {
2311 copy = isl_map_copy(map);
2312 coef = intra_coefficients(graph, edge->src, copy, 1);
2313 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2314 goto error;
2317 if (f > fp) {
2318 copy = isl_map_copy(map);
2319 coef = intra_coefficients(graph, edge->src, copy, 0);
2320 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2321 goto error;
2324 isl_map_free(map);
2325 return isl_stat_ok;
2326 error:
2327 isl_map_free(map);
2328 return isl_stat_error;
2331 /* Count the number of equality and inequality constraints
2332 * that will be added to the main lp problem.
2333 * We count as follows
2334 * validity -> 1 (>= 0)
2335 * validity+proximity -> 2 (>= 0 and upper bound)
2336 * proximity -> 2 (lower and upper bound)
2337 * local(+any) -> 2 (>= 0 and <= 0)
2339 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2340 * Otherwise, we ignore them.
2342 static int count_constraints(struct isl_sched_graph *graph,
2343 int *n_eq, int *n_ineq, int use_coincidence)
2345 int i;
2347 *n_eq = *n_ineq = 0;
2348 for (i = 0; i < graph->n_edge; ++i) {
2349 struct isl_sched_edge *edge = &graph->edge[i];
2350 isl_map *map = isl_map_copy(edge->map);
2352 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2353 use_coincidence) < 0)
2354 return -1;
2357 return 0;
2360 /* Count the number of constraints that will be added by
2361 * add_bound_constant_constraints to bound the values of the constant terms
2362 * and increment *n_eq and *n_ineq accordingly.
2364 * In practice, add_bound_constant_constraints only adds inequalities.
2366 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2367 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2369 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2370 return isl_stat_ok;
2372 *n_ineq += graph->n;
2374 return isl_stat_ok;
2377 /* Add constraints to bound the values of the constant terms in the schedule,
2378 * if requested by the user.
2380 * The maximal value of the constant terms is defined by the option
2381 * "schedule_max_constant_term".
2383 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2384 struct isl_sched_graph *graph)
2386 int i, k;
2387 int max;
2388 int total;
2390 max = isl_options_get_schedule_max_constant_term(ctx);
2391 if (max == -1)
2392 return isl_stat_ok;
2394 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2396 for (i = 0; i < graph->n; ++i) {
2397 struct isl_sched_node *node = &graph->node[i];
2398 int pos;
2400 k = isl_basic_set_alloc_inequality(graph->lp);
2401 if (k < 0)
2402 return isl_stat_error;
2403 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2404 pos = node_cst_coef_offset(node);
2405 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2406 isl_int_set_si(graph->lp->ineq[k][0], max);
2409 return isl_stat_ok;
2412 /* Count the number of constraints that will be added by
2413 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2414 * accordingly.
2416 * In practice, add_bound_coefficient_constraints only adds inequalities.
2418 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2419 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2421 int i;
2423 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2424 !isl_options_get_schedule_treat_coalescing(ctx))
2425 return 0;
2427 for (i = 0; i < graph->n; ++i)
2428 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2430 return 0;
2433 /* Add constraints to graph->lp that bound the values of
2434 * the parameter schedule coefficients of "node" to "max" and
2435 * the variable schedule coefficients to the corresponding entry
2436 * in node->max.
2437 * In either case, a negative value means that no bound needs to be imposed.
2439 * For parameter coefficients, this amounts to adding a constraint
2441 * c_n <= max
2443 * i.e.,
2445 * -c_n + max >= 0
2447 * The variables coefficients are, however, not represented directly.
2448 * Instead, the variable coefficients c_x are written as differences
2449 * c_x = c_x^+ - c_x^-.
2450 * That is,
2452 * -max_i <= c_x_i <= max_i
2454 * is encoded as
2456 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2458 * or
2460 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2461 * c_x_i^+ - c_x_i^- + max_i >= 0
2463 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2464 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2466 int i, j, k;
2467 int total;
2468 isl_vec *ineq;
2470 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2472 for (j = 0; j < node->nparam; ++j) {
2473 int dim;
2475 if (max < 0)
2476 continue;
2478 k = isl_basic_set_alloc_inequality(graph->lp);
2479 if (k < 0)
2480 return isl_stat_error;
2481 dim = 1 + node_par_coef_offset(node) + j;
2482 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2483 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2484 isl_int_set_si(graph->lp->ineq[k][0], max);
2487 ineq = isl_vec_alloc(ctx, 1 + total);
2488 ineq = isl_vec_clr(ineq);
2489 if (!ineq)
2490 return isl_stat_error;
2491 for (i = 0; i < node->nvar; ++i) {
2492 int pos = 1 + node_var_coef_pos(node, i);
2494 if (isl_int_is_neg(node->max->el[i]))
2495 continue;
2497 isl_int_set_si(ineq->el[pos], 1);
2498 isl_int_set_si(ineq->el[pos + 1], -1);
2499 isl_int_set(ineq->el[0], node->max->el[i]);
2501 k = isl_basic_set_alloc_inequality(graph->lp);
2502 if (k < 0)
2503 goto error;
2504 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2506 isl_seq_neg(ineq->el + pos, ineq->el + pos + 2 * i, 2);
2507 k = isl_basic_set_alloc_inequality(graph->lp);
2508 if (k < 0)
2509 goto error;
2510 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2512 isl_vec_free(ineq);
2514 return isl_stat_ok;
2515 error:
2516 isl_vec_free(ineq);
2517 return isl_stat_error;
2520 /* Add constraints that bound the values of the variable and parameter
2521 * coefficients of the schedule.
2523 * The maximal value of the coefficients is defined by the option
2524 * 'schedule_max_coefficient' and the entries in node->max.
2525 * These latter entries are only set if either the schedule_max_coefficient
2526 * option or the schedule_treat_coalescing option is set.
2528 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2529 struct isl_sched_graph *graph)
2531 int i;
2532 int max;
2534 max = isl_options_get_schedule_max_coefficient(ctx);
2536 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2537 return isl_stat_ok;
2539 for (i = 0; i < graph->n; ++i) {
2540 struct isl_sched_node *node = &graph->node[i];
2542 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2543 return isl_stat_error;
2546 return isl_stat_ok;
2549 /* Add a constraint to graph->lp that equates the value at position
2550 * "sum_pos" to the sum of the "n" values starting at "first".
2552 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2553 int sum_pos, int first, int n)
2555 int i, k;
2556 int total;
2558 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2560 k = isl_basic_set_alloc_equality(graph->lp);
2561 if (k < 0)
2562 return isl_stat_error;
2563 isl_seq_clr(graph->lp->eq[k], 1 + total);
2564 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2565 for (i = 0; i < n; ++i)
2566 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2568 return isl_stat_ok;
2571 /* Add a constraint to graph->lp that equates the value at position
2572 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2574 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2575 int sum_pos)
2577 int i, j, k;
2578 int total;
2580 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2582 k = isl_basic_set_alloc_equality(graph->lp);
2583 if (k < 0)
2584 return isl_stat_error;
2585 isl_seq_clr(graph->lp->eq[k], 1 + total);
2586 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2587 for (i = 0; i < graph->n; ++i) {
2588 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2590 for (j = 0; j < graph->node[i].nparam; ++j)
2591 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2594 return isl_stat_ok;
2597 /* Add a constraint to graph->lp that equates the value at position
2598 * "sum_pos" to the sum of the variable coefficients of all nodes.
2600 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2601 int sum_pos)
2603 int i, j, k;
2604 int total;
2606 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2608 k = isl_basic_set_alloc_equality(graph->lp);
2609 if (k < 0)
2610 return isl_stat_error;
2611 isl_seq_clr(graph->lp->eq[k], 1 + total);
2612 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2613 for (i = 0; i < graph->n; ++i) {
2614 struct isl_sched_node *node = &graph->node[i];
2615 int pos = 1 + node_var_coef_offset(node);
2617 for (j = 0; j < 2 * node->nvar; ++j)
2618 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2621 return isl_stat_ok;
2624 /* Construct an ILP problem for finding schedule coefficients
2625 * that result in non-negative, but small dependence distances
2626 * over all dependences.
2627 * In particular, the dependence distances over proximity edges
2628 * are bounded by m_0 + m_n n and we compute schedule coefficients
2629 * with small values (preferably zero) of m_n and m_0.
2631 * All variables of the ILP are non-negative. The actual coefficients
2632 * may be negative, so each coefficient is represented as the difference
2633 * of two non-negative variables. The negative part always appears
2634 * immediately before the positive part.
2635 * Other than that, the variables have the following order
2637 * - sum of positive and negative parts of m_n coefficients
2638 * - m_0
2639 * - sum of all c_n coefficients
2640 * (unconstrained when computing non-parametric schedules)
2641 * - sum of positive and negative parts of all c_x coefficients
2642 * - positive and negative parts of m_n coefficients
2643 * - for each node
2644 * - positive and negative parts of c_i_x, in opposite order
2645 * - c_i_n (if parametric)
2646 * - c_i_0
2648 * The constraints are those from the edges plus two or three equalities
2649 * to express the sums.
2651 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2652 * Otherwise, we ignore them.
2654 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2655 int use_coincidence)
2657 int i;
2658 unsigned nparam;
2659 unsigned total;
2660 isl_space *space;
2661 int parametric;
2662 int param_pos;
2663 int n_eq, n_ineq;
2665 parametric = ctx->opt->schedule_parametric;
2666 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2667 param_pos = 4;
2668 total = param_pos + 2 * nparam;
2669 for (i = 0; i < graph->n; ++i) {
2670 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2671 if (node_update_vmap(node) < 0)
2672 return isl_stat_error;
2673 node->start = total;
2674 total += 1 + node->nparam + 2 * node->nvar;
2677 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2678 return isl_stat_error;
2679 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2680 return isl_stat_error;
2681 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2682 return isl_stat_error;
2684 space = isl_space_set_alloc(ctx, 0, total);
2685 isl_basic_set_free(graph->lp);
2686 n_eq += 2 + parametric;
2688 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2690 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2691 return isl_stat_error;
2692 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2693 return isl_stat_error;
2694 if (add_var_sum_constraint(graph, 3) < 0)
2695 return isl_stat_error;
2696 if (add_bound_constant_constraints(ctx, graph) < 0)
2697 return isl_stat_error;
2698 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2699 return isl_stat_error;
2700 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2701 return isl_stat_error;
2702 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2703 return isl_stat_error;
2705 return isl_stat_ok;
2708 /* Analyze the conflicting constraint found by
2709 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2710 * constraint of one of the edges between distinct nodes, living, moreover
2711 * in distinct SCCs, then record the source and sink SCC as this may
2712 * be a good place to cut between SCCs.
2714 static int check_conflict(int con, void *user)
2716 int i;
2717 struct isl_sched_graph *graph = user;
2719 if (graph->src_scc >= 0)
2720 return 0;
2722 con -= graph->lp->n_eq;
2724 if (con >= graph->lp->n_ineq)
2725 return 0;
2727 for (i = 0; i < graph->n_edge; ++i) {
2728 if (!is_validity(&graph->edge[i]))
2729 continue;
2730 if (graph->edge[i].src == graph->edge[i].dst)
2731 continue;
2732 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2733 continue;
2734 if (graph->edge[i].start > con)
2735 continue;
2736 if (graph->edge[i].end <= con)
2737 continue;
2738 graph->src_scc = graph->edge[i].src->scc;
2739 graph->dst_scc = graph->edge[i].dst->scc;
2742 return 0;
2745 /* Check whether the next schedule row of the given node needs to be
2746 * non-trivial. Lower-dimensional domains may have some trivial rows,
2747 * but as soon as the number of remaining required non-trivial rows
2748 * is as large as the number or remaining rows to be computed,
2749 * all remaining rows need to be non-trivial.
2751 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2753 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2756 /* Construct a non-triviality region with triviality directions
2757 * corresponding to the rows of "indep".
2758 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2759 * while the triviality directions are expressed in terms of
2760 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2761 * before c^+_i. Furthermore,
2762 * the pairs of non-negative variables representing the coefficients
2763 * are stored in the opposite order.
2765 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2767 isl_ctx *ctx;
2768 isl_mat *mat;
2769 int i, j, n, n_var;
2771 if (!indep)
2772 return NULL;
2774 ctx = isl_mat_get_ctx(indep);
2775 n = isl_mat_rows(indep);
2776 n_var = isl_mat_cols(indep);
2777 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2778 if (!mat)
2779 return NULL;
2780 for (i = 0; i < n; ++i) {
2781 for (j = 0; j < n_var; ++j) {
2782 int nj = n_var - 1 - j;
2783 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2784 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2788 return mat;
2791 /* Solve the ILP problem constructed in setup_lp.
2792 * For each node such that all the remaining rows of its schedule
2793 * need to be non-trivial, we construct a non-triviality region.
2794 * This region imposes that the next row is independent of previous rows.
2795 * In particular, the non-triviality region enforces that at least
2796 * one of the linear combinations in the rows of node->indep is non-zero.
2798 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2800 int i;
2801 isl_vec *sol;
2802 isl_basic_set *lp;
2804 for (i = 0; i < graph->n; ++i) {
2805 struct isl_sched_node *node = &graph->node[i];
2806 isl_mat *trivial;
2808 graph->region[i].pos = node_var_coef_offset(node);
2809 if (needs_row(graph, node))
2810 trivial = construct_trivial(node->indep);
2811 else
2812 trivial = isl_mat_zero(ctx, 0, 0);
2813 graph->region[i].trivial = trivial;
2815 lp = isl_basic_set_copy(graph->lp);
2816 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2817 graph->region, &check_conflict, graph);
2818 for (i = 0; i < graph->n; ++i)
2819 isl_mat_free(graph->region[i].trivial);
2820 return sol;
2823 /* Extract the coefficients for the variables of "node" from "sol".
2825 * Each schedule coefficient c_i_x is represented as the difference
2826 * between two non-negative variables c_i_x^+ - c_i_x^-.
2827 * The c_i_x^- appear before their c_i_x^+ counterpart.
2828 * Furthermore, the order of these pairs is the opposite of that
2829 * of the corresponding coefficients.
2831 * Return c_i_x = c_i_x^+ - c_i_x^-
2833 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2834 __isl_keep isl_vec *sol)
2836 int i;
2837 int pos;
2838 isl_vec *csol;
2840 if (!sol)
2841 return NULL;
2842 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2843 if (!csol)
2844 return NULL;
2846 pos = 1 + node_var_coef_offset(node);
2847 for (i = 0; i < node->nvar; ++i)
2848 isl_int_sub(csol->el[node->nvar - 1 - i],
2849 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2851 return csol;
2854 /* Update the schedules of all nodes based on the given solution
2855 * of the LP problem.
2856 * The new row is added to the current band.
2857 * All possibly negative coefficients are encoded as a difference
2858 * of two non-negative variables, so we need to perform the subtraction
2859 * here.
2861 * If coincident is set, then the caller guarantees that the new
2862 * row satisfies the coincidence constraints.
2864 static int update_schedule(struct isl_sched_graph *graph,
2865 __isl_take isl_vec *sol, int coincident)
2867 int i, j;
2868 isl_vec *csol = NULL;
2870 if (!sol)
2871 goto error;
2872 if (sol->size == 0)
2873 isl_die(sol->ctx, isl_error_internal,
2874 "no solution found", goto error);
2875 if (graph->n_total_row >= graph->max_row)
2876 isl_die(sol->ctx, isl_error_internal,
2877 "too many schedule rows", goto error);
2879 for (i = 0; i < graph->n; ++i) {
2880 struct isl_sched_node *node = &graph->node[i];
2881 int pos;
2882 int row = isl_mat_rows(node->sched);
2884 isl_vec_free(csol);
2885 csol = extract_var_coef(node, sol);
2886 if (!csol)
2887 goto error;
2889 isl_map_free(node->sched_map);
2890 node->sched_map = NULL;
2891 node->sched = isl_mat_add_rows(node->sched, 1);
2892 if (!node->sched)
2893 goto error;
2894 pos = node_cst_coef_offset(node);
2895 node->sched = isl_mat_set_element(node->sched,
2896 row, 0, sol->el[1 + pos]);
2897 pos = node_par_coef_offset(node);
2898 for (j = 0; j < node->nparam; ++j)
2899 node->sched = isl_mat_set_element(node->sched,
2900 row, 1 + j, sol->el[1 + pos + j]);
2901 for (j = 0; j < node->nvar; ++j)
2902 node->sched = isl_mat_set_element(node->sched,
2903 row, 1 + node->nparam + j, csol->el[j]);
2904 node->coincident[graph->n_total_row] = coincident;
2906 isl_vec_free(sol);
2907 isl_vec_free(csol);
2909 graph->n_row++;
2910 graph->n_total_row++;
2912 return 0;
2913 error:
2914 isl_vec_free(sol);
2915 isl_vec_free(csol);
2916 return -1;
2919 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2920 * and return this isl_aff.
2922 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2923 struct isl_sched_node *node, int row)
2925 int j;
2926 isl_int v;
2927 isl_aff *aff;
2929 isl_int_init(v);
2931 aff = isl_aff_zero_on_domain(ls);
2932 isl_mat_get_element(node->sched, row, 0, &v);
2933 aff = isl_aff_set_constant(aff, v);
2934 for (j = 0; j < node->nparam; ++j) {
2935 isl_mat_get_element(node->sched, row, 1 + j, &v);
2936 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2938 for (j = 0; j < node->nvar; ++j) {
2939 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2940 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2943 isl_int_clear(v);
2945 return aff;
2948 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2949 * and return this multi_aff.
2951 * The result is defined over the uncompressed node domain.
2953 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2954 struct isl_sched_node *node, int first, int n)
2956 int i;
2957 isl_space *space;
2958 isl_local_space *ls;
2959 isl_aff *aff;
2960 isl_multi_aff *ma;
2961 int nrow;
2963 if (!node)
2964 return NULL;
2965 nrow = isl_mat_rows(node->sched);
2966 if (node->compressed)
2967 space = isl_multi_aff_get_domain_space(node->decompress);
2968 else
2969 space = isl_space_copy(node->space);
2970 ls = isl_local_space_from_space(isl_space_copy(space));
2971 space = isl_space_from_domain(space);
2972 space = isl_space_add_dims(space, isl_dim_out, n);
2973 ma = isl_multi_aff_zero(space);
2975 for (i = first; i < first + n; ++i) {
2976 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2977 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2980 isl_local_space_free(ls);
2982 if (node->compressed)
2983 ma = isl_multi_aff_pullback_multi_aff(ma,
2984 isl_multi_aff_copy(node->compress));
2986 return ma;
2989 /* Convert node->sched into a multi_aff and return this multi_aff.
2991 * The result is defined over the uncompressed node domain.
2993 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2994 struct isl_sched_node *node)
2996 int nrow;
2998 nrow = isl_mat_rows(node->sched);
2999 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3002 /* Convert node->sched into a map and return this map.
