export isl_map_compute_divs
[isl.git] / isl_tab_pip.c
blobe89c8430c02a9d57ec290b3a1888777c7e9489b5
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_map_private.h"
11 #include "isl_seq.h"
12 #include "isl_tab.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
19 * (and others).
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
54 struct isl_context;
55 struct isl_context_op {
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab *(*detect_nonnegative_parameters)(
58 struct isl_context *context, struct isl_tab *tab);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab *(*peek_tab)(struct isl_context *context);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq)(struct isl_context *context, isl_int *eq,
67 int check, int update);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
72 int check, int update);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
77 isl_int *ineq, int strict);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
82 struct isl_vec *div);
83 /* add div "div" to context and return index and non-negativity */
84 int (*add_div)(struct isl_context *context, struct isl_vec *div,
85 int *nonneg);
86 int (*detect_equalities)(struct isl_context *context,
87 struct isl_tab *tab);
88 /* return row index of "best" split */
89 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
90 /* check if context has already been determined to be empty */
91 int (*is_empty)(struct isl_context *context);
92 /* check if context is still usable */
93 int (*is_ok)(struct isl_context *context);
94 /* save a copy/snapshot of context */
95 void *(*save)(struct isl_context *context);
96 /* restore saved context */
97 void (*restore)(struct isl_context *context, void *);
98 /* invalidate context */
99 void (*invalidate)(struct isl_context *context);
100 /* free context */
101 void (*free)(struct isl_context *context);
104 struct isl_context {
105 struct isl_context_op *op;
108 struct isl_context_lex {
109 struct isl_context context;
110 struct isl_tab *tab;
113 struct isl_partial_sol {
114 int level;
115 struct isl_basic_set *dom;
116 struct isl_mat *M;
118 struct isl_partial_sol *next;
121 struct isl_sol;
122 struct isl_sol_callback {
123 struct isl_tab_callback callback;
124 struct isl_sol *sol;
127 /* isl_sol is an interface for constructing a solution to
128 * a parametric integer linear programming problem.
129 * Every time the algorithm reaches a state where a solution
130 * can be read off from the tableau (including cases where the tableau
131 * is empty), the function "add" is called on the isl_sol passed
132 * to find_solutions_main.
134 * The context tableau is owned by isl_sol and is updated incrementally.
136 * There are currently two implementations of this interface,
137 * isl_sol_map, which simply collects the solutions in an isl_map
138 * and (optionally) the parts of the context where there is no solution
139 * in an isl_set, and
140 * isl_sol_for, which calls a user-defined function for each part of
141 * the solution.
143 struct isl_sol {
144 int error;
145 int rational;
146 int level;
147 int max;
148 int n_out;
149 struct isl_context *context;
150 struct isl_partial_sol *partial;
151 void (*add)(struct isl_sol *sol,
152 struct isl_basic_set *dom, struct isl_mat *M);
153 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
154 void (*free)(struct isl_sol *sol);
155 struct isl_sol_callback dec_level;
158 static void sol_free(struct isl_sol *sol)
160 struct isl_partial_sol *partial, *next;
161 if (!sol)
162 return;
163 for (partial = sol->partial; partial; partial = next) {
164 next = partial->next;
165 isl_basic_set_free(partial->dom);
166 isl_mat_free(partial->M);
167 free(partial);
169 sol->free(sol);
172 /* Push a partial solution represented by a domain and mapping M
173 * onto the stack of partial solutions.
175 static void sol_push_sol(struct isl_sol *sol,
176 struct isl_basic_set *dom, struct isl_mat *M)
178 struct isl_partial_sol *partial;
180 if (sol->error || !dom)
181 goto error;
183 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
184 if (!partial)
185 goto error;
187 partial->level = sol->level;
188 partial->dom = dom;
189 partial->M = M;
190 partial->next = sol->partial;
192 sol->partial = partial;
194 return;
195 error:
196 isl_basic_set_free(dom);
197 sol->error = 1;
200 /* Pop one partial solution from the partial solution stack and
201 * pass it on to sol->add or sol->add_empty.
203 static void sol_pop_one(struct isl_sol *sol)
205 struct isl_partial_sol *partial;
207 partial = sol->partial;
208 sol->partial = partial->next;
210 if (partial->M)
211 sol->add(sol, partial->dom, partial->M);
212 else
213 sol->add_empty(sol, partial->dom);
214 free(partial);
217 /* Return a fresh copy of the domain represented by the context tableau.
219 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
221 struct isl_basic_set *bset;
223 if (sol->error)
224 return NULL;
226 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
227 bset = isl_basic_set_update_from_tab(bset,
228 sol->context->op->peek_tab(sol->context));
230 return bset;
233 /* Check whether two partial solutions have the same mapping, where n_div
234 * is the number of divs that the two partial solutions have in common.
236 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
237 unsigned n_div)
239 int i;
240 unsigned dim;
242 if (!s1->M != !s2->M)
243 return 0;
244 if (!s1->M)
245 return 1;
247 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
249 for (i = 0; i < s1->M->n_row; ++i) {
250 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
251 s1->M->n_col-1-dim-n_div) != -1)
252 return 0;
253 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
254 s2->M->n_col-1-dim-n_div) != -1)
255 return 0;
256 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
257 return 0;
259 return 1;
262 /* Pop all solutions from the partial solution stack that were pushed onto
263 * the stack at levels that are deeper than the current level.
264 * If the two topmost elements on the stack have the same level
265 * and represent the same solution, then their domains are combined.
266 * This combined domain is the same as the current context domain
267 * as sol_pop is called each time we move back to a higher level.
269 static void sol_pop(struct isl_sol *sol)
271 struct isl_partial_sol *partial;
272 unsigned n_div;
274 if (sol->error)
275 return;
277 if (sol->level == 0) {
278 for (partial = sol->partial; partial; partial = sol->partial)
279 sol_pop_one(sol);
280 return;
283 partial = sol->partial;
284 if (!partial)
285 return;
287 if (partial->level <= sol->level)
288 return;
290 if (partial->next && partial->next->level == partial->level) {
291 n_div = isl_basic_set_dim(
292 sol->context->op->peek_basic_set(sol->context),
293 isl_dim_div);
295 if (!same_solution(partial, partial->next, n_div)) {
296 sol_pop_one(sol);
297 sol_pop_one(sol);
298 } else {
299 struct isl_basic_set *bset;
301 bset = sol_domain(sol);
303 isl_basic_set_free(partial->next->dom);
304 partial->next->dom = bset;
305 partial->next->level = sol->level;
307 sol->partial = partial->next;
308 isl_basic_set_free(partial->dom);
309 isl_mat_free(partial->M);
310 free(partial);
312 } else
313 sol_pop_one(sol);
316 static void sol_dec_level(struct isl_sol *sol)
318 if (sol->error)
319 return;
321 sol->level--;
323 sol_pop(sol);
326 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
328 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
330 sol_dec_level(callback->sol);
332 return callback->sol->error ? -1 : 0;
335 /* Move down to next level and push callback onto context tableau
336 * to decrease the level again when it gets rolled back across
337 * the current state. That is, dec_level will be called with
338 * the context tableau in the same state as it is when inc_level
339 * is called.
341 static void sol_inc_level(struct isl_sol *sol)
343 struct isl_tab *tab;
345 if (sol->error)
346 return;
348 sol->level++;
349 tab = sol->context->op->peek_tab(sol->context);
350 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
351 sol->error = 1;
354 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
356 int i;
358 if (isl_int_is_one(m))
359 return;
361 for (i = 0; i < n_row; ++i)
362 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
365 /* Add the solution identified by the tableau and the context tableau.
367 * The layout of the variables is as follows.
368 * tab->n_var is equal to the total number of variables in the input
369 * map (including divs that were copied from the context)
370 * + the number of extra divs constructed
371 * Of these, the first tab->n_param and the last tab->n_div variables
372 * correspond to the variables in the context, i.e.,
373 * tab->n_param + tab->n_div = context_tab->n_var
374 * tab->n_param is equal to the number of parameters and input
375 * dimensions in the input map
376 * tab->n_div is equal to the number of divs in the context
378 * If there is no solution, then call add_empty with a basic set
379 * that corresponds to the context tableau. (If add_empty is NULL,
380 * then do nothing).
382 * If there is a solution, then first construct a matrix that maps
383 * all dimensions of the context to the output variables, i.e.,
384 * the output dimensions in the input map.
385 * The divs in the input map (if any) that do not correspond to any
386 * div in the context do not appear in the solution.
387 * The algorithm will make sure that they have an integer value,
388 * but these values themselves are of no interest.
389 * We have to be careful not to drop or rearrange any divs in the
390 * context because that would change the meaning of the matrix.
392 * To extract the value of the output variables, it should be noted
393 * that we always use a big parameter M in the main tableau and so
394 * the variable stored in this tableau is not an output variable x itself, but
395 * x' = M + x (in case of minimization)
396 * or
397 * x' = M - x (in case of maximization)
398 * If x' appears in a column, then its optimal value is zero,
399 * which means that the optimal value of x is an unbounded number
400 * (-M for minimization and M for maximization).
401 * We currently assume that the output dimensions in the original map
402 * are bounded, so this cannot occur.
