add isl_set_upper_bound_si
[isl.git] / isl_tab_pip.c
blob4d33b3be112d295d887d74031a059111f7456a0b
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_config.h>
23 * The implementation of parametric integer linear programming in this file
24 * was inspired by the paper "Parametric Integer Programming" and the
25 * report "Solving systems of affine (in)equalities" by Paul Feautrier
26 * (and others).
28 * The strategy used for obtaining a feasible solution is different
29 * from the one used in isl_tab.c. In particular, in isl_tab.c,
30 * upon finding a constraint that is not yet satisfied, we pivot
31 * in a row that increases the constant term of the row holding the
32 * constraint, making sure the sample solution remains feasible
33 * for all the constraints it already satisfied.
34 * Here, we always pivot in the row holding the constraint,
35 * choosing a column that induces the lexicographically smallest
36 * increment to the sample solution.
38 * By starting out from a sample value that is lexicographically
39 * smaller than any integer point in the problem space, the first
40 * feasible integer sample point we find will also be the lexicographically
41 * smallest. If all variables can be assumed to be non-negative,
42 * then the initial sample value may be chosen equal to zero.
43 * However, we will not make this assumption. Instead, we apply
44 * the "big parameter" trick. Any variable x is then not directly
45 * used in the tableau, but instead it is represented by another
46 * variable x' = M + x, where M is an arbitrarily large (positive)
47 * value. x' is therefore always non-negative, whatever the value of x.
48 * Taking as initial sample value x' = 0 corresponds to x = -M,
49 * which is always smaller than any possible value of x.
51 * The big parameter trick is used in the main tableau and
52 * also in the context tableau if isl_context_lex is used.
53 * In this case, each tableaus has its own big parameter.
54 * Before doing any real work, we check if all the parameters
55 * happen to be non-negative. If so, we drop the column corresponding
56 * to M from the initial context tableau.
57 * If isl_context_gbr is used, then the big parameter trick is only
58 * used in the main tableau.
61 struct isl_context;
62 struct isl_context_op {
63 /* detect nonnegative parameters in context and mark them in tab */
64 struct isl_tab *(*detect_nonnegative_parameters)(
65 struct isl_context *context, struct isl_tab *tab);
66 /* return temporary reference to basic set representation of context */
67 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
68 /* return temporary reference to tableau representation of context */
69 struct isl_tab *(*peek_tab)(struct isl_context *context);
70 /* add equality; check is 1 if eq may not be valid;
71 * update is 1 if we may want to call ineq_sign on context later.
73 void (*add_eq)(struct isl_context *context, isl_int *eq,
74 int check, int update);
75 /* add inequality; check is 1 if ineq may not be valid;
76 * update is 1 if we may want to call ineq_sign on context later.
78 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
79 int check, int update);
80 /* check sign of ineq based on previous information.
81 * strict is 1 if saturation should be treated as a positive sign.
83 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
84 isl_int *ineq, int strict);
85 /* check if inequality maintains feasibility */
86 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
87 /* return index of a div that corresponds to "div" */
88 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
89 struct isl_vec *div);
90 /* add div "div" to context and return non-negativity */
91 int (*add_div)(struct isl_context *context, struct isl_vec *div);
92 int (*detect_equalities)(struct isl_context *context,
93 struct isl_tab *tab);
94 /* return row index of "best" split */
95 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
96 /* check if context has already been determined to be empty */
97 int (*is_empty)(struct isl_context *context);
98 /* check if context is still usable */
99 int (*is_ok)(struct isl_context *context);
100 /* save a copy/snapshot of context */
101 void *(*save)(struct isl_context *context);
102 /* restore saved context */
103 void (*restore)(struct isl_context *context, void *);
104 /* invalidate context */
105 void (*invalidate)(struct isl_context *context);
106 /* free context */
107 void (*free)(struct isl_context *context);
110 struct isl_context {
111 struct isl_context_op *op;
114 struct isl_context_lex {
115 struct isl_context context;
116 struct isl_tab *tab;
119 struct isl_partial_sol {
120 int level;
121 struct isl_basic_set *dom;
122 struct isl_mat *M;
124 struct isl_partial_sol *next;
127 struct isl_sol;
128 struct isl_sol_callback {
129 struct isl_tab_callback callback;
130 struct isl_sol *sol;
133 /* isl_sol is an interface for constructing a solution to
134 * a parametric integer linear programming problem.
135 * Every time the algorithm reaches a state where a solution
136 * can be read off from the tableau (including cases where the tableau
137 * is empty), the function "add" is called on the isl_sol passed
138 * to find_solutions_main.
140 * The context tableau is owned by isl_sol and is updated incrementally.
142 * There are currently two implementations of this interface,
143 * isl_sol_map, which simply collects the solutions in an isl_map
144 * and (optionally) the parts of the context where there is no solution
145 * in an isl_set, and
146 * isl_sol_for, which calls a user-defined function for each part of
147 * the solution.
149 struct isl_sol {
150 int error;
151 int rational;
152 int level;
153 int max;
154 int n_out;
155 struct isl_context *context;
156 struct isl_partial_sol *partial;
157 void (*add)(struct isl_sol *sol,
158 struct isl_basic_set *dom, struct isl_mat *M);
159 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
160 void (*free)(struct isl_sol *sol);
161 struct isl_sol_callback dec_level;
164 static void sol_free(struct isl_sol *sol)
166 struct isl_partial_sol *partial, *next;
167 if (!sol)
168 return;
169 for (partial = sol->partial; partial; partial = next) {
170 next = partial->next;
171 isl_basic_set_free(partial->dom);
172 isl_mat_free(partial->M);
173 free(partial);
175 sol->free(sol);
178 /* Push a partial solution represented by a domain and mapping M
179 * onto the stack of partial solutions.
181 static void sol_push_sol(struct isl_sol *sol,
182 struct isl_basic_set *dom, struct isl_mat *M)
184 struct isl_partial_sol *partial;
186 if (sol->error || !dom)
187 goto error;
189 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
190 if (!partial)
191 goto error;
193 partial->level = sol->level;
194 partial->dom = dom;
195 partial->M = M;
196 partial->next = sol->partial;
198 sol->partial = partial;
200 return;
201 error:
202 isl_basic_set_free(dom);
203 sol->error = 1;
206 /* Pop one partial solution from the partial solution stack and
207 * pass it on to sol->add or sol->add_empty.
209 static void sol_pop_one(struct isl_sol *sol)
211 struct isl_partial_sol *partial;
213 partial = sol->partial;
214 sol->partial = partial->next;
216 if (partial->M)
217 sol->add(sol, partial->dom, partial->M);
218 else
219 sol->add_empty(sol, partial->dom);
220 free(partial);
223 /* Return a fresh copy of the domain represented by the context tableau.
225 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
227 struct isl_basic_set *bset;
229 if (sol->error)
230 return NULL;
232 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
233 bset = isl_basic_set_update_from_tab(bset,
234 sol->context->op->peek_tab(sol->context));
236 return bset;
239 /* Check whether two partial solutions have the same mapping, where n_div
240 * is the number of divs that the two partial solutions have in common.
242 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
243 unsigned n_div)
245 int i;
246 unsigned dim;
248 if (!s1->M != !s2->M)
249 return 0;
250 if (!s1->M)
251 return 1;
253 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
255 for (i = 0; i < s1->M->n_row; ++i) {
256 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
257 s1->M->n_col-1-dim-n_div) != -1)
258 return 0;
259 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
260 s2->M->n_col-1-dim-n_div) != -1)
261 return 0;
262 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
263 return 0;
265 return 1;
268 /* Pop all solutions from the partial solution stack that were pushed onto
269 * the stack at levels that are deeper than the current level.
270 * If the two topmost elements on the stack have the same level
271 * and represent the same solution, then their domains are combined.
272 * This combined domain is the same as the current context domain
273 * as sol_pop is called each time we move back to a higher level.
275 static void sol_pop(struct isl_sol *sol)
277 struct isl_partial_sol *partial;
278 unsigned n_div;
280 if (sol->error)
281 return;
283 if (sol->level == 0) {
284 for (partial = sol->partial; partial; partial = sol->partial)
285 sol_pop_one(sol);
286 return;
289 partial = sol->partial;
290 if (!partial)
291 return;
293 if (partial->level <= sol->level)
294 return;
296 if (partial->next && partial->next->level == partial->level) {
297 n_div = isl_basic_set_dim(
298 sol->context->op->peek_basic_set(sol->context),
299 isl_dim_div);
301 if (!same_solution(partial, partial->next, n_div)) {
302 sol_pop_one(sol);
303 sol_pop_one(sol);
304 } else {
305 struct isl_basic_set *bset;
307 bset = sol_domain(sol);
309 isl_basic_set_free(partial->next->dom);
310 partial->next->dom = bset;
311 partial->next->level = sol->level;
313 sol->partial = partial->next;
314 isl_basic_set_free(partial->dom);
315 isl_mat_free(partial->M);
316 free(partial);
318 } else
319 sol_pop_one(sol);
322 static void sol_dec_level(struct isl_sol *sol)
324 if (sol->error)
325 return;
327 sol->level--;
329 sol_pop(sol);
332 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
334 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
336 sol_dec_level(callback->sol);
338 return callback->sol->error ? -1 : 0;
341 /* Move down to next level and push callback onto context tableau
342 * to decrease the level again when it gets rolled back across
343 * the current state. That is, dec_level will be called with
344 * the context tableau in the same state as it is when inc_level
345 * is called.
347 static void sol_inc_level(struct isl_sol *sol)
349 struct isl_tab *tab;
351 if (sol->error)
352 return;
354 sol->level++;
355 tab = sol->context->op->peek_tab(sol->context);
356 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
357 sol->error = 1;
360 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
362 int i;
364 if (isl_int_is_one(m))
365 return;
367 for (i = 0; i < n_row; ++i)
368 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
371 /* Add the solution identified by the tableau and the context tableau.
373 * The layout of the variables is as follows.
374 * tab->n_var is equal to the total number of variables in the input
375 * map (including divs that were copied from the context)
376 * + the number of extra divs constructed
377 * Of these, the first tab->n_param and the last tab->n_div variables
378 * correspond to the variables in the context, i.e.,
379 * tab->n_param + tab->n_div = context_tab->n_var
380 * tab->n_param is equal to the number of parameters and input
381 * dimensions in the input map
382 * tab->n_div is equal to the number of divs in the context
384 * If there is no solution, then call add_empty with a basic set
385 * that corresponds to the context tableau. (If add_empty is NULL,
386 * then do nothing).
388 * If there is a solution, then first construct a matrix that maps
389 * all dimensions of the context to the output variables, i.e.,
390 * the output dimensions in the input map.
391 * The divs in the input map (if any) that do not correspond to any
392 * div in the context do not appear in the solution.
393 * The algorithm will make sure that they have an integer value,
394 * but these values themselves are of no interest.
395 * We have to be careful not to drop or rearrange any divs in the
396 * context because that would change the meaning of the matrix.
398 * To extract the value of the output variables, it should be noted
399 * that we always use a big parameter M in the main tableau and so
400 * the variable stored in this tableau is not an output variable x itself, but
401 * x' = M + x (in case of minimization)
402 * or
403 * x' = M - x (in case of maximization)
404 * If x' appears in a column, then its optimal value is zero,
405 * which means that the optimal value of x is an unbounded number
406 * (-M for minimization and M for maximization).
407 * We currently assume that the output dimensions in the original map
408 * are bounded, so this cannot occur.
409 * Similarly, when x' appears in a row, then the coefficient of M in that
410 * row is necessarily 1.
411 * If the row in the tableau represents
412 * d x' = c + d M + e(y)
413 * then, in case of minimization, the corresponding row in the matrix
414 * will be
415 * a c + a e(y)
416 * with a d = m, the (updated) common denominator of the matrix.
417 * In case of maximization, the row will be
418 * -a c - a e(y)
420 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
422 struct isl_basic_set *bset = NULL;
423 struct isl_mat *mat = NULL;
424 unsigned off;
425 int row;
426 isl_int m;
428 if (sol->error || !tab)
429 goto error;
431 if (tab->empty && !sol->add_empty)
432 return;
434 bset = sol_domain(sol);
436 if (tab->empty) {
437 sol_push_sol(sol, bset, NULL);
438 return;
441 off = 2 + tab->M;
443 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
444 1 + tab->n_param + tab->n_div);
445 if (!mat)
446 goto error;
448 isl_int_init(m);
450 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
451 isl_int_set_si(mat->row[0][0], 1);
452 for (row = 0; row < sol->n_out; ++row) {
453 int i = tab->n_param + row;
454 int r, j;
456 isl_seq_clr(mat->row[1 + row], mat->n_col);
457 if (!tab->var[i].is_row) {
458 if (tab->M)
459 isl_die(mat->ctx, isl_error_invalid,
460 "unbounded optimum", goto error2);
461 continue;
464 r = tab->var[i].index;
465 if (tab->M &&
466 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
467 isl_die(mat->ctx, isl_error_invalid,
468 "unbounded optimum", goto error2);
469 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
470 isl_int_divexact(m, tab->mat->row[r][0], m);
471 scale_rows(mat, m, 1 + row);
472 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
473 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
474 for (j = 0; j < tab->n_param; ++j) {
475 int col;
476 if (tab->var[j].is_row)
477 continue;
478 col = tab->var[j].index;
479 isl_int_mul(mat->row[1 + row][1 + j], m,
480 tab->mat->row[r][off + col]);
482 for (j = 0; j < tab->n_div; ++j) {
483 int col;
484 if (tab->var[tab->n_var - tab->n_div+j].is_row)
485 continue;
486 col = tab->var[tab->n_var - tab->n_div+j].index;
487 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
488 tab->mat->row[r][off + col]);
490 if (sol->max)
491 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
492 mat->n_col);
495 isl_int_clear(m);
497 sol_push_sol(sol, bset, mat);
498 return;
499 error2:
500 isl_int_clear(m);
501 error:
502 isl_basic_set_free(bset);
503 isl_mat_free(mat);
504 sol->error = 1;
507 struct isl_sol_map {
508 struct isl_sol sol;
509 struct isl_map *map;
510 struct isl_set *empty;
513 static void sol_map_free(struct isl_sol_map *sol_map)
515 if (!sol_map)
516 return;
517 if (sol_map->sol.context)
518 sol_map->sol.context->op->free(sol_map->sol.context);
519 isl_map_free(sol_map->map);
520 isl_set_free(sol_map->empty);
521 free(sol_map);
524 static void sol_map_free_wrap(struct isl_sol *sol)
526 sol_map_free((struct isl_sol_map *)sol);
529 /* This function is called for parts of the context where there is
530 * no solution, with "bset" corresponding to the context tableau.
531 * Simply add the basic set to the set "empty".
533 static void sol_map_add_empty(struct isl_sol_map *sol,
534 struct isl_basic_set *bset)
536 if (!bset)
537 goto error;
538 isl_assert(bset->ctx, sol->empty, goto error);
540 sol->empty = isl_set_grow(sol->empty, 1);
541 bset = isl_basic_set_simplify(bset);
542 bset = isl_basic_set_finalize(bset);
543 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
544 if (!sol->empty)
545 goto error;
546 isl_basic_set_free(bset);
547 return;
548 error:
549 isl_basic_set_free(bset);
550 sol->sol.error = 1;
553 static void sol_map_add_empty_wrap(struct isl_sol *sol,
554 struct isl_basic_set *bset)
556 sol_map_add_empty((struct isl_sol_map *)sol, bset);
559 /* Given a basic map "dom" that represents the context and an affine
560 * matrix "M" that maps the dimensions of the context to the
561 * output variables, construct a basic map with the same parameters
562 * and divs as the context, the dimensions of the context as input
563 * dimensions and a number of output dimensions that is equal to
564 * the number of output dimensions in the input map.
566 * The constraints and divs of the context are simply copied
567 * from "dom". For each row
568 * x = c + e(y)
569 * an equality
570 * c + e(y) - d x = 0
571 * is added, with d the common denominator of M.
573 static void sol_map_add(struct isl_sol_map *sol,
574 struct isl_basic_set *dom, struct isl_mat *M)
576 int i;
577 struct isl_basic_map *bmap = NULL;
578 unsigned n_eq;
579 unsigned n_ineq;
580 unsigned nparam;
581 unsigned total;
582 unsigned n_div;
583 unsigned n_out;
585 if (sol->sol.error || !dom || !M)
586 goto error;
588 n_out = sol->sol.n_out;
589 n_eq = dom->n_eq + n_out;
590 n_ineq = dom->n_ineq;
591 n_div = dom->n_div;
592 nparam = isl_basic_set_total_dim(dom) - n_div;
593 total = isl_map_dim(sol->map, isl_dim_all);
594 bmap = isl_basic_map_alloc_space(isl_map_get_space(sol->map),
595 n_div, n_eq, 2 * n_div + n_ineq);
596 if (!bmap)
597 goto error;
598 if (sol->sol.rational)
599 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
600 for (i = 0; i < dom->n_div; ++i) {
601 int k = isl_basic_map_alloc_div(bmap);
602 if (k < 0)
603 goto error;
604 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
605 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
606 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
607 dom->div[i] + 1 + 1 + nparam, i);
609 for (i = 0; i < dom->n_eq; ++i) {
610 int k = isl_basic_map_alloc_equality(bmap);
611 if (k < 0)
612 goto error;
613 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
614 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
615 isl_seq_cpy(bmap->eq[k] + 1 + total,
616 dom->eq[i] + 1 + nparam, n_div);
618 for (i = 0; i < dom->n_ineq; ++i) {
619 int k = isl_basic_map_alloc_inequality(bmap);
620 if (k < 0)
621 goto error;
622 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
623 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
624 isl_seq_cpy(bmap->ineq[k] + 1 + total,
625 dom->ineq[i] + 1 + nparam, n_div);
627 for (i = 0; i < M->n_row - 1; ++i) {
628 int k = isl_basic_map_alloc_equality(bmap);
629 if (k < 0)
630 goto error;
631 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
632 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
633 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
634 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
635 M->row[1 + i] + 1 + nparam, n_div);
637 bmap = isl_basic_map_simplify(bmap);
638 bmap = isl_basic_map_finalize(bmap);
639 sol->map = isl_map_grow(sol->map, 1);
640 sol->map = isl_map_add_basic_map(sol->map, bmap);
641 isl_basic_set_free(dom);
642 isl_mat_free(M);
643 if (!sol->map)
644 sol->sol.error = 1;
645 return;
646 error:
647 isl_basic_set_free(dom);
648 isl_mat_free(M);
649 isl_basic_map_free(bmap);
650 sol->sol.error = 1;
653 static void sol_map_add_wrap(struct isl_sol *sol,
654 struct isl_basic_set *dom, struct isl_mat *M)
656 sol_map_add((struct isl_sol_map *)sol, dom, M);
660 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
661 * i.e., the constant term and the coefficients of all variables that
662 * appear in the context tableau.
663 * Note that the coefficient of the big parameter M is NOT copied.
664 * The context tableau may not have a big parameter and even when it
665 * does, it is a different big parameter.