3004 * The result is cached in node->sched_map, which needs to be released
3005 * whenever node->sched is updated.
3006 * It is defined over the uncompressed node domain.
3008 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3010 if (!node->sched_map) {
3011 isl_multi_aff *ma;
3013 ma = node_extract_schedule_multi_aff(node);
3014 node->sched_map = isl_map_from_multi_aff(ma);
3017 return isl_map_copy(node->sched_map);
3020 /* Construct a map that can be used to update a dependence relation
3021 * based on the current schedule.
3022 * That is, construct a map expressing that source and sink
3023 * are executed within the same iteration of the current schedule.
3024 * This map can then be intersected with the dependence relation.
3025 * This is not the most efficient way, but this shouldn't be a critical
3026 * operation.
3028 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3029 struct isl_sched_node *dst)
3031 isl_map *src_sched, *dst_sched;
3033 src_sched = node_extract_schedule(src);
3034 dst_sched = node_extract_schedule(dst);
3035 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3038 /* Intersect the domains of the nested relations in domain and range
3039 * of "umap" with "map".
3041 static __isl_give isl_union_map *intersect_domains(
3042 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3044 isl_union_set *uset;
3046 umap = isl_union_map_zip(umap);
3047 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3048 umap = isl_union_map_intersect_domain(umap, uset);
3049 umap = isl_union_map_zip(umap);
3050 return umap;
3053 /* Update the dependence relation of the given edge based
3054 * on the current schedule.
3055 * If the dependence is carried completely by the current schedule, then
3056 * it is removed from the edge_tables. It is kept in the list of edges
3057 * as otherwise all edge_tables would have to be recomputed.
3059 static int update_edge(struct isl_sched_graph *graph,
3060 struct isl_sched_edge *edge)
3062 int empty;
3063 isl_map *id;
3065 id = specializer(edge->src, edge->dst);
3066 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3067 if (!edge->map)
3068 goto error;
3070 if (edge->tagged_condition) {
3071 edge->tagged_condition =
3072 intersect_domains(edge->tagged_condition, id);
3073 if (!edge->tagged_condition)
3074 goto error;
3076 if (edge->tagged_validity) {
3077 edge->tagged_validity =
3078 intersect_domains(edge->tagged_validity, id);
3079 if (!edge->tagged_validity)
3080 goto error;
3083 empty = isl_map_plain_is_empty(edge->map);
3084 if (empty < 0)
3085 goto error;
3086 if (empty)
3087 graph_remove_edge(graph, edge);
3089 isl_map_free(id);
3090 return 0;
3091 error:
3092 isl_map_free(id);
3093 return -1;
3096 /* Does the domain of "umap" intersect "uset"?
3098 static int domain_intersects(__isl_keep isl_union_map *umap,
3099 __isl_keep isl_union_set *uset)
3101 int empty;
3103 umap = isl_union_map_copy(umap);
3104 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3105 empty = isl_union_map_is_empty(umap);
3106 isl_union_map_free(umap);
3108 return empty < 0 ? -1 : !empty;
3111 /* Does the range of "umap" intersect "uset"?
3113 static int range_intersects(__isl_keep isl_union_map *umap,
3114 __isl_keep isl_union_set *uset)
3116 int empty;
3118 umap = isl_union_map_copy(umap);
3119 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3120 empty = isl_union_map_is_empty(umap);
3121 isl_union_map_free(umap);
3123 return empty < 0 ? -1 : !empty;
3126 /* Are the condition dependences of "edge" local with respect to
3127 * the current schedule?
3129 * That is, are domain and range of the condition dependences mapped
3130 * to the same point?
3132 * In other words, is the condition false?
3134 static int is_condition_false(struct isl_sched_edge *edge)
3136 isl_union_map *umap;
3137 isl_map *map, *sched, *test;
3138 int empty, local;
3140 empty = isl_union_map_is_empty(edge->tagged_condition);
3141 if (empty < 0 || empty)
3142 return empty;
3144 umap = isl_union_map_copy(edge->tagged_condition);
3145 umap = isl_union_map_zip(umap);
3146 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3147 map = isl_map_from_union_map(umap);
3149 sched = node_extract_schedule(edge->src);
3150 map = isl_map_apply_domain(map, sched);
3151 sched = node_extract_schedule(edge->dst);
3152 map = isl_map_apply_range(map, sched);
3154 test = isl_map_identity(isl_map_get_space(map));
3155 local = isl_map_is_subset(map, test);
3156 isl_map_free(map);
3157 isl_map_free(test);
3159 return local;
3162 /* For each conditional validity constraint that is adjacent
3163 * to a condition with domain in condition_source or range in condition_sink,
3164 * turn it into an unconditional validity constraint.
3166 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3167 __isl_take isl_union_set *condition_source,
3168 __isl_take isl_union_set *condition_sink)
3170 int i;
3172 condition_source = isl_union_set_coalesce(condition_source);
3173 condition_sink = isl_union_set_coalesce(condition_sink);
3175 for (i = 0; i < graph->n_edge; ++i) {
3176 int adjacent;
3177 isl_union_map *validity;
3179 if (!is_conditional_validity(&graph->edge[i]))
3180 continue;
3181 if (is_validity(&graph->edge[i]))
3182 continue;
3184 validity = graph->edge[i].tagged_validity;
3185 adjacent = domain_intersects(validity, condition_sink);
3186 if (adjacent >= 0 && !adjacent)
3187 adjacent = range_intersects(validity, condition_source);
3188 if (adjacent < 0)
3189 goto error;
3190 if (!adjacent)
3191 continue;
3193 set_validity(&graph->edge[i]);
3196 isl_union_set_free(condition_source);
3197 isl_union_set_free(condition_sink);
3198 return 0;
3199 error:
3200 isl_union_set_free(condition_source);
3201 isl_union_set_free(condition_sink);
3202 return -1;
3205 /* Update the dependence relations of all edges based on the current schedule
3206 * and enforce conditional validity constraints that are adjacent
3207 * to satisfied condition constraints.
3209 * First check if any of the condition constraints are satisfied
3210 * (i.e., not local to the outer schedule) and keep track of
3211 * their domain and range.
3212 * Then update all dependence relations (which removes the non-local
3213 * constraints).
3214 * Finally, if any condition constraints turned out to be satisfied,
3215 * then turn all adjacent conditional validity constraints into
3216 * unconditional validity constraints.
3218 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3220 int i;
3221 int any = 0;
3222 isl_union_set *source, *sink;
3224 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3225 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3226 for (i = 0; i < graph->n_edge; ++i) {
3227 int local;
3228 isl_union_set *uset;
3229 isl_union_map *umap;
3231 if (!is_condition(&graph->edge[i]))
3232 continue;
3233 if (is_local(&graph->edge[i]))
3234 continue;
3235 local = is_condition_false(&graph->edge[i]);
3236 if (local < 0)
3237 goto error;
3238 if (local)
3239 continue;
3241 any = 1;
3243 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3244 uset = isl_union_map_domain(umap);
3245 source = isl_union_set_union(source, uset);
3247 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3248 uset = isl_union_map_range(umap);
3249 sink = isl_union_set_union(sink, uset);
3252 for (i = graph->n_edge - 1; i >= 0; --i) {
3253 if (update_edge(graph, &graph->edge[i]) < 0)
3254 goto error;
3257 if (any)
3258 return unconditionalize_adjacent_validity(graph, source, sink);
3260 isl_union_set_free(source);
3261 isl_union_set_free(sink);
3262 return 0;
3263 error:
3264 isl_union_set_free(source);
3265 isl_union_set_free(sink);
3266 return -1;
3269 static void next_band(struct isl_sched_graph *graph)
3271 graph->band_start = graph->n_total_row;
3274 /* Return the union of the universe domains of the nodes in "graph"
3275 * that satisfy "pred".
3277 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3278 struct isl_sched_graph *graph,
3279 int (*pred)(struct isl_sched_node *node, int data), int data)
3281 int i;
3282 isl_set *set;
3283 isl_union_set *dom;
3285 for (i = 0; i < graph->n; ++i)
3286 if (pred(&graph->node[i], data))
3287 break;
3289 if (i >= graph->n)
3290 isl_die(ctx, isl_error_internal,
3291 "empty component", return NULL);
3293 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3294 dom = isl_union_set_from_set(set);
3296 for (i = i + 1; i < graph->n; ++i) {
3297 if (!pred(&graph->node[i], data))
3298 continue;
3299 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3300 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3303 return dom;
3306 /* Return a list of unions of universe domains, where each element
3307 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3309 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3310 struct isl_sched_graph *graph)
3312 int i;
3313 isl_union_set_list *filters;
3315 filters = isl_union_set_list_alloc(ctx, graph->scc);
3316 for (i = 0; i < graph->scc; ++i) {
3317 isl_union_set *dom;
3319 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3320 filters = isl_union_set_list_add(filters, dom);
3323 return filters;
3326 /* Return a list of two unions of universe domains, one for the SCCs up
3327 * to and including graph->src_scc and another for the other SCCs.
3329 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3330 struct isl_sched_graph *graph)
3332 isl_union_set *dom;
3333 isl_union_set_list *filters;
3335 filters = isl_union_set_list_alloc(ctx, 2);
3336 dom = isl_sched_graph_domain(ctx, graph,
3337 &node_scc_at_most, graph->src_scc);
3338 filters = isl_union_set_list_add(filters, dom);
3339 dom = isl_sched_graph_domain(ctx, graph,
3340 &node_scc_at_least, graph->src_scc + 1);
3341 filters = isl_union_set_list_add(filters, dom);
3343 return filters;
3346 /* Copy nodes that satisfy node_pred from the src dependence graph
3347 * to the dst dependence graph.
3349 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3350 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3352 int i;
3354 dst->n = 0;
3355 for (i = 0; i < src->n; ++i) {
3356 int j;
3358 if (!node_pred(&src->node[i], data))
3359 continue;
3361 j = dst->n;
3362 dst->node[j].space = isl_space_copy(src->node[i].space);
3363 dst->node[j].compressed = src->node[i].compressed;
3364 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3365 dst->node[j].compress =
3366 isl_multi_aff_copy(src->node[i].compress);
3367 dst->node[j].decompress =
3368 isl_multi_aff_copy(src->node[i].decompress);
3369 dst->node[j].nvar = src->node[i].nvar;
3370 dst->node[j].nparam = src->node[i].nparam;
3371 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3372 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3373 dst->node[j].coincident = src->node[i].coincident;
3374 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3375 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3376 dst->node[j].max = isl_vec_copy(src->node[i].max);
3377 dst->n++;
3379 if (!dst->node[j].space || !dst->node[j].sched)
3380 return -1;
3381 if (dst->node[j].compressed &&
3382 (!dst->node[j].hull || !dst->node[j].compress ||
3383 !dst->node[j].decompress))
3384 return -1;
3387 return 0;
3390 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3391 * to the dst dependence graph.
3392 * If the source or destination node of the edge is not in the destination
3393 * graph, then it must be a backward proximity edge and it should simply
3394 * be ignored.
3396 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3397 struct isl_sched_graph *src,
3398 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3400 int i;
3401 enum isl_edge_type t;
3403 dst->n_edge = 0;
3404 for (i = 0; i < src->n_edge; ++i) {
3405 struct isl_sched_edge *edge = &src->edge[i];
3406 isl_map *map;
3407 isl_union_map *tagged_condition;
3408 isl_union_map *tagged_validity;
3409 struct isl_sched_node *dst_src, *dst_dst;
3411 if (!edge_pred(edge, data))
3412 continue;
3414 if (isl_map_plain_is_empty(edge->map))
3415 continue;
3417 dst_src = graph_find_node(ctx, dst, edge->src->space);
3418 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3419 if (!dst_src || !dst_dst) {
3420 if (is_validity(edge) || is_conditional_validity(edge))
3421 isl_die(ctx, isl_error_internal,
3422 "backward (conditional) validity edge",
3423 return -1);
3424 continue;
3427 map = isl_map_copy(edge->map);
3428 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3429 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3431 dst->edge[dst->n_edge].src = dst_src;
3432 dst->edge[dst->n_edge].dst = dst_dst;
3433 dst->edge[dst->n_edge].map = map;
3434 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3435 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3436 dst->edge[dst->n_edge].types = edge->types;
3437 dst->n_edge++;
3439 if (edge->tagged_condition && !tagged_condition)
3440 return -1;
3441 if (edge->tagged_validity && !tagged_validity)
3442 return -1;
3444 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3445 if (edge !=
3446 graph_find_edge(src, t, edge->src, edge->dst))
3447 continue;
3448 if (graph_edge_table_add(ctx, dst, t,
3449 &dst->edge[dst->n_edge - 1]) < 0)
3450 return -1;
3454 return 0;
3457 /* Compute the maximal number of variables over all nodes.
3458 * This is the maximal number of linearly independent schedule
3459 * rows that we need to compute.
3460 * Just in case we end up in a part of the dependence graph
3461 * with only lower-dimensional domains, we make sure we will
3462 * compute the required amount of extra linearly independent rows.
3464 static int compute_maxvar(struct isl_sched_graph *graph)
3466 int i;
3468 graph->maxvar = 0;
3469 for (i = 0; i < graph->n; ++i) {
3470 struct isl_sched_node *node = &graph->node[i];
3471 int nvar;
3473 if (node_update_vmap(node) < 0)
3474 return -1;
3475 nvar = node->nvar + graph->n_row - node->rank;
3476 if (nvar > graph->maxvar)
3477 graph->maxvar = nvar;
3480 return 0;
3483 /* Extract the subgraph of "graph" that consists of the node satisfying
3484 * "node_pred" and the edges satisfying "edge_pred" and store
3485 * the result in "sub".
3487 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3488 int (*node_pred)(struct isl_sched_node *node, int data),
3489 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3490 int data, struct isl_sched_graph *sub)
3492 int i, n = 0, n_edge = 0;
3493 int t;
3495 for (i = 0; i < graph->n; ++i)
3496 if (node_pred(&graph->node[i], data))
3497 ++n;
3498 for (i = 0; i < graph->n_edge; ++i)
3499 if (edge_pred(&graph->edge[i], data))
3500 ++n_edge;
3501 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3502 return -1;
3503 if (copy_nodes(sub, graph, node_pred, data) < 0)
3504 return -1;
3505 if (graph_init_table(ctx, sub) < 0)
3506 return -1;
3507 for (t = 0; t <= isl_edge_last; ++t)
3508 sub->max_edge[t] = graph->max_edge[t];
3509 if (graph_init_edge_tables(ctx, sub) < 0)
3510 return -1;
3511 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3512 return -1;
3513 sub->n_row = graph->n_row;
3514 sub->max_row = graph->max_row;
3515 sub->n_total_row = graph->n_total_row;
3516 sub->band_start = graph->band_start;
3518 return 0;
3521 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3522 struct isl_sched_graph *graph);
3523 static __isl_give isl_schedule_node *compute_schedule_wcc(
3524 isl_schedule_node *node, struct isl_sched_graph *graph);
3526 /* Compute a schedule for a subgraph of "graph". In particular, for
3527 * the graph composed of nodes that satisfy node_pred and edges that
3528 * that satisfy edge_pred.
3529 * If the subgraph is known to consist of a single component, then wcc should
3530 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3531 * Otherwise, we call compute_schedule, which will check whether the subgraph
3532 * is connected.
3534 * The schedule is inserted at "node" and the updated schedule node
3535 * is returned.
3537 static __isl_give isl_schedule_node *compute_sub_schedule(
3538 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3539 struct isl_sched_graph *graph,
3540 int (*node_pred)(struct isl_sched_node *node, int data),
3541 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3542 int data, int wcc)
3544 struct isl_sched_graph split = { 0 };
3546 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3547 &split) < 0)
3548 goto error;
3550 if (wcc)
3551 node = compute_schedule_wcc(node, &split);
3552 else
3553 node = compute_schedule(node, &split);
3555 graph_free(ctx, &split);
3556 return node;
3557 error:
3558 graph_free(ctx, &split);
3559 return isl_schedule_node_free(node);
3562 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3564 return edge->src->scc == scc && edge->dst->scc == scc;
3567 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3569 return edge->dst->scc <= scc;
3572 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3574 return edge->src->scc >= scc;
3577 /* Reset the current band by dropping all its schedule rows.
3579 static int reset_band(struct isl_sched_graph *graph)
3581 int i;
3582 int drop;
3584 drop = graph->n_total_row - graph->band_start;
3585 graph->n_total_row -= drop;
3586 graph->n_row -= drop;
3588 for (i = 0; i < graph->n; ++i) {
3589 struct isl_sched_node *node = &graph->node[i];
3591 isl_map_free(node->sched_map);
3592 node->sched_map = NULL;
3594 node->sched = isl_mat_drop_rows(node->sched,
3595 graph->band_start, drop);
3597 if (!node->sched)
3598 return -1;
3601 return 0;
3604 /* Split the current graph into two parts and compute a schedule for each
3605 * part individually. In particular, one part consists of all SCCs up
3606 * to and including graph->src_scc, while the other part contains the other
3607 * SCCs. The split is enforced by a sequence node inserted at position "node"
3608 * in the schedule tree. Return the updated schedule node.
3609 * If either of these two parts consists of a sequence, then it is spliced
3610 * into the sequence containing the two parts.
3612 * The current band is reset. It would be possible to reuse
3613 * the previously computed rows as the first rows in the next
3614 * band, but recomputing them may result in better rows as we are looking
3615 * at a smaller part of the dependence graph.
3617 static __isl_give isl_schedule_node *compute_split_schedule(
3618 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3620 int is_seq;
3621 isl_ctx *ctx;
3622 isl_union_set_list *filters;
3624 if (!node)
3625 return NULL;
3627 if (reset_band(graph) < 0)
3628 return isl_schedule_node_free(node);
3630 next_band(graph);
3632 ctx = isl_schedule_node_get_ctx(node);
3633 filters = extract_split(ctx, graph);
3634 node = isl_schedule_node_insert_sequence(node, filters);
3635 node = isl_schedule_node_child(node, 1);
3636 node = isl_schedule_node_child(node, 0);
3638 node = compute_sub_schedule(node, ctx, graph,
3639 &node_scc_at_least, &edge_src_scc_at_least,
3640 graph->src_scc + 1, 0);
3641 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3642 node = isl_schedule_node_parent(node);
3643 node = isl_schedule_node_parent(node);
3644 if (is_seq)
3645 node = isl_schedule_node_sequence_splice_child(node, 1);
3646 node = isl_schedule_node_child(node, 0);
3647 node = isl_schedule_node_child(node, 0);
3648 node = compute_sub_schedule(node, ctx, graph,
3649 &node_scc_at_most, &edge_dst_scc_at_most,
3650 graph->src_scc, 0);
3651 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3652 node = isl_schedule_node_parent(node);
3653 node = isl_schedule_node_parent(node);
3654 if (is_seq)
3655 node = isl_schedule_node_sequence_splice_child(node, 0);
3657 return node;
3660 /* Insert a band node at position "node" in the schedule tree corresponding
3661 * to the current band in "graph". Mark the band node permutable
3662 * if "permutable" is set.