403 * Similarly, when x' appears in a row, then the coefficient of M in that
404 * row is necessarily 1.
405 * If the row in the tableau represents
406 * d x' = c + d M + e(y)
407 * then, in case of minimization, the corresponding row in the matrix
408 * will be
409 * a c + a e(y)
410 * with a d = m, the (updated) common denominator of the matrix.
411 * In case of maximization, the row will be
412 * -a c - a e(y)
414 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
416 struct isl_basic_set *bset = NULL;
417 struct isl_mat *mat = NULL;
418 unsigned off;
419 int row, i;
420 isl_int m;
422 if (sol->error || !tab)
423 goto error;
425 if (tab->empty && !sol->add_empty)
426 return;
428 bset = sol_domain(sol);
430 if (tab->empty) {
431 sol_push_sol(sol, bset, NULL);
432 return;
435 off = 2 + tab->M;
437 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
438 1 + tab->n_param + tab->n_div);
439 if (!mat)
440 goto error;
442 isl_int_init(m);
444 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
445 isl_int_set_si(mat->row[0][0], 1);
446 for (row = 0; row < sol->n_out; ++row) {
447 int i = tab->n_param + row;
448 int r, j;
450 isl_seq_clr(mat->row[1 + row], mat->n_col);
451 if (!tab->var[i].is_row) {
452 /* no unbounded */
453 isl_assert(mat->ctx, !tab->M, goto error2);
454 continue;
457 r = tab->var[i].index;
458 /* no unbounded */
459 if (tab->M)
460 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
461 tab->mat->row[r][0]),
462 goto error2);
463 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
464 isl_int_divexact(m, tab->mat->row[r][0], m);
465 scale_rows(mat, m, 1 + row);
466 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
467 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
468 for (j = 0; j < tab->n_param; ++j) {
469 int col;
470 if (tab->var[j].is_row)
471 continue;
472 col = tab->var[j].index;
473 isl_int_mul(mat->row[1 + row][1 + j], m,
474 tab->mat->row[r][off + col]);
476 for (j = 0; j < tab->n_div; ++j) {
477 int col;
478 if (tab->var[tab->n_var - tab->n_div+j].is_row)
479 continue;
480 col = tab->var[tab->n_var - tab->n_div+j].index;
481 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
482 tab->mat->row[r][off + col]);
484 if (sol->max)
485 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
486 mat->n_col);
489 isl_int_clear(m);
491 sol_push_sol(sol, bset, mat);
492 return;
493 error2:
494 isl_int_clear(m);
495 error:
496 isl_basic_set_free(bset);
497 isl_mat_free(mat);
498 sol_free(sol);
501 struct isl_sol_map {
502 struct isl_sol sol;
503 struct isl_map *map;
504 struct isl_set *empty;
507 static void sol_map_free(struct isl_sol_map *sol_map)
509 if (sol_map->sol.context)
510 sol_map->sol.context->op->free(sol_map->sol.context);
511 isl_map_free(sol_map->map);
512 isl_set_free(sol_map->empty);
513 free(sol_map);
516 static void sol_map_free_wrap(struct isl_sol *sol)
518 sol_map_free((struct isl_sol_map *)sol);
521 /* This function is called for parts of the context where there is
522 * no solution, with "bset" corresponding to the context tableau.
523 * Simply add the basic set to the set "empty".
525 static void sol_map_add_empty(struct isl_sol_map *sol,
526 struct isl_basic_set *bset)
528 if (!bset)
529 goto error;
530 isl_assert(bset->ctx, sol->empty, goto error);
532 sol->empty = isl_set_grow(sol->empty, 1);
533 bset = isl_basic_set_simplify(bset);
534 bset = isl_basic_set_finalize(bset);
535 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
536 if (!sol->empty)
537 goto error;
538 isl_basic_set_free(bset);
539 return;
540 error:
541 isl_basic_set_free(bset);
542 sol->sol.error = 1;
545 static void sol_map_add_empty_wrap(struct isl_sol *sol,
546 struct isl_basic_set *bset)
548 sol_map_add_empty((struct isl_sol_map *)sol, bset);
551 /* Add bset to sol's empty, but only if we are actually collecting
552 * the empty set.
554 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
555 struct isl_basic_set *bset)
557 if (sol->empty)
558 sol_map_add_empty(sol, bset);
559 else
560 isl_basic_set_free(bset);
563 /* Given a basic map "dom" that represents the context and an affine
564 * matrix "M" that maps the dimensions of the context to the
565 * output variables, construct a basic map with the same parameters
566 * and divs as the context, the dimensions of the context as input
567 * dimensions and a number of output dimensions that is equal to
568 * the number of output dimensions in the input map.
570 * The constraints and divs of the context are simply copied
571 * from "dom". For each row
572 * x = c + e(y)
573 * an equality
574 * c + e(y) - d x = 0
575 * is added, with d the common denominator of M.
577 static void sol_map_add(struct isl_sol_map *sol,
578 struct isl_basic_set *dom, struct isl_mat *M)
580 int i;
581 struct isl_basic_map *bmap = NULL;
582 isl_basic_set *context_bset;
583 unsigned n_eq;
584 unsigned n_ineq;
585 unsigned nparam;
586 unsigned total;
587 unsigned n_div;
588 unsigned n_out;
590 if (sol->sol.error || !dom || !M)
591 goto error;
593 n_out = sol->sol.n_out;
594 n_eq = dom->n_eq + n_out;
595 n_ineq = dom->n_ineq;
596 n_div = dom->n_div;
597 nparam = isl_basic_set_total_dim(dom) - n_div;
598 total = isl_map_dim(sol->map, isl_dim_all);
599 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
600 n_div, n_eq, 2 * n_div + n_ineq);
601 if (!bmap)
602 goto error;
603 if (sol->sol.rational)
604 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
605 for (i = 0; i < dom->n_div; ++i) {
606 int k = isl_basic_map_alloc_div(bmap);
607 if (k < 0)
608 goto error;
609 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
610 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
611 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
612 dom->div[i] + 1 + 1 + nparam, i);
614 for (i = 0; i < dom->n_eq; ++i) {
615 int k = isl_basic_map_alloc_equality(bmap);
616 if (k < 0)
617 goto error;
618 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
619 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
620 isl_seq_cpy(bmap->eq[k] + 1 + total,
621 dom->eq[i] + 1 + nparam, n_div);
623 for (i = 0; i < dom->n_ineq; ++i) {
624 int k = isl_basic_map_alloc_inequality(bmap);
625 if (k < 0)
626 goto error;
627 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
628 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
629 isl_seq_cpy(bmap->ineq[k] + 1 + total,
630 dom->ineq[i] + 1 + nparam, n_div);
632 for (i = 0; i < M->n_row - 1; ++i) {
633 int k = isl_basic_map_alloc_equality(bmap);
634 if (k < 0)
635 goto error;
636 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
637 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
638 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
639 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
640 M->row[1 + i] + 1 + nparam, n_div);
642 bmap = isl_basic_map_simplify(bmap);
643 bmap = isl_basic_map_finalize(bmap);
644 sol->map = isl_map_grow(sol->map, 1);
645 sol->map = isl_map_add_basic_map(sol->map, bmap);
646 if (!sol->map)
647 goto error;
648 isl_basic_set_free(dom);
649 isl_mat_free(M);
650 return;
651 error:
652 isl_basic_set_free(dom);
653 isl_mat_free(M);
654 isl_basic_map_free(bmap);
655 sol->sol.error = 1;
658 static void sol_map_add_wrap(struct isl_sol *sol,
659 struct isl_basic_set *dom, struct isl_mat *M)
661 sol_map_add((struct isl_sol_map *)sol, dom, M);
665 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
666 * i.e., the constant term and the coefficients of all variables that
667 * appear in the context tableau.
668 * Note that the coefficient of the big parameter M is NOT copied.
669 * The context tableau may not have a big parameter and even when it
670 * does, it is a different big parameter.
672 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
674 int i;
675 unsigned off = 2 + tab->M;
677 isl_int_set(line[0], tab->mat->row[row][1]);
678 for (i = 0; i < tab->n_param; ++i) {
679 if (tab->var[i].is_row)
680 isl_int_set_si(line[1 + i], 0);
681 else {
682 int col = tab->var[i].index;
683 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
686 for (i = 0; i < tab->n_div; ++i) {
687 if (tab->var[tab->n_var - tab->n_div + i].is_row)
688 isl_int_set_si(line[1 + tab->n_param + i], 0);
689 else {
690 int col = tab->var[tab->n_var - tab->n_div + i].index;
691 isl_int_set(line[1 + tab->n_param + i],
692 tab->mat->row[row][off + col]);
697 /* Check if rows "row1" and "row2" have identical "parametric constants",
698 * as explained above.
699 * In this case, we also insist that the coefficients of the big parameter
700 * be the same as the values of the constants will only be the same
701 * if these coefficients are also the same.
703 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
705 int i;
706 unsigned off = 2 + tab->M;
708 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
709 return 0;
711 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
712 tab->mat->row[row2][2]))
713 return 0;
715 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
716 int pos = i < tab->n_param ? i :
717 tab->n_var - tab->n_div + i - tab->n_param;
718 int col;
720 if (tab->var[pos].is_row)
721 continue;
722 col = tab->var[pos].index;
723 if (isl_int_ne(tab->mat->row[row1][off + col],
724 tab->mat->row[row2][off + col]))
725 return 0;
727 return 1;
730 /* Return an inequality that expresses that the "parametric constant"
731 * should be non-negative.