667 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
669 int i;
670 unsigned off = 2 + tab->M;
672 isl_int_set(line[0], tab->mat->row[row][1]);
673 for (i = 0; i < tab->n_param; ++i) {
674 if (tab->var[i].is_row)
675 isl_int_set_si(line[1 + i], 0);
676 else {
677 int col = tab->var[i].index;
678 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
681 for (i = 0; i < tab->n_div; ++i) {
682 if (tab->var[tab->n_var - tab->n_div + i].is_row)
683 isl_int_set_si(line[1 + tab->n_param + i], 0);
684 else {
685 int col = tab->var[tab->n_var - tab->n_div + i].index;
686 isl_int_set(line[1 + tab->n_param + i],
687 tab->mat->row[row][off + col]);
692 /* Check if rows "row1" and "row2" have identical "parametric constants",
693 * as explained above.
694 * In this case, we also insist that the coefficients of the big parameter
695 * be the same as the values of the constants will only be the same
696 * if these coefficients are also the same.
698 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
700 int i;
701 unsigned off = 2 + tab->M;
703 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
704 return 0;
706 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
707 tab->mat->row[row2][2]))
708 return 0;
710 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
711 int pos = i < tab->n_param ? i :
712 tab->n_var - tab->n_div + i - tab->n_param;
713 int col;
715 if (tab->var[pos].is_row)
716 continue;
717 col = tab->var[pos].index;
718 if (isl_int_ne(tab->mat->row[row1][off + col],
719 tab->mat->row[row2][off + col]))
720 return 0;
722 return 1;
725 /* Return an inequality that expresses that the "parametric constant"
726 * should be non-negative.
727 * This function is only called when the coefficient of the big parameter
728 * is equal to zero.
730 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
732 struct isl_vec *ineq;
734 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
735 if (!ineq)
736 return NULL;
738 get_row_parameter_line(tab, row, ineq->el);
739 if (ineq)
740 ineq = isl_vec_normalize(ineq);
742 return ineq;
745 /* Return a integer division for use in a parametric cut based on the given row.
746 * In particular, let the parametric constant of the row be
748 * \sum_i a_i y_i
750 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
751 * The div returned is equal to
753 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
755 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
757 struct isl_vec *div;
759 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
760 if (!div)
761 return NULL;
763 isl_int_set(div->el[0], tab->mat->row[row][0]);
764 get_row_parameter_line(tab, row, div->el + 1);
765 div = isl_vec_normalize(div);
766 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
767 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
769 return div;
772 /* Return a integer division for use in transferring an integrality constraint
773 * to the context.
774 * In particular, let the parametric constant of the row be
776 * \sum_i a_i y_i
778 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
779 * The the returned div is equal to
781 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
783 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
785 struct isl_vec *div;
787 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
788 if (!div)
789 return NULL;
791 isl_int_set(div->el[0], tab->mat->row[row][0]);
792 get_row_parameter_line(tab, row, div->el + 1);
793 div = isl_vec_normalize(div);
794 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
796 return div;
799 /* Construct and return an inequality that expresses an upper bound
800 * on the given div.
801 * In particular, if the div is given by
803 * d = floor(e/m)
805 * then the inequality expresses
807 * m d <= e
809 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
811 unsigned total;
812 unsigned div_pos;
813 struct isl_vec *ineq;
815 if (!bset)
816 return NULL;
818 total = isl_basic_set_total_dim(bset);
819 div_pos = 1 + total - bset->n_div + div;
821 ineq = isl_vec_alloc(bset->ctx, 1 + total);
822 if (!ineq)
823 return NULL;
825 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
826 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
827 return ineq;
830 /* Given a row in the tableau and a div that was created
831 * using get_row_split_div and that has been constrained to equality, i.e.,
833 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
835 * replace the expression "\sum_i {a_i} y_i" in the row by d,
836 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
837 * The coefficients of the non-parameters in the tableau have been
838 * verified to be integral. We can therefore simply replace coefficient b
839 * by floor(b). For the coefficients of the parameters we have
840 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
841 * floor(b) = b.
843 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
845 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
846 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
848 isl_int_set_si(tab->mat->row[row][0], 1);
850 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
851 int drow = tab->var[tab->n_var - tab->n_div + div].index;
853 isl_assert(tab->mat->ctx,
854 isl_int_is_one(tab->mat->row[drow][0]), goto error);
855 isl_seq_combine(tab->mat->row[row] + 1,
856 tab->mat->ctx->one, tab->mat->row[row] + 1,
857 tab->mat->ctx->one, tab->mat->row[drow] + 1,
858 1 + tab->M + tab->n_col);
859 } else {
860 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
862 isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],
863 tab->mat->row[row][2 + tab->M + dcol], 1);
866 return tab;
867 error:
868 isl_tab_free(tab);
869 return NULL;
872 /* Check if the (parametric) constant of the given row is obviously
873 * negative, meaning that we don't need to consult the context tableau.
874 * If there is a big parameter and its coefficient is non-zero,
875 * then this coefficient determines the outcome.
876 * Otherwise, we check whether the constant is negative and
877 * all non-zero coefficients of parameters are negative and
878 * belong to non-negative parameters.
880 static int is_obviously_neg(struct isl_tab *tab, int row)
882 int i;
883 int col;
884 unsigned off = 2 + tab->M;
886 if (tab->M) {
887 if (isl_int_is_pos(tab->mat->row[row][2]))
888 return 0;
889 if (isl_int_is_neg(tab->mat->row[row][2]))
890 return 1;
893 if (isl_int_is_nonneg(tab->mat->row[row][1]))
894 return 0;
895 for (i = 0; i < tab->n_param; ++i) {
896 /* Eliminated parameter */
897 if (tab->var[i].is_row)
898 continue;
899 col = tab->var[i].index;
900 if (isl_int_is_zero(tab->mat->row[row][off + col]))
901 continue;
902 if (!tab->var[i].is_nonneg)
903 return 0;
904 if (isl_int_is_pos(tab->mat->row[row][off + col]))
905 return 0;
907 for (i = 0; i < tab->n_div; ++i) {
908 if (tab->var[tab->n_var - tab->n_div + i].is_row)
909 continue;
910 col = tab->var[tab->n_var - tab->n_div + i].index;
911 if (isl_int_is_zero(tab->mat->row[row][off + col]))
912 continue;
913 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
914 return 0;
915 if (isl_int_is_pos(tab->mat->row[row][off + col]))
916 return 0;
918 return 1;
921 /* Check if the (parametric) constant of the given row is obviously
922 * non-negative, meaning that we don't need to consult the context tableau.
923 * If there is a big parameter and its coefficient is non-zero,
924 * then this coefficient determines the outcome.
925 * Otherwise, we check whether the constant is non-negative and
926 * all non-zero coefficients of parameters are positive and
927 * belong to non-negative parameters.
929 static int is_obviously_nonneg(struct isl_tab *tab, int row)
931 int i;
932 int col;
933 unsigned off = 2 + tab->M;
935 if (tab->M) {
936 if (isl_int_is_pos(tab->mat->row[row][2]))
937 return 1;
938 if (isl_int_is_neg(tab->mat->row[row][2]))
939 return 0;
942 if (isl_int_is_neg(tab->mat->row[row][1]))
943 return 0;
944 for (i = 0; i < tab->n_param; ++i) {
945 /* Eliminated parameter */
946 if (tab->var[i].is_row)
947 continue;
948 col = tab->var[i].index;
949 if (isl_int_is_zero(tab->mat->row[row][off + col]))
950 continue;
951 if (!tab->var[i].is_nonneg)
952 return 0;
953 if (isl_int_is_neg(tab->mat->row[row][off + col]))
954 return 0;
956 for (i = 0; i < tab->n_div; ++i) {
957 if (tab->var[tab->n_var - tab->n_div + i].is_row)
958 continue;
959 col = tab->var[tab->n_var - tab->n_div + i].index;
960 if (isl_int_is_zero(tab->mat->row[row][off + col]))
961 continue;
962 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
963 return 0;
964 if (isl_int_is_neg(tab->mat->row[row][off + col]))
965 return 0;
967 return 1;
970 /* Given a row r and two columns, return the column that would
971 * lead to the lexicographically smallest increment in the sample
972 * solution when leaving the basis in favor of the row.
973 * Pivoting with column c will increment the sample value by a non-negative
974 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
975 * corresponding to the non-parametric variables.
976 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
977 * with all other entries in this virtual row equal to zero.
978 * If variable v appears in a row, then a_{v,c} is the element in column c
979 * of that row.
981 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
982 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
983 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
984 * increment. Otherwise, it's c2.
986 static int lexmin_col_pair(struct isl_tab *tab,
987 int row, int col1, int col2, isl_int tmp)
989 int i;
990 isl_int *tr;
992 tr = tab->mat->row[row] + 2 + tab->M;
994 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
995 int s1, s2;
996 isl_int *r;
998 if (!tab->var[i].is_row) {
999 if (tab->var[i].index == col1)
1000 return col2;
1001 if (tab->var[i].index == col2)
1002 return col1;
1003 continue;
1006 if (tab->var[i].index == row)
1007 continue;
1009 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1010 s1 = isl_int_sgn(r[col1]);
1011 s2 = isl_int_sgn(r[col2]);
1012 if (s1 == 0 && s2 == 0)
1013 continue;
1014 if (s1 < s2)
1015 return col1;
1016 if (s2 < s1)
1017 return col2;
1019 isl_int_mul(tmp, r[col2], tr[col1]);
1020 isl_int_submul(tmp, r[col1], tr[col2]);
1021 if (isl_int_is_pos(tmp))
1022 return col1;
1023 if (isl_int_is_neg(tmp))
1024 return col2;
1026 return -1;
1029 /* Given a row in the tableau, find and return the column that would
1030 * result in the lexicographically smallest, but positive, increment
1031 * in the sample point.
1032 * If there is no such column, then return tab->n_col.
1033 * If anything goes wrong, return -1.
1035 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1037 int j;
1038 int col = tab->n_col;
1039 isl_int *tr;
1040 isl_int tmp;
1042 tr = tab->mat->row[row] + 2 + tab->M;
1044 isl_int_init(tmp);
1046 for (j = tab->n_dead; j < tab->n_col; ++j) {
1047 if (tab->col_var[j] >= 0 &&
1048 (tab->col_var[j] < tab->n_param ||
1049 tab->col_var[j] >= tab->n_var - tab->n_div))
1050 continue;
1052 if (!isl_int_is_pos(tr[j]))
1053 continue;
1055 if (col == tab->n_col)
1056 col = j;
1057 else
1058 col = lexmin_col_pair(tab, row, col, j, tmp);
1059 isl_assert(tab->mat->ctx, col >= 0, goto error);
1062 isl_int_clear(tmp);
1063 return col;
1064 error:
1065 isl_int_clear(tmp);
1066 return -1;
1069 /* Return the first known violated constraint, i.e., a non-negative
1070 * constraint that currently has an either obviously negative value
1071 * or a previously determined to be negative value.
1073 * If any constraint has a negative coefficient for the big parameter,
1074 * if any, then we return one of these first.
1076 static int first_neg(struct isl_tab *tab)
1078 int row;
1080 if (tab->M)
1081 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1082 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1083 continue;
1084 if (!isl_int_is_neg(tab->mat->row[row][2]))
1085 continue;
1086 if (tab->row_sign)
1087 tab->row_sign[row] = isl_tab_row_neg;
1088 return row;
1090 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1091 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1092 continue;
1093 if (tab->row_sign) {
1094 if (tab->row_sign[row] == 0 &&
1095 is_obviously_neg(tab, row))
1096 tab->row_sign[row] = isl_tab_row_neg;
1097 if (tab->row_sign[row] != isl_tab_row_neg)
1098 continue;
1099 } else if (!is_obviously_neg(tab, row))
1100 continue;
1101 return row;
1103 return -1;
1106 /* Check whether the invariant that all columns are lexico-positive
1107 * is satisfied. This function is not called from the current code
1108 * but is useful during debugging.
1110 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1111 static void check_lexpos(struct isl_tab *tab)
1113 unsigned off = 2 + tab->M;
1114 int col;
1115 int var;
1116 int row;
1118 for (col = tab->n_dead; col < tab->n_col; ++col) {
1119 if (tab->col_var[col] >= 0 &&
1120 (tab->col_var[col] < tab->n_param ||
1121 tab->col_var[col] >= tab->n_var - tab->n_div))
1122 continue;
1123 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1124 if (!tab->var[var].is_row) {
1125 if (tab->var[var].index == col)
1126 break;
1127 else
1128 continue;
1130 row = tab->var[var].index;
1131 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1132 continue;
1133 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1134 break;
1135 fprintf(stderr, "lexneg column %d (row %d)\n",
1136 col, row);
1138 if (var >= tab->n_var - tab->n_div)
1139 fprintf(stderr, "zero column %d\n", col);
1143 /* Report to the caller that the given constraint is part of an encountered
1144 * conflict.
1146 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1148 return tab->conflict(con, tab->conflict_user);
1151 /* Given a conflicting row in the tableau, report all constraints
1152 * involved in the row to the caller. That is, the row itself
1153 * (if represents a constraint) and all constraint columns with
1154 * non-zero (and therefore negative) coefficient.
1156 static int report_conflict(struct isl_tab *tab, int row)
1158 int j;
1159 isl_int *tr;
1161 if (!tab->conflict)
1162 return 0;
1164 if (tab->row_var[row] < 0 &&
1165 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1166 return -1;
1168 tr = tab->mat->row[row] + 2 + tab->M;
1170 for (j = tab->n_dead; j < tab->n_col; ++j) {
1171 if (tab->col_var[j] >= 0 &&
1172 (tab->col_var[j] < tab->n_param ||
1173 tab->col_var[j] >= tab->n_var - tab->n_div))
1174 continue;
1176 if (!isl_int_is_neg(tr[j]))
1177 continue;
1179 if (tab->col_var[j] < 0 &&
1180 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1181 return -1;
1184 return 0;
1187 /* Resolve all known or obviously violated constraints through pivoting.
1188 * In particular, as long as we can find any violated constraint, we
1189 * look for a pivoting column that would result in the lexicographically
1190 * smallest increment in the sample point. If there is no such column
1191 * then the tableau is infeasible.
1193 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1194 static int restore_lexmin(struct isl_tab *tab)
1196 int row, col;
1198 if (!tab)
1199 return -1;
1200 if (tab->empty)
1201 return 0;
1202 while ((row = first_neg(tab)) != -1) {
1203 col = lexmin_pivot_col(tab, row);
1204 if (col >= tab->n_col) {
1205 if (report_conflict(tab, row) < 0)
1206 return -1;
1207 if (isl_tab_mark_empty(tab) < 0)
1208 return -1;
1209 return 0;
1211 if (col < 0)
1212 return -1;
1213 if (isl_tab_pivot(tab, row, col) < 0)
1214 return -1;
1216 return 0;
1219 /* Given a row that represents an equality, look for an appropriate
1220 * pivoting column.
1221 * In particular, if there are any non-zero coefficients among
1222 * the non-parameter variables, then we take the last of these
1223 * variables. Eliminating this variable in terms of the other
1224 * variables and/or parameters does not influence the property
1225 * that all column in the initial tableau are lexicographically
1226 * positive. The row corresponding to the eliminated variable
1227 * will only have non-zero entries below the diagonal of the
1228 * initial tableau. That is, we transform
1230 * I I
1231 * 1 into a
1232 * I I
1234 * If there is no such non-parameter variable, then we are dealing with
1235 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1236 * for elimination. This will ensure that the eliminated parameter
1237 * always has an integer value whenever all the other parameters are integral.
1238 * If there is no such parameter then we return -1.
1240 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1242 unsigned off = 2 + tab->M;
1243 int i;
1245 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1246 int col;
1247 if (tab->var[i].is_row)
1248 continue;
1249 col = tab->var[i].index;
1250 if (col <= tab->n_dead)
1251 continue;
1252 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1253 return col;
1255 for (i = tab->n_dead; i < tab->n_col; ++i) {
1256 if (isl_int_is_one(tab->mat->row[row][off + i]))
1257 return i;
1258 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1259 return i;
1261 return -1;
1264 /* Add an equality that is known to be valid to the tableau.
1265 * We first check if we can eliminate a variable or a parameter.
1266 * If not, we add the equality as two inequalities.
1267 * In this case, the equality was a pure parameter equality and there
1268 * is no need to resolve any constraint violations.
1270 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1272 int i;
1273 int r;
1275 if (!tab)
1276 return NULL;
1277 r = isl_tab_add_row(tab, eq);
1278 if (r < 0)
1279 goto error;
1281 r = tab->con[r].index;
1282 i = last_var_col_or_int_par_col(tab, r);
1283 if (i < 0) {
1284 tab->con[r].is_nonneg = 1;
1285 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1286 goto error;
1287 isl_seq_neg(eq, eq, 1 + tab->n_var);
1288 r = isl_tab_add_row(tab, eq);
1289 if (r < 0)
1290 goto error;
1291 tab->con[r].is_nonneg = 1;
1292 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1293 goto error;
1294 } else {
1295 if (isl_tab_pivot(tab, r, i) < 0)
1296 goto error;
1297 if (isl_tab_kill_col(tab, i) < 0)
1298 goto error;
1299 tab->n_eq++;
1302 return tab;
1303 error:
1304 isl_tab_free(tab);
1305 return NULL;
1308 /* Check if the given row is a pure constant.
1310 static int is_constant(struct isl_tab *tab, int row)
1312 unsigned off = 2 + tab->M;
1314 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1315 tab->n_col - tab->n_dead) == -1;
1318 /* Add an equality that may or may not be valid to the tableau.
1319 * If the resulting row is a pure constant, then it must be zero.
1320 * Otherwise, the resulting tableau is empty.
1322 * If the row is not a pure constant, then we add two inequalities,
1323 * each time checking that they can be satisfied.
1324 * In the end we try to use one of the two constraints to eliminate
1325 * a column.
1327 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1328 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1330 int r1, r2;
1331 int row;
1332 struct isl_tab_undo *snap;
1334 if (!tab)
1335 return -1;
1336 snap = isl_tab_snap(tab);
1337 r1 = isl_tab_add_row(tab, eq);
1338 if (r1 < 0)
1339 return -1;
1340 tab->con[r1].is_nonneg = 1;
1341 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1342 return -1;
1344 row = tab->con[r1].index;
1345 if (is_constant(tab, row)) {
1346 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1347 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1348 if (isl_tab_mark_empty(tab) < 0)
1349 return -1;
1350 return 0;
1352 if (isl_tab_rollback(tab, snap) < 0)
1353 return -1;
1354 return 0;
1357 if (restore_lexmin(tab) < 0)
1358 return -1;
1359 if (tab->empty)
1360 return 0;
1362 isl_seq_neg(eq, eq, 1 + tab->n_var);
1364 r2 = isl_tab_add_row(tab, eq);
1365 if (r2 < 0)
1366 return -1;
1367 tab->con[r2].is_nonneg = 1;
1368 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1369 return -1;
1371 if (restore_lexmin(tab) < 0)
1372 return -1;
1373 if (tab->empty)
1374 return 0;
1376 if (!tab->con[r1].is_row) {
1377 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1378 return -1;
1379 } else if (!tab->con[r2].is_row) {
1380 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1381 return -1;
1384 if (tab->bmap) {
1385 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1386 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1387 return -1;
1388 isl_seq_neg(eq, eq, 1 + tab->n_var);
1389 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1390 isl_seq_neg(eq, eq, 1 + tab->n_var);
1391 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1392 return -1;
1393 if (!tab->bmap)
1394 return -1;
1397 return 0;
1400 /* Add an inequality to the tableau, resolving violations using
1401 * restore_lexmin.