3663 * The partial schedules and the coincidence property are extracted
3664 * from the graph nodes.
3665 * Return the updated schedule node.
3667 static __isl_give isl_schedule_node *insert_current_band(
3668 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3669 int permutable)
3671 int i;
3672 int start, end, n;
3673 isl_multi_aff *ma;
3674 isl_multi_pw_aff *mpa;
3675 isl_multi_union_pw_aff *mupa;
3677 if (!node)
3678 return NULL;
3680 if (graph->n < 1)
3681 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3682 "graph should have at least one node",
3683 return isl_schedule_node_free(node));
3685 start = graph->band_start;
3686 end = graph->n_total_row;
3687 n = end - start;
3689 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3690 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3691 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3693 for (i = 1; i < graph->n; ++i) {
3694 isl_multi_union_pw_aff *mupa_i;
3696 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3697 start, n);
3698 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3699 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3700 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3702 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3704 for (i = 0; i < n; ++i)
3705 node = isl_schedule_node_band_member_set_coincident(node, i,
3706 graph->node[0].coincident[start + i]);
3707 node = isl_schedule_node_band_set_permutable(node, permutable);
3709 return node;
3712 /* Update the dependence relations based on the current schedule,
3713 * add the current band to "node" and then continue with the computation
3714 * of the next band.
3715 * Return the updated schedule node.
3717 static __isl_give isl_schedule_node *compute_next_band(
3718 __isl_take isl_schedule_node *node,
3719 struct isl_sched_graph *graph, int permutable)
3721 isl_ctx *ctx;
3723 if (!node)
3724 return NULL;
3726 ctx = isl_schedule_node_get_ctx(node);
3727 if (update_edges(ctx, graph) < 0)
3728 return isl_schedule_node_free(node);
3729 node = insert_current_band(node, graph, permutable);
3730 next_band(graph);
3732 node = isl_schedule_node_child(node, 0);
3733 node = compute_schedule(node, graph);
3734 node = isl_schedule_node_parent(node);
3736 return node;
3739 /* Add the constraints "coef" derived from an edge from "node" to itself
3740 * to graph->lp in order to respect the dependences and to try and carry them.
3741 * "pos" is the sequence number of the edge that needs to be carried.
3742 * "coef" represents general constraints on coefficients (c_0, c_x)
3743 * of valid constraints for (y - x) with x and y instances of the node.
3745 * The constraints added to graph->lp need to enforce
3747 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3748 * = c_j_x (y - x) >= e_i
3750 * for each (x,y) in the dependence relation of the edge.
3751 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3752 * taking into account that each coefficient in c_j_x is represented
3753 * as a pair of non-negative coefficients.
3755 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3756 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3758 int offset;
3759 isl_ctx *ctx;
3760 isl_dim_map *dim_map;
3762 if (!coef)
3763 return isl_stat_error;
3765 ctx = isl_basic_set_get_ctx(coef);
3766 offset = coef_var_offset(coef);
3767 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3768 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3769 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3771 return isl_stat_ok;
3774 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3775 * to graph->lp in order to respect the dependences and to try and carry them.
3776 * "pos" is the sequence number of the edge that needs to be carried or
3777 * -1 if no attempt should be made to carry the dependences.
3778 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3779 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3781 * The constraints added to graph->lp need to enforce
3783 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3785 * for each (x,y) in the dependence relation of the edge or
3787 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3789 * if pos is -1.
3790 * That is,
3791 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3792 * or
3793 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3794 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3795 * taking into account that each coefficient in c_j_x and c_k_x is represented
3796 * as a pair of non-negative coefficients.
3798 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3799 struct isl_sched_node *src, struct isl_sched_node *dst,
3800 __isl_take isl_basic_set *coef, int pos)
3802 int offset;
3803 isl_ctx *ctx;
3804 isl_dim_map *dim_map;
3806 if (!coef)
3807 return isl_stat_error;
3809 ctx = isl_basic_set_get_ctx(coef);
3810 offset = coef_var_offset(coef);
3811 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3812 if (pos >= 0)
3813 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3814 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3816 return isl_stat_ok;
3819 /* Data structure for keeping track of the data needed
3820 * to exploit non-trivial lineality spaces.
3822 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3823 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3824 * "equivalent" connects instances to other instances on the same line(s).
3825 * "mask" contains the domain spaces of "equivalent".
3826 * Any instance set not in "mask" does not have a non-trivial lineality space.
3828 struct isl_exploit_lineality_data {
3829 isl_bool any_non_trivial;
3830 isl_union_map *equivalent;
3831 isl_union_set *mask;
3834 /* Data structure collecting information used during the construction
3835 * of an LP for carrying dependences.
3837 * "intra" is a sequence of coefficient constraints for intra-node edges.
3838 * "inter" is a sequence of coefficient constraints for inter-node edges.
3839 * "lineality" contains data used to exploit non-trivial lineality spaces.
3841 struct isl_carry {
3842 isl_basic_set_list *intra;
3843 isl_basic_set_list *inter;
3844 struct isl_exploit_lineality_data lineality;
3847 /* Free all the data stored in "carry".
3849 static void isl_carry_clear(struct isl_carry *carry)
3851 isl_basic_set_list_free(carry->intra);
3852 isl_basic_set_list_free(carry->inter);
3853 isl_union_map_free(carry->lineality.equivalent);
3854 isl_union_set_free(carry->lineality.mask);
3857 /* Return a pointer to the node in "graph" that lives in "space".
3858 * If the requested node has been compressed, then "space"
3859 * corresponds to the compressed space.
3861 * First try and see if "space" is the space of an uncompressed node.
3862 * If so, return that node.
3863 * Otherwise, "space" was constructed by construct_compressed_id and
3864 * contains a user pointer pointing to the node in the tuple id.
3866 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3867 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3869 isl_id *id;
3870 struct isl_sched_node *node;
3872 if (!space)
3873 return NULL;
3875 node = graph_find_node(ctx, graph, space);
3876 if (node)
3877 return node;
3879 id = isl_space_get_tuple_id(space, isl_dim_set);
3880 node = isl_id_get_user(id);
3881 isl_id_free(id);
3883 if (!node)
3884 return NULL;
3886 if (!(node >= &graph->node[0] && node < &graph->node[graph->n]))
3887 isl_die(ctx, isl_error_internal,
3888 "space points to invalid node", return NULL);
3890 return node;
3893 /* Internal data structure for add_all_constraints.
3895 * "graph" is the schedule constraint graph for which an LP problem
3896 * is being constructed.
3897 * "carry_inter" indicates whether inter-node edges should be carried.
3898 * "pos" is the position of the next edge that needs to be carried.
3900 struct isl_add_all_constraints_data {
3901 isl_ctx *ctx;
3902 struct isl_sched_graph *graph;
3903 int carry_inter;
3904 int pos;
3907 /* Add the constraints "coef" derived from an edge from a node to itself
3908 * to data->graph->lp in order to respect the dependences and
3909 * to try and carry them.
3911 * The space of "coef" is of the form
3913 * coefficients[[c_cst] -> S[c_x]]
3915 * with S[c_x] the (compressed) space of the node.
3916 * Extract the node from the space and call add_intra_constraints.
3918 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
3920 struct isl_add_all_constraints_data *data = user;
3921 isl_space *space;
3922 struct isl_sched_node *node;
3924 space = isl_basic_set_get_space(coef);
3925 space = isl_space_range(isl_space_unwrap(space));
3926 node = graph_find_compressed_node(data->ctx, data->graph, space);
3927 isl_space_free(space);
3928 return add_intra_constraints(data->graph, node, coef, data->pos++);
3931 /* Add the constraints "coef" derived from an edge from a node j
3932 * to a node k to data->graph->lp in order to respect the dependences and
3933 * to try and carry them (provided data->carry_inter is set).
3935 * The space of "coef" is of the form
3937 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
3939 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
3940 * Extract the nodes from the space and call add_inter_constraints.
3942 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
3944 struct isl_add_all_constraints_data *data = user;
3945 isl_space *space, *dom;
3946 struct isl_sched_node *src, *dst;
3947 int pos;
3949 space = isl_basic_set_get_space(coef);
3950 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
3951 dom = isl_space_domain(isl_space_copy(space));
3952 src = graph_find_compressed_node(data->ctx, data->graph, dom);
3953 isl_space_free(dom);
3954 space = isl_space_range(space);
3955 dst = graph_find_compressed_node(data->ctx, data->graph, space);
3956 isl_space_free(space);
3958 pos = data->carry_inter ? data->pos++ : -1;
3959 return add_inter_constraints(data->graph, src, dst, coef, pos);
3962 /* Add constraints to graph->lp that force all (conditional) validity
3963 * dependences to be respected and attempt to carry them.
3964 * "intra" is the sequence of coefficient constraints for intra-node edges.
3965 * "inter" is the sequence of coefficient constraints for inter-node edges.
3966 * "carry_inter" indicates whether inter-node edges should be carried or
3967 * only respected.
3969 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
3970 __isl_keep isl_basic_set_list *intra,
3971 __isl_keep isl_basic_set_list *inter, int carry_inter)
3973 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
3975 data.pos = 0;
3976 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
3977 return isl_stat_error;
3978 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
3979 return isl_stat_error;
3980 return isl_stat_ok;
3983 /* Internal data structure for count_all_constraints
3984 * for keeping track of the number of equality and inequality constraints.
3986 struct isl_sched_count {
3987 int n_eq;
3988 int n_ineq;
3991 /* Add the number of equality and inequality constraints of "bset"
3992 * to data->n_eq and data->n_ineq.
3994 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
3996 struct isl_sched_count *data = user;
3998 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4001 /* Count the number of equality and inequality constraints
4002 * that will be added to the carry_lp problem.
4003 * We count each edge exactly once.
4004 * "intra" is the sequence of coefficient constraints for intra-node edges.
4005 * "inter" is the sequence of coefficient constraints for inter-node edges.
4007 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4008 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4010 struct isl_sched_count data;
4012 data.n_eq = data.n_ineq = 0;
4013 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4014 return isl_stat_error;
4015 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4016 return isl_stat_error;
4018 *n_eq = data.n_eq;
4019 *n_ineq = data.n_ineq;
4021 return isl_stat_ok;
4024 /* Construct an LP problem for finding schedule coefficients
4025 * such that the schedule carries as many validity dependences as possible.
4026 * In particular, for each dependence i, we bound the dependence distance
4027 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4028 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4029 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4030 * "intra" is the sequence of coefficient constraints for intra-node edges.
4031 * "inter" is the sequence of coefficient constraints for inter-node edges.
4032 * "n_edge" is the total number of edges.
4033 * "carry_inter" indicates whether inter-node edges should be carried or
4034 * only respected. That is, if "carry_inter" is not set, then
4035 * no e_i variables are introduced for the inter-node edges.
4037 * All variables of the LP are non-negative. The actual coefficients
4038 * may be negative, so each coefficient is represented as the difference
4039 * of two non-negative variables. The negative part always appears
4040 * immediately before the positive part.
4041 * Other than that, the variables have the following order
4043 * - sum of (1 - e_i) over all edges
4044 * - sum of all c_n coefficients
4045 * (unconstrained when computing non-parametric schedules)
4046 * - sum of positive and negative parts of all c_x coefficients
4047 * - for each edge
4048 * - e_i
4049 * - for each node
4050 * - positive and negative parts of c_i_x, in opposite order
4051 * - c_i_n (if parametric)
4052 * - c_i_0
4054 * The constraints are those from the (validity) edges plus three equalities
4055 * to express the sums and n_edge inequalities to express e_i <= 1.
4057 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4058 int n_edge, __isl_keep isl_basic_set_list *intra,
4059 __isl_keep isl_basic_set_list *inter, int carry_inter)
4061 int i;
4062 int k;
4063 isl_space *dim;
4064 unsigned total;
4065 int n_eq, n_ineq;
4067 total = 3 + n_edge;
4068 for (i = 0; i < graph->n; ++i) {
4069 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4070 node->start = total;
4071 total += 1 + node->nparam + 2 * node->nvar;
4074 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4075 return isl_stat_error;
4077 dim = isl_space_set_alloc(ctx, 0, total);
4078 isl_basic_set_free(graph->lp);
4079 n_eq += 3;
4080 n_ineq += n_edge;
4081 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4082 graph->lp = isl_basic_set_set_rational(graph->lp);
4084 k = isl_basic_set_alloc_equality(graph->lp);
4085 if (k < 0)
4086 return isl_stat_error;
4087 isl_seq_clr(graph->lp->eq[k], 1 + total);
4088 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4089 isl_int_set_si(graph->lp->eq[k][1], 1);
4090 for (i = 0; i < n_edge; ++i)
4091 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4093 if (add_param_sum_constraint(graph, 1) < 0)
4094 return isl_stat_error;
4095 if (add_var_sum_constraint(graph, 2) < 0)
4096 return isl_stat_error;
4098 for (i = 0; i < n_edge; ++i) {
4099 k = isl_basic_set_alloc_inequality(graph->lp);
4100 if (k < 0)
4101 return isl_stat_error;
4102 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4103 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4104 isl_int_set_si(graph->lp->ineq[k][0], 1);
4107 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4108 return isl_stat_error;
4110 return isl_stat_ok;
4113 static __isl_give isl_schedule_node *compute_component_schedule(
4114 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4115 int wcc);
4117 /* If the schedule_split_scaled option is set and if the linear
4118 * parts of the scheduling rows for all nodes in the graphs have
4119 * a non-trivial common divisor, then remove this
4120 * common divisor from the linear part.
4121 * Otherwise, insert a band node directly and continue with
4122 * the construction of the schedule.
4124 * If a non-trivial common divisor is found, then
4125 * the linear part is reduced and the remainder is ignored.
4126 * The pieces of the graph that are assigned different remainders
4127 * form (groups of) strongly connected components within
4128 * the scaled down band. If needed, they can therefore
4129 * be ordered along this remainder in a sequence node.
4130 * However, this ordering is not enforced here in order to allow
4131 * the scheduler to combine some of the strongly connected components.
4133 static __isl_give isl_schedule_node *split_scaled(
4134 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4136 int i;
4137 int row;
4138 isl_ctx *ctx;
4139 isl_int gcd, gcd_i;
4141 if (!node)
4142 return NULL;
4144 ctx = isl_schedule_node_get_ctx(node);
4145 if (!ctx->opt->schedule_split_scaled)
4146 return compute_next_band(node, graph, 0);
4147 if (graph->n <= 1)
4148 return compute_next_band(node, graph, 0);
4150 isl_int_init(gcd);
4151 isl_int_init(gcd_i);
4153 isl_int_set_si(gcd, 0);
4155 row = isl_mat_rows(graph->node[0].sched) - 1;
4157 for (i = 0; i < graph->n; ++i) {
4158 struct isl_sched_node *node = &graph->node[i];
4159 int cols = isl_mat_cols(node->sched);
4161 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4162 isl_int_gcd(gcd, gcd, gcd_i);
4165 isl_int_clear(gcd_i);
4167 if (isl_int_cmp_si(gcd, 1) <= 0) {
4168 isl_int_clear(gcd);
4169 return compute_next_band(node, graph, 0);
4172 for (i = 0; i < graph->n; ++i) {
4173 struct isl_sched_node *node = &graph->node[i];
4175 isl_int_fdiv_q(node->sched->row[row][0],
4176 node->sched->row[row][0], gcd);
4177 isl_int_mul(node->sched->row[row][0],
4178 node->sched->row[row][0], gcd);
4179 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4180 if (!node->sched)
4181 goto error;
4184 isl_int_clear(gcd);
4186 return compute_next_band(node, graph, 0);
4187 error:
4188 isl_int_clear(gcd);
4189 return isl_schedule_node_free(node);
4192 /* Is the schedule row "sol" trivial on node "node"?
4193 * That is, is the solution zero on the dimensions linearly independent of
4194 * the previously found solutions?
4195 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4197 * Each coefficient is represented as the difference between
4198 * two non-negative values in "sol".
4199 * We construct the schedule row s and check if it is linearly
4200 * independent of previously computed schedule rows
4201 * by computing T s, with T the linear combinations that are zero
4202 * on linearly dependent schedule rows.
4203 * If the result consists of all zeros, then the solution is trivial.
4205 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4207 int trivial;
4208 isl_vec *node_sol;
4210 if (!sol)
4211 return -1;
4212 if (node->nvar == node->rank)
4213 return 0;
4215 node_sol = extract_var_coef(node, sol);
4216 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4217 if (!node_sol)
4218 return -1;
4220 trivial = isl_seq_first_non_zero(node_sol->el,
4221 node->nvar - node->rank) == -1;
4223 isl_vec_free(node_sol);
4225 return trivial;
4228 /* Is the schedule row "sol" trivial on any node where it should
4229 * not be trivial?
4230 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4232 static int is_any_trivial(struct isl_sched_graph *graph,
4233 __isl_keep isl_vec *sol)
4235 int i;
4237 for (i = 0; i < graph->n; ++i) {
4238 struct isl_sched_node *node = &graph->node[i];
4239 int trivial;
4241 if (!needs_row(graph, node))
4242 continue;
4243 trivial = is_trivial(node, sol);
4244 if (trivial < 0 || trivial)
4245 return trivial;
4248 return 0;
4251 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4252 * If so, return the position of the coalesced dimension.
4253 * Otherwise, return node->nvar or -1 on error.
4255 * In particular, look for pairs of coefficients c_i and c_j such that
4256 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4257 * If any such pair is found, then return i.
4258 * If size_i is infinity, then no check on c_i needs to be performed.
4260 static int find_node_coalescing(struct isl_sched_node *node,
4261 __isl_keep isl_vec *sol)
4263 int i, j;
4264 isl_int max;
4265 isl_vec *csol;
4267 if (node->nvar <= 1)
4268 return node->nvar;
4270 csol = extract_var_coef(node, sol);
4271 if (!csol)
4272 return -1;
4273 isl_int_init(max);
4274 for (i = 0; i < node->nvar; ++i) {
4275 isl_val *v;
4277 if (isl_int_is_zero(csol->el[i]))
4278 continue;
4279 v = isl_multi_val_get_val(node->sizes, i);
4280 if (!v)
4281 goto error;
4282 if (!isl_val_is_int(v)) {
4283 isl_val_free(v);
4284 continue;
4286 v = isl_val_div_ui(v, 2);
4287 v = isl_val_ceil(v);
4288 if (!v)
4289 goto error;
4290 isl_int_mul(max, v->n, csol->el[i]);
4291 isl_val_free(v);
4293 for (j = 0; j < node->nvar; ++j) {
4294 if (j == i)
4295 continue;
4296 if (isl_int_abs_gt(csol->el[j], max))
4297 break;
4299 if (j < node->nvar)
4300 break;
4303 isl_int_clear(max);
4304 isl_vec_free(csol);
4305 return i;
4306 error:
4307 isl_int_clear(max);
4308 isl_vec_free(csol);
4309 return -1;
4312 /* Force the schedule coefficient at position "pos" of "node" to be zero
4313 * in "tl".