732 * This function is only called when the coefficient of the big parameter
733 * is equal to zero.
735 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
737 struct isl_vec *ineq;
739 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
740 if (!ineq)
741 return NULL;
743 get_row_parameter_line(tab, row, ineq->el);
744 if (ineq)
745 ineq = isl_vec_normalize(ineq);
747 return ineq;
750 /* Return a integer division for use in a parametric cut based on the given row.
751 * In particular, let the parametric constant of the row be
753 * \sum_i a_i y_i
755 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
756 * The div returned is equal to
758 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
760 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
762 struct isl_vec *div;
764 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
765 if (!div)
766 return NULL;
768 isl_int_set(div->el[0], tab->mat->row[row][0]);
769 get_row_parameter_line(tab, row, div->el + 1);
770 div = isl_vec_normalize(div);
771 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
772 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
774 return div;
777 /* Return a integer division for use in transferring an integrality constraint
778 * to the context.
779 * In particular, let the parametric constant of the row be
781 * \sum_i a_i y_i
783 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
784 * The the returned div is equal to
786 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
788 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
790 struct isl_vec *div;
792 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
793 if (!div)
794 return NULL;
796 isl_int_set(div->el[0], tab->mat->row[row][0]);
797 get_row_parameter_line(tab, row, div->el + 1);
798 div = isl_vec_normalize(div);
799 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
801 return div;
804 /* Construct and return an inequality that expresses an upper bound
805 * on the given div.
806 * In particular, if the div is given by
808 * d = floor(e/m)
810 * then the inequality expresses
812 * m d <= e
814 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
816 unsigned total;
817 unsigned div_pos;
818 struct isl_vec *ineq;
820 if (!bset)
821 return NULL;
823 total = isl_basic_set_total_dim(bset);
824 div_pos = 1 + total - bset->n_div + div;
826 ineq = isl_vec_alloc(bset->ctx, 1 + total);
827 if (!ineq)
828 return NULL;
830 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
831 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
832 return ineq;
835 /* Given a row in the tableau and a div that was created
836 * using get_row_split_div and that been constrained to equality, i.e.,
838 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
840 * replace the expression "\sum_i {a_i} y_i" in the row by d,
841 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
842 * The coefficients of the non-parameters in the tableau have been
843 * verified to be integral. We can therefore simply replace coefficient b
844 * by floor(b). For the coefficients of the parameters we have
845 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
846 * floor(b) = b.
848 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
850 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
851 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
853 isl_int_set_si(tab->mat->row[row][0], 1);
855 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
856 int drow = tab->var[tab->n_var - tab->n_div + div].index;
858 isl_assert(tab->mat->ctx,
859 isl_int_is_one(tab->mat->row[drow][0]), goto error);
860 isl_seq_combine(tab->mat->row[row] + 1,
861 tab->mat->ctx->one, tab->mat->row[row] + 1,
862 tab->mat->ctx->one, tab->mat->row[drow] + 1,
863 1 + tab->M + tab->n_col);
864 } else {
865 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
867 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
870 return tab;
871 error:
872 isl_tab_free(tab);
873 return NULL;
876 /* Check if the (parametric) constant of the given row is obviously
877 * negative, meaning that we don't need to consult the context tableau.
878 * If there is a big parameter and its coefficient is non-zero,
879 * then this coefficient determines the outcome.
880 * Otherwise, we check whether the constant is negative and
881 * all non-zero coefficients of parameters are negative and
882 * belong to non-negative parameters.
884 static int is_obviously_neg(struct isl_tab *tab, int row)
886 int i;
887 int col;
888 unsigned off = 2 + tab->M;
890 if (tab->M) {
891 if (isl_int_is_pos(tab->mat->row[row][2]))
892 return 0;
893 if (isl_int_is_neg(tab->mat->row[row][2]))
894 return 1;
897 if (isl_int_is_nonneg(tab->mat->row[row][1]))
898 return 0;
899 for (i = 0; i < tab->n_param; ++i) {
900 /* Eliminated parameter */
901 if (tab->var[i].is_row)
902 continue;
903 col = tab->var[i].index;
904 if (isl_int_is_zero(tab->mat->row[row][off + col]))
905 continue;
906 if (!tab->var[i].is_nonneg)
907 return 0;
908 if (isl_int_is_pos(tab->mat->row[row][off + col]))
909 return 0;
911 for (i = 0; i < tab->n_div; ++i) {
912 if (tab->var[tab->n_var - tab->n_div + i].is_row)
913 continue;
914 col = tab->var[tab->n_var - tab->n_div + i].index;
915 if (isl_int_is_zero(tab->mat->row[row][off + col]))
916 continue;
917 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
918 return 0;
919 if (isl_int_is_pos(tab->mat->row[row][off + col]))
920 return 0;
922 return 1;
925 /* Check if the (parametric) constant of the given row is obviously
926 * non-negative, meaning that we don't need to consult the context tableau.
927 * If there is a big parameter and its coefficient is non-zero,
928 * then this coefficient determines the outcome.
929 * Otherwise, we check whether the constant is non-negative and
930 * all non-zero coefficients of parameters are positive and
931 * belong to non-negative parameters.
933 static int is_obviously_nonneg(struct isl_tab *tab, int row)
935 int i;
936 int col;
937 unsigned off = 2 + tab->M;
939 if (tab->M) {
940 if (isl_int_is_pos(tab->mat->row[row][2]))
941 return 1;
942 if (isl_int_is_neg(tab->mat->row[row][2]))
943 return 0;
946 if (isl_int_is_neg(tab->mat->row[row][1]))
947 return 0;
948 for (i = 0; i < tab->n_param; ++i) {
949 /* Eliminated parameter */
950 if (tab->var[i].is_row)
951 continue;
952 col = tab->var[i].index;
953 if (isl_int_is_zero(tab->mat->row[row][off + col]))
954 continue;
955 if (!tab->var[i].is_nonneg)
956 return 0;
957 if (isl_int_is_neg(tab->mat->row[row][off + col]))
958 return 0;
960 for (i = 0; i < tab->n_div; ++i) {
961 if (tab->var[tab->n_var - tab->n_div + i].is_row)
962 continue;
963 col = tab->var[tab->n_var - tab->n_div + i].index;
964 if (isl_int_is_zero(tab->mat->row[row][off + col]))
965 continue;
966 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
967 return 0;
968 if (isl_int_is_neg(tab->mat->row[row][off + col]))
969 return 0;
971 return 1;
974 /* Given a row r and two columns, return the column that would
975 * lead to the lexicographically smallest increment in the sample
976 * solution when leaving the basis in favor of the row.
977 * Pivoting with column c will increment the sample value by a non-negative
978 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
979 * corresponding to the non-parametric variables.
980 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
981 * with all other entries in this virtual row equal to zero.
982 * If variable v appears in a row, then a_{v,c} is the element in column c
983 * of that row.
985 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
986 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
987 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
988 * increment. Otherwise, it's c2.
990 static int lexmin_col_pair(struct isl_tab *tab,
991 int row, int col1, int col2, isl_int tmp)
993 int i;
994 isl_int *tr;
996 tr = tab->mat->row[row] + 2 + tab->M;
998 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
999 int s1, s2;
1000 isl_int *r;
1002 if (!tab->var[i].is_row) {
1003 if (tab->var[i].index == col1)
1004 return col2;
1005 if (tab->var[i].index == col2)
1006 return col1;
1007 continue;
1010 if (tab->var[i].index == row)
1011 continue;
1013 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1014 s1 = isl_int_sgn(r[col1]);
1015 s2 = isl_int_sgn(r[col2]);
1016 if (s1 == 0 && s2 == 0)
1017 continue;
1018 if (s1 < s2)
1019 return col1;
1020 if (s2 < s1)
1021 return col2;
1023 isl_int_mul(tmp, r[col2], tr[col1]);
1024 isl_int_submul(tmp, r[col1], tr[col2]);
1025 if (isl_int_is_pos(tmp))
1026 return col1;
1027 if (isl_int_is_neg(tmp))
1028 return col2;
1030 return -1;
1033 /* Given a row in the tableau, find and return the column that would
1034 * result in the lexicographically smallest, but positive, increment
1035 * in the sample point.
1036 * If there is no such column, then return tab->n_col.
1037 * If anything goes wrong, return -1.
1039 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1041 int j;
1042 int col = tab->n_col;
1043 isl_int *tr;
1044 isl_int tmp;
1046 tr = tab->mat->row[row] + 2 + tab->M;
1048 isl_int_init(tmp);
1050 for (j = tab->n_dead; j < tab->n_col; ++j) {
1051 if (tab->col_var[j] >= 0 &&
1052 (tab->col_var[j] < tab->n_param ||
1053 tab->col_var[j] >= tab->n_var - tab->n_div))
1054 continue;
1056 if (!isl_int_is_pos(tr[j]))
1057 continue;
1059 if (col == tab->n_col)
1060 col = j;
1061 else
1062 col = lexmin_col_pair(tab, row, col, j, tmp);
1063 isl_assert(tab->mat->ctx, col >= 0, goto error);
1066 isl_int_clear(tmp);
1067 return col;
1068 error:
1069 isl_int_clear(tmp);
1070 return -1;
1073 /* Return the first known violated constraint, i.e., a non-negative
1074 * contraint that currently has an either obviously negative value
1075 * or a previously determined to be negative value.