1403 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1405 int r;
1407 if (!tab)
1408 return NULL;
1409 if (tab->bmap) {
1410 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1411 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1412 goto error;
1413 if (!tab->bmap)
1414 goto error;
1416 r = isl_tab_add_row(tab, ineq);
1417 if (r < 0)
1418 goto error;
1419 tab->con[r].is_nonneg = 1;
1420 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1421 goto error;
1422 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1423 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1424 goto error;
1425 return tab;
1428 if (restore_lexmin(tab) < 0)
1429 goto error;
1430 if (!tab->empty && tab->con[r].is_row &&
1431 isl_tab_row_is_redundant(tab, tab->con[r].index))
1432 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1433 goto error;
1434 return tab;
1435 error:
1436 isl_tab_free(tab);
1437 return NULL;
1440 /* Check if the coefficients of the parameters are all integral.
1442 static int integer_parameter(struct isl_tab *tab, int row)
1444 int i;
1445 int col;
1446 unsigned off = 2 + tab->M;
1448 for (i = 0; i < tab->n_param; ++i) {
1449 /* Eliminated parameter */
1450 if (tab->var[i].is_row)
1451 continue;
1452 col = tab->var[i].index;
1453 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1454 tab->mat->row[row][0]))
1455 return 0;
1457 for (i = 0; i < tab->n_div; ++i) {
1458 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1459 continue;
1460 col = tab->var[tab->n_var - tab->n_div + i].index;
1461 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1462 tab->mat->row[row][0]))
1463 return 0;
1465 return 1;
1468 /* Check if the coefficients of the non-parameter variables are all integral.
1470 static int integer_variable(struct isl_tab *tab, int row)
1472 int i;
1473 unsigned off = 2 + tab->M;
1475 for (i = tab->n_dead; i < tab->n_col; ++i) {
1476 if (tab->col_var[i] >= 0 &&
1477 (tab->col_var[i] < tab->n_param ||
1478 tab->col_var[i] >= tab->n_var - tab->n_div))
1479 continue;
1480 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1481 tab->mat->row[row][0]))
1482 return 0;
1484 return 1;
1487 /* Check if the constant term is integral.
1489 static int integer_constant(struct isl_tab *tab, int row)
1491 return isl_int_is_divisible_by(tab->mat->row[row][1],
1492 tab->mat->row[row][0]);
1495 #define I_CST 1 << 0
1496 #define I_PAR 1 << 1
1497 #define I_VAR 1 << 2
1499 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1500 * that is non-integer and therefore requires a cut and return
1501 * the index of the variable.
1502 * For parametric tableaus, there are three parts in a row,
1503 * the constant, the coefficients of the parameters and the rest.
1504 * For each part, we check whether the coefficients in that part
1505 * are all integral and if so, set the corresponding flag in *f.
1506 * If the constant and the parameter part are integral, then the
1507 * current sample value is integral and no cut is required
1508 * (irrespective of whether the variable part is integral).
1510 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1512 var = var < 0 ? tab->n_param : var + 1;
1514 for (; var < tab->n_var - tab->n_div; ++var) {
1515 int flags = 0;
1516 int row;
1517 if (!tab->var[var].is_row)
1518 continue;
1519 row = tab->var[var].index;
1520 if (integer_constant(tab, row))
1521 ISL_FL_SET(flags, I_CST);
1522 if (integer_parameter(tab, row))
1523 ISL_FL_SET(flags, I_PAR);
1524 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1525 continue;
1526 if (integer_variable(tab, row))
1527 ISL_FL_SET(flags, I_VAR);
1528 *f = flags;
1529 return var;
1531 return -1;
1534 /* Check for first (non-parameter) variable that is non-integer and
1535 * therefore requires a cut and return the corresponding row.
1536 * For parametric tableaus, there are three parts in a row,
1537 * the constant, the coefficients of the parameters and the rest.
1538 * For each part, we check whether the coefficients in that part
1539 * are all integral and if so, set the corresponding flag in *f.
1540 * If the constant and the parameter part are integral, then the
1541 * current sample value is integral and no cut is required
1542 * (irrespective of whether the variable part is integral).
1544 static int first_non_integer_row(struct isl_tab *tab, int *f)
1546 int var = next_non_integer_var(tab, -1, f);
1548 return var < 0 ? -1 : tab->var[var].index;
1551 /* Add a (non-parametric) cut to cut away the non-integral sample
1552 * value of the given row.
1554 * If the row is given by
1556 * m r = f + \sum_i a_i y_i
1558 * then the cut is
1560 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1562 * The big parameter, if any, is ignored, since it is assumed to be big
1563 * enough to be divisible by any integer.
1564 * If the tableau is actually a parametric tableau, then this function
1565 * is only called when all coefficients of the parameters are integral.
1566 * The cut therefore has zero coefficients for the parameters.
1568 * The current value is known to be negative, so row_sign, if it
1569 * exists, is set accordingly.
1571 * Return the row of the cut or -1.
1573 static int add_cut(struct isl_tab *tab, int row)
1575 int i;
1576 int r;
1577 isl_int *r_row;
1578 unsigned off = 2 + tab->M;
1580 if (isl_tab_extend_cons(tab, 1) < 0)
1581 return -1;
1582 r = isl_tab_allocate_con(tab);
1583 if (r < 0)
1584 return -1;
1586 r_row = tab->mat->row[tab->con[r].index];
1587 isl_int_set(r_row[0], tab->mat->row[row][0]);
1588 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1589 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1590 isl_int_neg(r_row[1], r_row[1]);
1591 if (tab->M)
1592 isl_int_set_si(r_row[2], 0);
1593 for (i = 0; i < tab->n_col; ++i)
1594 isl_int_fdiv_r(r_row[off + i],
1595 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1597 tab->con[r].is_nonneg = 1;
1598 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1599 return -1;
1600 if (tab->row_sign)
1601 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1603 return tab->con[r].index;
1606 /* Given a non-parametric tableau, add cuts until an integer
1607 * sample point is obtained or until the tableau is determined
1608 * to be integer infeasible.
1609 * As long as there is any non-integer value in the sample point,
1610 * we add appropriate cuts, if possible, for each of these
1611 * non-integer values and then resolve the violated
1612 * cut constraints using restore_lexmin.
1613 * If one of the corresponding rows is equal to an integral
1614 * combination of variables/constraints plus a non-integral constant,
1615 * then there is no way to obtain an integer point and we return
1616 * a tableau that is marked empty.
1618 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1620 int var;
1621 int row;
1622 int flags;
1624 if (!tab)
1625 return NULL;
1626 if (tab->empty)
1627 return tab;
1629 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1630 do {
1631 if (ISL_FL_ISSET(flags, I_VAR)) {
1632 if (isl_tab_mark_empty(tab) < 0)
1633 goto error;
1634 return tab;
1636 row = tab->var[var].index;
1637 row = add_cut(tab, row);
1638 if (row < 0)
1639 goto error;
1640 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1641 if (restore_lexmin(tab) < 0)
1642 goto error;
1643 if (tab->empty)
1644 break;
1646 return tab;
1647 error:
1648 isl_tab_free(tab);
1649 return NULL;
1652 /* Check whether all the currently active samples also satisfy the inequality
1653 * "ineq" (treated as an equality if eq is set).
1654 * Remove those samples that do not.
1656 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1658 int i;
1659 isl_int v;
1661 if (!tab)
1662 return NULL;
1664 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1665 isl_assert(tab->mat->ctx, tab->samples, goto error);
1666 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1668 isl_int_init(v);
1669 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1670 int sgn;
1671 isl_seq_inner_product(ineq, tab->samples->row[i],
1672 1 + tab->n_var, &v);
1673 sgn = isl_int_sgn(v);
1674 if (eq ? (sgn == 0) : (sgn >= 0))
1675 continue;
1676 tab = isl_tab_drop_sample(tab, i);
1677 if (!tab)
1678 break;
1680 isl_int_clear(v);
1682 return tab;
1683 error:
1684 isl_tab_free(tab);
1685 return NULL;
1688 /* Check whether the sample value of the tableau is finite,
1689 * i.e., either the tableau does not use a big parameter, or
1690 * all values of the variables are equal to the big parameter plus
1691 * some constant. This constant is the actual sample value.
1693 static int sample_is_finite(struct isl_tab *tab)
1695 int i;
1697 if (!tab->M)
1698 return 1;
1700 for (i = 0; i < tab->n_var; ++i) {
1701 int row;
1702 if (!tab->var[i].is_row)
1703 return 0;
1704 row = tab->var[i].index;
1705 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1706 return 0;
1708 return 1;
1711 /* Check if the context tableau of sol has any integer points.
1712 * Leave tab in empty state if no integer point can be found.
1713 * If an integer point can be found and if moreover it is finite,
1714 * then it is added to the list of sample values.
1716 * This function is only called when none of the currently active sample
1717 * values satisfies the most recently added constraint.
1719 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1721 struct isl_tab_undo *snap;
1723 if (!tab)
1724 return NULL;
1726 snap = isl_tab_snap(tab);
1727 if (isl_tab_push_basis(tab) < 0)
1728 goto error;
1730 tab = cut_to_integer_lexmin(tab);
1731 if (!tab)
1732 goto error;
1734 if (!tab->empty && sample_is_finite(tab)) {
1735 struct isl_vec *sample;
1737 sample = isl_tab_get_sample_value(tab);
1739 tab = isl_tab_add_sample(tab, sample);
1742 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1743 goto error;
1745 return tab;
1746 error:
1747 isl_tab_free(tab);
1748 return NULL;
1751 /* Check if any of the currently active sample values satisfies
1752 * the inequality "ineq" (an equality if eq is set).
1754 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1756 int i;
1757 isl_int v;
1759 if (!tab)
1760 return -1;
1762 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1763 isl_assert(tab->mat->ctx, tab->samples, return -1);
1764 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1766 isl_int_init(v);
1767 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1768 int sgn;
1769 isl_seq_inner_product(ineq, tab->samples->row[i],
1770 1 + tab->n_var, &v);
1771 sgn = isl_int_sgn(v);
1772 if (eq ? (sgn == 0) : (sgn >= 0))
1773 break;
1775 isl_int_clear(v);
1777 return i < tab->n_sample;
1780 /* Add a div specified by "div" to the tableau "tab" and return
1781 * 1 if the div is obviously non-negative.
1783 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1784 int (*add_ineq)(void *user, isl_int *), void *user)
1786 int i;
1787 int r;
1788 struct isl_mat *samples;
1789 int nonneg;
1791 r = isl_tab_add_div(tab, div, add_ineq, user);
1792 if (r < 0)
1793 return -1;
1794 nonneg = tab->var[r].is_nonneg;
1795 tab->var[r].frozen = 1;
1797 samples = isl_mat_extend(tab->samples,
1798 tab->n_sample, 1 + tab->n_var);
1799 tab->samples = samples;
1800 if (!samples)
1801 return -1;
1802 for (i = tab->n_outside; i < samples->n_row; ++i) {
1803 isl_seq_inner_product(div->el + 1, samples->row[i],
1804 div->size - 1, &samples->row[i][samples->n_col - 1]);
1805 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1806 samples->row[i][samples->n_col - 1], div->el[0]);
1809 return nonneg;
1812 /* Add a div specified by "div" to both the main tableau and
1813 * the context tableau. In case of the main tableau, we only
1814 * need to add an extra div. In the context tableau, we also
1815 * need to express the meaning of the div.
1816 * Return the index of the div or -1 if anything went wrong.
1818 static int add_div(struct isl_tab *tab, struct isl_context *context,
1819 struct isl_vec *div)
1821 int r;
1822 int nonneg;
1824 if ((nonneg = context->op->add_div(context, div)) < 0)
1825 goto error;
1827 if (!context->op->is_ok(context))
1828 goto error;
1830 if (isl_tab_extend_vars(tab, 1) < 0)
1831 goto error;
1832 r = isl_tab_allocate_var(tab);
1833 if (r < 0)
1834 goto error;
1835 if (nonneg)
1836 tab->var[r].is_nonneg = 1;
1837 tab->var[r].frozen = 1;
1838 tab->n_div++;
1840 return tab->n_div - 1;
1841 error:
1842 context->op->invalidate(context);
1843 return -1;
1846 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1848 int i;
1849 unsigned total = isl_basic_map_total_dim(tab->bmap);
1851 for (i = 0; i < tab->bmap->n_div; ++i) {
1852 if (isl_int_ne(tab->bmap->div[i][0], denom))
1853 continue;
1854 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1855 continue;
1856 return i;
1858 return -1;
1861 /* Return the index of a div that corresponds to "div".
1862 * We first check if we already have such a div and if not, we create one.
1864 static int get_div(struct isl_tab *tab, struct isl_context *context,
1865 struct isl_vec *div)
1867 int d;
1868 struct isl_tab *context_tab = context->op->peek_tab(context);
1870 if (!context_tab)
1871 return -1;
1873 d = find_div(context_tab, div->el + 1, div->el[0]);
1874 if (d != -1)
1875 return d;
1877 return add_div(tab, context, div);
1880 /* Add a parametric cut to cut away the non-integral sample value
1881 * of the give row.
1882 * Let a_i be the coefficients of the constant term and the parameters
1883 * and let b_i be the coefficients of the variables or constraints
1884 * in basis of the tableau.
1885 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1887 * The cut is expressed as
1889 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1891 * If q did not already exist in the context tableau, then it is added first.
1892 * If q is in a column of the main tableau then the "+ q" can be accomplished
1893 * by setting the corresponding entry to the denominator of the constraint.
1894 * If q happens to be in a row of the main tableau, then the corresponding
1895 * row needs to be added instead (taking care of the denominators).
1896 * Note that this is very unlikely, but perhaps not entirely impossible.
1898 * The current value of the cut is known to be negative (or at least
1899 * non-positive), so row_sign is set accordingly.
1901 * Return the row of the cut or -1.
1903 static int add_parametric_cut(struct isl_tab *tab, int row,
1904 struct isl_context *context)
1906 struct isl_vec *div;
1907 int d;
1908 int i;
1909 int r;
1910 isl_int *r_row;
1911 int col;
1912 int n;
1913 unsigned off = 2 + tab->M;
1915 if (!context)
1916 return -1;
1918 div = get_row_parameter_div(tab, row);
1919 if (!div)
1920 return -1;
1922 n = tab->n_div;
1923 d = context->op->get_div(context, tab, div);
1924 if (d < 0)
1925 return -1;
1927 if (isl_tab_extend_cons(tab, 1) < 0)
1928 return -1;
1929 r = isl_tab_allocate_con(tab);
1930 if (r < 0)
1931 return -1;
1933 r_row = tab->mat->row[tab->con[r].index];
1934 isl_int_set(r_row[0], tab->mat->row[row][0]);
1935 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1936 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1937 isl_int_neg(r_row[1], r_row[1]);
1938 if (tab->M)
1939 isl_int_set_si(r_row[2], 0);
1940 for (i = 0; i < tab->n_param; ++i) {
1941 if (tab->var[i].is_row)
1942 continue;
1943 col = tab->var[i].index;
1944 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1945 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1946 tab->mat->row[row][0]);
1947 isl_int_neg(r_row[off + col], r_row[off + col]);
1949 for (i = 0; i < tab->n_div; ++i) {
1950 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1951 continue;
1952 col = tab->var[tab->n_var - tab->n_div + i].index;
1953 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1954 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1955 tab->mat->row[row][0]);
1956 isl_int_neg(r_row[off + col], r_row[off + col]);
1958 for (i = 0; i < tab->n_col; ++i) {
1959 if (tab->col_var[i] >= 0 &&
1960 (tab->col_var[i] < tab->n_param ||
1961 tab->col_var[i] >= tab->n_var - tab->n_div))
1962 continue;
1963 isl_int_fdiv_r(r_row[off + i],
1964 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1966 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1967 isl_int gcd;
1968 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1969 isl_int_init(gcd);
1970 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1971 isl_int_divexact(r_row[0], r_row[0], gcd);
1972 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1973 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1974 r_row[0], tab->mat->row[d_row] + 1,
1975 off - 1 + tab->n_col);
1976 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1977 isl_int_clear(gcd);
1978 } else {
1979 col = tab->var[tab->n_var - tab->n_div + d].index;
1980 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1983 tab->con[r].is_nonneg = 1;
1984 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1985 return -1;
1986 if (tab->row_sign)
1987 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1989 isl_vec_free(div);
1991 row = tab->con[r].index;
1993 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1994 return -1;
1996 return row;
1999 /* Construct a tableau for bmap that can be used for computing
2000 * the lexicographic minimum (or maximum) of bmap.
2001 * If not NULL, then dom is the domain where the minimum
2002 * should be computed. In this case, we set up a parametric
2003 * tableau with row signs (initialized to "unknown").
2004 * If M is set, then the tableau will use a big parameter.
2005 * If max is set, then a maximum should be computed instead of a minimum.
2006 * This means that for each variable x, the tableau will contain the variable
2007 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2008 * of the variables in all constraints are negated prior to adding them
2009 * to the tableau.
2011 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2012 struct isl_basic_set *dom, unsigned M, int max)
2014 int i;
2015 struct isl_tab *tab;
2017 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2018 isl_basic_map_total_dim(bmap), M);
2019 if (!tab)
2020 return NULL;
2022 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2023 if (dom) {
2024 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2025 tab->n_div = dom->n_div;
2026 tab->row_sign = isl_calloc_array(bmap->ctx,
2027 enum isl_tab_row_sign, tab->mat->n_row);
2028 if (!tab->row_sign)
2029 goto error;
2031 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2032 if (isl_tab_mark_empty(tab) < 0)
2033 goto error;
2034 return tab;
2037 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2038 tab->var[i].is_nonneg = 1;
2039 tab->var[i].frozen = 1;
2041 for (i = 0; i < bmap->n_eq; ++i) {
2042 if (max)
2043 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2044 bmap->eq[i] + 1 + tab->n_param,
2045 tab->n_var - tab->n_param - tab->n_div);
2046 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2047 if (max)
2048 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2049 bmap->eq[i] + 1 + tab->n_param,
2050 tab->n_var - tab->n_param - tab->n_div);
2051 if (!tab || tab->empty)
2052 return tab;
2054 if (bmap->n_eq && restore_lexmin(tab) < 0)
2055 goto error;
2056 for (i = 0; i < bmap->n_ineq; ++i) {
2057 if (max)
2058 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2059 bmap->ineq[i] + 1 + tab->n_param,
2060 tab->n_var - tab->n_param - tab->n_div);
2061 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2062 if (max)
2063 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2064 bmap->ineq[i] + 1 + tab->n_param,
2065 tab->n_var - tab->n_param - tab->n_div);
2066 if (!tab || tab->empty)
2067 return tab;
2069 return tab;
2070 error:
2071 isl_tab_free(tab);
2072 return NULL;
2075 /* Given a main tableau where more than one row requires a split,
2076 * determine and return the "best" row to split on.