4314 * The coefficient is encoded as the difference between two non-negative
4315 * variables. Force these two variables to have the same value.
4317 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4318 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4320 int dim;
4321 isl_ctx *ctx;
4322 isl_vec *eq;
4324 ctx = isl_space_get_ctx(node->space);
4325 dim = isl_tab_lexmin_dim(tl);
4326 if (dim < 0)
4327 return isl_tab_lexmin_free(tl);
4328 eq = isl_vec_alloc(ctx, 1 + dim);
4329 eq = isl_vec_clr(eq);
4330 if (!eq)
4331 return isl_tab_lexmin_free(tl);
4333 pos = 1 + node_var_coef_pos(node, pos);
4334 isl_int_set_si(eq->el[pos], 1);
4335 isl_int_set_si(eq->el[pos + 1], -1);
4336 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4337 isl_vec_free(eq);
4339 return tl;
4342 /* Return the lexicographically smallest rational point in the basic set
4343 * from which "tl" was constructed, double checking that this input set
4344 * was not empty.
4346 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4348 isl_vec *sol;
4350 sol = isl_tab_lexmin_get_solution(tl);
4351 if (!sol)
4352 return NULL;
4353 if (sol->size == 0)
4354 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4355 "error in schedule construction",
4356 return isl_vec_free(sol));
4357 return sol;
4360 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4361 * carry any of the "n_edge" groups of dependences?
4362 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4363 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4364 * by the edge are carried by the solution.
4365 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4366 * one of those is carried.
4368 * Note that despite the fact that the problem is solved using a rational
4369 * solver, the solution is guaranteed to be integral.
4370 * Specifically, the dependence distance lower bounds e_i (and therefore
4371 * also their sum) are integers. See Lemma 5 of [1].
4373 * Any potential denominator of the sum is cleared by this function.
4374 * The denominator is not relevant for any of the other elements
4375 * in the solution.
4377 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4378 * Problem, Part II: Multi-Dimensional Time.
4379 * In Intl. Journal of Parallel Programming, 1992.
4381 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4383 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4384 isl_int_set_si(sol->el[0], 1);
4385 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4388 /* Return the lexicographically smallest rational point in "lp",
4389 * assuming that all variables are non-negative and performing some
4390 * additional sanity checks.
4391 * If "want_integral" is set, then compute the lexicographically smallest
4392 * integer point instead.
4393 * In particular, "lp" should not be empty by construction.
4394 * Double check that this is the case.
4395 * If dependences are not carried for any of the "n_edge" edges,
4396 * then return an empty vector.
4398 * If the schedule_treat_coalescing option is set and
4399 * if the computed schedule performs loop coalescing on a given node,
4400 * i.e., if it is of the form
4402 * c_i i + c_j j + ...
4404 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4405 * to cut out this solution. Repeat this process until no more loop
4406 * coalescing occurs or until no more dependences can be carried.
4407 * In the latter case, revert to the previously computed solution.
4409 * If the caller requests an integral solution and if coalescing should
4410 * be treated, then perform the coalescing treatment first as
4411 * an integral solution computed before coalescing treatment
4412 * would carry the same number of edges and would therefore probably
4413 * also be coalescing.
4415 * To allow the coalescing treatment to be performed first,
4416 * the initial solution is allowed to be rational and it is only
4417 * cut out (if needed) in the next iteration, if no coalescing measures
4418 * were taken.
4420 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4421 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4423 int i, pos, cut;
4424 isl_ctx *ctx;
4425 isl_tab_lexmin *tl;
4426 isl_vec *sol, *prev = NULL;
4427 int treat_coalescing;
4429 if (!lp)
4430 return NULL;
4431 ctx = isl_basic_set_get_ctx(lp);
4432 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4433 tl = isl_tab_lexmin_from_basic_set(lp);
4435 cut = 0;
4436 do {
4437 int integral;
4439 if (cut)
4440 tl = isl_tab_lexmin_cut_to_integer(tl);
4441 sol = non_empty_solution(tl);
4442 if (!sol)
4443 goto error;
4445 integral = isl_int_is_one(sol->el[0]);
4446 if (!carries_dependences(sol, n_edge)) {
4447 if (!prev)
4448 prev = isl_vec_alloc(ctx, 0);
4449 isl_vec_free(sol);
4450 sol = prev;
4451 break;
4453 prev = isl_vec_free(prev);
4454 cut = want_integral && !integral;
4455 if (cut)
4456 prev = sol;
4457 if (!treat_coalescing)
4458 continue;
4459 for (i = 0; i < graph->n; ++i) {
4460 struct isl_sched_node *node = &graph->node[i];
4462 pos = find_node_coalescing(node, sol);
4463 if (pos < 0)
4464 goto error;
4465 if (pos < node->nvar)
4466 break;
4468 if (i < graph->n) {
4469 prev = sol;
4470 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4471 cut = 0;
4473 } while (prev);
4475 isl_tab_lexmin_free(tl);
4477 return sol;
4478 error:
4479 isl_tab_lexmin_free(tl);
4480 isl_vec_free(prev);
4481 isl_vec_free(sol);
4482 return NULL;
4485 /* If "edge" is an edge from a node to itself, then add the corresponding
4486 * dependence relation to "umap".
4487 * If "node" has been compressed, then the dependence relation
4488 * is also compressed first.
4490 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4491 struct isl_sched_edge *edge)
4493 isl_map *map;
4494 struct isl_sched_node *node = edge->src;
4496 if (edge->src != edge->dst)
4497 return umap;
4499 map = isl_map_copy(edge->map);
4500 if (node->compressed) {
4501 map = isl_map_preimage_domain_multi_aff(map,
4502 isl_multi_aff_copy(node->decompress));
4503 map = isl_map_preimage_range_multi_aff(map,
4504 isl_multi_aff_copy(node->decompress));
4506 umap = isl_union_map_add_map(umap, map);
4507 return umap;
4510 /* If "edge" is an edge from a node to another node, then add the corresponding
4511 * dependence relation to "umap".
4512 * If the source or destination nodes of "edge" have been compressed,
4513 * then the dependence relation is also compressed first.
4515 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4516 struct isl_sched_edge *edge)
4518 isl_map *map;
4520 if (edge->src == edge->dst)
4521 return umap;
4523 map = isl_map_copy(edge->map);
4524 if (edge->src->compressed)
4525 map = isl_map_preimage_domain_multi_aff(map,
4526 isl_multi_aff_copy(edge->src->decompress));
4527 if (edge->dst->compressed)
4528 map = isl_map_preimage_range_multi_aff(map,
4529 isl_multi_aff_copy(edge->dst->decompress));
4530 umap = isl_union_map_add_map(umap, map);
4531 return umap;
4534 /* Internal data structure used by union_drop_coalescing_constraints
4535 * to collect bounds on all relevant statements.
4537 * "graph" is the schedule constraint graph for which an LP problem
4538 * is being constructed.
4539 * "bounds" collects the bounds.
4541 struct isl_collect_bounds_data {
4542 isl_ctx *ctx;
4543 struct isl_sched_graph *graph;
4544 isl_union_set *bounds;
4547 /* Add the size bounds for the node with instance deltas in "set"
4548 * to data->bounds.
4550 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4552 struct isl_collect_bounds_data *data = user;
4553 struct isl_sched_node *node;
4554 isl_space *space;
4555 isl_set *bounds;
4557 space = isl_set_get_space(set);
4558 isl_set_free(set);
4560 node = graph_find_compressed_node(data->ctx, data->graph, space);
4561 isl_space_free(space);
4563 bounds = isl_set_from_basic_set(get_size_bounds(node));
4564 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4566 return isl_stat_ok;
4569 /* Drop some constraints from "delta" that could be exploited
4570 * to construct loop coalescing schedules.
4571 * In particular, drop those constraint that bound the difference
4572 * to the size of the domain.
4573 * Do this for each set/node in "delta" separately.
4574 * The parameters are assumed to have been projected out by the caller.
4576 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4577 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4579 struct isl_collect_bounds_data data = { ctx, graph };
4581 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4582 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4583 data.bounds = isl_union_set_free(data.bounds);
4584 delta = isl_union_set_plain_gist(delta, data.bounds);
4586 return delta;
4589 /* Given a non-trivial lineality space "lineality", add the corresponding
4590 * universe set to data->mask and add a map from elements to
4591 * other elements along the lines in "lineality" to data->equivalent.
4592 * If this is the first time this function gets called
4593 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4594 * initialize data->mask and data->equivalent.
4596 * In particular, if the lineality space is defined by equality constraints
4598 * E x = 0
4600 * then construct an affine mapping
4602 * f : x -> E x
4604 * and compute the equivalence relation of having the same image under f:
4606 * { x -> x' : E x = E x' }
4608 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4609 struct isl_exploit_lineality_data *data)
4611 isl_mat *eq;
4612 isl_space *space;
4613 isl_set *univ;
4614 isl_multi_aff *ma;
4615 isl_multi_pw_aff *mpa;
4616 isl_map *map;
4617 int n;
4619 if (!lineality)
4620 return isl_stat_error;
4621 if (isl_basic_set_dim(lineality, isl_dim_div) != 0)
4622 isl_die(isl_basic_set_get_ctx(lineality), isl_error_internal,
4623 "local variables not allowed", goto error);
4625 space = isl_basic_set_get_space(lineality);
4626 if (!data->any_non_trivial) {
4627 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4628 data->mask = isl_union_set_empty(isl_space_copy(space));
4630 data->any_non_trivial = isl_bool_true;
4632 univ = isl_set_universe(isl_space_copy(space));
4633 data->mask = isl_union_set_add_set(data->mask, univ);
4635 eq = isl_basic_set_extract_equalities(lineality);
4636 n = isl_mat_rows(eq);
4637 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4638 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4639 space = isl_space_from_domain(space);
4640 space = isl_space_add_dims(space, isl_dim_out, n);
4641 ma = isl_multi_aff_from_aff_mat(space, eq);
4642 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4643 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4644 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4646 isl_basic_set_free(lineality);
4647 return isl_stat_ok;
4648 error:
4649 isl_basic_set_free(lineality);
4650 return isl_stat_error;
4653 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4654 * the origin or, in other words, satisfies a number of equality constraints
4655 * that is smaller than the dimension of the set).
4656 * If so, extend data->mask and data->equivalent accordingly.
4658 * The input should not have any local variables already, but
4659 * isl_set_remove_divs is called to make sure it does not.
4661 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4663 struct isl_exploit_lineality_data *data = user;
4664 isl_basic_set *hull;
4665 int dim, n_eq;
4667 set = isl_set_remove_divs(set);
4668 hull = isl_set_unshifted_simple_hull(set);
4669 dim = isl_basic_set_dim(hull, isl_dim_set);
4670 n_eq = isl_basic_set_n_equality(hull);
4671 if (!hull)
4672 return isl_stat_error;
4673 if (dim != n_eq)
4674 return add_non_trivial_lineality(hull, data);
4675 isl_basic_set_free(hull);
4676 return isl_stat_ok;
4679 /* Check if the difference set on intra-node schedule constraints "intra"
4680 * has any non-trivial lineality space.
4681 * If so, then extend the difference set to a difference set
4682 * on equivalent elements. That is, if "intra" is
4684 * { y - x : (x,y) \in V }
4686 * and elements are equivalent if they have the same image under f,
4687 * then return
4689 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4691 * or, since f is linear,
4693 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4695 * The results of the search for non-trivial lineality spaces is stored
4696 * in "data".
4698 static __isl_give isl_union_set *exploit_intra_lineality(
4699 __isl_take isl_union_set *intra,
4700 struct isl_exploit_lineality_data *data)
4702 isl_union_set *lineality;
4703 isl_union_set *uset;
4705 data->any_non_trivial = isl_bool_false;
4706 lineality = isl_union_set_copy(intra);
4707 lineality = isl_union_set_combined_lineality_space(lineality);
4708 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4709 data->any_non_trivial = isl_bool_error;
4710 isl_union_set_free(lineality);
4712 if (data->any_non_trivial < 0)
4713 return isl_union_set_free(intra);
4714 if (!data->any_non_trivial)
4715 return intra;
4717 uset = isl_union_set_copy(intra);
4718 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4719 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4720 intra = isl_union_set_union(intra, uset);
4722 intra = isl_union_set_remove_divs(intra);
4724 return intra;
4727 /* If the difference set on intra-node schedule constraints was found to have
4728 * any non-trivial lineality space by exploit_intra_lineality,
4729 * as recorded in "data", then extend the inter-node
4730 * schedule constraints "inter" to schedule constraints on equivalent elements.
4731 * That is, if "inter" is V and
4732 * elements are equivalent if they have the same image under f, then return
4734 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4736 static __isl_give isl_union_map *exploit_inter_lineality(
4737 __isl_take isl_union_map *inter,
4738 struct isl_exploit_lineality_data *data)
4740 isl_union_map *umap;
4742 if (data->any_non_trivial < 0)
4743 return isl_union_map_free(inter);
4744 if (!data->any_non_trivial)
4745 return inter;
4747 umap = isl_union_map_copy(inter);
4748 inter = isl_union_map_subtract_range(inter,
4749 isl_union_set_copy(data->mask));
4750 umap = isl_union_map_apply_range(umap,
4751 isl_union_map_copy(data->equivalent));
4752 inter = isl_union_map_union(inter, umap);
4753 umap = isl_union_map_copy(inter);
4754 inter = isl_union_map_subtract_domain(inter,
4755 isl_union_set_copy(data->mask));
4756 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4757 umap);
4758 inter = isl_union_map_union(inter, umap);
4760 inter = isl_union_map_remove_divs(inter);
4762 return inter;
4765 /* For each (conditional) validity edge in "graph",
4766 * add the corresponding dependence relation using "add"
4767 * to a collection of dependence relations and return the result.
4768 * If "coincidence" is set, then coincidence edges are considered as well.
4770 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4771 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4772 struct isl_sched_edge *edge), int coincidence)
4774 int i;
4775 isl_space *space;
4776 isl_union_map *umap;
4778 space = isl_space_copy(graph->node[0].space);
4779 umap = isl_union_map_empty(space);
4781 for (i = 0; i < graph->n_edge; ++i) {
4782 struct isl_sched_edge *edge = &graph->edge[i];
4784 if (!is_any_validity(edge) &&
4785 (!coincidence || !is_coincidence(edge)))
4786 continue;
4788 umap = add(umap, edge);
4791 return umap;
4794 /* Project out all parameters from "uset" and return the result.
4796 static __isl_give isl_union_set *union_set_drop_parameters(
4797 __isl_take isl_union_set *uset)
4799 unsigned nparam;
4801 nparam = isl_union_set_dim(uset, isl_dim_param);
4802 return isl_union_set_project_out(uset, isl_dim_param, 0, nparam);
4805 /* For each dependence relation on a (conditional) validity edge
4806 * from a node to itself,
4807 * construct the set of coefficients of valid constraints for elements
4808 * in that dependence relation and collect the results.
4809 * If "coincidence" is set, then coincidence edges are considered as well.
4811 * In particular, for each dependence relation R, constraints
4812 * on coefficients (c_0, c_x) are constructed such that
4814 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4816 * If the schedule_treat_coalescing option is set, then some constraints
4817 * that could be exploited to construct coalescing schedules
4818 * are removed before the dual is computed, but after the parameters
4819 * have been projected out.
4820 * The entire computation is essentially the same as that performed
4821 * by intra_coefficients, except that it operates on multiple
4822 * edges together and that the parameters are always projected out.
4824 * Additionally, exploit any non-trivial lineality space
4825 * in the difference set after removing coalescing constraints and
4826 * store the results of the non-trivial lineality space detection in "data".
4827 * The procedure is currently run unconditionally, but it is unlikely
4828 * to find any non-trivial lineality spaces if no coalescing constraints
4829 * have been removed.
4831 * Note that if a dependence relation is a union of basic maps,
4832 * then each basic map needs to be treated individually as it may only
4833 * be possible to carry the dependences expressed by some of those
4834 * basic maps and not all of them.
4835 * The collected validity constraints are therefore not coalesced and
4836 * it is assumed that they are not coalesced automatically.
4837 * Duplicate basic maps can be removed, however.
4838 * In particular, if the same basic map appears as a disjunct
4839 * in multiple edges, then it only needs to be carried once.
4841 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4842 struct isl_sched_graph *graph, int coincidence,
4843 struct isl_exploit_lineality_data *data)
4845 isl_union_map *intra;
4846 isl_union_set *delta;
4847 isl_basic_set_list *list;
4849 intra = collect_validity(graph, &add_intra, coincidence);
4850 delta = isl_union_map_deltas(intra);
4851 delta = union_set_drop_parameters(delta);
4852 delta = isl_union_set_remove_divs(delta);
4853 if (isl_options_get_schedule_treat_coalescing(ctx))
4854 delta = union_drop_coalescing_constraints(ctx, graph, delta);
4855 delta = exploit_intra_lineality(delta, data);
4856 list = isl_union_set_get_basic_set_list(delta);
4857 isl_union_set_free(delta);
4859 return isl_basic_set_list_coefficients(list);
4862 /* For each dependence relation on a (conditional) validity edge
4863 * from a node to some other node,
4864 * construct the set of coefficients of valid constraints for elements
4865 * in that dependence relation and collect the results.
4866 * If "coincidence" is set, then coincidence edges are considered as well.
4868 * In particular, for each dependence relation R, constraints
4869 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4871 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4873 * This computation is essentially the same as that performed
4874 * by inter_coefficients, except that it operates on multiple
4875 * edges together.
4877 * Additionally, exploit any non-trivial lineality space
4878 * that may have been discovered by collect_intra_validity
4879 * (as stored in "data").
4881 * Note that if a dependence relation is a union of basic maps,
4882 * then each basic map needs to be treated individually as it may only
4883 * be possible to carry the dependences expressed by some of those
4884 * basic maps and not all of them.
4885 * The collected validity constraints are therefore not coalesced and
4886 * it is assumed that they are not coalesced automatically.
4887 * Duplicate basic maps can be removed, however.
4888 * In particular, if the same basic map appears as a disjunct
4889 * in multiple edges, then it only needs to be carried once.