1077 * If any constraint has a negative coefficient for the big parameter,
1078 * if any, then we return one of these first.
1080 static int first_neg(struct isl_tab *tab)
1082 int row;
1084 if (tab->M)
1085 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1086 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1087 continue;
1088 if (isl_int_is_neg(tab->mat->row[row][2]))
1089 return row;
1091 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1092 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1093 continue;
1094 if (tab->row_sign) {
1095 if (tab->row_sign[row] == 0 &&
1096 is_obviously_neg(tab, row))
1097 tab->row_sign[row] = isl_tab_row_neg;
1098 if (tab->row_sign[row] != isl_tab_row_neg)
1099 continue;
1100 } else if (!is_obviously_neg(tab, row))
1101 continue;
1102 return row;
1104 return -1;
1107 /* Resolve all known or obviously violated constraints through pivoting.
1108 * In particular, as long as we can find any violated constraint, we
1109 * look for a pivoting column that would result in the lexicographicallly
1110 * smallest increment in the sample point. If there is no such column
1111 * then the tableau is infeasible.
1113 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1114 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1116 int row, col;
1118 if (!tab)
1119 return NULL;
1120 if (tab->empty)
1121 return tab;
1122 while ((row = first_neg(tab)) != -1) {
1123 col = lexmin_pivot_col(tab, row);
1124 if (col >= tab->n_col) {
1125 if (isl_tab_mark_empty(tab) < 0)
1126 goto error;
1127 return tab;
1129 if (col < 0)
1130 goto error;
1131 if (isl_tab_pivot(tab, row, col) < 0)
1132 goto error;
1134 return tab;
1135 error:
1136 isl_tab_free(tab);
1137 return NULL;
1140 /* Given a row that represents an equality, look for an appropriate
1141 * pivoting column.
1142 * In particular, if there are any non-zero coefficients among
1143 * the non-parameter variables, then we take the last of these
1144 * variables. Eliminating this variable in terms of the other
1145 * variables and/or parameters does not influence the property
1146 * that all column in the initial tableau are lexicographically
1147 * positive. The row corresponding to the eliminated variable
1148 * will only have non-zero entries below the diagonal of the
1149 * initial tableau. That is, we transform
1151 * I I
1152 * 1 into a
1153 * I I
1155 * If there is no such non-parameter variable, then we are dealing with
1156 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1157 * for elimination. This will ensure that the eliminated parameter
1158 * always has an integer value whenever all the other parameters are integral.
1159 * If there is no such parameter then we return -1.
1161 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1163 unsigned off = 2 + tab->M;
1164 int i;
1166 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1167 int col;
1168 if (tab->var[i].is_row)
1169 continue;
1170 col = tab->var[i].index;
1171 if (col <= tab->n_dead)
1172 continue;
1173 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1174 return col;
1176 for (i = tab->n_dead; i < tab->n_col; ++i) {
1177 if (isl_int_is_one(tab->mat->row[row][off + i]))
1178 return i;
1179 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1180 return i;
1182 return -1;
1185 /* Add an equality that is known to be valid to the tableau.
1186 * We first check if we can eliminate a variable or a parameter.
1187 * If not, we add the equality as two inequalities.
1188 * In this case, the equality was a pure parameter equality and there
1189 * is no need to resolve any constraint violations.
1191 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1193 int i;
1194 int r;
1196 if (!tab)
1197 return NULL;
1198 r = isl_tab_add_row(tab, eq);
1199 if (r < 0)
1200 goto error;
1202 r = tab->con[r].index;
1203 i = last_var_col_or_int_par_col(tab, r);
1204 if (i < 0) {
1205 tab->con[r].is_nonneg = 1;
1206 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1207 goto error;
1208 isl_seq_neg(eq, eq, 1 + tab->n_var);
1209 r = isl_tab_add_row(tab, eq);
1210 if (r < 0)
1211 goto error;
1212 tab->con[r].is_nonneg = 1;
1213 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1214 goto error;
1215 } else {
1216 if (isl_tab_pivot(tab, r, i) < 0)
1217 goto error;
1218 if (isl_tab_kill_col(tab, i) < 0)
1219 goto error;
1220 tab->n_eq++;
1222 tab = restore_lexmin(tab);
1225 return tab;
1226 error:
1227 isl_tab_free(tab);
1228 return NULL;
1231 /* Check if the given row is a pure constant.
1233 static int is_constant(struct isl_tab *tab, int row)
1235 unsigned off = 2 + tab->M;
1237 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1238 tab->n_col - tab->n_dead) == -1;
1241 /* Add an equality that may or may not be valid to the tableau.
1242 * If the resulting row is a pure constant, then it must be zero.
1243 * Otherwise, the resulting tableau is empty.
1245 * If the row is not a pure constant, then we add two inequalities,
1246 * each time checking that they can be satisfied.
1247 * In the end we try to use one of the two constraints to eliminate
1248 * a column.
1250 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1251 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1253 int r1, r2;
1254 int row;
1255 struct isl_tab_undo *snap;
1257 if (!tab)
1258 return NULL;
1259 snap = isl_tab_snap(tab);
1260 r1 = isl_tab_add_row(tab, eq);
1261 if (r1 < 0)
1262 goto error;
1263 tab->con[r1].is_nonneg = 1;
1264 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1265 goto error;
1267 row = tab->con[r1].index;
1268 if (is_constant(tab, row)) {
1269 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1270 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1271 if (isl_tab_mark_empty(tab) < 0)
1272 goto error;
1273 return tab;
1275 if (isl_tab_rollback(tab, snap) < 0)
1276 goto error;
1277 return tab;
1280 tab = restore_lexmin(tab);
1281 if (!tab || tab->empty)
1282 return tab;
1284 isl_seq_neg(eq, eq, 1 + tab->n_var);
1286 r2 = isl_tab_add_row(tab, eq);
1287 if (r2 < 0)
1288 goto error;
1289 tab->con[r2].is_nonneg = 1;
1290 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1291 goto error;
1293 tab = restore_lexmin(tab);
1294 if (!tab || tab->empty)
1295 return tab;
1297 if (!tab->con[r1].is_row) {
1298 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1299 goto error;
1300 } else if (!tab->con[r2].is_row) {
1301 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1302 goto error;
1303 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1304 unsigned off = 2 + tab->M;
1305 int i;
1306 int row = tab->con[r1].index;
1307 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1308 tab->n_col - tab->n_dead);
1309 if (i != -1) {
1310 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1311 goto error;
1312 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1313 goto error;
1317 if (tab->bmap) {
1318 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1319 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1320 goto error;
1321 isl_seq_neg(eq, eq, 1 + tab->n_var);
1322 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1323 isl_seq_neg(eq, eq, 1 + tab->n_var);
1324 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1325 goto error;
1326 if (!tab->bmap)
1327 goto error;
1330 return tab;
1331 error:
1332 isl_tab_free(tab);
1333 return NULL;
1336 /* Add an inequality to the tableau, resolving violations using
1337 * restore_lexmin.
1339 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1341 int r;
1343 if (!tab)
1344 return NULL;
1345 if (tab->bmap) {
1346 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1347 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1348 goto error;
1349 if (!tab->bmap)
1350 goto error;
1352 r = isl_tab_add_row(tab, ineq);
1353 if (r < 0)
1354 goto error;
1355 tab->con[r].is_nonneg = 1;
1356 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1357 goto error;
1358 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1359 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1360 goto error;
1361 return tab;
1364 tab = restore_lexmin(tab);
1365 if (tab && !tab->empty && tab->con[r].is_row &&
1366 isl_tab_row_is_redundant(tab, tab->con[r].index))
1367 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1368 goto error;
1369 return tab;
1370 error:
1371 isl_tab_free(tab);
1372 return NULL;
1375 /* Check if the coefficients of the parameters are all integral.
1377 static int integer_parameter(struct isl_tab *tab, int row)
1379 int i;
1380 int col;
1381 unsigned off = 2 + tab->M;
1383 for (i = 0; i < tab->n_param; ++i) {
1384 /* Eliminated parameter */
1385 if (tab->var[i].is_row)
1386 continue;
1387 col = tab->var[i].index;
1388 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1389 tab->mat->row[row][0]))
1390 return 0;
1392 for (i = 0; i < tab->n_div; ++i) {
1393 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1394 continue;
1395 col = tab->var[tab->n_var - tab->n_div + i].index;
1396 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1397 tab->mat->row[row][0]))
1398 return 0;
1400 return 1;
1403 /* Check if the coefficients of the non-parameter variables are all integral.
1405 static int integer_variable(struct isl_tab *tab, int row)
1407 int i;
1408 unsigned off = 2 + tab->M;
1410 for (i = tab->n_dead; i < tab->n_col; ++i) {
1411 if (tab->col_var[i] >= 0 &&
1412 (tab->col_var[i] < tab->n_param ||
1413 tab->col_var[i] >= tab->n_var - tab->n_div))
1414 continue;
1415 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1416 tab->mat->row[row][0]))
1417 return 0;
1419 return 1;
1422 /* Check if the constant term is integral.