2078 * Given two rows in the main tableau, if the inequality corresponding
2079 * to the first row is redundant with respect to that of the second row
2080 * in the current tableau, then it is better to split on the second row,
2081 * since in the positive part, both row will be positive.
2082 * (In the negative part a pivot will have to be performed and just about
2083 * anything can happen to the sign of the other row.)
2085 * As a simple heuristic, we therefore select the row that makes the most
2086 * of the other rows redundant.
2088 * Perhaps it would also be useful to look at the number of constraints
2089 * that conflict with any given constraint.
2091 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2093 struct isl_tab_undo *snap;
2094 int split;
2095 int row;
2096 int best = -1;
2097 int best_r;
2099 if (isl_tab_extend_cons(context_tab, 2) < 0)
2100 return -1;
2102 snap = isl_tab_snap(context_tab);
2104 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2105 struct isl_tab_undo *snap2;
2106 struct isl_vec *ineq = NULL;
2107 int r = 0;
2108 int ok;
2110 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2111 continue;
2112 if (tab->row_sign[split] != isl_tab_row_any)
2113 continue;
2115 ineq = get_row_parameter_ineq(tab, split);
2116 if (!ineq)
2117 return -1;
2118 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2119 isl_vec_free(ineq);
2120 if (!ok)
2121 return -1;
2123 snap2 = isl_tab_snap(context_tab);
2125 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2126 struct isl_tab_var *var;
2128 if (row == split)
2129 continue;
2130 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2131 continue;
2132 if (tab->row_sign[row] != isl_tab_row_any)
2133 continue;
2135 ineq = get_row_parameter_ineq(tab, row);
2136 if (!ineq)
2137 return -1;
2138 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2139 isl_vec_free(ineq);
2140 if (!ok)
2141 return -1;
2142 var = &context_tab->con[context_tab->n_con - 1];
2143 if (!context_tab->empty &&
2144 !isl_tab_min_at_most_neg_one(context_tab, var))
2145 r++;
2146 if (isl_tab_rollback(context_tab, snap2) < 0)
2147 return -1;
2149 if (best == -1 || r > best_r) {
2150 best = split;
2151 best_r = r;
2153 if (isl_tab_rollback(context_tab, snap) < 0)
2154 return -1;
2157 return best;
2160 static struct isl_basic_set *context_lex_peek_basic_set(
2161 struct isl_context *context)
2163 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2164 if (!clex->tab)
2165 return NULL;
2166 return isl_tab_peek_bset(clex->tab);
2169 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2171 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2172 return clex->tab;
2175 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2176 int check, int update)
2178 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2179 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2180 goto error;
2181 if (add_lexmin_eq(clex->tab, eq) < 0)
2182 goto error;
2183 if (check) {
2184 int v = tab_has_valid_sample(clex->tab, eq, 1);
2185 if (v < 0)
2186 goto error;
2187 if (!v)
2188 clex->tab = check_integer_feasible(clex->tab);
2190 if (update)
2191 clex->tab = check_samples(clex->tab, eq, 1);
2192 return;
2193 error:
2194 isl_tab_free(clex->tab);
2195 clex->tab = NULL;
2198 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2199 int check, int update)
2201 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2202 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2203 goto error;
2204 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2205 if (check) {
2206 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2207 if (v < 0)
2208 goto error;
2209 if (!v)
2210 clex->tab = check_integer_feasible(clex->tab);
2212 if (update)
2213 clex->tab = check_samples(clex->tab, ineq, 0);
2214 return;
2215 error:
2216 isl_tab_free(clex->tab);
2217 clex->tab = NULL;
2220 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2222 struct isl_context *context = (struct isl_context *)user;
2223 context_lex_add_ineq(context, ineq, 0, 0);
2224 return context->op->is_ok(context) ? 0 : -1;
2227 /* Check which signs can be obtained by "ineq" on all the currently
2228 * active sample values. See row_sign for more information.
2230 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2231 int strict)
2233 int i;
2234 int sgn;
2235 isl_int tmp;
2236 enum isl_tab_row_sign res = isl_tab_row_unknown;
2238 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2239 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2240 return isl_tab_row_unknown);
2242 isl_int_init(tmp);
2243 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2244 isl_seq_inner_product(tab->samples->row[i], ineq,
2245 1 + tab->n_var, &tmp);
2246 sgn = isl_int_sgn(tmp);
2247 if (sgn > 0 || (sgn == 0 && strict)) {
2248 if (res == isl_tab_row_unknown)
2249 res = isl_tab_row_pos;
2250 if (res == isl_tab_row_neg)
2251 res = isl_tab_row_any;
2253 if (sgn < 0) {
2254 if (res == isl_tab_row_unknown)
2255 res = isl_tab_row_neg;
2256 if (res == isl_tab_row_pos)
2257 res = isl_tab_row_any;
2259 if (res == isl_tab_row_any)
2260 break;
2262 isl_int_clear(tmp);
2264 return res;
2267 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2268 isl_int *ineq, int strict)
2270 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2271 return tab_ineq_sign(clex->tab, ineq, strict);
2274 /* Check whether "ineq" can be added to the tableau without rendering
2275 * it infeasible.
2277 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2279 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2280 struct isl_tab_undo *snap;
2281 int feasible;
2283 if (!clex->tab)
2284 return -1;
2286 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2287 return -1;
2289 snap = isl_tab_snap(clex->tab);
2290 if (isl_tab_push_basis(clex->tab) < 0)
2291 return -1;
2292 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2293 clex->tab = check_integer_feasible(clex->tab);
2294 if (!clex->tab)
2295 return -1;
2296 feasible = !clex->tab->empty;
2297 if (isl_tab_rollback(clex->tab, snap) < 0)
2298 return -1;
2300 return feasible;
2303 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2304 struct isl_vec *div)
2306 return get_div(tab, context, div);
2309 /* Add a div specified by "div" to the context tableau and return
2310 * 1 if the div is obviously non-negative.
2311 * context_tab_add_div will always return 1, because all variables
2312 * in a isl_context_lex tableau are non-negative.
2313 * However, if we are using a big parameter in the context, then this only
2314 * reflects the non-negativity of the variable used to _encode_ the
2315 * div, i.e., div' = M + div, so we can't draw any conclusions.
2317 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2319 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2320 int nonneg;
2321 nonneg = context_tab_add_div(clex->tab, div,
2322 context_lex_add_ineq_wrap, context);
2323 if (nonneg < 0)
2324 return -1;
2325 if (clex->tab->M)
2326 return 0;
2327 return nonneg;
2330 static int context_lex_detect_equalities(struct isl_context *context,
2331 struct isl_tab *tab)
2333 return 0;
2336 static int context_lex_best_split(struct isl_context *context,
2337 struct isl_tab *tab)
2339 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2340 struct isl_tab_undo *snap;
2341 int r;
2343 snap = isl_tab_snap(clex->tab);
2344 if (isl_tab_push_basis(clex->tab) < 0)
2345 return -1;
2346 r = best_split(tab, clex->tab);
2348 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2349 return -1;
2351 return r;
2354 static int context_lex_is_empty(struct isl_context *context)
2356 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2357 if (!clex->tab)
2358 return -1;
2359 return clex->tab->empty;
2362 static void *context_lex_save(struct isl_context *context)
2364 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2365 struct isl_tab_undo *snap;
2367 snap = isl_tab_snap(clex->tab);
2368 if (isl_tab_push_basis(clex->tab) < 0)
2369 return NULL;
2370 if (isl_tab_save_samples(clex->tab) < 0)
2371 return NULL;
2373 return snap;
2376 static void context_lex_restore(struct isl_context *context, void *save)
2378 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2379 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2380 isl_tab_free(clex->tab);
2381 clex->tab = NULL;
2385 static int context_lex_is_ok(struct isl_context *context)
2387 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2388 return !!clex->tab;
2391 /* For each variable in the context tableau, check if the variable can
2392 * only attain non-negative values. If so, mark the parameter as non-negative
2393 * in the main tableau. This allows for a more direct identification of some
2394 * cases of violated constraints.
2396 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2397 struct isl_tab *context_tab)
2399 int i;
2400 struct isl_tab_undo *snap;
2401 struct isl_vec *ineq = NULL;
2402 struct isl_tab_var *var;
2403 int n;
2405 if (context_tab->n_var == 0)
2406 return tab;
2408 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2409 if (!ineq)
2410 goto error;
2412 if (isl_tab_extend_cons(context_tab, 1) < 0)
2413 goto error;
2415 snap = isl_tab_snap(context_tab);
2417 n = 0;
2418 isl_seq_clr(ineq->el, ineq->size);
2419 for (i = 0; i < context_tab->n_var; ++i) {
2420 isl_int_set_si(ineq->el[1 + i], 1);
2421 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2422 goto error;
2423 var = &context_tab->con[context_tab->n_con - 1];
2424 if (!context_tab->empty &&
2425 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2426 int j = i;
2427 if (i >= tab->n_param)
2428 j = i - tab->n_param + tab->n_var - tab->n_div;
2429 tab->var[j].is_nonneg = 1;
2430 n++;
2432 isl_int_set_si(ineq->el[1 + i], 0);
2433 if (isl_tab_rollback(context_tab, snap) < 0)
2434 goto error;
2437 if (context_tab->M && n == context_tab->n_var) {
2438 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2439 context_tab->M = 0;
2442 isl_vec_free(ineq);
2443 return tab;
2444 error:
2445 isl_vec_free(ineq);
2446 isl_tab_free(tab);
2447 return NULL;
2450 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2451 struct isl_context *context, struct isl_tab *tab)
2453 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2454 struct isl_tab_undo *snap;
2456 if (!tab)
2457 return NULL;
2459 snap = isl_tab_snap(clex->tab);
2460 if (isl_tab_push_basis(clex->tab) < 0)
2461 goto error;
2463 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2465 if (isl_tab_rollback(clex->tab, snap) < 0)
2466 goto error;
2468 return tab;
2469 error:
2470 isl_tab_free(tab);
2471 return NULL;
2474 static void context_lex_invalidate(struct isl_context *context)
2476 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2477 isl_tab_free(clex->tab);
2478 clex->tab = NULL;
2481 static void context_lex_free(struct isl_context *context)
2483 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2484 isl_tab_free(clex->tab);
2485 free(clex);
2488 struct isl_context_op isl_context_lex_op = {
2489 context_lex_detect_nonnegative_parameters,
2490 context_lex_peek_basic_set,
2491 context_lex_peek_tab,
2492 context_lex_add_eq,
2493 context_lex_add_ineq,
2494 context_lex_ineq_sign,
2495 context_lex_test_ineq,
2496 context_lex_get_div,
2497 context_lex_add_div,
2498 context_lex_detect_equalities,
2499 context_lex_best_split,
2500 context_lex_is_empty,
2501 context_lex_is_ok,
2502 context_lex_save,
2503 context_lex_restore,
2504 context_lex_invalidate,
2505 context_lex_free,
2508 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2510 struct isl_tab *tab;
2512 bset = isl_basic_set_cow(bset);
2513 if (!bset)
2514 return NULL;
2515 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2516 if (!tab)
2517 goto error;
2518 if (isl_tab_track_bset(tab, bset) < 0)
2519 goto error;
2520 tab = isl_tab_init_samples(tab);
2521 return tab;
2522 error:
2523 isl_basic_set_free(bset);
2524 return NULL;
2527 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2529 struct isl_context_lex *clex;
2531 if (!dom)
2532 return NULL;
2534 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2535 if (!clex)
2536 return NULL;
2538 clex->context.op = &isl_context_lex_op;
2540 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2541 if (restore_lexmin(clex->tab) < 0)
2542 goto error;
2543 clex->tab = check_integer_feasible(clex->tab);
2544 if (!clex->tab)
2545 goto error;
2547 return &clex->context;
2548 error:
2549 clex->context.op->free(&clex->context);
2550 return NULL;
2553 struct isl_context_gbr {
2554 struct isl_context context;
2555 struct isl_tab *tab;
2556 struct isl_tab *shifted;
2557 struct isl_tab *cone;
2560 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2561 struct isl_context *context, struct isl_tab *tab)
2563 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2564 if (!tab)
2565 return NULL;
2566 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2569 static struct isl_basic_set *context_gbr_peek_basic_set(
2570 struct isl_context *context)
2572 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2573 if (!cgbr->tab)
2574 return NULL;
2575 return isl_tab_peek_bset(cgbr->tab);
2578 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2580 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2581 return cgbr->tab;
2584 /* Initialize the "shifted" tableau of the context, which
2585 * contains the constraints of the original tableau shifted
2586 * by the sum of all negative coefficients. This ensures
2587 * that any rational point in the shifted tableau can
2588 * be rounded up to yield an integer point in the original tableau.
2590 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2592 int i, j;
2593 struct isl_vec *cst;
2594 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2595 unsigned dim = isl_basic_set_total_dim(bset);
2597 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2598 if (!cst)
2599 return;
2601 for (i = 0; i < bset->n_ineq; ++i) {
2602 isl_int_set(cst->el[i], bset->ineq[i][0]);
2603 for (j = 0; j < dim; ++j) {
2604 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2605 continue;
2606 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2607 bset->ineq[i][1 + j]);
2611 cgbr->shifted = isl_tab_from_basic_set(bset);
2613 for (i = 0; i < bset->n_ineq; ++i)
2614 isl_int_set(bset->ineq[i][0], cst->el[i]);
2616 isl_vec_free(cst);
2619 /* Check if the shifted tableau is non-empty, and if so
2620 * use the sample point to construct an integer point
2621 * of the context tableau.
2623 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2625 struct isl_vec *sample;
2627 if (!cgbr->shifted)
2628 gbr_init_shifted(cgbr);
2629 if (!cgbr->shifted)
2630 return NULL;
2631 if (cgbr->shifted->empty)
2632 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2634 sample = isl_tab_get_sample_value(cgbr->shifted);
2635 sample = isl_vec_ceil(sample);
2637 return sample;
2640 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2642 int i;
2644 if (!bset)
2645 return NULL;
2647 for (i = 0; i < bset->n_eq; ++i)
2648 isl_int_set_si(bset->eq[i][0], 0);
2650 for (i = 0; i < bset->n_ineq; ++i)
2651 isl_int_set_si(bset->ineq[i][0], 0);
2653 return bset;
2656 static int use_shifted(struct isl_context_gbr *cgbr)
2658 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2661 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2663 struct isl_basic_set *bset;
2664 struct isl_basic_set *cone;
2666 if (isl_tab_sample_is_integer(cgbr->tab))
2667 return isl_tab_get_sample_value(cgbr->tab);
2669 if (use_shifted(cgbr)) {
2670 struct isl_vec *sample;
2672 sample = gbr_get_shifted_sample(cgbr);
2673 if (!sample || sample->size > 0)
2674 return sample;
2676 isl_vec_free(sample);
2679 if (!cgbr->cone) {
2680 bset = isl_tab_peek_bset(cgbr->tab);
2681 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2682 if (!cgbr->cone)
2683 return NULL;
2684 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2685 return NULL;
2687 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2688 return NULL;
2690 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2691 struct isl_vec *sample;
2692 struct isl_tab_undo *snap;
2694 if (cgbr->tab->basis) {
2695 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2696 isl_mat_free(cgbr->tab->basis);
2697 cgbr->tab->basis = NULL;
2699 cgbr->tab->n_zero = 0;
2700 cgbr->tab->n_unbounded = 0;
2703 snap = isl_tab_snap(cgbr->tab);
2705 sample = isl_tab_sample(cgbr->tab);
2707 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2708 isl_vec_free(sample);
2709 return NULL;
2712 return sample;
2715 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2716 cone = drop_constant_terms(cone);
2717 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2718 cone = isl_basic_set_underlying_set(cone);
2719 cone = isl_basic_set_gauss(cone, NULL);
2721 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2722 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2723 bset = isl_basic_set_underlying_set(bset);
2724 bset = isl_basic_set_gauss(bset, NULL);
2726 return isl_basic_set_sample_with_cone(bset, cone);
2729 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2731 struct isl_vec *sample;
2733 if (!cgbr->tab)
2734 return;
2736 if (cgbr->tab->empty)
2737 return;
2739 sample = gbr_get_sample(cgbr);
2740 if (!sample)
2741 goto error;
2743 if (sample->size == 0) {
2744 isl_vec_free(sample);
2745 if (isl_tab_mark_empty(cgbr->tab) < 0)
2746 goto error;
2747 return;
2750 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2752 return;
2753 error:
2754 isl_tab_free(cgbr->tab);
2755 cgbr->tab = NULL;
2758 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2760 if (!tab)
2761 return NULL;
2763 if (isl_tab_extend_cons(tab, 2) < 0)
2764 goto error;
2766 if (isl_tab_add_eq(tab, eq) < 0)
2767 goto error;
2769 return tab;
2770 error:
2771 isl_tab_free(tab);
2772 return NULL;
2775 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2776 int check, int update)
2778 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2780 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2782 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2783 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2784 goto error;
2785 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2786 goto error;
2789 if (check) {
2790 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2791 if (v < 0)
2792 goto error;
2793 if (!v)
2794 check_gbr_integer_feasible(cgbr);
2796 if (update)
2797 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2798 return;
2799 error:
2800 isl_tab_free(cgbr->tab);
2801 cgbr->tab = NULL;
2804 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2806 if (!cgbr->tab)
2807 return;
2809 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2810 goto error;
2812 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2813 goto error;
2815 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2816 int i;
2817 unsigned dim;
2818 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2820 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2821 goto error;
2823 for (i = 0; i < dim; ++i) {
2824 if (!isl_int_is_neg(ineq[1 + i]))
2825 continue;
2826 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2829 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2830 goto error;
2832 for (i = 0; i < dim; ++i) {
2833 if (!isl_int_is_neg(ineq[1 + i]))
2834 continue;
2835 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2839 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2840 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2841 goto error;
2842 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2843 goto error;
2846 return;
2847 error:
2848 isl_tab_free(cgbr->tab);
2849 cgbr->tab = NULL;
2852 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2853 int check, int update)
2855 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2857 add_gbr_ineq(cgbr, ineq);
2858 if (!cgbr->tab)
2859 return;
2861 if (check) {
2862 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2863 if (v < 0)
2864 goto error;
2865 if (!v)
2866 check_gbr_integer_feasible(cgbr);
2868 if (update)
2869 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2870 return;
2871 error:
2872 isl_tab_free(cgbr->tab);
2873 cgbr->tab = NULL;
2876 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2878 struct isl_context *context = (struct isl_context *)user;
2879 context_gbr_add_ineq(context, ineq, 0, 0);
2880 return context->op->is_ok(context) ? 0 : -1;
2883 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2884 isl_int *ineq, int strict)
2886 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2887 return tab_ineq_sign(cgbr->tab, ineq, strict);
2890 /* Check whether "ineq" can be added to the tableau without rendering
2891 * it infeasible.