4891 static __isl_give isl_basic_set_list *collect_inter_validity(
4892 struct isl_sched_graph *graph, int coincidence,
4893 struct isl_exploit_lineality_data *data)
4895 isl_union_map *inter;
4896 isl_union_set *wrap;
4897 isl_basic_set_list *list;
4899 inter = collect_validity(graph, &add_inter, coincidence);
4900 inter = exploit_inter_lineality(inter, data);
4901 inter = isl_union_map_remove_divs(inter);
4902 wrap = isl_union_map_wrap(inter);
4903 list = isl_union_set_get_basic_set_list(wrap);
4904 isl_union_set_free(wrap);
4905 return isl_basic_set_list_coefficients(list);
4908 /* Construct an LP problem for finding schedule coefficients
4909 * such that the schedule carries as many of the "n_edge" groups of
4910 * dependences as possible based on the corresponding coefficient
4911 * constraints and return the lexicographically smallest non-trivial solution.
4912 * "intra" is the sequence of coefficient constraints for intra-node edges.
4913 * "inter" is the sequence of coefficient constraints for inter-node edges.
4914 * If "want_integral" is set, then compute an integral solution
4915 * for the coefficients rather than using the numerators
4916 * of a rational solution.
4917 * "carry_inter" indicates whether inter-node edges should be carried or
4918 * only respected.
4920 * If none of the "n_edge" groups can be carried
4921 * then return an empty vector.
4923 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
4924 struct isl_sched_graph *graph, int n_edge,
4925 __isl_keep isl_basic_set_list *intra,
4926 __isl_keep isl_basic_set_list *inter, int want_integral,
4927 int carry_inter)
4929 isl_basic_set *lp;
4931 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
4932 return NULL;
4934 lp = isl_basic_set_copy(graph->lp);
4935 return non_neg_lexmin(graph, lp, n_edge, want_integral);
4938 /* Construct an LP problem for finding schedule coefficients
4939 * such that the schedule carries as many of the validity dependences
4940 * as possible and
4941 * return the lexicographically smallest non-trivial solution.
4942 * If "fallback" is set, then the carrying is performed as a fallback
4943 * for the Pluto-like scheduler.
4944 * If "coincidence" is set, then try and carry coincidence edges as well.
4946 * The variable "n_edge" stores the number of groups that should be carried.
4947 * If none of the "n_edge" groups can be carried
4948 * then return an empty vector.
4949 * If, moreover, "n_edge" is zero, then the LP problem does not even
4950 * need to be constructed.
4952 * If a fallback solution is being computed, then compute an integral solution
4953 * for the coefficients rather than using the numerators
4954 * of a rational solution.
4956 * If a fallback solution is being computed, if there are any intra-node
4957 * dependences, and if requested by the user, then first try
4958 * to only carry those intra-node dependences.
4959 * If this fails to carry any dependences, then try again
4960 * with the inter-node dependences included.
4962 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
4963 struct isl_sched_graph *graph, int fallback, int coincidence)
4965 int n_intra, n_inter;
4966 int n_edge;
4967 struct isl_carry carry = { 0 };
4968 isl_vec *sol;
4970 carry.intra = collect_intra_validity(ctx, graph, coincidence,
4971 &carry.lineality);
4972 carry.inter = collect_inter_validity(graph, coincidence,
4973 &carry.lineality);
4974 if (!carry.intra || !carry.inter)
4975 goto error;
4976 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
4977 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
4979 if (fallback && n_intra > 0 &&
4980 isl_options_get_schedule_carry_self_first(ctx)) {
4981 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
4982 carry.intra, carry.inter, fallback, 0);
4983 if (!sol || sol->size != 0 || n_inter == 0) {
4984 isl_carry_clear(&carry);
4985 return sol;
4987 isl_vec_free(sol);
4990 n_edge = n_intra + n_inter;
4991 if (n_edge == 0) {
4992 isl_carry_clear(&carry);
4993 return isl_vec_alloc(ctx, 0);
4996 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
4997 carry.intra, carry.inter, fallback, 1);
4998 isl_carry_clear(&carry);
4999 return sol;
5000 error:
5001 isl_carry_clear(&carry);
5002 return NULL;
5005 /* Construct a schedule row for each node such that as many validity dependences
5006 * as possible are carried and then continue with the next band.
5007 * If "fallback" is set, then the carrying is performed as a fallback
5008 * for the Pluto-like scheduler.
5009 * If "coincidence" is set, then try and carry coincidence edges as well.
5011 * If there are no validity dependences, then no dependence can be carried and
5012 * the procedure is guaranteed to fail. If there is more than one component,
5013 * then try computing a schedule on each component separately
5014 * to prevent or at least postpone this failure.
5016 * If a schedule row is computed, then check that dependences are carried
5017 * for at least one of the edges.
5019 * If the computed schedule row turns out to be trivial on one or
5020 * more nodes where it should not be trivial, then we throw it away
5021 * and try again on each component separately.
5023 * If there is only one component, then we accept the schedule row anyway,
5024 * but we do not consider it as a complete row and therefore do not
5025 * increment graph->n_row. Note that the ranks of the nodes that
5026 * do get a non-trivial schedule part will get updated regardless and
5027 * graph->maxvar is computed based on these ranks. The test for
5028 * whether more schedule rows are required in compute_schedule_wcc
5029 * is therefore not affected.
5031 * Insert a band corresponding to the schedule row at position "node"
5032 * of the schedule tree and continue with the construction of the schedule.
5033 * This insertion and the continued construction is performed by split_scaled
5034 * after optionally checking for non-trivial common divisors.
5036 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5037 struct isl_sched_graph *graph, int fallback, int coincidence)
5039 int trivial;
5040 isl_ctx *ctx;
5041 isl_vec *sol;
5043 if (!node)
5044 return NULL;
5046 ctx = isl_schedule_node_get_ctx(node);
5047 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5048 if (!sol)
5049 return isl_schedule_node_free(node);
5050 if (sol->size == 0) {
5051 isl_vec_free(sol);
5052 if (graph->scc > 1)
5053 return compute_component_schedule(node, graph, 1);
5054 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5055 return isl_schedule_node_free(node));
5058 trivial = is_any_trivial(graph, sol);
5059 if (trivial < 0) {
5060 sol = isl_vec_free(sol);
5061 } else if (trivial && graph->scc > 1) {
5062 isl_vec_free(sol);
5063 return compute_component_schedule(node, graph, 1);
5066 if (update_schedule(graph, sol, 0) < 0)
5067 return isl_schedule_node_free(node);
5068 if (trivial)
5069 graph->n_row--;
5071 return split_scaled(node, graph);
5074 /* Construct a schedule row for each node such that as many validity dependences
5075 * as possible are carried and then continue with the next band.
5076 * Do so as a fallback for the Pluto-like scheduler.
5077 * If "coincidence" is set, then try and carry coincidence edges as well.
5079 static __isl_give isl_schedule_node *carry_fallback(
5080 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5081 int coincidence)
5083 return carry(node, graph, 1, coincidence);
5086 /* Construct a schedule row for each node such that as many validity dependences
5087 * as possible are carried and then continue with the next band.
5088 * Do so for the case where the Feautrier scheduler was selected
5089 * by the user.
5091 static __isl_give isl_schedule_node *carry_feautrier(
5092 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5094 return carry(node, graph, 0, 0);
5097 /* Construct a schedule row for each node such that as many validity dependences
5098 * as possible are carried and then continue with the next band.
5099 * Do so as a fallback for the Pluto-like scheduler.
5101 static __isl_give isl_schedule_node *carry_dependences(
5102 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5104 return carry_fallback(node, graph, 0);
5107 /* Construct a schedule row for each node such that as many validity or
5108 * coincidence dependences as possible are carried and
5109 * then continue with the next band.
5110 * Do so as a fallback for the Pluto-like scheduler.
5112 static __isl_give isl_schedule_node *carry_coincidence(
5113 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5115 return carry_fallback(node, graph, 1);
5118 /* Topologically sort statements mapped to the same schedule iteration
5119 * and add insert a sequence node in front of "node"
5120 * corresponding to this order.
5121 * If "initialized" is set, then it may be assumed that compute_maxvar
5122 * has been called on the current band. Otherwise, call
5123 * compute_maxvar if and before carry_dependences gets called.
5125 * If it turns out to be impossible to sort the statements apart,
5126 * because different dependences impose different orderings
5127 * on the statements, then we extend the schedule such that
5128 * it carries at least one more dependence.
5130 static __isl_give isl_schedule_node *sort_statements(
5131 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5132 int initialized)
5134 isl_ctx *ctx;
5135 isl_union_set_list *filters;
5137 if (!node)
5138 return NULL;
5140 ctx = isl_schedule_node_get_ctx(node);
5141 if (graph->n < 1)
5142 isl_die(ctx, isl_error_internal,
5143 "graph should have at least one node",
5144 return isl_schedule_node_free(node));
5146 if (graph->n == 1)
5147 return node;
5149 if (update_edges(ctx, graph) < 0)
5150 return isl_schedule_node_free(node);
5152 if (graph->n_edge == 0)
5153 return node;
5155 if (detect_sccs(ctx, graph) < 0)
5156 return isl_schedule_node_free(node);
5158 next_band(graph);
5159 if (graph->scc < graph->n) {
5160 if (!initialized && compute_maxvar(graph) < 0)
5161 return isl_schedule_node_free(node);
5162 return carry_dependences(node, graph);
5165 filters = extract_sccs(ctx, graph);
5166 node = isl_schedule_node_insert_sequence(node, filters);
5168 return node;
5171 /* Are there any (non-empty) (conditional) validity edges in the graph?
5173 static int has_validity_edges(struct isl_sched_graph *graph)
5175 int i;
5177 for (i = 0; i < graph->n_edge; ++i) {
5178 int empty;
5180 empty = isl_map_plain_is_empty(graph->edge[i].map);
5181 if (empty < 0)
5182 return -1;
5183 if (empty)
5184 continue;
5185 if (is_any_validity(&graph->edge[i]))
5186 return 1;
5189 return 0;
5192 /* Should we apply a Feautrier step?
5193 * That is, did the user request the Feautrier algorithm and are
5194 * there any validity dependences (left)?
5196 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5198 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5199 return 0;
5201 return has_validity_edges(graph);
5204 /* Compute a schedule for a connected dependence graph using Feautrier's
5205 * multi-dimensional scheduling algorithm and return the updated schedule node.
5207 * The original algorithm is described in [1].
5208 * The main idea is to minimize the number of scheduling dimensions, by
5209 * trying to satisfy as many dependences as possible per scheduling dimension.
5211 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5212 * Problem, Part II: Multi-Dimensional Time.
5213 * In Intl. Journal of Parallel Programming, 1992.
5215 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5216 isl_schedule_node *node, struct isl_sched_graph *graph)
5218 return carry_feautrier(node, graph);
5221 /* Turn off the "local" bit on all (condition) edges.
5223 static void clear_local_edges(struct isl_sched_graph *graph)
5225 int i;
5227 for (i = 0; i < graph->n_edge; ++i)
5228 if (is_condition(&graph->edge[i]))
5229 clear_local(&graph->edge[i]);
5232 /* Does "graph" have both condition and conditional validity edges?
5234 static int need_condition_check(struct isl_sched_graph *graph)
5236 int i;
5237 int any_condition = 0;
5238 int any_conditional_validity = 0;
5240 for (i = 0; i < graph->n_edge; ++i) {
5241 if (is_condition(&graph->edge[i]))
5242 any_condition = 1;
5243 if (is_conditional_validity(&graph->edge[i]))
5244 any_conditional_validity = 1;
5247 return any_condition && any_conditional_validity;
5250 /* Does "graph" contain any coincidence edge?
5252 static int has_any_coincidence(struct isl_sched_graph *graph)
5254 int i;
5256 for (i = 0; i < graph->n_edge; ++i)
5257 if (is_coincidence(&graph->edge[i]))
5258 return 1;
5260 return 0;
5263 /* Extract the final schedule row as a map with the iteration domain
5264 * of "node" as domain.
5266 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5268 isl_multi_aff *ma;
5269 int row;
5271 row = isl_mat_rows(node->sched) - 1;
5272 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
5273 return isl_map_from_multi_aff(ma);
5276 /* Is the conditional validity dependence in the edge with index "edge_index"
5277 * violated by the latest (i.e., final) row of the schedule?
5278 * That is, is i scheduled after j
5279 * for any conditional validity dependence i -> j?
5281 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5283 isl_map *src_sched, *dst_sched, *map;
5284 struct isl_sched_edge *edge = &graph->edge[edge_index];
5285 int empty;
5287 src_sched = final_row(edge->src);
5288 dst_sched = final_row(edge->dst);
5289 map = isl_map_copy(edge->map);
5290 map = isl_map_apply_domain(map, src_sched);
5291 map = isl_map_apply_range(map, dst_sched);
5292 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5293 empty = isl_map_is_empty(map);
5294 isl_map_free(map);
5296 if (empty < 0)
5297 return -1;
5299 return !empty;
5302 /* Does "graph" have any satisfied condition edges that
5303 * are adjacent to the conditional validity constraint with
5304 * domain "conditional_source" and range "conditional_sink"?
5306 * A satisfied condition is one that is not local.
5307 * If a condition was forced to be local already (i.e., marked as local)
5308 * then there is no need to check if it is in fact local.
5310 * Additionally, mark all adjacent condition edges found as local.
5312 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5313 __isl_keep isl_union_set *conditional_source,
5314 __isl_keep isl_union_set *conditional_sink)
5316 int i;
5317 int any = 0;
5319 for (i = 0; i < graph->n_edge; ++i) {
5320 int adjacent, local;
5321 isl_union_map *condition;
5323 if (!is_condition(&graph->edge[i]))
5324 continue;
5325 if (is_local(&graph->edge[i]))
5326 continue;
5328 condition = graph->edge[i].tagged_condition;
5329 adjacent = domain_intersects(condition, conditional_sink);
5330 if (adjacent >= 0 && !adjacent)
5331 adjacent = range_intersects(condition,
5332 conditional_source);
5333 if (adjacent < 0)
5334 return -1;
5335 if (!adjacent)
5336 continue;
5338 set_local(&graph->edge[i]);
5340 local = is_condition_false(&graph->edge[i]);
5341 if (local < 0)
5342 return -1;
5343 if (!local)
5344 any = 1;
5347 return any;
5350 /* Are there any violated conditional validity dependences with
5351 * adjacent condition dependences that are not local with respect
5352 * to the current schedule?
5353 * That is, is the conditional validity constraint violated?
5355 * Additionally, mark all those adjacent condition dependences as local.
5356 * We also mark those adjacent condition dependences that were not marked
5357 * as local before, but just happened to be local already. This ensures
5358 * that they remain local if the schedule is recomputed.
5360 * We first collect domain and range of all violated conditional validity
5361 * dependences and then check if there are any adjacent non-local
5362 * condition dependences.
5364 static int has_violated_conditional_constraint(isl_ctx *ctx,
5365 struct isl_sched_graph *graph)
5367 int i;
5368 int any = 0;
5369 isl_union_set *source, *sink;
5371 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5372 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5373 for (i = 0; i < graph->n_edge; ++i) {
5374 isl_union_set *uset;
5375 isl_union_map *umap;
5376 int violated;
5378 if (!is_conditional_validity(&graph->edge[i]))
5379 continue;
5381 violated = is_violated(graph, i);
5382 if (violated < 0)
5383 goto error;
5384 if (!violated)
5385 continue;
5387 any = 1;
5389 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5390 uset = isl_union_map_domain(umap);
5391 source = isl_union_set_union(source, uset);
5392 source = isl_union_set_coalesce(source);
5394 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5395 uset = isl_union_map_range(umap);
5396 sink = isl_union_set_union(sink, uset);
5397 sink = isl_union_set_coalesce(sink);
5400 if (any)
5401 any = has_adjacent_true_conditions(graph, source, sink);
5403 isl_union_set_free(source);
5404 isl_union_set_free(sink);
5405 return any;
5406 error:
5407 isl_union_set_free(source);
5408 isl_union_set_free(sink);
5409 return -1;
5412 /* Examine the current band (the rows between graph->band_start and
5413 * graph->n_total_row), deciding whether to drop it or add it to "node"
5414 * and then continue with the computation of the next band, if any.
5415 * If "initialized" is set, then it may be assumed that compute_maxvar
5416 * has been called on the current band. Otherwise, call
5417 * compute_maxvar if and before carry_dependences gets called.
5419 * The caller keeps looking for a new row as long as
5420 * graph->n_row < graph->maxvar. If the latest attempt to find
5421 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5422 * then we either
5423 * - split between SCCs and start over (assuming we found an interesting
5424 * pair of SCCs between which to split)
5425 * - continue with the next band (assuming the current band has at least
5426 * one row)
5427 * - if there is more than one SCC left, then split along all SCCs
5428 * - if outer coincidence needs to be enforced, then try to carry as many
5429 * validity or coincidence dependences as possible and
5430 * continue with the next band
5431 * - try to carry as many validity dependences as possible and
5432 * continue with the next band
5433 * In each case, we first insert a band node in the schedule tree
5434 * if any rows have been computed.
5436 * If the caller managed to complete the schedule, we insert a band node
5437 * (if any schedule rows were computed) and we finish off by topologically
5438 * sorting the statements based on the remaining dependences.
5440 static __isl_give isl_schedule_node *compute_schedule_finish_band(
5441 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5442 int initialized)
5444 int insert;
5446 if (!node)
5447 return NULL;
5449 if (graph->n_row < graph->maxvar) {
5450 isl_ctx *ctx;
5451 int empty = graph->n_total_row == graph->band_start;
5453 ctx = isl_schedule_node_get_ctx(node);
5454 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5455 return compute_next_band(node, graph, 1);
5456 if (graph->src_scc >= 0)
5457 return compute_split_schedule(node, graph);
5458 if (!empty)
5459 return compute_next_band(node, graph, 1);
5460 if (graph->scc > 1)
5461 return compute_component_schedule(node, graph, 1);
5462 if (!initialized && compute_maxvar(graph) < 0)
5463 return isl_schedule_node_free(node);
5464 if (isl_options_get_schedule_outer_coincidence(ctx))
5465 return carry_coincidence(node, graph);
5466 return carry_dependences(node, graph);
5469 insert = graph->n_total_row > graph->band_start;
5470 if (insert) {
5471 node = insert_current_band(node, graph, 1);
5472 node = isl_schedule_node_child(node, 0);
5474 node = sort_statements(node, graph, initialized);
5475 if (insert)
5476 node = isl_schedule_node_parent(node);
5478 return node;
5481 /* Construct a band of schedule rows for a connected dependence graph.
5482 * The caller is responsible for determining the strongly connected
5483 * components and calling compute_maxvar first.
5485 * We try to find a sequence of as many schedule rows as possible that result
5486 * in non-negative dependence distances (independent of the previous rows
5487 * in the sequence, i.e., such that the sequence is tilable), with as
5488 * many of the initial rows as possible satisfying the coincidence constraints.