1424 static int integer_constant(struct isl_tab *tab, int row)
1426 return isl_int_is_divisible_by(tab->mat->row[row][1],
1427 tab->mat->row[row][0]);
1430 #define I_CST 1 << 0
1431 #define I_PAR 1 << 1
1432 #define I_VAR 1 << 2
1434 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1435 * that is non-integer and therefore requires a cut and return
1436 * the index of the variable.
1437 * For parametric tableaus, there are three parts in a row,
1438 * the constant, the coefficients of the parameters and the rest.
1439 * For each part, we check whether the coefficients in that part
1440 * are all integral and if so, set the corresponding flag in *f.
1441 * If the constant and the parameter part are integral, then the
1442 * current sample value is integral and no cut is required
1443 * (irrespective of whether the variable part is integral).
1445 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1447 var = var < 0 ? tab->n_param : var + 1;
1449 for (; var < tab->n_var - tab->n_div; ++var) {
1450 int flags = 0;
1451 int row;
1452 if (!tab->var[var].is_row)
1453 continue;
1454 row = tab->var[var].index;
1455 if (integer_constant(tab, row))
1456 ISL_FL_SET(flags, I_CST);
1457 if (integer_parameter(tab, row))
1458 ISL_FL_SET(flags, I_PAR);
1459 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1460 continue;
1461 if (integer_variable(tab, row))
1462 ISL_FL_SET(flags, I_VAR);
1463 *f = flags;
1464 return var;
1466 return -1;
1469 /* Check for first (non-parameter) variable that is non-integer and
1470 * therefore requires a cut and return the corresponding row.
1471 * For parametric tableaus, there are three parts in a row,
1472 * the constant, the coefficients of the parameters and the rest.
1473 * For each part, we check whether the coefficients in that part
1474 * are all integral and if so, set the corresponding flag in *f.
1475 * If the constant and the parameter part are integral, then the
1476 * current sample value is integral and no cut is required
1477 * (irrespective of whether the variable part is integral).
1479 static int first_non_integer_row(struct isl_tab *tab, int *f)
1481 int var = next_non_integer_var(tab, -1, f);
1483 return var < 0 ? -1 : tab->var[var].index;
1486 /* Add a (non-parametric) cut to cut away the non-integral sample
1487 * value of the given row.
1489 * If the row is given by
1491 * m r = f + \sum_i a_i y_i
1493 * then the cut is
1495 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1497 * The big parameter, if any, is ignored, since it is assumed to be big
1498 * enough to be divisible by any integer.
1499 * If the tableau is actually a parametric tableau, then this function
1500 * is only called when all coefficients of the parameters are integral.
1501 * The cut therefore has zero coefficients for the parameters.
1503 * The current value is known to be negative, so row_sign, if it
1504 * exists, is set accordingly.
1506 * Return the row of the cut or -1.
1508 static int add_cut(struct isl_tab *tab, int row)
1510 int i;
1511 int r;
1512 isl_int *r_row;
1513 unsigned off = 2 + tab->M;
1515 if (isl_tab_extend_cons(tab, 1) < 0)
1516 return -1;
1517 r = isl_tab_allocate_con(tab);
1518 if (r < 0)
1519 return -1;
1521 r_row = tab->mat->row[tab->con[r].index];
1522 isl_int_set(r_row[0], tab->mat->row[row][0]);
1523 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1524 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1525 isl_int_neg(r_row[1], r_row[1]);
1526 if (tab->M)
1527 isl_int_set_si(r_row[2], 0);
1528 for (i = 0; i < tab->n_col; ++i)
1529 isl_int_fdiv_r(r_row[off + i],
1530 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1532 tab->con[r].is_nonneg = 1;
1533 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1534 return -1;
1535 if (tab->row_sign)
1536 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1538 return tab->con[r].index;
1541 /* Given a non-parametric tableau, add cuts until an integer
1542 * sample point is obtained or until the tableau is determined
1543 * to be integer infeasible.
1544 * As long as there is any non-integer value in the sample point,
1545 * we add appropriate cuts, if possible, for each of these
1546 * non-integer values and then resolve the violated
1547 * cut constraints using restore_lexmin.
1548 * If one of the corresponding rows is equal to an integral
1549 * combination of variables/constraints plus a non-integral constant,
1550 * then there is no way to obtain an integer point and we return
1551 * a tableau that is marked empty.
1553 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1555 int var;
1556 int row;
1557 int flags;
1559 if (!tab)
1560 return NULL;
1561 if (tab->empty)
1562 return tab;
1564 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1565 do {
1566 if (ISL_FL_ISSET(flags, I_VAR)) {
1567 if (isl_tab_mark_empty(tab) < 0)
1568 goto error;
1569 return tab;
1571 row = tab->var[var].index;
1572 row = add_cut(tab, row);
1573 if (row < 0)
1574 goto error;
1575 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1576 tab = restore_lexmin(tab);
1577 if (!tab || tab->empty)
1578 break;
1580 return tab;
1581 error:
1582 isl_tab_free(tab);
1583 return NULL;
1586 /* Check whether all the currently active samples also satisfy the inequality
1587 * "ineq" (treated as an equality if eq is set).
1588 * Remove those samples that do not.
1590 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1592 int i;
1593 isl_int v;
1595 if (!tab)
1596 return NULL;
1598 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1599 isl_assert(tab->mat->ctx, tab->samples, goto error);
1600 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1602 isl_int_init(v);
1603 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1604 int sgn;
1605 isl_seq_inner_product(ineq, tab->samples->row[i],
1606 1 + tab->n_var, &v);
1607 sgn = isl_int_sgn(v);
1608 if (eq ? (sgn == 0) : (sgn >= 0))
1609 continue;
1610 tab = isl_tab_drop_sample(tab, i);
1611 if (!tab)
1612 break;
1614 isl_int_clear(v);
1616 return tab;
1617 error:
1618 isl_tab_free(tab);
1619 return NULL;
1622 /* Check whether the sample value of the tableau is finite,
1623 * i.e., either the tableau does not use a big parameter, or
1624 * all values of the variables are equal to the big parameter plus
1625 * some constant. This constant is the actual sample value.
1627 static int sample_is_finite(struct isl_tab *tab)
1629 int i;
1631 if (!tab->M)
1632 return 1;
1634 for (i = 0; i < tab->n_var; ++i) {
1635 int row;
1636 if (!tab->var[i].is_row)
1637 return 0;
1638 row = tab->var[i].index;
1639 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1640 return 0;
1642 return 1;
1645 /* Check if the context tableau of sol has any integer points.
1646 * Leave tab in empty state if no integer point can be found.
1647 * If an integer point can be found and if moreover it is finite,
1648 * then it is added to the list of sample values.
1650 * This function is only called when none of the currently active sample
1651 * values satisfies the most recently added constraint.
1653 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1655 struct isl_tab_undo *snap;
1656 int feasible;
1658 if (!tab)
1659 return NULL;
1661 snap = isl_tab_snap(tab);
1662 if (isl_tab_push_basis(tab) < 0)
1663 goto error;
1665 tab = cut_to_integer_lexmin(tab);
1666 if (!tab)
1667 goto error;
1669 if (!tab->empty && sample_is_finite(tab)) {
1670 struct isl_vec *sample;
1672 sample = isl_tab_get_sample_value(tab);
1674 tab = isl_tab_add_sample(tab, sample);
1677 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1678 goto error;
1680 return tab;
1681 error:
1682 isl_tab_free(tab);
1683 return NULL;
1686 /* Check if any of the currently active sample values satisfies
1687 * the inequality "ineq" (an equality if eq is set).
1689 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1691 int i;
1692 isl_int v;
1694 if (!tab)
1695 return -1;
1697 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1698 isl_assert(tab->mat->ctx, tab->samples, return -1);
1699 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1701 isl_int_init(v);
1702 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1703 int sgn;
1704 isl_seq_inner_product(ineq, tab->samples->row[i],
1705 1 + tab->n_var, &v);
1706 sgn = isl_int_sgn(v);
1707 if (eq ? (sgn == 0) : (sgn >= 0))
1708 break;
1710 isl_int_clear(v);
1712 return i < tab->n_sample;
1715 /* For a div d = floor(f/m), add the constraints
1717 * f - m d >= 0
1718 * -(f-(m-1)) + m d >= 0
1720 * Note that the second constraint is the negation of
1722 * f - m d >= m
1724 static void add_div_constraints(struct isl_context *context, unsigned div)
1726 unsigned total;
1727 unsigned div_pos;
1728 struct isl_vec *ineq;
1729 struct isl_basic_set *bset;
1731 bset = context->op->peek_basic_set(context);
1732 if (!bset)
1733 goto error;
1735 total = isl_basic_set_total_dim(bset);
1736 div_pos = 1 + total - bset->n_div + div;
1738 ineq = ineq_for_div(bset, div);
1739 if (!ineq)
1740 goto error;
1742 context->op->add_ineq(context, ineq->el, 0, 0);
1744 isl_seq_neg(ineq->el, bset->div[div] + 1, 1 + total);
1745 isl_int_set(ineq->el[div_pos], bset->div[div][0]);
1746 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1747 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1749 context->op->add_ineq(context, ineq->el, 0, 0);
1751 isl_vec_free(ineq);
1753 return;
1754 error:
1755 context->op->invalidate(context);
1758 /* Add a div specifed by "div" to the tableau "tab" and return
1759 * the index of the new div. *nonneg is set to 1 if the div
1760 * is obviously non-negative.