2893 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2895 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2896 struct isl_tab_undo *snap;
2897 struct isl_tab_undo *shifted_snap = NULL;
2898 struct isl_tab_undo *cone_snap = NULL;
2899 int feasible;
2901 if (!cgbr->tab)
2902 return -1;
2904 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2905 return -1;
2907 snap = isl_tab_snap(cgbr->tab);
2908 if (cgbr->shifted)
2909 shifted_snap = isl_tab_snap(cgbr->shifted);
2910 if (cgbr->cone)
2911 cone_snap = isl_tab_snap(cgbr->cone);
2912 add_gbr_ineq(cgbr, ineq);
2913 check_gbr_integer_feasible(cgbr);
2914 if (!cgbr->tab)
2915 return -1;
2916 feasible = !cgbr->tab->empty;
2917 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2918 return -1;
2919 if (shifted_snap) {
2920 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2921 return -1;
2922 } else if (cgbr->shifted) {
2923 isl_tab_free(cgbr->shifted);
2924 cgbr->shifted = NULL;
2926 if (cone_snap) {
2927 if (isl_tab_rollback(cgbr->cone, cone_snap))
2928 return -1;
2929 } else if (cgbr->cone) {
2930 isl_tab_free(cgbr->cone);
2931 cgbr->cone = NULL;
2934 return feasible;
2937 /* Return the column of the last of the variables associated to
2938 * a column that has a non-zero coefficient.
2939 * This function is called in a context where only coefficients
2940 * of parameters or divs can be non-zero.
2942 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2944 int i;
2945 int col;
2947 if (tab->n_var == 0)
2948 return -1;
2950 for (i = tab->n_var - 1; i >= 0; --i) {
2951 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2952 continue;
2953 if (tab->var[i].is_row)
2954 continue;
2955 col = tab->var[i].index;
2956 if (!isl_int_is_zero(p[col]))
2957 return col;
2960 return -1;
2963 /* Look through all the recently added equalities in the context
2964 * to see if we can propagate any of them to the main tableau.
2966 * The newly added equalities in the context are encoded as pairs
2967 * of inequalities starting at inequality "first".
2969 * We tentatively add each of these equalities to the main tableau
2970 * and if this happens to result in a row with a final coefficient
2971 * that is one or negative one, we use it to kill a column
2972 * in the main tableau. Otherwise, we discard the tentatively
2973 * added row.
2975 static void propagate_equalities(struct isl_context_gbr *cgbr,
2976 struct isl_tab *tab, unsigned first)
2978 int i;
2979 struct isl_vec *eq = NULL;
2981 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2982 if (!eq)
2983 goto error;
2985 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2986 goto error;
2988 isl_seq_clr(eq->el + 1 + tab->n_param,
2989 tab->n_var - tab->n_param - tab->n_div);
2990 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2991 int j;
2992 int r;
2993 struct isl_tab_undo *snap;
2994 snap = isl_tab_snap(tab);
2996 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2997 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2998 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2999 tab->n_div);
3001 r = isl_tab_add_row(tab, eq->el);
3002 if (r < 0)
3003 goto error;
3004 r = tab->con[r].index;
3005 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3006 if (j < 0 || j < tab->n_dead ||
3007 !isl_int_is_one(tab->mat->row[r][0]) ||
3008 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3009 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3010 if (isl_tab_rollback(tab, snap) < 0)
3011 goto error;
3012 continue;
3014 if (isl_tab_pivot(tab, r, j) < 0)
3015 goto error;
3016 if (isl_tab_kill_col(tab, j) < 0)
3017 goto error;
3019 if (restore_lexmin(tab) < 0)
3020 goto error;
3023 isl_vec_free(eq);
3025 return;
3026 error:
3027 isl_vec_free(eq);
3028 isl_tab_free(cgbr->tab);
3029 cgbr->tab = NULL;
3032 static int context_gbr_detect_equalities(struct isl_context *context,
3033 struct isl_tab *tab)
3035 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3036 struct isl_ctx *ctx;
3037 unsigned n_ineq;
3039 ctx = cgbr->tab->mat->ctx;
3041 if (!cgbr->cone) {
3042 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3043 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3044 if (!cgbr->cone)
3045 goto error;
3046 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3047 goto error;
3049 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3050 goto error;
3052 n_ineq = cgbr->tab->bmap->n_ineq;
3053 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3054 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3055 propagate_equalities(cgbr, tab, n_ineq);
3057 return 0;
3058 error:
3059 isl_tab_free(cgbr->tab);
3060 cgbr->tab = NULL;
3061 return -1;
3064 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3065 struct isl_vec *div)
3067 return get_div(tab, context, div);
3070 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3072 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3073 if (cgbr->cone) {
3074 int k;
3076 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3077 return -1;
3078 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3079 return -1;
3080 if (isl_tab_allocate_var(cgbr->cone) <0)
3081 return -1;
3083 cgbr->cone->bmap = isl_basic_map_extend_space(cgbr->cone->bmap,
3084 isl_basic_map_get_space(cgbr->cone->bmap), 1, 0, 2);
3085 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3086 if (k < 0)
3087 return -1;
3088 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3089 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3090 return -1;
3092 return context_tab_add_div(cgbr->tab, div,
3093 context_gbr_add_ineq_wrap, context);
3096 static int context_gbr_best_split(struct isl_context *context,
3097 struct isl_tab *tab)
3099 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3100 struct isl_tab_undo *snap;
3101 int r;
3103 snap = isl_tab_snap(cgbr->tab);
3104 r = best_split(tab, cgbr->tab);
3106 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3107 return -1;
3109 return r;
3112 static int context_gbr_is_empty(struct isl_context *context)
3114 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3115 if (!cgbr->tab)
3116 return -1;
3117 return cgbr->tab->empty;
3120 struct isl_gbr_tab_undo {
3121 struct isl_tab_undo *tab_snap;
3122 struct isl_tab_undo *shifted_snap;
3123 struct isl_tab_undo *cone_snap;
3126 static void *context_gbr_save(struct isl_context *context)
3128 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3129 struct isl_gbr_tab_undo *snap;
3131 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3132 if (!snap)
3133 return NULL;
3135 snap->tab_snap = isl_tab_snap(cgbr->tab);
3136 if (isl_tab_save_samples(cgbr->tab) < 0)
3137 goto error;
3139 if (cgbr->shifted)
3140 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3141 else
3142 snap->shifted_snap = NULL;
3144 if (cgbr->cone)
3145 snap->cone_snap = isl_tab_snap(cgbr->cone);
3146 else
3147 snap->cone_snap = NULL;
3149 return snap;
3150 error:
3151 free(snap);
3152 return NULL;
3155 static void context_gbr_restore(struct isl_context *context, void *save)
3157 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3158 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3159 if (!snap)
3160 goto error;
3161 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3162 isl_tab_free(cgbr->tab);
3163 cgbr->tab = NULL;
3166 if (snap->shifted_snap) {
3167 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3168 goto error;
3169 } else if (cgbr->shifted) {
3170 isl_tab_free(cgbr->shifted);
3171 cgbr->shifted = NULL;
3174 if (snap->cone_snap) {
3175 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3176 goto error;
3177 } else if (cgbr->cone) {
3178 isl_tab_free(cgbr->cone);
3179 cgbr->cone = NULL;
3182 free(snap);
3184 return;
3185 error:
3186 free(snap);
3187 isl_tab_free(cgbr->tab);
3188 cgbr->tab = NULL;
3191 static int context_gbr_is_ok(struct isl_context *context)
3193 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3194 return !!cgbr->tab;
3197 static void context_gbr_invalidate(struct isl_context *context)
3199 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3200 isl_tab_free(cgbr->tab);
3201 cgbr->tab = NULL;
3204 static void context_gbr_free(struct isl_context *context)
3206 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3207 isl_tab_free(cgbr->tab);
3208 isl_tab_free(cgbr->shifted);
3209 isl_tab_free(cgbr->cone);
3210 free(cgbr);
3213 struct isl_context_op isl_context_gbr_op = {
3214 context_gbr_detect_nonnegative_parameters,
3215 context_gbr_peek_basic_set,
3216 context_gbr_peek_tab,
3217 context_gbr_add_eq,
3218 context_gbr_add_ineq,
3219 context_gbr_ineq_sign,
3220 context_gbr_test_ineq,
3221 context_gbr_get_div,
3222 context_gbr_add_div,
3223 context_gbr_detect_equalities,
3224 context_gbr_best_split,
3225 context_gbr_is_empty,
3226 context_gbr_is_ok,
3227 context_gbr_save,
3228 context_gbr_restore,
3229 context_gbr_invalidate,
3230 context_gbr_free,
3233 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3235 struct isl_context_gbr *cgbr;
3237 if (!dom)
3238 return NULL;
3240 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3241 if (!cgbr)
3242 return NULL;
3244 cgbr->context.op = &isl_context_gbr_op;
3246 cgbr->shifted = NULL;
3247 cgbr->cone = NULL;
3248 cgbr->tab = isl_tab_from_basic_set(dom);
3249 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3250 if (!cgbr->tab)
3251 goto error;
3252 if (isl_tab_track_bset(cgbr->tab,
3253 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3254 goto error;
3255 check_gbr_integer_feasible(cgbr);
3257 return &cgbr->context;
3258 error:
3259 cgbr->context.op->free(&cgbr->context);
3260 return NULL;
3263 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3265 if (!dom)
3266 return NULL;
3268 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3269 return isl_context_lex_alloc(dom);
3270 else
3271 return isl_context_gbr_alloc(dom);
3274 /* Construct an isl_sol_map structure for accumulating the solution.
3275 * If track_empty is set, then we also keep track of the parts
3276 * of the context where there is no solution.
3277 * If max is set, then we are solving a maximization, rather than
3278 * a minimization problem, which means that the variables in the
3279 * tableau have value "M - x" rather than "M + x".
3281 static struct isl_sol *sol_map_init(struct isl_basic_map *bmap,
3282 struct isl_basic_set *dom, int track_empty, int max)
3284 struct isl_sol_map *sol_map = NULL;
3286 if (!bmap)
3287 goto error;
3289 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3290 if (!sol_map)
3291 goto error;
3293 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3294 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3295 sol_map->sol.dec_level.sol = &sol_map->sol;
3296 sol_map->sol.max = max;
3297 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3298 sol_map->sol.add = &sol_map_add_wrap;
3299 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3300 sol_map->sol.free = &sol_map_free_wrap;
3301 sol_map->map = isl_map_alloc_space(isl_basic_map_get_space(bmap), 1,
3302 ISL_MAP_DISJOINT);
3303 if (!sol_map->map)
3304 goto error;
3306 sol_map->sol.context = isl_context_alloc(dom);
3307 if (!sol_map->sol.context)
3308 goto error;
3310 if (track_empty) {
3311 sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3312 1, ISL_SET_DISJOINT);
3313 if (!sol_map->empty)
3314 goto error;
3317 isl_basic_set_free(dom);
3318 return &sol_map->sol;
3319 error:
3320 isl_basic_set_free(dom);
3321 sol_map_free(sol_map);
3322 return NULL;
3325 /* Check whether all coefficients of (non-parameter) variables
3326 * are non-positive, meaning that no pivots can be performed on the row.
3328 static int is_critical(struct isl_tab *tab, int row)
3330 int j;
3331 unsigned off = 2 + tab->M;
3333 for (j = tab->n_dead; j < tab->n_col; ++j) {
3334 if (tab->col_var[j] >= 0 &&
3335 (tab->col_var[j] < tab->n_param ||
3336 tab->col_var[j] >= tab->n_var - tab->n_div))
3337 continue;
3339 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3340 return 0;
3343 return 1;
3346 /* Check whether the inequality represented by vec is strict over the integers,
3347 * i.e., there are no integer values satisfying the constraint with
3348 * equality. This happens if the gcd of the coefficients is not a divisor
3349 * of the constant term. If so, scale the constraint down by the gcd
3350 * of the coefficients.
3352 static int is_strict(struct isl_vec *vec)
3354 isl_int gcd;
3355 int strict = 0;
3357 isl_int_init(gcd);
3358 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3359 if (!isl_int_is_one(gcd)) {
3360 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3361 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3362 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3364 isl_int_clear(gcd);
3366 return strict;
3369 /* Determine the sign of the given row of the main tableau.
3370 * The result is one of
3371 * isl_tab_row_pos: always non-negative; no pivot needed
3372 * isl_tab_row_neg: always non-positive; pivot
3373 * isl_tab_row_any: can be both positive and negative; split
3375 * We first handle some simple cases
3376 * - the row sign may be known already
3377 * - the row may be obviously non-negative
3378 * - the parametric constant may be equal to that of another row
3379 * for which we know the sign. This sign will be either "pos" or
3380 * "any". If it had been "neg" then we would have pivoted before.
3382 * If none of these cases hold, we check the value of the row for each
3383 * of the currently active samples. Based on the signs of these values
3384 * we make an initial determination of the sign of the row.
3386 * all zero -> unk(nown)
3387 * all non-negative -> pos
3388 * all non-positive -> neg
3389 * both negative and positive -> all
3391 * If we end up with "all", we are done.
3392 * Otherwise, we perform a check for positive and/or negative
3393 * values as follows.
3395 * samples neg unk pos
3396 * <0 ? Y N Y N
3397 * pos any pos
3398 * >0 ? Y N Y N
3399 * any neg any neg
3401 * There is no special sign for "zero", because we can usually treat zero
3402 * as either non-negative or non-positive, whatever works out best.
3403 * However, if the row is "critical", meaning that pivoting is impossible
3404 * then we don't want to limp zero with the non-positive case, because
3405 * then we we would lose the solution for those values of the parameters
3406 * where the value of the row is zero. Instead, we treat 0 as non-negative
3407 * ensuring a split if the row can attain both zero and negative values.
3408 * The same happens when the original constraint was one that could not
3409 * be satisfied with equality by any integer values of the parameters.
3410 * In this case, we normalize the constraint, but then a value of zero
3411 * for the normalized constraint is actually a positive value for the
3412 * original constraint, so again we need to treat zero as non-negative.
3413 * In both these cases, we have the following decision tree instead:
3415 * all non-negative -> pos
3416 * all negative -> neg
3417 * both negative and non-negative -> all
3419 * samples neg pos
3420 * <0 ? Y N
3421 * any pos
3422 * >=0 ? Y N
3423 * any neg
3425 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3426 struct isl_sol *sol, int row)
3428 struct isl_vec *ineq = NULL;
3429 enum isl_tab_row_sign res = isl_tab_row_unknown;
3430 int critical;
3431 int strict;
3432 int row2;
3434 if (tab->row_sign[row] != isl_tab_row_unknown)
3435 return tab->row_sign[row];
3436 if (is_obviously_nonneg(tab, row))
3437 return isl_tab_row_pos;
3438 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3439 if (tab->row_sign[row2] == isl_tab_row_unknown)
3440 continue;
3441 if (identical_parameter_line(tab, row, row2))
3442 return tab->row_sign[row2];
3445 critical = is_critical(tab, row);
3447 ineq = get_row_parameter_ineq(tab, row);
3448 if (!ineq)
3449 goto error;
3451 strict = is_strict(ineq);
3453 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3454 critical || strict);
3456 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3457 /* test for negative values */
3458 int feasible;
3459 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3460 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3462 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3463 if (feasible < 0)
3464 goto error;
3465 if (!feasible)
3466 res = isl_tab_row_pos;
3467 else
3468 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3469 : isl_tab_row_any;
3470 if (res == isl_tab_row_neg) {
3471 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3472 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3476 if (res == isl_tab_row_neg) {
3477 /* test for positive values */
3478 int feasible;
3479 if (!critical && !strict)
3480 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3482 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3483 if (feasible < 0)
3484 goto error;
3485 if (feasible)
3486 res = isl_tab_row_any;
3489 isl_vec_free(ineq);
3490 return res;
3491 error:
3492 isl_vec_free(ineq);
3493 return isl_tab_row_unknown;
3496 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3498 /* Find solutions for values of the parameters that satisfy the given
3499 * inequality.
3501 * We currently take a snapshot of the context tableau that is reset
3502 * when we return from this function, while we make a copy of the main
3503 * tableau, leaving the original main tableau untouched.
3504 * These are fairly arbitrary choices. Making a copy also of the context
3505 * tableau would obviate the need to undo any changes made to it later,
3506 * while taking a snapshot of the main tableau could reduce memory usage.
3507 * If we were to switch to taking a snapshot of the main tableau,
3508 * we would have to keep in mind that we need to save the row signs
3509 * and that we need to do this before saving the current basis
3510 * such that the basis has been restore before we restore the row signs.
3512 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3514 void *saved;
3516 if (!sol->context)
3517 goto error;
3518 saved = sol->context->op->save(sol->context);
3520 tab = isl_tab_dup(tab);
3521 if (!tab)
3522 goto error;
3524 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3526 find_solutions(sol, tab);
3528 if (!sol->error)
3529 sol->context->op->restore(sol->context, saved);
3530 return;
3531 error:
3532 sol->error = 1;
3535 /* Record the absence of solutions for those values of the parameters
3536 * that do not satisfy the given inequality with equality.
3538 static void no_sol_in_strict(struct isl_sol *sol,
3539 struct isl_tab *tab, struct isl_vec *ineq)
3541 int empty;
3542 void *saved;
3544 if (!sol->context || sol->error)
3545 goto error;
3546 saved = sol->context->op->save(sol->context);
3548 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3550 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3551 if (!sol->context)
3552 goto error;
3554 empty = tab->empty;
3555 tab->empty = 1;
3556 sol_add(sol, tab);
3557 tab->empty = empty;
3559 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3561 sol->context->op->restore(sol->context, saved);
3562 return;
3563 error:
3564 sol->error = 1;
3567 /* Compute the lexicographic minimum of the set represented by the main
3568 * tableau "tab" within the context "sol->context_tab".
3569 * On entry the sample value of the main tableau is lexicographically
3570 * less than or equal to this lexicographic minimum.
3571 * Pivots are performed until a feasible point is found, which is then
3572 * necessarily equal to the minimum, or until the tableau is found to
3573 * be infeasible. Some pivots may need to be performed for only some
3574 * feasible values of the context tableau. If so, the context tableau
3575 * is split into a part where the pivot is needed and a part where it is not.
3577 * Whenever we enter the main loop, the main tableau is such that no
3578 * "obvious" pivots need to be performed on it, where "obvious" means
3579 * that the given row can be seen to be negative without looking at
3580 * the context tableau. In particular, for non-parametric problems,
3581 * no pivots need to be performed on the main tableau.
3582 * The caller of find_solutions is responsible for making this property
3583 * hold prior to the first iteration of the loop, while restore_lexmin
3584 * is called before every other iteration.
3586 * Inside the main loop, we first examine the signs of the rows of
3587 * the main tableau within the context of the context tableau.