5489 * The computation stops if we can't find any more rows or if we have found
5490 * all the rows we wanted to find.
5492 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5493 * outermost dimension to satisfy the coincidence constraints. If this
5494 * turns out to be impossible, we fall back on the general scheme above
5495 * and try to carry as many dependences as possible.
5497 * If "graph" contains both condition and conditional validity dependences,
5498 * then we need to check that that the conditional schedule constraint
5499 * is satisfied, i.e., there are no violated conditional validity dependences
5500 * that are adjacent to any non-local condition dependences.
5501 * If there are, then we mark all those adjacent condition dependences
5502 * as local and recompute the current band. Those dependences that
5503 * are marked local will then be forced to be local.
5504 * The initial computation is performed with no dependences marked as local.
5505 * If we are lucky, then there will be no violated conditional validity
5506 * dependences adjacent to any non-local condition dependences.
5507 * Otherwise, we mark some additional condition dependences as local and
5508 * recompute. We continue this process until there are no violations left or
5509 * until we are no longer able to compute a schedule.
5510 * Since there are only a finite number of dependences,
5511 * there will only be a finite number of iterations.
5513 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5514 struct isl_sched_graph *graph)
5516 int has_coincidence;
5517 int use_coincidence;
5518 int force_coincidence = 0;
5519 int check_conditional;
5521 if (sort_sccs(graph) < 0)
5522 return isl_stat_error;
5524 clear_local_edges(graph);
5525 check_conditional = need_condition_check(graph);
5526 has_coincidence = has_any_coincidence(graph);
5528 if (ctx->opt->schedule_outer_coincidence)
5529 force_coincidence = 1;
5531 use_coincidence = has_coincidence;
5532 while (graph->n_row < graph->maxvar) {
5533 isl_vec *sol;
5534 int violated;
5535 int coincident;
5537 graph->src_scc = -1;
5538 graph->dst_scc = -1;
5540 if (setup_lp(ctx, graph, use_coincidence) < 0)
5541 return isl_stat_error;
5542 sol = solve_lp(ctx, graph);
5543 if (!sol)
5544 return isl_stat_error;
5545 if (sol->size == 0) {
5546 int empty = graph->n_total_row == graph->band_start;
5548 isl_vec_free(sol);
5549 if (use_coincidence && (!force_coincidence || !empty)) {
5550 use_coincidence = 0;
5551 continue;
5553 return isl_stat_ok;
5555 coincident = !has_coincidence || use_coincidence;
5556 if (update_schedule(graph, sol, coincident) < 0)
5557 return isl_stat_error;
5559 if (!check_conditional)
5560 continue;
5561 violated = has_violated_conditional_constraint(ctx, graph);
5562 if (violated < 0)
5563 return isl_stat_error;
5564 if (!violated)
5565 continue;
5566 if (reset_band(graph) < 0)
5567 return isl_stat_error;
5568 use_coincidence = has_coincidence;
5571 return isl_stat_ok;
5574 /* Compute a schedule for a connected dependence graph by considering
5575 * the graph as a whole and return the updated schedule node.
5577 * The actual schedule rows of the current band are computed by
5578 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5579 * care of integrating the band into "node" and continuing
5580 * the computation.
5582 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5583 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5585 isl_ctx *ctx;
5587 if (!node)
5588 return NULL;
5590 ctx = isl_schedule_node_get_ctx(node);
5591 if (compute_schedule_wcc_band(ctx, graph) < 0)
5592 return isl_schedule_node_free(node);
5594 return compute_schedule_finish_band(node, graph, 1);
5597 /* Clustering information used by compute_schedule_wcc_clustering.
5599 * "n" is the number of SCCs in the original dependence graph
5600 * "scc" is an array of "n" elements, each representing an SCC
5601 * of the original dependence graph. All entries in the same cluster
5602 * have the same number of schedule rows.
5603 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5604 * where each cluster is represented by the index of the first SCC
5605 * in the cluster. Initially, each SCC belongs to a cluster containing
5606 * only that SCC.
5608 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5609 * track of which SCCs need to be merged.
5611 * "cluster" contains the merged clusters of SCCs after the clustering
5612 * has completed.
5614 * "scc_node" is a temporary data structure used inside copy_partial.
5615 * For each SCC, it keeps track of the number of nodes in the SCC
5616 * that have already been copied.
5618 struct isl_clustering {
5619 int n;
5620 struct isl_sched_graph *scc;
5621 struct isl_sched_graph *cluster;
5622 int *scc_cluster;
5623 int *scc_node;
5624 int *scc_in_merge;
5627 /* Initialize the clustering data structure "c" from "graph".
5629 * In particular, allocate memory, extract the SCCs from "graph"
5630 * into c->scc, initialize scc_cluster and construct
5631 * a band of schedule rows for each SCC.
5632 * Within each SCC, there is only one SCC by definition.
5633 * Each SCC initially belongs to a cluster containing only that SCC.
5635 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5636 struct isl_sched_graph *graph)
5638 int i;
5640 c->n = graph->scc;
5641 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5642 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5643 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5644 c->scc_node = isl_calloc_array(ctx, int, c->n);
5645 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5646 if (!c->scc || !c->cluster ||
5647 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5648 return isl_stat_error;
5650 for (i = 0; i < c->n; ++i) {
5651 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5652 &edge_scc_exactly, i, &c->scc[i]) < 0)
5653 return isl_stat_error;
5654 c->scc[i].scc = 1;
5655 if (compute_maxvar(&c->scc[i]) < 0)
5656 return isl_stat_error;
5657 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5658 return isl_stat_error;
5659 c->scc_cluster[i] = i;
5662 return isl_stat_ok;
5665 /* Free all memory allocated for "c".
5667 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5669 int i;
5671 if (c->scc)
5672 for (i = 0; i < c->n; ++i)
5673 graph_free(ctx, &c->scc[i]);
5674 free(c->scc);
5675 if (c->cluster)
5676 for (i = 0; i < c->n; ++i)
5677 graph_free(ctx, &c->cluster[i]);
5678 free(c->cluster);
5679 free(c->scc_cluster);
5680 free(c->scc_node);
5681 free(c->scc_in_merge);
5684 /* Should we refrain from merging the cluster in "graph" with
5685 * any other cluster?
5686 * In particular, is its current schedule band empty and incomplete.
5688 static int bad_cluster(struct isl_sched_graph *graph)
5690 return graph->n_row < graph->maxvar &&
5691 graph->n_total_row == graph->band_start;
5694 /* Is "edge" a proximity edge with a non-empty dependence relation?
5696 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5698 if (!is_proximity(edge))
5699 return isl_bool_false;
5700 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5703 /* Return the index of an edge in "graph" that can be used to merge
5704 * two clusters in "c".
5705 * Return graph->n_edge if no such edge can be found.
5706 * Return -1 on error.
5708 * In particular, return a proximity edge between two clusters
5709 * that is not marked "no_merge" and such that neither of the
5710 * two clusters has an incomplete, empty band.
5712 * If there are multiple such edges, then try and find the most
5713 * appropriate edge to use for merging. In particular, pick the edge
5714 * with the greatest weight. If there are multiple of those,
5715 * then pick one with the shortest distance between
5716 * the two cluster representatives.
5718 static int find_proximity(struct isl_sched_graph *graph,
5719 struct isl_clustering *c)
5721 int i, best = graph->n_edge, best_dist, best_weight;
5723 for (i = 0; i < graph->n_edge; ++i) {
5724 struct isl_sched_edge *edge = &graph->edge[i];
5725 int dist, weight;
5726 isl_bool prox;
5728 prox = is_non_empty_proximity(edge);
5729 if (prox < 0)
5730 return -1;
5731 if (!prox)
5732 continue;
5733 if (edge->no_merge)
5734 continue;
5735 if (bad_cluster(&c->scc[edge->src->scc]) ||
5736 bad_cluster(&c->scc[edge->dst->scc]))
5737 continue;
5738 dist = c->scc_cluster[edge->dst->scc] -
5739 c->scc_cluster[edge->src->scc];
5740 if (dist == 0)
5741 continue;
5742 weight = edge->weight;
5743 if (best < graph->n_edge) {
5744 if (best_weight > weight)
5745 continue;
5746 if (best_weight == weight && best_dist <= dist)
5747 continue;
5749 best = i;
5750 best_dist = dist;
5751 best_weight = weight;
5754 return best;
5757 /* Internal data structure used in mark_merge_sccs.
5759 * "graph" is the dependence graph in which a strongly connected
5760 * component is constructed.
5761 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5762 * "src" and "dst" are the indices of the nodes that are being merged.
5764 struct isl_mark_merge_sccs_data {
5765 struct isl_sched_graph *graph;
5766 int *scc_cluster;
5767 int src;
5768 int dst;
5771 /* Check whether the cluster containing node "i" depends on the cluster
5772 * containing node "j". If "i" and "j" belong to the same cluster,
5773 * then they are taken to depend on each other to ensure that
5774 * the resulting strongly connected component consists of complete
5775 * clusters. Furthermore, if "i" and "j" are the two nodes that
5776 * are being merged, then they are taken to depend on each other as well.
5777 * Otherwise, check if there is a (conditional) validity dependence
5778 * from node[j] to node[i], forcing node[i] to follow node[j].
5780 static isl_bool cluster_follows(int i, int j, void *user)
5782 struct isl_mark_merge_sccs_data *data = user;
5783 struct isl_sched_graph *graph = data->graph;
5784 int *scc_cluster = data->scc_cluster;
5786 if (data->src == i && data->dst == j)
5787 return isl_bool_true;
5788 if (data->src == j && data->dst == i)
5789 return isl_bool_true;
5790 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5791 return isl_bool_true;
5793 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5796 /* Mark all SCCs that belong to either of the two clusters in "c"
5797 * connected by the edge in "graph" with index "edge", or to any
5798 * of the intermediate clusters.
5799 * The marking is recorded in c->scc_in_merge.
5801 * The given edge has been selected for merging two clusters,
5802 * meaning that there is at least a proximity edge between the two nodes.
5803 * However, there may also be (indirect) validity dependences
5804 * between the two nodes. When merging the two clusters, all clusters
5805 * containing one or more of the intermediate nodes along the
5806 * indirect validity dependences need to be merged in as well.
5808 * First collect all such nodes by computing the strongly connected
5809 * component (SCC) containing the two nodes connected by the edge, where
5810 * the two nodes are considered to depend on each other to make
5811 * sure they end up in the same SCC. Similarly, each node is considered
5812 * to depend on every other node in the same cluster to ensure
5813 * that the SCC consists of complete clusters.
5815 * Then the original SCCs that contain any of these nodes are marked
5816 * in c->scc_in_merge.
5818 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5819 int edge, struct isl_clustering *c)
5821 struct isl_mark_merge_sccs_data data;
5822 struct isl_tarjan_graph *g;
5823 int i;
5825 for (i = 0; i < c->n; ++i)
5826 c->scc_in_merge[i] = 0;
5828 data.graph = graph;
5829 data.scc_cluster = c->scc_cluster;
5830 data.src = graph->edge[edge].src - graph->node;
5831 data.dst = graph->edge[edge].dst - graph->node;
5833 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5834 &cluster_follows, &data);
5835 if (!g)
5836 goto error;
5838 i = g->op;
5839 if (i < 3)
5840 isl_die(ctx, isl_error_internal,
5841 "expecting at least two nodes in component",
5842 goto error);
5843 if (g->order[--i] != -1)
5844 isl_die(ctx, isl_error_internal,
5845 "expecting end of component marker", goto error);
5847 for (--i; i >= 0 && g->order[i] != -1; --i) {
5848 int scc = graph->node[g->order[i]].scc;
5849 c->scc_in_merge[scc] = 1;
5852 isl_tarjan_graph_free(g);
5853 return isl_stat_ok;
5854 error:
5855 isl_tarjan_graph_free(g);
5856 return isl_stat_error;
5859 /* Construct the identifier "cluster_i".
5861 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5863 char name[40];
5865 snprintf(name, sizeof(name), "cluster_%d", i);
5866 return isl_id_alloc(ctx, name, NULL);
5869 /* Construct the space of the cluster with index "i" containing
5870 * the strongly connected component "scc".
5872 * In particular, construct a space called cluster_i with dimension equal
5873 * to the number of schedule rows in the current band of "scc".
5875 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5877 int nvar;
5878 isl_space *space;
5879 isl_id *id;
5881 nvar = scc->n_total_row - scc->band_start;
5882 space = isl_space_copy(scc->node[0].space);
5883 space = isl_space_params(space);
5884 space = isl_space_set_from_params(space);
5885 space = isl_space_add_dims(space, isl_dim_set, nvar);
5886 id = cluster_id(isl_space_get_ctx(space), i);
5887 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5889 return space;
5892 /* Collect the domain of the graph for merging clusters.
5894 * In particular, for each cluster with first SCC "i", construct
5895 * a set in the space called cluster_i with dimension equal
5896 * to the number of schedule rows in the current band of the cluster.
5898 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5899 struct isl_sched_graph *graph, struct isl_clustering *c)
5901 int i;
5902 isl_space *space;
5903 isl_union_set *domain;
5905 space = isl_space_params_alloc(ctx, 0);
5906 domain = isl_union_set_empty(space);
5908 for (i = 0; i < graph->scc; ++i) {
5909 isl_space *space;
5911 if (!c->scc_in_merge[i])
5912 continue;
5913 if (c->scc_cluster[i] != i)
5914 continue;
5915 space = cluster_space(&c->scc[i], i);
5916 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5919 return domain;
5922 /* Construct a map from the original instances to the corresponding
5923 * cluster instance in the current bands of the clusters in "c".
5925 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5926 struct isl_sched_graph *graph, struct isl_clustering *c)
5928 int i, j;
5929 isl_space *space;
5930 isl_union_map *cluster_map;
5932 space = isl_space_params_alloc(ctx, 0);
5933 cluster_map = isl_union_map_empty(space);
5934 for (i = 0; i < graph->scc; ++i) {
5935 int start, n;
5936 isl_id *id;
5938 if (!c->scc_in_merge[i])
5939 continue;
5941 id = cluster_id(ctx, c->scc_cluster[i]);
5942 start = c->scc[i].band_start;
5943 n = c->scc[i].n_total_row - start;
5944 for (j = 0; j < c->scc[i].n; ++j) {
5945 isl_multi_aff *ma;
5946 isl_map *map;
5947 struct isl_sched_node *node = &c->scc[i].node[j];
5949 ma = node_extract_partial_schedule_multi_aff(node,
5950 start, n);
5951 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5952 isl_id_copy(id));
5953 map = isl_map_from_multi_aff(ma);
5954 cluster_map = isl_union_map_add_map(cluster_map, map);
5956 isl_id_free(id);
5959 return cluster_map;
5962 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5963 * that are not isl_edge_condition or isl_edge_conditional_validity.
5965 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5966 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5967 __isl_take isl_schedule_constraints *sc)
5969 enum isl_edge_type t;
5971 if (!sc)
5972 return NULL;
5974 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5975 if (t == isl_edge_condition ||
5976 t == isl_edge_conditional_validity)
5977 continue;
5978 if (!is_type(edge, t))
5979 continue;
5980 sc = isl_schedule_constraints_add(sc, t,
5981 isl_union_map_copy(umap));
5984 return sc;
5987 /* Add schedule constraints of types isl_edge_condition and
5988 * isl_edge_conditional_validity to "sc" by applying "umap" to
5989 * the domains of the wrapped relations in domain and range
5990 * of the corresponding tagged constraints of "edge".
5992 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5993 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5994 __isl_take isl_schedule_constraints *sc)
5996 enum isl_edge_type t;
5997 isl_union_map *tagged;
5999 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
6000 if (!is_type(edge, t))
6001 continue;
6002 if (t == isl_edge_condition)
6003 tagged = isl_union_map_copy(edge->tagged_condition);
6004 else
6005 tagged = isl_union_map_copy(edge->tagged_validity);
6006 tagged = isl_union_map_zip(tagged);
6007 tagged = isl_union_map_apply_domain(tagged,
6008 isl_union_map_copy(umap));
6009 tagged = isl_union_map_zip(tagged);
6010 sc = isl_schedule_constraints_add(sc, t, tagged);
6011 if (!sc)
6012 return NULL;
6015 return sc;
6018 /* Given a mapping "cluster_map" from the original instances to
6019 * the cluster instances, add schedule constraints on the clusters
6020 * to "sc" corresponding to the original constraints represented by "edge".
6022 * For non-tagged dependence constraints, the cluster constraints
6023 * are obtained by applying "cluster_map" to the edge->map.
6025 * For tagged dependence constraints, "cluster_map" needs to be applied
6026 * to the domains of the wrapped relations in domain and range
6027 * of the tagged dependence constraints. Pick out the mappings
6028 * from these domains from "cluster_map" and construct their product.
6029 * This mapping can then be applied to the pair of domains.
6031 static __isl_give isl_schedule_constraints *collect_edge_constraints(
6032 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
6033 __isl_take isl_schedule_constraints *sc)
6035 isl_union_map *umap;
6036 isl_space *space;
6037 isl_union_set *uset;
6038 isl_union_map *umap1, *umap2;
6040 if (!sc)
6041 return NULL;
6043 umap = isl_union_map_from_map(isl_map_copy(edge->map));
6044 umap = isl_union_map_apply_domain(umap,
6045 isl_union_map_copy(cluster_map));
6046 umap = isl_union_map_apply_range(umap,
6047 isl_union_map_copy(cluster_map));
6048 sc = add_non_conditional_constraints(edge, umap, sc);
6049 isl_union_map_free(umap);
6051 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
6052 return sc;
6054 space = isl_space_domain(isl_map_get_space(edge->map));
6055 uset = isl_union_set_from_set(isl_set_universe(space));
6056 umap1 = isl_union_map_copy(cluster_map);
6057 umap1 = isl_union_map_intersect_domain(umap1, uset);
6058 space = isl_space_range(isl_map_get_space(edge->map));
6059 uset = isl_union_set_from_set(isl_set_universe(space));
6060 umap2 = isl_union_map_copy(cluster_map);
6061 umap2 = isl_union_map_intersect_domain(umap2, uset);
6062 umap = isl_union_map_product(umap1, umap2);
6064 sc = add_conditional_constraints(edge, umap, sc);
6066 isl_union_map_free(umap);
6067 return sc;
6070 /* Given a mapping "cluster_map" from the original instances to
6071 * the cluster instances, add schedule constraints on the clusters
6072 * to "sc" corresponding to all edges in "graph" between nodes that
6073 * belong to SCCs that are marked for merging in "scc_in_merge".