1762 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1763 int *nonneg)
1765 int i;
1766 int r;
1767 int k;
1768 struct isl_mat *samples;
1770 for (i = 0; i < tab->n_var; ++i) {
1771 if (isl_int_is_zero(div->el[2 + i]))
1772 continue;
1773 if (!tab->var[i].is_nonneg)
1774 break;
1776 *nonneg = i == tab->n_var;
1778 if (isl_tab_extend_cons(tab, 3) < 0)
1779 return -1;
1780 if (isl_tab_extend_vars(tab, 1) < 0)
1781 return -1;
1782 r = isl_tab_allocate_var(tab);
1783 if (r < 0)
1784 return -1;
1785 if (*nonneg)
1786 tab->var[r].is_nonneg = 1;
1787 tab->var[r].frozen = 1;
1789 samples = isl_mat_extend(tab->samples,
1790 tab->n_sample, 1 + tab->n_var);
1791 tab->samples = samples;
1792 if (!samples)
1793 return -1;
1794 for (i = tab->n_outside; i < samples->n_row; ++i) {
1795 isl_seq_inner_product(div->el + 1, samples->row[i],
1796 div->size - 1, &samples->row[i][samples->n_col - 1]);
1797 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1798 samples->row[i][samples->n_col - 1], div->el[0]);
1801 tab->bmap = isl_basic_map_extend_dim(tab->bmap,
1802 isl_basic_map_get_dim(tab->bmap), 1, 0, 2);
1803 k = isl_basic_map_alloc_div(tab->bmap);
1804 if (k < 0)
1805 return -1;
1806 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
1807 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
1808 return -1;
1810 return k;
1813 /* Add a div specified by "div" to both the main tableau and
1814 * the context tableau. In case of the main tableau, we only
1815 * need to add an extra div. In the context tableau, we also
1816 * need to express the meaning of the div.
1817 * Return the index of the div or -1 if anything went wrong.
1819 static int add_div(struct isl_tab *tab, struct isl_context *context,
1820 struct isl_vec *div)
1822 int r;
1823 int k;
1824 int nonneg;
1826 k = context->op->add_div(context, div, &nonneg);
1827 if (k < 0)
1828 goto error;
1830 add_div_constraints(context, k);
1831 if (!context->op->is_ok(context))
1832 goto error;
1834 if (isl_tab_extend_vars(tab, 1) < 0)
1835 goto error;
1836 r = isl_tab_allocate_var(tab);
1837 if (r < 0)
1838 goto error;
1839 if (nonneg)
1840 tab->var[r].is_nonneg = 1;
1841 tab->var[r].frozen = 1;
1842 tab->n_div++;
1844 return tab->n_div - 1;
1845 error:
1846 context->op->invalidate(context);
1847 return -1;
1850 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1852 int i;
1853 unsigned total = isl_basic_map_total_dim(tab->bmap);
1855 for (i = 0; i < tab->bmap->n_div; ++i) {
1856 if (isl_int_ne(tab->bmap->div[i][0], denom))
1857 continue;
1858 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, total))
1859 continue;
1860 return i;
1862 return -1;
1865 /* Return the index of a div that corresponds to "div".
1866 * We first check if we already have such a div and if not, we create one.
1868 static int get_div(struct isl_tab *tab, struct isl_context *context,
1869 struct isl_vec *div)
1871 int d;
1872 struct isl_tab *context_tab = context->op->peek_tab(context);
1874 if (!context_tab)
1875 return -1;
1877 d = find_div(context_tab, div->el + 1, div->el[0]);
1878 if (d != -1)
1879 return d;
1881 return add_div(tab, context, div);
1884 /* Add a parametric cut to cut away the non-integral sample value
1885 * of the give row.
1886 * Let a_i be the coefficients of the constant term and the parameters
1887 * and let b_i be the coefficients of the variables or constraints
1888 * in basis of the tableau.
1889 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1891 * The cut is expressed as
1893 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1895 * If q did not already exist in the context tableau, then it is added first.
1896 * If q is in a column of the main tableau then the "+ q" can be accomplished
1897 * by setting the corresponding entry to the denominator of the constraint.
1898 * If q happens to be in a row of the main tableau, then the corresponding
1899 * row needs to be added instead (taking care of the denominators).
1900 * Note that this is very unlikely, but perhaps not entirely impossible.
1902 * The current value of the cut is known to be negative (or at least
1903 * non-positive), so row_sign is set accordingly.
1905 * Return the row of the cut or -1.
1907 static int add_parametric_cut(struct isl_tab *tab, int row,
1908 struct isl_context *context)
1910 struct isl_vec *div;
1911 int d;
1912 int i;
1913 int r;
1914 isl_int *r_row;
1915 int col;
1916 int n;
1917 unsigned off = 2 + tab->M;
1919 if (!context)
1920 return -1;
1922 div = get_row_parameter_div(tab, row);
1923 if (!div)
1924 return -1;
1926 n = tab->n_div;
1927 d = context->op->get_div(context, tab, div);
1928 if (d < 0)
1929 return -1;
1931 if (isl_tab_extend_cons(tab, 1) < 0)
1932 return -1;
1933 r = isl_tab_allocate_con(tab);
1934 if (r < 0)
1935 return -1;
1937 r_row = tab->mat->row[tab->con[r].index];
1938 isl_int_set(r_row[0], tab->mat->row[row][0]);
1939 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1940 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1941 isl_int_neg(r_row[1], r_row[1]);
1942 if (tab->M)
1943 isl_int_set_si(r_row[2], 0);
1944 for (i = 0; i < tab->n_param; ++i) {
1945 if (tab->var[i].is_row)
1946 continue;
1947 col = tab->var[i].index;
1948 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1949 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1950 tab->mat->row[row][0]);
1951 isl_int_neg(r_row[off + col], r_row[off + col]);
1953 for (i = 0; i < tab->n_div; ++i) {
1954 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1955 continue;
1956 col = tab->var[tab->n_var - tab->n_div + i].index;
1957 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1958 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1959 tab->mat->row[row][0]);
1960 isl_int_neg(r_row[off + col], r_row[off + col]);
1962 for (i = 0; i < tab->n_col; ++i) {
1963 if (tab->col_var[i] >= 0 &&
1964 (tab->col_var[i] < tab->n_param ||
1965 tab->col_var[i] >= tab->n_var - tab->n_div))
1966 continue;
1967 isl_int_fdiv_r(r_row[off + i],
1968 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1970 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1971 isl_int gcd;
1972 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1973 isl_int_init(gcd);
1974 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1975 isl_int_divexact(r_row[0], r_row[0], gcd);
1976 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1977 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1978 r_row[0], tab->mat->row[d_row] + 1,
1979 off - 1 + tab->n_col);
1980 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1981 isl_int_clear(gcd);
1982 } else {
1983 col = tab->var[tab->n_var - tab->n_div + d].index;
1984 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1987 tab->con[r].is_nonneg = 1;
1988 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1989 return -1;
1990 if (tab->row_sign)
1991 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1993 isl_vec_free(div);
1995 row = tab->con[r].index;
1997 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1998 return -1;
2000 return row;
2003 /* Construct a tableau for bmap that can be used for computing
2004 * the lexicographic minimum (or maximum) of bmap.
2005 * If not NULL, then dom is the domain where the minimum
2006 * should be computed. In this case, we set up a parametric
2007 * tableau with row signs (initialized to "unknown").
2008 * If M is set, then the tableau will use a big parameter.
2009 * If max is set, then a maximum should be computed instead of a minimum.
2010 * This means that for each variable x, the tableau will contain the variable
2011 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2012 * of the variables in all constraints are negated prior to adding them
2013 * to the tableau.
2015 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2016 struct isl_basic_set *dom, unsigned M, int max)
2018 int i;
2019 struct isl_tab *tab;
2021 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2022 isl_basic_map_total_dim(bmap), M);
2023 if (!tab)
2024 return NULL;
2026 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2027 if (dom) {
2028 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2029 tab->n_div = dom->n_div;
2030 tab->row_sign = isl_calloc_array(bmap->ctx,
2031 enum isl_tab_row_sign, tab->mat->n_row);
2032 if (!tab->row_sign)
2033 goto error;
2035 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2036 if (isl_tab_mark_empty(tab) < 0)
2037 goto error;
2038 return tab;
2041 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2042 tab->var[i].is_nonneg = 1;
2043 tab->var[i].frozen = 1;
2045 for (i = 0; i < bmap->n_eq; ++i) {
2046 if (max)
2047 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2048 bmap->eq[i] + 1 + tab->n_param,
2049 tab->n_var - tab->n_param - tab->n_div);
2050 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2051 if (max)
2052 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2053 bmap->eq[i] + 1 + tab->n_param,
2054 tab->n_var - tab->n_param - tab->n_div);
2055 if (!tab || tab->empty)
2056 return tab;
2058 for (i = 0; i < bmap->n_ineq; ++i) {
2059 if (max)
2060 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2061 bmap->ineq[i] + 1 + tab->n_param,
2062 tab->n_var - tab->n_param - tab->n_div);
2063 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2064 if (max)
2065 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2066 bmap->ineq[i] + 1 + tab->n_param,
2067 tab->n_var - tab->n_param - tab->n_div);
2068 if (!tab || tab->empty)
2069 return tab;
2071 return tab;
2072 error:
2073 isl_tab_free(tab);
2074 return NULL;
2077 /* Given a main tableau where more than one row requires a split,
2078 * determine and return the "best" row to split on.