3588 * If we find a row that is always non-positive for all values of
3589 * the parameters satisfying the context tableau and negative for at
3590 * least one value of the parameters, we perform the appropriate pivot
3591 * and start over. An exception is the case where no pivot can be
3592 * performed on the row. In this case, we require that the sign of
3593 * the row is negative for all values of the parameters (rather than just
3594 * non-positive). This special case is handled inside row_sign, which
3595 * will say that the row can have any sign if it determines that it can
3596 * attain both negative and zero values.
3598 * If we can't find a row that always requires a pivot, but we can find
3599 * one or more rows that require a pivot for some values of the parameters
3600 * (i.e., the row can attain both positive and negative signs), then we split
3601 * the context tableau into two parts, one where we force the sign to be
3602 * non-negative and one where we force is to be negative.
3603 * The non-negative part is handled by a recursive call (through find_in_pos).
3604 * Upon returning from this call, we continue with the negative part and
3605 * perform the required pivot.
3607 * If no such rows can be found, all rows are non-negative and we have
3608 * found a (rational) feasible point. If we only wanted a rational point
3609 * then we are done.
3610 * Otherwise, we check if all values of the sample point of the tableau
3611 * are integral for the variables. If so, we have found the minimal
3612 * integral point and we are done.
3613 * If the sample point is not integral, then we need to make a distinction
3614 * based on whether the constant term is non-integral or the coefficients
3615 * of the parameters. Furthermore, in order to decide how to handle
3616 * the non-integrality, we also need to know whether the coefficients
3617 * of the other columns in the tableau are integral. This leads
3618 * to the following table. The first two rows do not correspond
3619 * to a non-integral sample point and are only mentioned for completeness.
3621 * constant parameters other
3623 * int int int |
3624 * int int rat | -> no problem
3626 * rat int int -> fail
3628 * rat int rat -> cut
3630 * int rat rat |
3631 * rat rat rat | -> parametric cut
3633 * int rat int |
3634 * rat rat int | -> split context
3636 * If the parametric constant is completely integral, then there is nothing
3637 * to be done. If the constant term is non-integral, but all the other
3638 * coefficient are integral, then there is nothing that can be done
3639 * and the tableau has no integral solution.
3640 * If, on the other hand, one or more of the other columns have rational
3641 * coefficients, but the parameter coefficients are all integral, then
3642 * we can perform a regular (non-parametric) cut.
3643 * Finally, if there is any parameter coefficient that is non-integral,
3644 * then we need to involve the context tableau. There are two cases here.
3645 * If at least one other column has a rational coefficient, then we
3646 * can perform a parametric cut in the main tableau by adding a new
3647 * integer division in the context tableau.
3648 * If all other columns have integral coefficients, then we need to
3649 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3650 * is always integral. We do this by introducing an integer division
3651 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3652 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3653 * Since q is expressed in the tableau as
3654 * c + \sum a_i y_i - m q >= 0
3655 * -c - \sum a_i y_i + m q + m - 1 >= 0
3656 * it is sufficient to add the inequality
3657 * -c - \sum a_i y_i + m q >= 0
3658 * In the part of the context where this inequality does not hold, the
3659 * main tableau is marked as being empty.
3661 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3663 struct isl_context *context;
3664 int r;
3666 if (!tab || sol->error)
3667 goto error;
3669 context = sol->context;
3671 if (tab->empty)
3672 goto done;
3673 if (context->op->is_empty(context))
3674 goto done;
3676 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3677 int flags;
3678 int row;
3679 enum isl_tab_row_sign sgn;
3680 int split = -1;
3681 int n_split = 0;
3683 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3684 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3685 continue;
3686 sgn = row_sign(tab, sol, row);
3687 if (!sgn)
3688 goto error;
3689 tab->row_sign[row] = sgn;
3690 if (sgn == isl_tab_row_any)
3691 n_split++;
3692 if (sgn == isl_tab_row_any && split == -1)
3693 split = row;
3694 if (sgn == isl_tab_row_neg)
3695 break;
3697 if (row < tab->n_row)
3698 continue;
3699 if (split != -1) {
3700 struct isl_vec *ineq;
3701 if (n_split != 1)
3702 split = context->op->best_split(context, tab);
3703 if (split < 0)
3704 goto error;
3705 ineq = get_row_parameter_ineq(tab, split);
3706 if (!ineq)
3707 goto error;
3708 is_strict(ineq);
3709 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3710 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3711 continue;
3712 if (tab->row_sign[row] == isl_tab_row_any)
3713 tab->row_sign[row] = isl_tab_row_unknown;
3715 tab->row_sign[split] = isl_tab_row_pos;
3716 sol_inc_level(sol);
3717 find_in_pos(sol, tab, ineq->el);
3718 tab->row_sign[split] = isl_tab_row_neg;
3719 row = split;
3720 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3721 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3722 if (!sol->error)
3723 context->op->add_ineq(context, ineq->el, 0, 1);
3724 isl_vec_free(ineq);
3725 if (sol->error)
3726 goto error;
3727 continue;
3729 if (tab->rational)
3730 break;
3731 row = first_non_integer_row(tab, &flags);
3732 if (row < 0)
3733 break;
3734 if (ISL_FL_ISSET(flags, I_PAR)) {
3735 if (ISL_FL_ISSET(flags, I_VAR)) {
3736 if (isl_tab_mark_empty(tab) < 0)
3737 goto error;
3738 break;
3740 row = add_cut(tab, row);
3741 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3742 struct isl_vec *div;
3743 struct isl_vec *ineq;
3744 int d;
3745 div = get_row_split_div(tab, row);
3746 if (!div)
3747 goto error;
3748 d = context->op->get_div(context, tab, div);
3749 isl_vec_free(div);
3750 if (d < 0)
3751 goto error;
3752 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3753 if (!ineq)
3754 goto error;
3755 sol_inc_level(sol);
3756 no_sol_in_strict(sol, tab, ineq);
3757 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3758 context->op->add_ineq(context, ineq->el, 1, 1);
3759 isl_vec_free(ineq);
3760 if (sol->error || !context->op->is_ok(context))
3761 goto error;
3762 tab = set_row_cst_to_div(tab, row, d);
3763 if (context->op->is_empty(context))
3764 break;
3765 } else
3766 row = add_parametric_cut(tab, row, context);
3767 if (row < 0)
3768 goto error;
3770 if (r < 0)
3771 goto error;
3772 done:
3773 sol_add(sol, tab);
3774 isl_tab_free(tab);
3775 return;
3776 error:
3777 isl_tab_free(tab);
3778 sol->error = 1;
3781 /* Compute the lexicographic minimum of the set represented by the main
3782 * tableau "tab" within the context "sol->context_tab".
3784 * As a preprocessing step, we first transfer all the purely parametric
3785 * equalities from the main tableau to the context tableau, i.e.,
3786 * parameters that have been pivoted to a row.
3787 * These equalities are ignored by the main algorithm, because the
3788 * corresponding rows may not be marked as being non-negative.
3789 * In parts of the context where the added equality does not hold,
3790 * the main tableau is marked as being empty.
3792 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3794 int row;
3796 if (!tab)
3797 goto error;
3799 sol->level = 0;
3801 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3802 int p;
3803 struct isl_vec *eq;
3805 if (tab->row_var[row] < 0)
3806 continue;
3807 if (tab->row_var[row] >= tab->n_param &&
3808 tab->row_var[row] < tab->n_var - tab->n_div)
3809 continue;
3810 if (tab->row_var[row] < tab->n_param)
3811 p = tab->row_var[row];
3812 else
3813 p = tab->row_var[row]
3814 + tab->n_param - (tab->n_var - tab->n_div);
3816 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3817 if (!eq)
3818 goto error;
3819 get_row_parameter_line(tab, row, eq->el);
3820 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3821 eq = isl_vec_normalize(eq);
3823 sol_inc_level(sol);
3824 no_sol_in_strict(sol, tab, eq);
3826 isl_seq_neg(eq->el, eq->el, eq->size);
3827 sol_inc_level(sol);
3828 no_sol_in_strict(sol, tab, eq);
3829 isl_seq_neg(eq->el, eq->el, eq->size);
3831 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3833 isl_vec_free(eq);
3835 if (isl_tab_mark_redundant(tab, row) < 0)
3836 goto error;
3838 if (sol->context->op->is_empty(sol->context))
3839 break;
3841 row = tab->n_redundant - 1;
3844 find_solutions(sol, tab);
3846 sol->level = 0;
3847 sol_pop(sol);
3849 return;
3850 error:
3851 isl_tab_free(tab);
3852 sol->error = 1;
3855 /* Check if integer division "div" of "dom" also occurs in "bmap".
3856 * If so, return its position within the divs.
3857 * If not, return -1.
3859 static int find_context_div(struct isl_basic_map *bmap,
3860 struct isl_basic_set *dom, unsigned div)
3862 int i;
3863 unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all);
3864 unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all);
3866 if (isl_int_is_zero(dom->div[div][0]))
3867 return -1;
3868 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3869 return -1;
3871 for (i = 0; i < bmap->n_div; ++i) {
3872 if (isl_int_is_zero(bmap->div[i][0]))
3873 continue;
3874 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3875 (b_dim - d_dim) + bmap->n_div) != -1)
3876 continue;
3877 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3878 return i;
3880 return -1;
3883 /* The correspondence between the variables in the main tableau,
3884 * the context tableau, and the input map and domain is as follows.
3885 * The first n_param and the last n_div variables of the main tableau
3886 * form the variables of the context tableau.
3887 * In the basic map, these n_param variables correspond to the
3888 * parameters and the input dimensions. In the domain, they correspond
3889 * to the parameters and the set dimensions.
3890 * The n_div variables correspond to the integer divisions in the domain.
3891 * To ensure that everything lines up, we may need to copy some of the
3892 * integer divisions of the domain to the map. These have to be placed
3893 * in the same order as those in the context and they have to be placed
3894 * after any other integer divisions that the map may have.
3895 * This function performs the required reordering.
3897 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3898 struct isl_basic_set *dom)
3900 int i;
3901 int common = 0;
3902 int other;
3904 for (i = 0; i < dom->n_div; ++i)
3905 if (find_context_div(bmap, dom, i) != -1)
3906 common++;
3907 other = bmap->n_div - common;
3908 if (dom->n_div - common > 0) {
3909 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
3910 dom->n_div - common, 0, 0);
3911 if (!bmap)
3912 return NULL;
3914 for (i = 0; i < dom->n_div; ++i) {
3915 int pos = find_context_div(bmap, dom, i);
3916 if (pos < 0) {
3917 pos = isl_basic_map_alloc_div(bmap);
3918 if (pos < 0)
3919 goto error;
3920 isl_int_set_si(bmap->div[pos][0], 0);
3922 if (pos != other + i)
3923 isl_basic_map_swap_div(bmap, pos, other + i);
3925 return bmap;
3926 error:
3927 isl_basic_map_free(bmap);
3928 return NULL;
3931 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3932 * some obvious symmetries.
3934 * We make sure the divs in the domain are properly ordered,
3935 * because they will be added one by one in the given order
3936 * during the construction of the solution map.
3938 static struct isl_sol *basic_map_partial_lexopt_base(
3939 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3940 __isl_give isl_set **empty, int max,
3941 struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
3942 __isl_take isl_basic_set *dom, int track_empty, int max))
3944 struct isl_tab *tab;
3945 struct isl_sol *sol = NULL;
3946 struct isl_context *context;
3948 if (dom->n_div) {
3949 dom = isl_basic_set_order_divs(dom);
3950 bmap = align_context_divs(bmap, dom);
3952 sol = init(bmap, dom, !!empty, max);
3953 if (!sol)
3954 goto error;
3956 context = sol->context;
3957 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
3958 /* nothing */;
3959 else if (isl_basic_map_plain_is_empty(bmap)) {
3960 if (sol->add_empty)
3961 sol->add_empty(sol,
3962 isl_basic_set_copy(context->op->peek_basic_set(context)));
3963 } else {
3964 tab = tab_for_lexmin(bmap,
3965 context->op->peek_basic_set(context), 1, max);
3966 tab = context->op->detect_nonnegative_parameters(context, tab);
3967 find_solutions_main(sol, tab);
3969 if (sol->error)
3970 goto error;
3972 isl_basic_map_free(bmap);
3973 return sol;
3974 error:
3975 sol_free(sol);
3976 isl_basic_map_free(bmap);
3977 return NULL;
3980 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3981 * some obvious symmetries.
3983 * We call basic_map_partial_lexopt_base and extract the results.
3985 static __isl_give isl_map *basic_map_partial_lexopt_base_map(
3986 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3987 __isl_give isl_set **empty, int max)
3989 isl_map *result = NULL;
3990 struct isl_sol *sol;
3991 struct isl_sol_map *sol_map;
3993 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
3994 &sol_map_init);
3995 if (!sol)
3996 return NULL;
3997 sol_map = (struct isl_sol_map *) sol;
3999 result = isl_map_copy(sol_map->map);
4000 if (empty)
4001 *empty = isl_set_copy(sol_map->empty);
4002 sol_free(&sol_map->sol);
4003 return result;
4006 /* Structure used during detection of parallel constraints.
4007 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4008 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4009 * val: the coefficients of the output variables
4011 struct isl_constraint_equal_info {
4012 isl_basic_map *bmap;
4013 unsigned n_in;
4014 unsigned n_out;
4015 isl_int *val;
4018 /* Check whether the coefficients of the output variables
4019 * of the constraint in "entry" are equal to info->val.
4021 static int constraint_equal(const void *entry, const void *val)
4023 isl_int **row = (isl_int **)entry;
4024 const struct isl_constraint_equal_info *info = val;
4026 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4029 /* Check whether "bmap" has a pair of constraints that have
4030 * the same coefficients for the output variables.
4031 * Note that the coefficients of the existentially quantified
4032 * variables need to be zero since the existentially quantified
4033 * of the result are usually not the same as those of the input.
4034 * the isl_dim_out and isl_dim_div dimensions.
4035 * If so, return 1 and return the row indices of the two constraints
4036 * in *first and *second.
4038 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4039 int *first, int *second)
4041 int i;
4042 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4043 struct isl_hash_table *table = NULL;
4044 struct isl_hash_table_entry *entry;
4045 struct isl_constraint_equal_info info;
4046 unsigned n_out;
4047 unsigned n_div;
4049 ctx = isl_basic_map_get_ctx(bmap);
4050 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4051 if (!table)
4052 goto error;
4054 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4055 isl_basic_map_dim(bmap, isl_dim_in);
4056 info.bmap = bmap;
4057 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4058 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4059 info.n_out = n_out + n_div;
4060 for (i = 0; i < bmap->n_ineq; ++i) {
4061 uint32_t hash;
4063 info.val = bmap->ineq[i] + 1 + info.n_in;
4064 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4065 continue;
4066 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4067 continue;
4068 hash = isl_seq_get_hash(info.val, info.n_out);
4069 entry = isl_hash_table_find(ctx, table, hash,
4070 constraint_equal, &info, 1);
4071 if (!entry)
4072 goto error;
4073 if (entry->data)
4074 break;
4075 entry->data = &bmap->ineq[i];
4078 if (i < bmap->n_ineq) {
4079 *first = ((isl_int **)entry->data) - bmap->ineq;
4080 *second = i;
4083 isl_hash_table_free(ctx, table);
4085 return i < bmap->n_ineq;
4086 error:
4087 isl_hash_table_free(ctx, table);
4088 return -1;
4091 /* Given a set of upper bounds in "var", add constraints to "bset"
4092 * that make the i-th bound smallest.
4094 * In particular, if there are n bounds b_i, then add the constraints
4096 * b_i <= b_j for j > i
4097 * b_i < b_j for j < i
4099 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4100 __isl_keep isl_mat *var, int i)
4102 isl_ctx *ctx;
4103 int j, k;
4105 ctx = isl_mat_get_ctx(var);
4107 for (j = 0; j < var->n_row; ++j) {
4108 if (j == i)
4109 continue;
4110 k = isl_basic_set_alloc_inequality(bset);
4111 if (k < 0)
4112 goto error;
4113 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4114 ctx->negone, var->row[i], var->n_col);
4115 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4116 if (j < i)
4117 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4120 bset = isl_basic_set_finalize(bset);
4122 return bset;
4123 error:
4124 isl_basic_set_free(bset);
4125 return NULL;
4128 /* Given a set of upper bounds on the last "input" variable m,
4129 * construct a set that assigns the minimal upper bound to m, i.e.,
4130 * construct a set that divides the space into cells where one
4131 * of the upper bounds is smaller than all the others and assign
4132 * this upper bound to m.
4134 * In particular, if there are n bounds b_i, then the result
4135 * consists of n basic sets, each one of the form
4137 * m = b_i
4138 * b_i <= b_j for j > i
4139 * b_i < b_j for j < i
4141 static __isl_give isl_set *set_minimum(__isl_take isl_space *dim,
4142 __isl_take isl_mat *var)
4144 int i, k;
4145 isl_basic_set *bset = NULL;
4146 isl_ctx *ctx;
4147 isl_set *set = NULL;
4149 if (!dim || !var)
4150 goto error;
4152 ctx = isl_space_get_ctx(dim);
4153 set = isl_set_alloc_space(isl_space_copy(dim),
4154 var->n_row, ISL_SET_DISJOINT);
4156 for (i = 0; i < var->n_row; ++i) {
4157 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0,
4158 1, var->n_row - 1);
4159 k = isl_basic_set_alloc_equality(bset);
4160 if (k < 0)
4161 goto error;
4162 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4163 isl_int_set_si(bset->eq[k][var->n_col], -1);
4164 bset = select_minimum(bset, var, i);
4165 set = isl_set_add_basic_set(set, bset);
4168 isl_space_free(dim);
4169 isl_mat_free(var);
4170 return set;
4171 error:
4172 isl_basic_set_free(bset);
4173 isl_set_free(set);
4174 isl_space_free(dim);
4175 isl_mat_free(var);
4176 return NULL;
4179 /* Given that the last input variable of "bmap" represents the minimum
4180 * of the bounds in "cst", check whether we need to split the domain
4181 * based on which bound attains the minimum.
4183 * A split is needed when the minimum appears in an integer division
4184 * or in an equality. Otherwise, it is only needed if it appears in
4185 * an upper bound that is different from the upper bounds on which it
4186 * is defined.
4188 static int need_split_basic_map(__isl_keep isl_basic_map *bmap,
4189 __isl_keep isl_mat *cst)
4191 int i, j;
4192 unsigned total;
4193 unsigned pos;
4195 pos = cst->n_col - 1;
4196 total = isl_basic_map_dim(bmap, isl_dim_all);
4198 for (i = 0; i < bmap->n_div; ++i)
4199 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4200 return 1;
4202 for (i = 0; i < bmap->n_eq; ++i)
4203 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4204 return 1;
4206 for (i = 0; i < bmap->n_ineq; ++i) {
4207 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4208 continue;
4209 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4210 return 1;
4211 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4212 total - pos - 1) >= 0)
4213 return 1;
4215 for (j = 0; j < cst->n_row; ++j)
4216 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4217 break;
4218 if (j >= cst->n_row)
4219 return 1;
4222 return 0;
4225 /* Given that the last set variable of "bset" represents the minimum
4226 * of the bounds in "cst", check whether we need to split the domain
4227 * based on which bound attains the minimum.