6075 static __isl_give isl_schedule_constraints *collect_constraints(
6076 struct isl_sched_graph *graph, int *scc_in_merge,
6077 __isl_keep isl_union_map *cluster_map,
6078 __isl_take isl_schedule_constraints *sc)
6080 int i;
6082 for (i = 0; i < graph->n_edge; ++i) {
6083 struct isl_sched_edge *edge = &graph->edge[i];
6085 if (!scc_in_merge[edge->src->scc])
6086 continue;
6087 if (!scc_in_merge[edge->dst->scc])
6088 continue;
6089 sc = collect_edge_constraints(edge, cluster_map, sc);
6092 return sc;
6095 /* Construct a dependence graph for scheduling clusters with respect
6096 * to each other and store the result in "merge_graph".
6097 * In particular, the nodes of the graph correspond to the schedule
6098 * dimensions of the current bands of those clusters that have been
6099 * marked for merging in "c".
6101 * First construct an isl_schedule_constraints object for this domain
6102 * by transforming the edges in "graph" to the domain.
6103 * Then initialize a dependence graph for scheduling from these
6104 * constraints.
6106 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
6107 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6109 isl_union_set *domain;
6110 isl_union_map *cluster_map;
6111 isl_schedule_constraints *sc;
6112 isl_stat r;
6114 domain = collect_domain(ctx, graph, c);
6115 sc = isl_schedule_constraints_on_domain(domain);
6116 if (!sc)
6117 return isl_stat_error;
6118 cluster_map = collect_cluster_map(ctx, graph, c);
6119 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
6120 isl_union_map_free(cluster_map);
6122 r = graph_init(merge_graph, sc);
6124 isl_schedule_constraints_free(sc);
6126 return r;
6129 /* Compute the maximal number of remaining schedule rows that still need
6130 * to be computed for the nodes that belong to clusters with the maximal
6131 * dimension for the current band (i.e., the band that is to be merged).
6132 * Only clusters that are about to be merged are considered.
6133 * "maxvar" is the maximal dimension for the current band.
6134 * "c" contains information about the clusters.
6136 * Return the maximal number of remaining schedule rows or -1 on error.
6138 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
6140 int i, j;
6141 int max_slack;
6143 max_slack = 0;
6144 for (i = 0; i < c->n; ++i) {
6145 int nvar;
6146 struct isl_sched_graph *scc;
6148 if (!c->scc_in_merge[i])
6149 continue;
6150 scc = &c->scc[i];
6151 nvar = scc->n_total_row - scc->band_start;
6152 if (nvar != maxvar)
6153 continue;
6154 for (j = 0; j < scc->n; ++j) {
6155 struct isl_sched_node *node = &scc->node[j];
6156 int slack;
6158 if (node_update_vmap(node) < 0)
6159 return -1;
6160 slack = node->nvar - node->rank;
6161 if (slack > max_slack)
6162 max_slack = slack;
6166 return max_slack;
6169 /* If there are any clusters where the dimension of the current band
6170 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6171 * if there are any nodes in such a cluster where the number
6172 * of remaining schedule rows that still need to be computed
6173 * is greater than "max_slack", then return the smallest current band
6174 * dimension of all these clusters. Otherwise return the original value
6175 * of "maxvar". Return -1 in case of any error.
6176 * Only clusters that are about to be merged are considered.
6177 * "c" contains information about the clusters.
6179 static int limit_maxvar_to_slack(int maxvar, int max_slack,
6180 struct isl_clustering *c)
6182 int i, j;
6184 for (i = 0; i < c->n; ++i) {
6185 int nvar;
6186 struct isl_sched_graph *scc;
6188 if (!c->scc_in_merge[i])
6189 continue;
6190 scc = &c->scc[i];
6191 nvar = scc->n_total_row - scc->band_start;
6192 if (nvar >= maxvar)
6193 continue;
6194 for (j = 0; j < scc->n; ++j) {
6195 struct isl_sched_node *node = &scc->node[j];
6196 int slack;
6198 if (node_update_vmap(node) < 0)
6199 return -1;
6200 slack = node->nvar - node->rank;
6201 if (slack > max_slack) {
6202 maxvar = nvar;
6203 break;
6208 return maxvar;
6211 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6212 * that still need to be computed. In particular, if there is a node
6213 * in a cluster where the dimension of the current band is smaller
6214 * than merge_graph->maxvar, but the number of remaining schedule rows
6215 * is greater than that of any node in a cluster with the maximal
6216 * dimension for the current band (i.e., merge_graph->maxvar),
6217 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6218 * of those clusters. Without this adjustment, the total number of
6219 * schedule dimensions would be increased, resulting in a skewed view
6220 * of the number of coincident dimensions.
6221 * "c" contains information about the clusters.
6223 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6224 * then there is no point in attempting any merge since it will be rejected
6225 * anyway. Set merge_graph->maxvar to zero in such cases.
6227 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
6228 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
6230 int max_slack, maxvar;
6232 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
6233 if (max_slack < 0)
6234 return isl_stat_error;
6235 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
6236 if (maxvar < 0)
6237 return isl_stat_error;
6239 if (maxvar < merge_graph->maxvar) {
6240 if (isl_options_get_schedule_maximize_band_depth(ctx))
6241 merge_graph->maxvar = 0;
6242 else
6243 merge_graph->maxvar = maxvar;
6246 return isl_stat_ok;
6249 /* Return the number of coincident dimensions in the current band of "graph",
6250 * where the nodes of "graph" are assumed to be scheduled by a single band.
6252 static int get_n_coincident(struct isl_sched_graph *graph)
6254 int i;
6256 for (i = graph->band_start; i < graph->n_total_row; ++i)
6257 if (!graph->node[0].coincident[i])
6258 break;
6260 return i - graph->band_start;
6263 /* Should the clusters be merged based on the cluster schedule
6264 * in the current (and only) band of "merge_graph", given that
6265 * coincidence should be maximized?
6267 * If the number of coincident schedule dimensions in the merged band
6268 * would be less than the maximal number of coincident schedule dimensions
6269 * in any of the merged clusters, then the clusters should not be merged.
6271 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
6272 struct isl_sched_graph *merge_graph)
6274 int i;
6275 int n_coincident;
6276 int max_coincident;
6278 max_coincident = 0;
6279 for (i = 0; i < c->n; ++i) {
6280 if (!c->scc_in_merge[i])
6281 continue;
6282 n_coincident = get_n_coincident(&c->scc[i]);
6283 if (n_coincident > max_coincident)
6284 max_coincident = n_coincident;
6287 n_coincident = get_n_coincident(merge_graph);
6289 return n_coincident >= max_coincident;
6292 /* Return the transformation on "node" expressed by the current (and only)
6293 * band of "merge_graph" applied to the clusters in "c".
6295 * First find the representation of "node" in its SCC in "c" and
6296 * extract the transformation expressed by the current band.
6297 * Then extract the transformation applied by "merge_graph"
6298 * to the cluster to which this SCC belongs.
6299 * Combine the two to obtain the complete transformation on the node.
6301 * Note that the range of the first transformation is an anonymous space,
6302 * while the domain of the second is named "cluster_X". The range
6303 * of the former therefore needs to be adjusted before the two
6304 * can be combined.
6306 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
6307 struct isl_sched_node *node, struct isl_clustering *c,
6308 struct isl_sched_graph *merge_graph)
6310 struct isl_sched_node *scc_node, *cluster_node;
6311 int start, n;
6312 isl_id *id;
6313 isl_space *space;
6314 isl_multi_aff *ma, *ma2;
6316 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
6317 start = c->scc[node->scc].band_start;
6318 n = c->scc[node->scc].n_total_row - start;
6319 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
6320 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
6321 cluster_node = graph_find_node(ctx, merge_graph, space);
6322 if (space && !cluster_node)
6323 isl_die(ctx, isl_error_internal, "unable to find cluster",
6324 space = isl_space_free(space));
6325 id = isl_space_get_tuple_id(space, isl_dim_set);
6326 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
6327 isl_space_free(space);
6328 n = merge_graph->n_total_row;
6329 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
6330 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
6332 return isl_map_from_multi_aff(ma);
6335 /* Give a set of distances "set", are they bounded by a small constant
6336 * in direction "pos"?
6337 * In practice, check if they are bounded by 2 by checking that there
6338 * are no elements with a value greater than or equal to 3 or
6339 * smaller than or equal to -3.
6341 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
6343 isl_bool bounded;
6344 isl_set *test;
6346 if (!set)
6347 return isl_bool_error;
6349 test = isl_set_copy(set);
6350 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
6351 bounded = isl_set_is_empty(test);
6352 isl_set_free(test);
6354 if (bounded < 0 || !bounded)
6355 return bounded;
6357 test = isl_set_copy(set);
6358 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
6359 bounded = isl_set_is_empty(test);
6360 isl_set_free(test);
6362 return bounded;
6365 /* Does the set "set" have a fixed (but possible parametric) value
6366 * at dimension "pos"?
6368 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
6370 int n;
6371 isl_bool single;
6373 if (!set)
6374 return isl_bool_error;
6375 set = isl_set_copy(set);
6376 n = isl_set_dim(set, isl_dim_set);
6377 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
6378 set = isl_set_project_out(set, isl_dim_set, 0, pos);
6379 single = isl_set_is_singleton(set);
6380 isl_set_free(set);
6382 return single;
6385 /* Does "map" have a fixed (but possible parametric) value
6386 * at dimension "pos" of either its domain or its range?
6388 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
6390 isl_set *set;
6391 isl_bool single;
6393 set = isl_map_domain(isl_map_copy(map));
6394 single = has_single_value(set, pos);
6395 isl_set_free(set);
6397 if (single < 0 || single)
6398 return single;
6400 set = isl_map_range(isl_map_copy(map));
6401 single = has_single_value(set, pos);
6402 isl_set_free(set);
6404 return single;
6407 /* Does the edge "edge" from "graph" have bounded dependence distances
6408 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6410 * Extract the complete transformations of the source and destination
6411 * nodes of the edge, apply them to the edge constraints and
6412 * compute the differences. Finally, check if these differences are bounded
6413 * in each direction.
6415 * If the dimension of the band is greater than the number of
6416 * dimensions that can be expected to be optimized by the edge
6417 * (based on its weight), then also allow the differences to be unbounded
6418 * in the remaining dimensions, but only if either the source or
6419 * the destination has a fixed value in that direction.
6420 * This allows a statement that produces values that are used by
6421 * several instances of another statement to be merged with that
6422 * other statement.
6423 * However, merging such clusters will introduce an inherently
6424 * large proximity distance inside the merged cluster, meaning
6425 * that proximity distances will no longer be optimized in
6426 * subsequent merges. These merges are therefore only allowed
6427 * after all other possible merges have been tried.
6428 * The first time such a merge is encountered, the weight of the edge
6429 * is replaced by a negative weight. The second time (i.e., after
6430 * all merges over edges with a non-negative weight have been tried),
6431 * the merge is allowed.
6433 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
6434 struct isl_sched_graph *graph, struct isl_clustering *c,
6435 struct isl_sched_graph *merge_graph)
6437 int i, n, n_slack;
6438 isl_bool bounded;
6439 isl_map *map, *t;
6440 isl_set *dist;
6442 map = isl_map_copy(edge->map);
6443 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
6444 map = isl_map_apply_domain(map, t);
6445 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
6446 map = isl_map_apply_range(map, t);
6447 dist = isl_map_deltas(isl_map_copy(map));
6449 bounded = isl_bool_true;
6450 n = isl_set_dim(dist, isl_dim_set);
6451 n_slack = n - edge->weight;
6452 if (edge->weight < 0)
6453 n_slack -= graph->max_weight + 1;
6454 for (i = 0; i < n; ++i) {
6455 isl_bool bounded_i, singular_i;
6457 bounded_i = distance_is_bounded(dist, i);
6458 if (bounded_i < 0)
6459 goto error;
6460 if (bounded_i)
6461 continue;
6462 if (edge->weight >= 0)
6463 bounded = isl_bool_false;
6464 n_slack--;
6465 if (n_slack < 0)
6466 break;
6467 singular_i = has_singular_src_or_dst(map, i);
6468 if (singular_i < 0)
6469 goto error;
6470 if (singular_i)
6471 continue;
6472 bounded = isl_bool_false;
6473 break;
6475 if (!bounded && i >= n && edge->weight >= 0)
6476 edge->weight -= graph->max_weight + 1;
6477 isl_map_free(map);
6478 isl_set_free(dist);
6480 return bounded;
6481 error:
6482 isl_map_free(map);
6483 isl_set_free(dist);
6484 return isl_bool_error;
6487 /* Should the clusters be merged based on the cluster schedule
6488 * in the current (and only) band of "merge_graph"?
6489 * "graph" is the original dependence graph, while "c" records
6490 * which SCCs are involved in the latest merge.
6492 * In particular, is there at least one proximity constraint
6493 * that is optimized by the merge?
6495 * A proximity constraint is considered to be optimized
6496 * if the dependence distances are small.
6498 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6499 struct isl_sched_graph *graph, struct isl_clustering *c,
6500 struct isl_sched_graph *merge_graph)
6502 int i;
6504 for (i = 0; i < graph->n_edge; ++i) {
6505 struct isl_sched_edge *edge = &graph->edge[i];
6506 isl_bool bounded;
6508 if (!is_proximity(edge))
6509 continue;
6510 if (!c->scc_in_merge[edge->src->scc])
6511 continue;
6512 if (!c->scc_in_merge[edge->dst->scc])
6513 continue;
6514 if (c->scc_cluster[edge->dst->scc] ==
6515 c->scc_cluster[edge->src->scc])
6516 continue;
6517 bounded = has_bounded_distances(ctx, edge, graph, c,
6518 merge_graph);
6519 if (bounded < 0 || bounded)
6520 return bounded;
6523 return isl_bool_false;
6526 /* Should the clusters be merged based on the cluster schedule
6527 * in the current (and only) band of "merge_graph"?
6528 * "graph" is the original dependence graph, while "c" records
6529 * which SCCs are involved in the latest merge.
6531 * If the current band is empty, then the clusters should not be merged.
6533 * If the band depth should be maximized and the merge schedule
6534 * is incomplete (meaning that the dimension of some of the schedule
6535 * bands in the original schedule will be reduced), then the clusters
6536 * should not be merged.
6538 * If the schedule_maximize_coincidence option is set, then check that
6539 * the number of coincident schedule dimensions is not reduced.
6541 * Finally, only allow the merge if at least one proximity
6542 * constraint is optimized.
6544 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6545 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6547 if (merge_graph->n_total_row == merge_graph->band_start)
6548 return isl_bool_false;
6550 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6551 merge_graph->n_total_row < merge_graph->maxvar)
6552 return isl_bool_false;
6554 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6555 isl_bool ok;
6557 ok = ok_to_merge_coincident(c, merge_graph);
6558 if (ok < 0 || !ok)
6559 return ok;
6562 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6565 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6566 * of the schedule in "node" and return the result.
6568 * That is, essentially compute
6570 * T * N(first:first+n-1)
6572 * taking into account the constant term and the parameter coefficients
6573 * in "t_node".
6575 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6576 struct isl_sched_node *t_node, struct isl_sched_node *node,
6577 int first, int n)
6579 int i, j;
6580 isl_mat *t;
6581 int n_row, n_col, n_param, n_var;
6583 n_param = node->nparam;
6584 n_var = node->nvar;
6585 n_row = isl_mat_rows(t_node->sched);
6586 n_col = isl_mat_cols(node->sched);
6587 t = isl_mat_alloc(ctx, n_row, n_col);
6588 if (!t)
6589 return NULL;
6590 for (i = 0; i < n_row; ++i) {
6591 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6592 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6593 for (j = 0; j < n; ++j)
6594 isl_seq_addmul(t->row[i],
6595 t_node->sched->row[i][1 + n_param + j],
6596 node->sched->row[first + j],
6597 1 + n_param + n_var);
6599 return t;
6602 /* Apply the cluster schedule in "t_node" to the current band
6603 * schedule of the nodes in "graph".
6605 * In particular, replace the rows starting at band_start
6606 * by the result of applying the cluster schedule in "t_node"
6607 * to the original rows.
6609 * The coincidence of the schedule is determined by the coincidence
6610 * of the cluster schedule.
6612 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6613 struct isl_sched_node *t_node)
6615 int i, j;
6616 int n_new;
6617 int start, n;
6619 start = graph->band_start;
6620 n = graph->n_total_row - start;
6622 n_new = isl_mat_rows(t_node->sched);
6623 for (i = 0; i < graph->n; ++i) {
6624 struct isl_sched_node *node = &graph->node[i];
6625 isl_mat *t;
6627 t = node_transformation(ctx, t_node, node, start, n);
6628 node->sched = isl_mat_drop_rows(node->sched, start, n);
6629 node->sched = isl_mat_concat(node->sched, t);
6630 node->sched_map = isl_map_free(node->sched_map);
6631 if (!node->sched)
6632 return isl_stat_error;
6633 for (j = 0; j < n_new; ++j)
6634 node->coincident[start + j] = t_node->coincident[j];
6636 graph->n_total_row -= n;
6637 graph->n_row -= n;
6638 graph->n_total_row += n_new;
6639 graph->n_row += n_new;
6641 return isl_stat_ok;
6644 /* Merge the clusters marked for merging in "c" into a single
6645 * cluster using the cluster schedule in the current band of "merge_graph".
6646 * The representative SCC for the new cluster is the SCC with
6647 * the smallest index.
6649 * The current band schedule of each SCC in the new cluster is obtained
6650 * by applying the schedule of the corresponding original cluster
6651 * to the original band schedule.
6652 * All SCCs in the new cluster have the same number of schedule rows.
6654 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6655 struct isl_sched_graph *merge_graph)
6657 int i;
6658 int cluster = -1;
6659 isl_space *space;
6661 for (i = 0; i < c->n; ++i) {
6662 struct isl_sched_node *node;
6664 if (!c->scc_in_merge[i])
6665 continue;
6666 if (cluster < 0)
6667 cluster = i;
6668 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6669 if (!space)
6670 return isl_stat_error;
6671 node = graph_find_node(ctx, merge_graph, space);
6672 isl_space_free(space);
6673 if (!node)
6674 isl_die(ctx, isl_error_internal,
6675 "unable to find cluster",
6676 return isl_stat_error);
6677 if (transform(ctx, &c->scc[i], node) < 0)
6678 return isl_stat_error;
6679 c->scc_cluster[i] = cluster;
6682 return isl_stat_ok;
6685 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6686 * by scheduling the current cluster bands with respect to each other.
6688 * Construct a dependence graph with a space for each cluster and
6689 * with the coordinates of each space corresponding to the schedule
6690 * dimensions of the current band of that cluster.
6691 * Construct a cluster schedule in this cluster dependence graph and
6692 * apply it to the current cluster bands if it is applicable
6693 * according to ok_to_merge.
6695 * If the number of remaining schedule dimensions in a cluster
6696 * with a non-maximal current schedule dimension is greater than
6697 * the number of remaining schedule dimensions in clusters
6698 * with a maximal current schedule dimension, then restrict
6699 * the number of rows to be computed in the cluster schedule
6700 * to the minimal such non-maximal current schedule dimension.