2080 * Given two rows in the main tableau, if the inequality corresponding
2081 * to the first row is redundant with respect to that of the second row
2082 * in the current tableau, then it is better to split on the second row,
2083 * since in the positive part, both row will be positive.
2084 * (In the negative part a pivot will have to be performed and just about
2085 * anything can happen to the sign of the other row.)
2087 * As a simple heuristic, we therefore select the row that makes the most
2088 * of the other rows redundant.
2090 * Perhaps it would also be useful to look at the number of constraints
2091 * that conflict with any given constraint.
2093 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2095 struct isl_tab_undo *snap;
2096 int split;
2097 int row;
2098 int best = -1;
2099 int best_r;
2101 if (isl_tab_extend_cons(context_tab, 2) < 0)
2102 return -1;
2104 snap = isl_tab_snap(context_tab);
2106 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2107 struct isl_tab_undo *snap2;
2108 struct isl_vec *ineq = NULL;
2109 int r = 0;
2110 int ok;
2112 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2113 continue;
2114 if (tab->row_sign[split] != isl_tab_row_any)
2115 continue;
2117 ineq = get_row_parameter_ineq(tab, split);
2118 if (!ineq)
2119 return -1;
2120 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2121 isl_vec_free(ineq);
2122 if (!ok)
2123 return -1;
2125 snap2 = isl_tab_snap(context_tab);
2127 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2128 struct isl_tab_var *var;
2130 if (row == split)
2131 continue;
2132 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2133 continue;
2134 if (tab->row_sign[row] != isl_tab_row_any)
2135 continue;
2137 ineq = get_row_parameter_ineq(tab, row);
2138 if (!ineq)
2139 return -1;
2140 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2141 isl_vec_free(ineq);
2142 if (!ok)
2143 return -1;
2144 var = &context_tab->con[context_tab->n_con - 1];
2145 if (!context_tab->empty &&
2146 !isl_tab_min_at_most_neg_one(context_tab, var))
2147 r++;
2148 if (isl_tab_rollback(context_tab, snap2) < 0)
2149 return -1;
2151 if (best == -1 || r > best_r) {
2152 best = split;
2153 best_r = r;
2155 if (isl_tab_rollback(context_tab, snap) < 0)
2156 return -1;
2159 return best;
2162 static struct isl_basic_set *context_lex_peek_basic_set(
2163 struct isl_context *context)
2165 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2166 if (!clex->tab)
2167 return NULL;
2168 return isl_tab_peek_bset(clex->tab);
2171 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2173 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2174 return clex->tab;
2177 static void context_lex_extend(struct isl_context *context, int n)
2179 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2180 if (!clex->tab)
2181 return;
2182 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2183 return;
2184 isl_tab_free(clex->tab);
2185 clex->tab = NULL;
2188 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2189 int check, int update)
2191 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2192 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2193 goto error;
2194 clex->tab = add_lexmin_eq(clex->tab, eq);
2195 if (check) {
2196 int v = tab_has_valid_sample(clex->tab, eq, 1);
2197 if (v < 0)
2198 goto error;
2199 if (!v)
2200 clex->tab = check_integer_feasible(clex->tab);
2202 if (update)
2203 clex->tab = check_samples(clex->tab, eq, 1);
2204 return;
2205 error:
2206 isl_tab_free(clex->tab);
2207 clex->tab = NULL;
2210 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2211 int check, int update)
2213 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2214 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2215 goto error;
2216 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2217 if (check) {
2218 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2219 if (v < 0)
2220 goto error;
2221 if (!v)
2222 clex->tab = check_integer_feasible(clex->tab);
2224 if (update)
2225 clex->tab = check_samples(clex->tab, ineq, 0);
2226 return;
2227 error:
2228 isl_tab_free(clex->tab);
2229 clex->tab = NULL;
2232 /* Check which signs can be obtained by "ineq" on all the currently
2233 * active sample values. See row_sign for more information.
2235 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2236 int strict)
2238 int i;
2239 int sgn;
2240 isl_int tmp;
2241 int res = isl_tab_row_unknown;
2243 isl_assert(tab->mat->ctx, tab->samples, return 0);
2244 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return 0);
2246 isl_int_init(tmp);
2247 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2248 isl_seq_inner_product(tab->samples->row[i], ineq,
2249 1 + tab->n_var, &tmp);
2250 sgn = isl_int_sgn(tmp);
2251 if (sgn > 0 || (sgn == 0 && strict)) {
2252 if (res == isl_tab_row_unknown)
2253 res = isl_tab_row_pos;
2254 if (res == isl_tab_row_neg)
2255 res = isl_tab_row_any;
2257 if (sgn < 0) {
2258 if (res == isl_tab_row_unknown)
2259 res = isl_tab_row_neg;
2260 if (res == isl_tab_row_pos)
2261 res = isl_tab_row_any;
2263 if (res == isl_tab_row_any)
2264 break;
2266 isl_int_clear(tmp);
2268 return res;
2271 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2272 isl_int *ineq, int strict)
2274 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2275 return tab_ineq_sign(clex->tab, ineq, strict);
2278 /* Check whether "ineq" can be added to the tableau without rendering
2279 * it infeasible.
2281 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2283 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2284 struct isl_tab_undo *snap;
2285 int feasible;
2287 if (!clex->tab)
2288 return -1;
2290 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2291 return -1;
2293 snap = isl_tab_snap(clex->tab);
2294 if (isl_tab_push_basis(clex->tab) < 0)
2295 return -1;
2296 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2297 clex->tab = check_integer_feasible(clex->tab);
2298 if (!clex->tab)
2299 return -1;
2300 feasible = !clex->tab->empty;
2301 if (isl_tab_rollback(clex->tab, snap) < 0)
2302 return -1;
2304 return feasible;
2307 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2308 struct isl_vec *div)
2310 return get_div(tab, context, div);
2313 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div,
2314 int *nonneg)
2316 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2317 return context_tab_add_div(clex->tab, div, nonneg);
2320 static int context_lex_detect_equalities(struct isl_context *context,
2321 struct isl_tab *tab)
2323 return 0;
2326 static int context_lex_best_split(struct isl_context *context,
2327 struct isl_tab *tab)
2329 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2330 struct isl_tab_undo *snap;
2331 int r;
2333 snap = isl_tab_snap(clex->tab);
2334 if (isl_tab_push_basis(clex->tab) < 0)
2335 return -1;
2336 r = best_split(tab, clex->tab);
2338 if (isl_tab_rollback(clex->tab, snap) < 0)
2339 return -1;
2341 return r;
2344 static int context_lex_is_empty(struct isl_context *context)
2346 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2347 if (!clex->tab)
2348 return -1;
2349 return clex->tab->empty;
2352 static void *context_lex_save(struct isl_context *context)
2354 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2355 struct isl_tab_undo *snap;
2357 snap = isl_tab_snap(clex->tab);
2358 if (isl_tab_push_basis(clex->tab) < 0)
2359 return NULL;
2360 if (isl_tab_save_samples(clex->tab) < 0)
2361 return NULL;
2363 return snap;
2366 static void context_lex_restore(struct isl_context *context, void *save)
2368 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2369 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2370 isl_tab_free(clex->tab);
2371 clex->tab = NULL;
2375 static int context_lex_is_ok(struct isl_context *context)
2377 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2378 return !!clex->tab;
2381 /* For each variable in the context tableau, check if the variable can
2382 * only attain non-negative values. If so, mark the parameter as non-negative
2383 * in the main tableau. This allows for a more direct identification of some
2384 * cases of violated constraints.