4229 * We simply call need_split_basic_map here. This is safe because
4230 * the position of the minimum is computed from "cst" and not
4231 * from "bmap".
4233 static int need_split_basic_set(__isl_keep isl_basic_set *bset,
4234 __isl_keep isl_mat *cst)
4236 return need_split_basic_map((isl_basic_map *)bset, cst);
4239 /* Given that the last set variable of "set" represents the minimum
4240 * of the bounds in "cst", check whether we need to split the domain
4241 * based on which bound attains the minimum.
4243 static int need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4245 int i;
4247 for (i = 0; i < set->n; ++i)
4248 if (need_split_basic_set(set->p[i], cst))
4249 return 1;
4251 return 0;
4254 /* Given a set of which the last set variable is the minimum
4255 * of the bounds in "cst", split each basic set in the set
4256 * in pieces where one of the bounds is (strictly) smaller than the others.
4257 * This subdivision is given in "min_expr".
4258 * The variable is subsequently projected out.
4260 * We only do the split when it is needed.
4261 * For example if the last input variable m = min(a,b) and the only
4262 * constraints in the given basic set are lower bounds on m,
4263 * i.e., l <= m = min(a,b), then we can simply project out m
4264 * to obtain l <= a and l <= b, without having to split on whether
4265 * m is equal to a or b.
4267 static __isl_give isl_set *split(__isl_take isl_set *empty,
4268 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4270 int n_in;
4271 int i;
4272 isl_space *dim;
4273 isl_set *res;
4275 if (!empty || !min_expr || !cst)
4276 goto error;
4278 n_in = isl_set_dim(empty, isl_dim_set);
4279 dim = isl_set_get_space(empty);
4280 dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1);
4281 res = isl_set_empty(dim);
4283 for (i = 0; i < empty->n; ++i) {
4284 isl_set *set;
4286 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4287 if (need_split_basic_set(empty->p[i], cst))
4288 set = isl_set_intersect(set, isl_set_copy(min_expr));
4289 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4291 res = isl_set_union_disjoint(res, set);
4294 isl_set_free(empty);
4295 isl_set_free(min_expr);
4296 isl_mat_free(cst);
4297 return res;
4298 error:
4299 isl_set_free(empty);
4300 isl_set_free(min_expr);
4301 isl_mat_free(cst);
4302 return NULL;
4305 /* Given a map of which the last input variable is the minimum
4306 * of the bounds in "cst", split each basic set in the set
4307 * in pieces where one of the bounds is (strictly) smaller than the others.
4308 * This subdivision is given in "min_expr".
4309 * The variable is subsequently projected out.
4311 * The implementation is essentially the same as that of "split".
4313 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4314 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4316 int n_in;
4317 int i;
4318 isl_space *dim;
4319 isl_map *res;
4321 if (!opt || !min_expr || !cst)
4322 goto error;
4324 n_in = isl_map_dim(opt, isl_dim_in);
4325 dim = isl_map_get_space(opt);
4326 dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1);
4327 res = isl_map_empty(dim);
4329 for (i = 0; i < opt->n; ++i) {
4330 isl_map *map;
4332 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4333 if (need_split_basic_map(opt->p[i], cst))
4334 map = isl_map_intersect_domain(map,
4335 isl_set_copy(min_expr));
4336 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4338 res = isl_map_union_disjoint(res, map);
4341 isl_map_free(opt);
4342 isl_set_free(min_expr);
4343 isl_mat_free(cst);
4344 return res;
4345 error:
4346 isl_map_free(opt);
4347 isl_set_free(min_expr);
4348 isl_mat_free(cst);
4349 return NULL;
4352 static __isl_give isl_map *basic_map_partial_lexopt(
4353 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4354 __isl_give isl_set **empty, int max);
4356 union isl_lex_res {
4357 void *p;
4358 isl_map *map;
4359 isl_pw_multi_aff *pma;
4362 /* This function is called from basic_map_partial_lexopt_symm.
4363 * The last variable of "bmap" and "dom" corresponds to the minimum
4364 * of the bounds in "cst". "map_space" is the space of the original
4365 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4366 * is the space of the original domain.
4368 * We recursively call basic_map_partial_lexopt and then plug in
4369 * the definition of the minimum in the result.
4371 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_map_core(
4372 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4373 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4374 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
4376 isl_map *opt;
4377 isl_set *min_expr;
4378 union isl_lex_res res;
4380 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4382 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4384 if (empty) {
4385 *empty = split(*empty,
4386 isl_set_copy(min_expr), isl_mat_copy(cst));
4387 *empty = isl_set_reset_space(*empty, set_space);
4390 opt = split_domain(opt, min_expr, cst);
4391 opt = isl_map_reset_space(opt, map_space);
4393 res.map = opt;
4394 return res;
4397 /* Given a basic map with at least two parallel constraints (as found
4398 * by the function parallel_constraints), first look for more constraints
4399 * parallel to the two constraint and replace the found list of parallel
4400 * constraints by a single constraint with as "input" part the minimum
4401 * of the input parts of the list of constraints. Then, recursively call
4402 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4403 * and plug in the definition of the minimum in the result.
4405 * More specifically, given a set of constraints
4407 * a x + b_i(p) >= 0
4409 * Replace this set by a single constraint
4411 * a x + u >= 0
4413 * with u a new parameter with constraints
4415 * u <= b_i(p)
4417 * Any solution to the new system is also a solution for the original system
4418 * since
4420 * a x >= -u >= -b_i(p)
4422 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4423 * therefore be plugged into the solution.
4425 static union isl_lex_res basic_map_partial_lexopt_symm(
4426 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4427 __isl_give isl_set **empty, int max, int first, int second,
4428 __isl_give union isl_lex_res (*core)(__isl_take isl_basic_map *bmap,
4429 __isl_take isl_basic_set *dom,
4430 __isl_give isl_set **empty,
4431 int max, __isl_take isl_mat *cst,
4432 __isl_take isl_space *map_space,
4433 __isl_take isl_space *set_space))
4435 int i, n, k;
4436 int *list = NULL;
4437 unsigned n_in, n_out, n_div;
4438 isl_ctx *ctx;
4439 isl_vec *var = NULL;
4440 isl_mat *cst = NULL;
4441 isl_space *map_space, *set_space;
4442 union isl_lex_res res;
4444 map_space = isl_basic_map_get_space(bmap);
4445 set_space = empty ? isl_basic_set_get_space(dom) : NULL;
4447 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4448 isl_basic_map_dim(bmap, isl_dim_in);
4449 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4451 ctx = isl_basic_map_get_ctx(bmap);
4452 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4453 var = isl_vec_alloc(ctx, n_out);
4454 if (!list || !var)
4455 goto error;
4457 list[0] = first;
4458 list[1] = second;
4459 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4460 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4461 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4462 list[n++] = i;
4465 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4466 if (!cst)
4467 goto error;
4469 for (i = 0; i < n; ++i)
4470 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4472 bmap = isl_basic_map_cow(bmap);
4473 if (!bmap)
4474 goto error;
4475 for (i = n - 1; i >= 0; --i)
4476 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4477 goto error;
4479 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4480 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4481 k = isl_basic_map_alloc_inequality(bmap);
4482 if (k < 0)
4483 goto error;
4484 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4485 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4486 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4487 bmap = isl_basic_map_finalize(bmap);
4489 n_div = isl_basic_set_dim(dom, isl_dim_div);
4490 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4491 dom = isl_basic_set_extend_constraints(dom, 0, n);
4492 for (i = 0; i < n; ++i) {
4493 k = isl_basic_set_alloc_inequality(dom);
4494 if (k < 0)
4495 goto error;
4496 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4497 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4498 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4501 isl_vec_free(var);
4502 free(list);
4504 return core(bmap, dom, empty, max, cst, map_space, set_space);
4505 error:
4506 isl_space_free(map_space);
4507 isl_space_free(set_space);
4508 isl_mat_free(cst);
4509 isl_vec_free(var);
4510 free(list);
4511 isl_basic_set_free(dom);
4512 isl_basic_map_free(bmap);
4513 res.p = NULL;
4514 return res;
4517 static __isl_give isl_map *basic_map_partial_lexopt_symm_map(
4518 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4519 __isl_give isl_set **empty, int max, int first, int second)
4521 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4522 first, second, &basic_map_partial_lexopt_symm_map_core).map;
4525 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4526 * equalities and removing redundant constraints.
4528 * We first check if there are any parallel constraints (left).
4529 * If not, we are in the base case.
4530 * If there are parallel constraints, we replace them by a single
4531 * constraint in basic_map_partial_lexopt_symm and then call
4532 * this function recursively to look for more parallel constraints.
4534 static __isl_give isl_map *basic_map_partial_lexopt(
4535 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4536 __isl_give isl_set **empty, int max)
4538 int par = 0;
4539 int first, second;
4541 if (!bmap)
4542 goto error;
4544 if (bmap->ctx->opt->pip_symmetry)
4545 par = parallel_constraints(bmap, &first, &second);
4546 if (par < 0)
4547 goto error;
4548 if (!par)
4549 return basic_map_partial_lexopt_base_map(bmap, dom, empty, max);
4551 return basic_map_partial_lexopt_symm_map(bmap, dom, empty, max,
4552 first, second);
4553 error:
4554 isl_basic_set_free(dom);
4555 isl_basic_map_free(bmap);
4556 return NULL;
4559 /* Compute the lexicographic minimum (or maximum if "max" is set)
4560 * of "bmap" over the domain "dom" and return the result as a map.
4561 * If "empty" is not NULL, then *empty is assigned a set that
4562 * contains those parts of the domain where there is no solution.
4563 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4564 * then we compute the rational optimum. Otherwise, we compute
4565 * the integral optimum.
4567 * We perform some preprocessing. As the PILP solver does not
4568 * handle implicit equalities very well, we first make sure all
4569 * the equalities are explicitly available.
4571 * We also add context constraints to the basic map and remove
4572 * redundant constraints. This is only needed because of the
4573 * way we handle simple symmetries. In particular, we currently look
4574 * for symmetries on the constraints, before we set up the main tableau.
4575 * It is then no good to look for symmetries on possibly redundant constraints.
4577 struct isl_map *isl_tab_basic_map_partial_lexopt(
4578 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4579 struct isl_set **empty, int max)
4581 if (empty)
4582 *empty = NULL;
4583 if (!bmap || !dom)
4584 goto error;
4586 isl_assert(bmap->ctx,
4587 isl_basic_map_compatible_domain(bmap, dom), goto error);
4589 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4590 return basic_map_partial_lexopt(bmap, dom, empty, max);
4592 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4593 bmap = isl_basic_map_detect_equalities(bmap);
4594 bmap = isl_basic_map_remove_redundancies(bmap);
4596 return basic_map_partial_lexopt(bmap, dom, empty, max);
4597 error:
4598 isl_basic_set_free(dom);
4599 isl_basic_map_free(bmap);
4600 return NULL;
4603 struct isl_sol_for {
4604 struct isl_sol sol;
4605 int (*fn)(__isl_take isl_basic_set *dom,
4606 __isl_take isl_aff_list *list, void *user);
4607 void *user;
4610 static void sol_for_free(struct isl_sol_for *sol_for)
4612 if (sol_for->sol.context)
4613 sol_for->sol.context->op->free(sol_for->sol.context);
4614 free(sol_for);
4617 static void sol_for_free_wrap(struct isl_sol *sol)
4619 sol_for_free((struct isl_sol_for *)sol);
4622 /* Add the solution identified by the tableau and the context tableau.
4624 * See documentation of sol_add for more details.
4626 * Instead of constructing a basic map, this function calls a user
4627 * defined function with the current context as a basic set and
4628 * a list of affine expressions representing the relation between
4629 * the input and output. The space over which the affine expressions
4630 * are defined is the same as that of the domain. The number of
4631 * affine expressions in the list is equal to the number of output variables.
4633 static void sol_for_add(struct isl_sol_for *sol,
4634 struct isl_basic_set *dom, struct isl_mat *M)
4636 int i;
4637 isl_ctx *ctx;
4638 isl_local_space *ls;
4639 isl_aff *aff;
4640 isl_aff_list *list;
4642 if (sol->sol.error || !dom || !M)
4643 goto error;
4645 ctx = isl_basic_set_get_ctx(dom);
4646 ls = isl_basic_set_get_local_space(dom);
4647 list = isl_aff_list_alloc(ctx, M->n_row - 1);
4648 for (i = 1; i < M->n_row; ++i) {
4649 aff = isl_aff_alloc(isl_local_space_copy(ls));
4650 if (aff) {
4651 isl_int_set(aff->v->el[0], M->row[0][0]);
4652 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
4654 list = isl_aff_list_add(list, aff);
4656 isl_local_space_free(ls);
4658 dom = isl_basic_set_finalize(dom);
4660 if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0)
4661 goto error;
4663 isl_basic_set_free(dom);
4664 isl_mat_free(M);
4665 return;
4666 error:
4667 isl_basic_set_free(dom);
4668 isl_mat_free(M);
4669 sol->sol.error = 1;
4672 static void sol_for_add_wrap(struct isl_sol *sol,
4673 struct isl_basic_set *dom, struct isl_mat *M)
4675 sol_for_add((struct isl_sol_for *)sol, dom, M);
4678 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4679 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4680 void *user),
4681 void *user)
4683 struct isl_sol_for *sol_for = NULL;
4684 isl_space *dom_dim;
4685 struct isl_basic_set *dom = NULL;
4687 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4688 if (!sol_for)
4689 goto error;
4691 dom_dim = isl_space_domain(isl_space_copy(bmap->dim));
4692 dom = isl_basic_set_universe(dom_dim);
4694 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4695 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4696 sol_for->sol.dec_level.sol = &sol_for->sol;
4697 sol_for->fn = fn;
4698 sol_for->user = user;
4699 sol_for->sol.max = max;
4700 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4701 sol_for->sol.add = &sol_for_add_wrap;
4702 sol_for->sol.add_empty = NULL;
4703 sol_for->sol.free = &sol_for_free_wrap;
4705 sol_for->sol.context = isl_context_alloc(dom);
4706 if (!sol_for->sol.context)
4707 goto error;
4709 isl_basic_set_free(dom);
4710 return sol_for;
4711 error:
4712 isl_basic_set_free(dom);
4713 sol_for_free(sol_for);
4714 return NULL;
4717 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4718 struct isl_tab *tab)
4720 find_solutions_main(&sol_for->sol, tab);
4723 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4724 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4725 void *user),
4726 void *user)
4728 struct isl_sol_for *sol_for = NULL;
4730 bmap = isl_basic_map_copy(bmap);
4731 if (!bmap)
4732 return -1;
4734 bmap = isl_basic_map_detect_equalities(bmap);
4735 sol_for = sol_for_init(bmap, max, fn, user);
4737 if (isl_basic_map_plain_is_empty(bmap))
4738 /* nothing */;
4739 else {
4740 struct isl_tab *tab;
4741 struct isl_context *context = sol_for->sol.context;
4742 tab = tab_for_lexmin(bmap,
4743 context->op->peek_basic_set(context), 1, max);
4744 tab = context->op->detect_nonnegative_parameters(context, tab);
4745 sol_for_find_solutions(sol_for, tab);
4746 if (sol_for->sol.error)
4747 goto error;
4750 sol_free(&sol_for->sol);
4751 isl_basic_map_free(bmap);
4752 return 0;
4753 error:
4754 sol_free(&sol_for->sol);
4755 isl_basic_map_free(bmap);
4756 return -1;
4759 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max,
4760 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4761 void *user),
4762 void *user)
4764 return isl_basic_map_foreach_lexopt(bset, max, fn, user);
4767 /* Check if the given sequence of len variables starting at pos
4768 * represents a trivial (i.e., zero) solution.
4769 * The variables are assumed to be non-negative and to come in pairs,
4770 * with each pair representing a variable of unrestricted sign.
4771 * The solution is trivial if each such pair in the sequence consists
4772 * of two identical values, meaning that the variable being represented
4773 * has value zero.
4775 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4777 int i;
4779 if (len == 0)
4780 return 0;
4782 for (i = 0; i < len; i += 2) {
4783 int neg_row;
4784 int pos_row;
4786 neg_row = tab->var[pos + i].is_row ?
4787 tab->var[pos + i].index : -1;
4788 pos_row = tab->var[pos + i + 1].is_row ?
4789 tab->var[pos + i + 1].index : -1;
4791 if ((neg_row < 0 ||
4792 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4793 (pos_row < 0 ||
4794 isl_int_is_zero(tab->mat->row[pos_row][1])))
4795 continue;
4797 if (neg_row < 0 || pos_row < 0)
4798 return 0;
4799 if (isl_int_ne(tab->mat->row[neg_row][1],
4800 tab->mat->row[pos_row][1]))
4801 return 0;
4804 return 1;
4807 /* Return the index of the first trivial region or -1 if all regions
4808 * are non-trivial.
4810 static int first_trivial_region(struct isl_tab *tab,
4811 int n_region, struct isl_region *region)
4813 int i;
4815 for (i = 0; i < n_region; ++i) {
4816 if (region_is_trivial(tab, region[i].pos, region[i].len))
4817 return i;
4820 return -1;
4823 /* Check if the solution is optimal, i.e., whether the first
4824 * n_op entries are zero.
4826 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4828 int i;
4830 for (i = 0; i < n_op; ++i)
4831 if (!isl_int_is_zero(sol->el[1 + i]))
4832 return 0;
4833 return 1;
4836 /* Add constraints to "tab" that ensure that any solution is significantly
4837 * better that that represented by "sol". That is, find the first
4838 * relevant (within first n_op) non-zero coefficient and force it (along
4839 * with all previous coefficients) to be zero.
4840 * If the solution is already optimal (all relevant coefficients are zero),
4841 * then just mark the table as empty.
4843 static int force_better_solution(struct isl_tab *tab,
4844 __isl_keep isl_vec *sol, int n_op)
4846 int i;
4847 isl_ctx *ctx;
4848 isl_vec *v = NULL;
4850 if (!sol)
4851 return -1;
4853 for (i = 0; i < n_op; ++i)
4854 if (!isl_int_is_zero(sol->el[1 + i]))
4855 break;
4857 if (i == n_op) {
4858 if (isl_tab_mark_empty(tab) < 0)
4859 return -1;
4860 return 0;
4863 ctx = isl_vec_get_ctx(sol);
4864 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4865 if (!v)
4866 return -1;
4868 for (; i >= 0; --i) {
4869 v = isl_vec_clr(v);
4870 isl_int_set_si(v->el[1 + i], -1);
4871 if (add_lexmin_eq(tab, v->el) < 0)
4872 goto error;
4875 isl_vec_free(v);
4876 return 0;
4877 error:
4878 isl_vec_free(v);
4879 return -1;
4882 struct isl_trivial {
4883 int update;
4884 int region;
4885 int side;
4886 struct isl_tab_undo *snap;
4889 /* Return the lexicographically smallest non-trivial solution of the
4890 * given ILP problem.