6701 * Do this by adjusting merge_graph.maxvar.
6703 * Return isl_bool_true if the clusters have effectively been merged
6704 * into a single cluster.
6706 * Note that since the standard scheduling algorithm minimizes the maximal
6707 * distance over proximity constraints, the proximity constraints between
6708 * the merged clusters may not be optimized any further than what is
6709 * sufficient to bring the distances within the limits of the internal
6710 * proximity constraints inside the individual clusters.
6711 * It may therefore make sense to perform an additional translation step
6712 * to bring the clusters closer to each other, while maintaining
6713 * the linear part of the merging schedule found using the standard
6714 * scheduling algorithm.
6716 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6717 struct isl_clustering *c)
6719 struct isl_sched_graph merge_graph = { 0 };
6720 isl_bool merged;
6722 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6723 goto error;
6725 if (compute_maxvar(&merge_graph) < 0)
6726 goto error;
6727 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6728 goto error;
6729 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6730 goto error;
6731 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6732 if (merged && merge(ctx, c, &merge_graph) < 0)
6733 goto error;
6735 graph_free(ctx, &merge_graph);
6736 return merged;
6737 error:
6738 graph_free(ctx, &merge_graph);
6739 return isl_bool_error;
6742 /* Is there any edge marked "no_merge" between two SCCs that are
6743 * about to be merged (i.e., that are set in "scc_in_merge")?
6744 * "merge_edge" is the proximity edge along which the clusters of SCCs
6745 * are going to be merged.
6747 * If there is any edge between two SCCs with a negative weight,
6748 * while the weight of "merge_edge" is non-negative, then this
6749 * means that the edge was postponed. "merge_edge" should then
6750 * also be postponed since merging along the edge with negative weight should
6751 * be postponed until all edges with non-negative weight have been tried.
6752 * Replace the weight of "merge_edge" by a negative weight as well and
6753 * tell the caller not to attempt a merge.
6755 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6756 struct isl_sched_edge *merge_edge)
6758 int i;
6760 for (i = 0; i < graph->n_edge; ++i) {
6761 struct isl_sched_edge *edge = &graph->edge[i];
6763 if (!scc_in_merge[edge->src->scc])
6764 continue;
6765 if (!scc_in_merge[edge->dst->scc])
6766 continue;
6767 if (edge->no_merge)
6768 return 1;
6769 if (merge_edge->weight >= 0 && edge->weight < 0) {
6770 merge_edge->weight -= graph->max_weight + 1;
6771 return 1;
6775 return 0;
6778 /* Merge the two clusters in "c" connected by the edge in "graph"
6779 * with index "edge" into a single cluster.
6780 * If it turns out to be impossible to merge these two clusters,
6781 * then mark the edge as "no_merge" such that it will not be
6782 * considered again.
6784 * First mark all SCCs that need to be merged. This includes the SCCs
6785 * in the two clusters, but it may also include the SCCs
6786 * of intermediate clusters.
6787 * If there is already a no_merge edge between any pair of such SCCs,
6788 * then simply mark the current edge as no_merge as well.
6789 * Likewise, if any of those edges was postponed by has_bounded_distances,
6790 * then postpone the current edge as well.
6791 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6792 * if the clusters did not end up getting merged, unless the non-merge
6793 * is due to the fact that the edge was postponed. This postponement
6794 * can be recognized by a change in weight (from non-negative to negative).
6796 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6797 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6799 isl_bool merged;
6800 int edge_weight = graph->edge[edge].weight;
6802 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6803 return isl_stat_error;
6805 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6806 merged = isl_bool_false;
6807 else
6808 merged = try_merge(ctx, graph, c);
6809 if (merged < 0)
6810 return isl_stat_error;
6811 if (!merged && edge_weight == graph->edge[edge].weight)
6812 graph->edge[edge].no_merge = 1;
6814 return isl_stat_ok;
6817 /* Does "node" belong to the cluster identified by "cluster"?
6819 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6821 return node->cluster == cluster;
6824 /* Does "edge" connect two nodes belonging to the cluster
6825 * identified by "cluster"?
6827 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6829 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6832 /* Swap the schedule of "node1" and "node2".
6833 * Both nodes have been derived from the same node in a common parent graph.
6834 * Since the "coincident" field is shared with that node
6835 * in the parent graph, there is no need to also swap this field.
6837 static void swap_sched(struct isl_sched_node *node1,
6838 struct isl_sched_node *node2)
6840 isl_mat *sched;
6841 isl_map *sched_map;
6843 sched = node1->sched;
6844 node1->sched = node2->sched;
6845 node2->sched = sched;
6847 sched_map = node1->sched_map;
6848 node1->sched_map = node2->sched_map;
6849 node2->sched_map = sched_map;
6852 /* Copy the current band schedule from the SCCs that form the cluster
6853 * with index "pos" to the actual cluster at position "pos".
6854 * By construction, the index of the first SCC that belongs to the cluster
6855 * is also "pos".
6857 * The order of the nodes inside both the SCCs and the cluster
6858 * is assumed to be same as the order in the original "graph".
6860 * Since the SCC graphs will no longer be used after this function,
6861 * the schedules are actually swapped rather than copied.
6863 static isl_stat copy_partial(struct isl_sched_graph *graph,
6864 struct isl_clustering *c, int pos)
6866 int i, j;
6868 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6869 c->cluster[pos].n_row = c->scc[pos].n_row;
6870 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6871 j = 0;
6872 for (i = 0; i < graph->n; ++i) {
6873 int k;
6874 int s;
6876 if (graph->node[i].cluster != pos)
6877 continue;
6878 s = graph->node[i].scc;
6879 k = c->scc_node[s]++;
6880 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6881 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6882 c->cluster[pos].maxvar = c->scc[s].maxvar;
6883 ++j;
6886 return isl_stat_ok;
6889 /* Is there a (conditional) validity dependence from node[j] to node[i],
6890 * forcing node[i] to follow node[j] or do the nodes belong to the same
6891 * cluster?
6893 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6895 struct isl_sched_graph *graph = user;
6897 if (graph->node[i].cluster == graph->node[j].cluster)
6898 return isl_bool_true;
6899 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6902 /* Extract the merged clusters of SCCs in "graph", sort them, and
6903 * store them in c->clusters. Update c->scc_cluster accordingly.
6905 * First keep track of the cluster containing the SCC to which a node
6906 * belongs in the node itself.
6907 * Then extract the clusters into c->clusters, copying the current
6908 * band schedule from the SCCs that belong to the cluster.
6909 * Do this only once per cluster.
6911 * Finally, topologically sort the clusters and update c->scc_cluster
6912 * to match the new scc numbering. While the SCCs were originally
6913 * sorted already, some SCCs that depend on some other SCCs may
6914 * have been merged with SCCs that appear before these other SCCs.
6915 * A reordering may therefore be required.
6917 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6918 struct isl_clustering *c)
6920 int i;
6922 for (i = 0; i < graph->n; ++i)
6923 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6925 for (i = 0; i < graph->scc; ++i) {
6926 if (c->scc_cluster[i] != i)
6927 continue;
6928 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6929 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6930 return isl_stat_error;
6931 c->cluster[i].src_scc = -1;
6932 c->cluster[i].dst_scc = -1;
6933 if (copy_partial(graph, c, i) < 0)
6934 return isl_stat_error;
6937 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6938 return isl_stat_error;
6939 for (i = 0; i < graph->n; ++i)
6940 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6942 return isl_stat_ok;
6945 /* Compute weights on the proximity edges of "graph" that can
6946 * be used by find_proximity to find the most appropriate
6947 * proximity edge to use to merge two clusters in "c".
6948 * The weights are also used by has_bounded_distances to determine
6949 * whether the merge should be allowed.
6950 * Store the maximum of the computed weights in graph->max_weight.
6952 * The computed weight is a measure for the number of remaining schedule
6953 * dimensions that can still be completely aligned.
6954 * In particular, compute the number of equalities between
6955 * input dimensions and output dimensions in the proximity constraints.
6956 * The directions that are already handled by outer schedule bands
6957 * are projected out prior to determining this number.
6959 * Edges that will never be considered by find_proximity are ignored.
6961 static isl_stat compute_weights(struct isl_sched_graph *graph,
6962 struct isl_clustering *c)
6964 int i;
6966 graph->max_weight = 0;
6968 for (i = 0; i < graph->n_edge; ++i) {
6969 struct isl_sched_edge *edge = &graph->edge[i];
6970 struct isl_sched_node *src = edge->src;
6971 struct isl_sched_node *dst = edge->dst;
6972 isl_basic_map *hull;
6973 isl_bool prox;
6974 int n_in, n_out;
6976 prox = is_non_empty_proximity(edge);
6977 if (prox < 0)
6978 return isl_stat_error;
6979 if (!prox)
6980 continue;
6981 if (bad_cluster(&c->scc[edge->src->scc]) ||
6982 bad_cluster(&c->scc[edge->dst->scc]))
6983 continue;
6984 if (c->scc_cluster[edge->dst->scc] ==
6985 c->scc_cluster[edge->src->scc])
6986 continue;
6988 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6989 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6990 isl_mat_copy(src->vmap));
6991 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6992 isl_mat_copy(dst->vmap));
6993 hull = isl_basic_map_project_out(hull,
6994 isl_dim_in, 0, src->rank);
6995 hull = isl_basic_map_project_out(hull,
6996 isl_dim_out, 0, dst->rank);
6997 hull = isl_basic_map_remove_divs(hull);
6998 n_in = isl_basic_map_dim(hull, isl_dim_in);
6999 n_out = isl_basic_map_dim(hull, isl_dim_out);
7000 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7001 isl_dim_in, 0, n_in);
7002 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7003 isl_dim_out, 0, n_out);
7004 if (!hull)
7005 return isl_stat_error;
7006 edge->weight = isl_basic_map_n_equality(hull);
7007 isl_basic_map_free(hull);
7009 if (edge->weight > graph->max_weight)
7010 graph->max_weight = edge->weight;
7013 return isl_stat_ok;
7016 /* Call compute_schedule_finish_band on each of the clusters in "c"
7017 * in their topological order. This order is determined by the scc
7018 * fields of the nodes in "graph".
7019 * Combine the results in a sequence expressing the topological order.
7021 * If there is only one cluster left, then there is no need to introduce
7022 * a sequence node. Also, in this case, the cluster necessarily contains
7023 * the SCC at position 0 in the original graph and is therefore also
7024 * stored in the first cluster of "c".
7026 static __isl_give isl_schedule_node *finish_bands_clustering(
7027 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7028 struct isl_clustering *c)
7030 int i;
7031 isl_ctx *ctx;
7032 isl_union_set_list *filters;
7034 if (graph->scc == 1)
7035 return compute_schedule_finish_band(node, &c->cluster[0], 0);
7037 ctx = isl_schedule_node_get_ctx(node);
7039 filters = extract_sccs(ctx, graph);
7040 node = isl_schedule_node_insert_sequence(node, filters);
7042 for (i = 0; i < graph->scc; ++i) {
7043 int j = c->scc_cluster[i];
7044 node = isl_schedule_node_child(node, i);
7045 node = isl_schedule_node_child(node, 0);
7046 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
7047 node = isl_schedule_node_parent(node);
7048 node = isl_schedule_node_parent(node);
7051 return node;
7054 /* Compute a schedule for a connected dependence graph by first considering
7055 * each strongly connected component (SCC) in the graph separately and then
7056 * incrementally combining them into clusters.
7057 * Return the updated schedule node.
7059 * Initially, each cluster consists of a single SCC, each with its
7060 * own band schedule. The algorithm then tries to merge pairs
7061 * of clusters along a proximity edge until no more suitable
7062 * proximity edges can be found. During this merging, the schedule
7063 * is maintained in the individual SCCs.
7064 * After the merging is completed, the full resulting clusters
7065 * are extracted and in finish_bands_clustering,
7066 * compute_schedule_finish_band is called on each of them to integrate
7067 * the band into "node" and to continue the computation.
7069 * compute_weights initializes the weights that are used by find_proximity.
7071 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
7072 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7074 isl_ctx *ctx;
7075 struct isl_clustering c;
7076 int i;
7078 ctx = isl_schedule_node_get_ctx(node);
7080 if (clustering_init(ctx, &c, graph) < 0)
7081 goto error;
7083 if (compute_weights(graph, &c) < 0)
7084 goto error;
7086 for (;;) {
7087 i = find_proximity(graph, &c);
7088 if (i < 0)
7089 goto error;
7090 if (i >= graph->n_edge)
7091 break;
7092 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
7093 goto error;
7096 if (extract_clusters(ctx, graph, &c) < 0)
7097 goto error;
7099 node = finish_bands_clustering(node, graph, &c);
7101 clustering_free(ctx, &c);
7102 return node;
7103 error:
7104 clustering_free(ctx, &c);
7105 return isl_schedule_node_free(node);
7108 /* Compute a schedule for a connected dependence graph and return
7109 * the updated schedule node.
7111 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7112 * as many validity dependences as possible. When all validity dependences
7113 * are satisfied we extend the schedule to a full-dimensional schedule.
7115 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7116 * depending on whether the user has selected the option to try and
7117 * compute a schedule for the entire (weakly connected) component first.
7118 * If there is only a single strongly connected component (SCC), then
7119 * there is no point in trying to combine SCCs
7120 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7121 * is called instead.
7123 static __isl_give isl_schedule_node *compute_schedule_wcc(
7124 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7126 isl_ctx *ctx;
7128 if (!node)
7129 return NULL;
7131 ctx = isl_schedule_node_get_ctx(node);
7132 if (detect_sccs(ctx, graph) < 0)
7133 return isl_schedule_node_free(node);
7135 if (compute_maxvar(graph) < 0)
7136 return isl_schedule_node_free(node);
7138 if (need_feautrier_step(ctx, graph))
7139 return compute_schedule_wcc_feautrier(node, graph);
7141 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
7142 return compute_schedule_wcc_whole(node, graph);
7143 else
7144 return compute_schedule_wcc_clustering(node, graph);
7147 /* Compute a schedule for each group of nodes identified by node->scc
7148 * separately and then combine them in a sequence node (or as set node
7149 * if graph->weak is set) inserted at position "node" of the schedule tree.
7150 * Return the updated schedule node.
7152 * If "wcc" is set then each of the groups belongs to a single
7153 * weakly connected component in the dependence graph so that
7154 * there is no need for compute_sub_schedule to look for weakly
7155 * connected components.
7157 static __isl_give isl_schedule_node *compute_component_schedule(
7158 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7159 int wcc)
7161 int component;
7162 isl_ctx *ctx;
7163 isl_union_set_list *filters;
7165 if (!node)
7166 return NULL;
7167 ctx = isl_schedule_node_get_ctx(node);
7169 filters = extract_sccs(ctx, graph);
7170 if (graph->weak)
7171 node = isl_schedule_node_insert_set(node, filters);
7172 else
7173 node = isl_schedule_node_insert_sequence(node, filters);
7175 for (component = 0; component < graph->scc; ++component) {
7176 node = isl_schedule_node_child(node, component);
7177 node = isl_schedule_node_child(node, 0);
7178 node = compute_sub_schedule(node, ctx, graph,
7179 &node_scc_exactly,
7180 &edge_scc_exactly, component, wcc);
7181 node = isl_schedule_node_parent(node);
7182 node = isl_schedule_node_parent(node);
7185 return node;
7188 /* Compute a schedule for the given dependence graph and insert it at "node".
7189 * Return the updated schedule node.
7191 * We first check if the graph is connected (through validity and conditional
7192 * validity dependences) and, if not, compute a schedule
7193 * for each component separately.
7194 * If the schedule_serialize_sccs option is set, then we check for strongly
7195 * connected components instead and compute a separate schedule for
7196 * each such strongly connected component.
7198 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
7199 struct isl_sched_graph *graph)
7201 isl_ctx *ctx;
7203 if (!node)
7204 return NULL;
7206 ctx = isl_schedule_node_get_ctx(node);
7207 if (isl_options_get_schedule_serialize_sccs(ctx)) {
7208 if (detect_sccs(ctx, graph) < 0)
7209 return isl_schedule_node_free(node);
7210 } else {
7211 if (detect_wccs(ctx, graph) < 0)
7212 return isl_schedule_node_free(node);
7215 if (graph->scc > 1)
7216 return compute_component_schedule(node, graph, 1);
7218 return compute_schedule_wcc(node, graph);
7221 /* Compute a schedule on sc->domain that respects the given schedule
7222 * constraints.
7224 * In particular, the schedule respects all the validity dependences.
7225 * If the default isl scheduling algorithm is used, it tries to minimize
7226 * the dependence distances over the proximity dependences.
7227 * If Feautrier's scheduling algorithm is used, the proximity dependence
7228 * distances are only minimized during the extension to a full-dimensional
7229 * schedule.
7231 * If there are any condition and conditional validity dependences,
7232 * then the conditional validity dependences may be violated inside
7233 * a tilable band, provided they have no adjacent non-local
7234 * condition dependences.
7236 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
7237 __isl_take isl_schedule_constraints *sc)
7239 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
7240 struct isl_sched_graph graph = { 0 };
7241 isl_schedule *sched;
7242 isl_schedule_node *node;
7243 isl_union_set *domain;
7245 sc = isl_schedule_constraints_align_params(sc);
7247 domain = isl_schedule_constraints_get_domain(sc);
7248 if (isl_union_set_n_set(domain) == 0) {
7249 isl_schedule_constraints_free(sc);
7250 return isl_schedule_from_domain(domain);
7253 if (graph_init(&graph, sc) < 0)
7254 domain = isl_union_set_free(domain);
7256 node = isl_schedule_node_from_domain(domain);
7257 node = isl_schedule_node_child(node, 0);
7258 if (graph.n > 0)
7259 node = compute_schedule(node, &graph);
7260 sched = isl_schedule_node_get_schedule(node);
7261 isl_schedule_node_free(node);
7263 graph_free(ctx, &graph);
7264 isl_schedule_constraints_free(sc);
7266 return sched;
7269 /* Compute a schedule for the given union of domains that respects
7270 * all the validity dependences and minimizes
7271 * the dependence distances over the proximity dependences.
7273 * This function is kept for backward compatibility.
7275 __isl_give isl_schedule *isl_union_set_compute_schedule(
7276 __isl_take isl_union_set *domain,
7277 __isl_take isl_union_map *validity,
7278 __isl_take isl_union_map *proximity)
7280 isl_schedule_constraints *sc;
7282 sc = isl_schedule_constraints_on_domain(domain);
7283 sc = isl_schedule_constraints_set_validity(sc, validity);
7284 sc = isl_schedule_constraints_set_proximity(sc, proximity);
7286 return isl_schedule_constraints_compute_schedule(sc);