4892 * All variables are assumed to be non-negative.
4894 * n_op is the number of initial coordinates to optimize.
4895 * That is, once a solution has been found, we will only continue looking
4896 * for solution that result in significantly better values for those
4897 * initial coordinates. That is, we only continue looking for solutions
4898 * that increase the number of initial zeros in this sequence.
4900 * A solution is non-trivial, if it is non-trivial on each of the
4901 * specified regions. Each region represents a sequence of pairs
4902 * of variables. A solution is non-trivial on such a region if
4903 * at least one of these pairs consists of different values, i.e.,
4904 * such that the non-negative variable represented by the pair is non-zero.
4906 * Whenever a conflict is encountered, all constraints involved are
4907 * reported to the caller through a call to "conflict".
4909 * We perform a simple branch-and-bound backtracking search.
4910 * Each level in the search represents initially trivial region that is forced
4911 * to be non-trivial.
4912 * At each level we consider n cases, where n is the length of the region.
4913 * In terms of the n/2 variables of unrestricted signs being encoded by
4914 * the region, we consider the cases
4915 * x_0 >= 1
4916 * x_0 <= -1
4917 * x_0 = 0 and x_1 >= 1
4918 * x_0 = 0 and x_1 <= -1
4919 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4920 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4921 * ...
4922 * The cases are considered in this order, assuming that each pair
4923 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4924 * That is, x_0 >= 1 is enforced by adding the constraint
4925 * x_0_b - x_0_a >= 1
4927 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4928 __isl_take isl_basic_set *bset, int n_op, int n_region,
4929 struct isl_region *region,
4930 int (*conflict)(int con, void *user), void *user)
4932 int i, j;
4933 int r;
4934 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4935 isl_vec *v = NULL;
4936 isl_vec *sol = isl_vec_alloc(ctx, 0);
4937 struct isl_tab *tab;
4938 struct isl_trivial *triv = NULL;
4939 int level, init;
4941 tab = tab_for_lexmin(bset, NULL, 0, 0);
4942 if (!tab)
4943 goto error;
4944 tab->conflict = conflict;
4945 tab->conflict_user = user;
4947 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4948 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
4949 if (!v || !triv)
4950 goto error;
4952 level = 0;
4953 init = 1;
4955 while (level >= 0) {
4956 int side, base;
4958 if (init) {
4959 tab = cut_to_integer_lexmin(tab);
4960 if (!tab)
4961 goto error;
4962 if (tab->empty)
4963 goto backtrack;
4964 r = first_trivial_region(tab, n_region, region);
4965 if (r < 0) {
4966 for (i = 0; i < level; ++i)
4967 triv[i].update = 1;
4968 isl_vec_free(sol);
4969 sol = isl_tab_get_sample_value(tab);
4970 if (!sol)
4971 goto error;
4972 if (is_optimal(sol, n_op))
4973 break;
4974 goto backtrack;
4976 if (level >= n_region)
4977 isl_die(ctx, isl_error_internal,
4978 "nesting level too deep", goto error);
4979 if (isl_tab_extend_cons(tab,
4980 2 * region[r].len + 2 * n_op) < 0)
4981 goto error;
4982 triv[level].region = r;
4983 triv[level].side = 0;
4986 r = triv[level].region;
4987 side = triv[level].side;
4988 base = 2 * (side/2);
4990 if (side >= region[r].len) {
4991 backtrack:
4992 level--;
4993 init = 0;
4994 if (level >= 0)
4995 if (isl_tab_rollback(tab, triv[level].snap) < 0)
4996 goto error;
4997 continue;
5000 if (triv[level].update) {
5001 if (force_better_solution(tab, sol, n_op) < 0)
5002 goto error;
5003 triv[level].update = 0;
5006 if (side == base && base >= 2) {
5007 for (j = base - 2; j < base; ++j) {
5008 v = isl_vec_clr(v);
5009 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
5010 if (add_lexmin_eq(tab, v->el) < 0)
5011 goto error;
5015 triv[level].snap = isl_tab_snap(tab);
5016 if (isl_tab_push_basis(tab) < 0)
5017 goto error;
5019 v = isl_vec_clr(v);
5020 isl_int_set_si(v->el[0], -1);
5021 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
5022 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
5023 tab = add_lexmin_ineq(tab, v->el);
5025 triv[level].side++;
5026 level++;
5027 init = 1;
5030 free(triv);
5031 isl_vec_free(v);
5032 isl_tab_free(tab);
5033 isl_basic_set_free(bset);
5035 return sol;
5036 error:
5037 free(triv);
5038 isl_vec_free(v);
5039 isl_tab_free(tab);
5040 isl_basic_set_free(bset);
5041 isl_vec_free(sol);
5042 return NULL;
5045 /* Return the lexicographically smallest rational point in "bset",
5046 * assuming that all variables are non-negative.
5047 * If "bset" is empty, then return a zero-length vector.
5049 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
5050 __isl_take isl_basic_set *bset)
5052 struct isl_tab *tab;
5053 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
5054 isl_vec *sol;
5056 tab = tab_for_lexmin(bset, NULL, 0, 0);
5057 if (!tab)
5058 goto error;
5059 if (tab->empty)
5060 sol = isl_vec_alloc(ctx, 0);
5061 else
5062 sol = isl_tab_get_sample_value(tab);
5063 isl_tab_free(tab);
5064 isl_basic_set_free(bset);
5065 return sol;
5066 error:
5067 isl_tab_free(tab);
5068 isl_basic_set_free(bset);
5069 return NULL;
5072 struct isl_sol_pma {
5073 struct isl_sol sol;
5074 isl_pw_multi_aff *pma;
5075 isl_set *empty;
5078 static void sol_pma_free(struct isl_sol_pma *sol_pma)
5080 if (!sol_pma)
5081 return;
5082 if (sol_pma->sol.context)
5083 sol_pma->sol.context->op->free(sol_pma->sol.context);
5084 isl_pw_multi_aff_free(sol_pma->pma);
5085 isl_set_free(sol_pma->empty);
5086 free(sol_pma);
5089 /* This function is called for parts of the context where there is
5090 * no solution, with "bset" corresponding to the context tableau.
5091 * Simply add the basic set to the set "empty".
5093 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5094 __isl_take isl_basic_set *bset)
5096 if (!bset)
5097 goto error;
5098 isl_assert(bset->ctx, sol->empty, goto error);
5100 sol->empty = isl_set_grow(sol->empty, 1);
5101 bset = isl_basic_set_simplify(bset);
5102 bset = isl_basic_set_finalize(bset);
5103 sol->empty = isl_set_add_basic_set(sol->empty, bset);
5104 if (!sol->empty)
5105 sol->sol.error = 1;
5106 return;
5107 error:
5108 isl_basic_set_free(bset);
5109 sol->sol.error = 1;
5112 /* Given a basic map "dom" that represents the context and an affine
5113 * matrix "M" that maps the dimensions of the context to the
5114 * output variables, construct an isl_pw_multi_aff with a single
5115 * cell corresponding to "dom" and affine expressions copied from "M".
5117 static void sol_pma_add(struct isl_sol_pma *sol,
5118 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5120 int i;
5121 isl_local_space *ls;
5122 isl_aff *aff;
5123 isl_multi_aff *maff;
5124 isl_pw_multi_aff *pma;
5126 maff = isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol->pma));
5127 ls = isl_basic_set_get_local_space(dom);
5128 for (i = 1; i < M->n_row; ++i) {
5129 aff = isl_aff_alloc(isl_local_space_copy(ls));
5130 if (aff) {
5131 isl_int_set(aff->v->el[0], M->row[0][0]);
5132 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
5134 aff = isl_aff_normalize(aff);
5135 maff = isl_multi_aff_set_aff(maff, i - 1, aff);
5137 isl_local_space_free(ls);
5138 isl_mat_free(M);
5139 dom = isl_basic_set_simplify(dom);
5140 dom = isl_basic_set_finalize(dom);
5141 pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5142 sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5143 if (!sol->pma)
5144 sol->sol.error = 1;
5147 static void sol_pma_free_wrap(struct isl_sol *sol)
5149 sol_pma_free((struct isl_sol_pma *)sol);
5152 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5153 __isl_take isl_basic_set *bset)
5155 sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5158 static void sol_pma_add_wrap(struct isl_sol *sol,
5159 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5161 sol_pma_add((struct isl_sol_pma *)sol, dom, M);
5164 /* Construct an isl_sol_pma structure for accumulating the solution.
5165 * If track_empty is set, then we also keep track of the parts
5166 * of the context where there is no solution.
5167 * If max is set, then we are solving a maximization, rather than
5168 * a minimization problem, which means that the variables in the
5169 * tableau have value "M - x" rather than "M + x".
5171 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5172 __isl_take isl_basic_set *dom, int track_empty, int max)
5174 struct isl_sol_pma *sol_pma = NULL;
5176 if (!bmap)
5177 goto error;
5179 sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5180 if (!sol_pma)
5181 goto error;
5183 sol_pma->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
5184 sol_pma->sol.dec_level.callback.run = &sol_dec_level_wrap;
5185 sol_pma->sol.dec_level.sol = &sol_pma->sol;
5186 sol_pma->sol.max = max;
5187 sol_pma->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
5188 sol_pma->sol.add = &sol_pma_add_wrap;
5189 sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5190 sol_pma->sol.free = &sol_pma_free_wrap;
5191 sol_pma->pma = isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap));
5192 if (!sol_pma->pma)
5193 goto error;
5195 sol_pma->sol.context = isl_context_alloc(dom);
5196 if (!sol_pma->sol.context)
5197 goto error;
5199 if (track_empty) {
5200 sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5201 1, ISL_SET_DISJOINT);
5202 if (!sol_pma->empty)
5203 goto error;
5206 isl_basic_set_free(dom);
5207 return &sol_pma->sol;
5208 error:
5209 isl_basic_set_free(dom);
5210 sol_pma_free(sol_pma);
5211 return NULL;
5214 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5215 * some obvious symmetries.
5217 * We call basic_map_partial_lexopt_base and extract the results.
5219 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pma(
5220 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5221 __isl_give isl_set **empty, int max)
5223 isl_pw_multi_aff *result = NULL;
5224 struct isl_sol *sol;
5225 struct isl_sol_pma *sol_pma;
5227 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
5228 &sol_pma_init);
5229 if (!sol)
5230 return NULL;
5231 sol_pma = (struct isl_sol_pma *) sol;
5233 result = isl_pw_multi_aff_copy(sol_pma->pma);
5234 if (empty)
5235 *empty = isl_set_copy(sol_pma->empty);
5236 sol_free(&sol_pma->sol);
5237 return result;
5240 /* Given that the last input variable of "maff" represents the minimum
5241 * of some bounds, check whether we need to plug in the expression
5242 * of the minimum.
5244 * In particular, check if the last input variable appears in any
5245 * of the expressions in "maff".
5247 static int need_substitution(__isl_keep isl_multi_aff *maff)
5249 int i;
5250 unsigned pos;
5252 pos = isl_multi_aff_dim(maff, isl_dim_in) - 1;
5254 for (i = 0; i < maff->n; ++i)
5255 if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1))
5256 return 1;
5258 return 0;
5261 /* Given a set of upper bounds on the last "input" variable m,
5262 * construct a piecewise affine expression that selects
5263 * the minimal upper bound to m, i.e.,
5264 * divide the space into cells where one
5265 * of the upper bounds is smaller than all the others and select
5266 * this upper bound on that cell.
5268 * In particular, if there are n bounds b_i, then the result
5269 * consists of n cell, each one of the form
5271 * b_i <= b_j for j > i
5272 * b_i < b_j for j < i
5274 * The affine expression on this cell is
5276 * b_i
5278 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5279 __isl_take isl_mat *var)
5281 int i;
5282 isl_aff *aff = NULL;
5283 isl_basic_set *bset = NULL;
5284 isl_ctx *ctx;
5285 isl_pw_aff *paff = NULL;
5286 isl_space *pw_space;
5287 isl_local_space *ls = NULL;
5289 if (!space || !var)
5290 goto error;
5292 ctx = isl_space_get_ctx(space);
5293 ls = isl_local_space_from_space(isl_space_copy(space));
5294 pw_space = isl_space_copy(space);
5295 pw_space = isl_space_from_domain(pw_space);
5296 pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5297 paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5299 for (i = 0; i < var->n_row; ++i) {
5300 isl_pw_aff *paff_i;
5302 aff = isl_aff_alloc(isl_local_space_copy(ls));
5303 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5304 0, var->n_row - 1);
5305 if (!aff || !bset)
5306 goto error;
5307 isl_int_set_si(aff->v->el[0], 1);
5308 isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5309 isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5310 bset = select_minimum(bset, var, i);
5311 paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5312 paff = isl_pw_aff_add_disjoint(paff, paff_i);
5315 isl_local_space_free(ls);
5316 isl_space_free(space);
5317 isl_mat_free(var);
5318 return paff;
5319 error:
5320 isl_aff_free(aff);
5321 isl_basic_set_free(bset);
5322 isl_pw_aff_free(paff);
5323 isl_local_space_free(ls);
5324 isl_space_free(space);
5325 isl_mat_free(var);
5326 return NULL;
5329 /* Given a piecewise multi-affine expression of which the last input variable
5330 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5331 * This minimum expression is given in "min_expr_pa".
5332 * The set "min_expr" contains the same information, but in the form of a set.
5333 * The variable is subsequently projected out.
5335 * The implementation is similar to those of "split" and "split_domain".
5336 * If the variable appears in a given expression, then minimum expression
5337 * is plugged in. Otherwise, if the variable appears in the constraints
5338 * and a split is required, then the domain is split. Otherwise, no split
5339 * is performed.
5341 static __isl_give isl_pw_multi_aff *split_domain_pma(
5342 __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5343 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5345 int n_in;
5346 int i;
5347 isl_space *space;
5348 isl_pw_multi_aff *res;
5350 if (!opt || !min_expr || !cst)
5351 goto error;
5353 n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
5354 space = isl_pw_multi_aff_get_space(opt);
5355 space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
5356 res = isl_pw_multi_aff_empty(space);
5358 for (i = 0; i < opt->n; ++i) {
5359 isl_pw_multi_aff *pma;
5361 pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
5362 isl_multi_aff_copy(opt->p[i].maff));
5363 if (need_substitution(opt->p[i].maff))
5364 pma = isl_pw_multi_aff_substitute(pma,
5365 isl_dim_in, n_in - 1, min_expr_pa);
5366 else if (need_split_set(opt->p[i].set, cst))
5367 pma = isl_pw_multi_aff_intersect_domain(pma,
5368 isl_set_copy(min_expr));
5369 pma = isl_pw_multi_aff_project_out(pma,
5370 isl_dim_in, n_in - 1, 1);
5372 res = isl_pw_multi_aff_add_disjoint(res, pma);
5375 isl_pw_multi_aff_free(opt);
5376 isl_pw_aff_free(min_expr_pa);
5377 isl_set_free(min_expr);
5378 isl_mat_free(cst);
5379 return res;
5380 error:
5381 isl_pw_multi_aff_free(opt);
5382 isl_pw_aff_free(min_expr_pa);
5383 isl_set_free(min_expr);
5384 isl_mat_free(cst);
5385 return NULL;
5388 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5389 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5390 __isl_give isl_set **empty, int max);
5392 /* This function is called from basic_map_partial_lexopt_symm.
5393 * The last variable of "bmap" and "dom" corresponds to the minimum
5394 * of the bounds in "cst". "map_space" is the space of the original
5395 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5396 * is the space of the original domain.
5398 * We recursively call basic_map_partial_lexopt and then plug in
5399 * the definition of the minimum in the result.
5401 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_pma_core(
5402 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5403 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
5404 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
5406 isl_pw_multi_aff *opt;
5407 isl_pw_aff *min_expr_pa;
5408 isl_set *min_expr;
5409 union isl_lex_res res;
5411 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
5412 min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
5413 isl_mat_copy(cst));
5415 opt = basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5417 if (empty) {
5418 *empty = split(*empty,
5419 isl_set_copy(min_expr), isl_mat_copy(cst));
5420 *empty = isl_set_reset_space(*empty, set_space);
5423 opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
5424 opt = isl_pw_multi_aff_reset_space(opt, map_space);
5426 res.pma = opt;
5427 return res;
5430 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_symm_pma(
5431 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5432 __isl_give isl_set **empty, int max, int first, int second)
5434 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
5435 first, second, &basic_map_partial_lexopt_symm_pma_core).pma;
5438 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5439 * equalities and removing redundant constraints.
5441 * We first check if there are any parallel constraints (left).
5442 * If not, we are in the base case.
5443 * If there are parallel constraints, we replace them by a single
5444 * constraint in basic_map_partial_lexopt_symm_pma and then call
5445 * this function recursively to look for more parallel constraints.
5447 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5448 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5449 __isl_give isl_set **empty, int max)
5451 int par = 0;
5452 int first, second;
5454 if (!bmap)
5455 goto error;
5457 if (bmap->ctx->opt->pip_symmetry)
5458 par = parallel_constraints(bmap, &first, &second);
5459 if (par < 0)
5460 goto error;
5461 if (!par)
5462 return basic_map_partial_lexopt_base_pma(bmap, dom, empty, max);
5464 return basic_map_partial_lexopt_symm_pma(bmap, dom, empty, max,
5465 first, second);
5466 error:
5467 isl_basic_set_free(dom);
5468 isl_basic_map_free(bmap);
5469 return NULL;
5472 /* Compute the lexicographic minimum (or maximum if "max" is set)
5473 * of "bmap" over the domain "dom" and return the result as a piecewise
5474 * multi-affine expression.
5475 * If "empty" is not NULL, then *empty is assigned a set that
5476 * contains those parts of the domain where there is no solution.
5477 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5478 * then we compute the rational optimum. Otherwise, we compute
5479 * the integral optimum.
5481 * We perform some preprocessing. As the PILP solver does not
5482 * handle implicit equalities very well, we first make sure all
5483 * the equalities are explicitly available.
5485 * We also add context constraints to the basic map and remove
5486 * redundant constraints. This is only needed because of the
5487 * way we handle simple symmetries. In particular, we currently look
5488 * for symmetries on the constraints, before we set up the main tableau.
5489 * It is then no good to look for symmetries on possibly redundant constraints.
5491 __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff(
5492 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5493 __isl_give isl_set **empty, int max)
5495 if (empty)
5496 *empty = NULL;
5497 if (!bmap || !dom)
5498 goto error;
5500 isl_assert(bmap->ctx,
5501 isl_basic_map_compatible_domain(bmap, dom), goto error);
5503 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
5504 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5506 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
5507 bmap = isl_basic_map_detect_equalities(bmap);
5508 bmap = isl_basic_map_remove_redundancies(bmap);
5510 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5511 error:
5512 isl_basic_set_free(dom);
5513 isl_basic_map_free(bmap);
5514 return NULL;