2386 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2387 struct isl_tab *context_tab)
2389 int i;
2390 struct isl_tab_undo *snap;
2391 struct isl_vec *ineq = NULL;
2392 struct isl_tab_var *var;
2393 int n;
2395 if (context_tab->n_var == 0)
2396 return tab;
2398 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2399 if (!ineq)
2400 goto error;
2402 if (isl_tab_extend_cons(context_tab, 1) < 0)
2403 goto error;
2405 snap = isl_tab_snap(context_tab);
2407 n = 0;
2408 isl_seq_clr(ineq->el, ineq->size);
2409 for (i = 0; i < context_tab->n_var; ++i) {
2410 isl_int_set_si(ineq->el[1 + i], 1);
2411 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2412 goto error;
2413 var = &context_tab->con[context_tab->n_con - 1];
2414 if (!context_tab->empty &&
2415 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2416 int j = i;
2417 if (i >= tab->n_param)
2418 j = i - tab->n_param + tab->n_var - tab->n_div;
2419 tab->var[j].is_nonneg = 1;
2420 n++;
2422 isl_int_set_si(ineq->el[1 + i], 0);
2423 if (isl_tab_rollback(context_tab, snap) < 0)
2424 goto error;
2427 if (context_tab->M && n == context_tab->n_var) {
2428 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2429 context_tab->M = 0;
2432 isl_vec_free(ineq);
2433 return tab;
2434 error:
2435 isl_vec_free(ineq);
2436 isl_tab_free(tab);
2437 return NULL;
2440 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2441 struct isl_context *context, struct isl_tab *tab)
2443 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2444 struct isl_tab_undo *snap;
2446 snap = isl_tab_snap(clex->tab);
2447 if (isl_tab_push_basis(clex->tab) < 0)
2448 goto error;
2450 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2452 if (isl_tab_rollback(clex->tab, snap) < 0)
2453 goto error;
2455 return tab;
2456 error:
2457 isl_tab_free(tab);
2458 return NULL;
2461 static void context_lex_invalidate(struct isl_context *context)
2463 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2464 isl_tab_free(clex->tab);
2465 clex->tab = NULL;
2468 static void context_lex_free(struct isl_context *context)
2470 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2471 isl_tab_free(clex->tab);
2472 free(clex);
2475 struct isl_context_op isl_context_lex_op = {
2476 context_lex_detect_nonnegative_parameters,
2477 context_lex_peek_basic_set,
2478 context_lex_peek_tab,
2479 context_lex_add_eq,
2480 context_lex_add_ineq,
2481 context_lex_ineq_sign,
2482 context_lex_test_ineq,
2483 context_lex_get_div,
2484 context_lex_add_div,
2485 context_lex_detect_equalities,
2486 context_lex_best_split,
2487 context_lex_is_empty,
2488 context_lex_is_ok,
2489 context_lex_save,
2490 context_lex_restore,
2491 context_lex_invalidate,
2492 context_lex_free,
2495 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2497 struct isl_tab *tab;
2499 bset = isl_basic_set_cow(bset);
2500 if (!bset)
2501 return NULL;
2502 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2503 if (!tab)
2504 goto error;
2505 if (isl_tab_track_bset(tab, bset) < 0)
2506 goto error;
2507 tab = isl_tab_init_samples(tab);
2508 return tab;
2509 error:
2510 isl_basic_set_free(bset);
2511 return NULL;
2514 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2516 struct isl_context_lex *clex;
2518 if (!dom)
2519 return NULL;
2521 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2522 if (!clex)
2523 return NULL;
2525 clex->context.op = &isl_context_lex_op;
2527 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2528 clex->tab = restore_lexmin(clex->tab);
2529 clex->tab = check_integer_feasible(clex->tab);
2530 if (!clex->tab)
2531 goto error;
2533 return &clex->context;
2534 error:
2535 clex->context.op->free(&clex->context);
2536 return NULL;
2539 struct isl_context_gbr {
2540 struct isl_context context;
2541 struct isl_tab *tab;
2542 struct isl_tab *shifted;
2543 struct isl_tab *cone;
2546 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2547 struct isl_context *context, struct isl_tab *tab)
2549 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2550 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2553 static struct isl_basic_set *context_gbr_peek_basic_set(
2554 struct isl_context *context)
2556 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2557 if (!cgbr->tab)
2558 return NULL;
2559 return isl_tab_peek_bset(cgbr->tab);
2562 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2564 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2565 return cgbr->tab;
2568 /* Initialize the "shifted" tableau of the context, which
2569 * contains the constraints of the original tableau shifted
2570 * by the sum of all negative coefficients. This ensures
2571 * that any rational point in the shifted tableau can
2572 * be rounded up to yield an integer point in the original tableau.
2574 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2576 int i, j;
2577 struct isl_vec *cst;
2578 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2579 unsigned dim = isl_basic_set_total_dim(bset);
2581 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2582 if (!cst)
2583 return;
2585 for (i = 0; i < bset->n_ineq; ++i) {
2586 isl_int_set(cst->el[i], bset->ineq[i][0]);
2587 for (j = 0; j < dim; ++j) {
2588 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2589 continue;
2590 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2591 bset->ineq[i][1 + j]);
2595 cgbr->shifted = isl_tab_from_basic_set(bset);
2597 for (i = 0; i < bset->n_ineq; ++i)
2598 isl_int_set(bset->ineq[i][0], cst->el[i]);
2600 isl_vec_free(cst);
2603 /* Check if the shifted tableau is non-empty, and if so
2604 * use the sample point to construct an integer point
2605 * of the context tableau.
2607 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2609 struct isl_vec *sample;
2611 if (!cgbr->shifted)
2612 gbr_init_shifted(cgbr);
2613 if (!cgbr->shifted)
2614 return NULL;
2615 if (cgbr->shifted->empty)
2616 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2618 sample = isl_tab_get_sample_value(cgbr->shifted);
2619 sample = isl_vec_ceil(sample);
2621 return sample;
2624 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2626 int i;
2628 if (!bset)
2629 return NULL;
2631 for (i = 0; i < bset->n_eq; ++i)
2632 isl_int_set_si(bset->eq[i][0], 0);
2634 for (i = 0; i < bset->n_ineq; ++i)
2635 isl_int_set_si(bset->ineq[i][0], 0);
2637 return bset;
2640 static int use_shifted(struct isl_context_gbr *cgbr)
2642 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2645 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2647 struct isl_basic_set *bset;
2648 struct isl_basic_set *cone;
2650 if (isl_tab_sample_is_integer(cgbr->tab))
2651 return isl_tab_get_sample_value(cgbr->tab);
2653 if (use_shifted(cgbr)) {
2654 struct isl_vec *sample;
2656 sample = gbr_get_shifted_sample(cgbr);
2657 if (!sample || sample->size > 0)
2658 return sample;
2660 isl_vec_free(sample);
2663 if (!cgbr->cone) {
2664 bset = isl_tab_peek_bset(cgbr->tab);
2665 cgbr->cone = isl_tab_from_recession_cone(bset);
2666 if (!cgbr->cone)
2667 return NULL;
2668 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2669 return NULL;
2671 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2672 if (!cgbr->cone)
2673 return NULL;
2675 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2676 struct isl_vec *sample;
2677 struct isl_tab_undo *snap;
2679 if (cgbr->tab->basis) {
2680 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2681 isl_mat_free(cgbr->tab->basis);
2682 cgbr->tab->basis = NULL;
2683 } else {
2684 cgbr->tab->n_zero = 0;
2685 cgbr->tab->n_unbounded = 0;
2689 snap = isl_tab_snap(cgbr->tab);
2691 sample = isl_tab_sample(cgbr->tab);
2693 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2694 isl_vec_free(sample);
2695 return NULL;
2698 return sample;
2701 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2702 cone = drop_constant_terms(cone);
2703 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2704 cone = isl_basic_set_underlying_set(cone);
2705 cone = isl_basic_set_gauss(cone, NULL);
2707 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2708 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2709 bset = isl_basic_set_underlying_set(bset);
2710 bset = isl_basic_set_gauss(bset, NULL);
2712 return isl_basic_set_sample_with_cone(bset, cone);
2715 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2717 struct isl_vec *sample;
2719 if (!cgbr->tab)
2720 return;
2722 if (cgbr->tab->empty)
2723 return;
2725 sample = gbr_get_sample(cgbr);
2726 if (!sample)
2727 goto error;
2729 if (sample->size == 0) {
2730 isl_vec_free(sample);
2731 if (isl_tab_mark_empty(cgbr->tab) < 0)
2732 goto error;
2733 return;
2736 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2738 return;
2739 error:
2740 isl_tab_free(cgbr->tab);
2741 cgbr->tab = NULL;
2744 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2746 int r;
2748 if (!tab)
2749 return NULL;
2751 if (isl_tab_extend_cons(tab, 2) < 0)
2752 goto error;
2754 tab = isl_tab_add_eq(tab, eq);
2756 return tab;
2757 error:
2758 isl_tab_free(tab);
2759 return NULL;
2762 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2763 int check, int update)
2765 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2767 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2769 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2770 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2771 goto error;
2772 cgbr->cone = isl_tab_add_eq(cgbr->cone, eq);
2775 if (check) {
2776 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2777 if (v < 0)
2778 goto error;
2779 if (!v)
2780 check_gbr_integer_feasible(cgbr);
2782 if (update)
2783 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2784 return;
2785 error:
2786 isl_tab_free(cgbr->tab);
2787 cgbr->tab = NULL;
2790 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2792 if (!cgbr->tab)
2793 return;
2795 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2796 goto error;
2798 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2799 goto error;
2801 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2802 int i;
2803 unsigned dim;
2804 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2806 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2807 goto error;
2809 for (i = 0; i < dim; ++i) {
2810 if (!isl_int_is_neg(ineq[1 + i]))
2811 continue;
2812 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2815 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2816 goto error;
2818 for (i = 0; i < dim; ++i) {
2819 if (!isl_int_is_neg(ineq[1 + i]))
2820 continue;
2821 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2825 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2826 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2827 goto error;
2828 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2829 goto error;
2832 return;
2833 error:
2834 isl_tab_free(cgbr->tab);
2835 cgbr->tab = NULL;
2838 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2839 int check, int update)
2841 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2843 add_gbr_ineq(cgbr, ineq);
2844 if (!cgbr->tab)
2845 return;
2847 if (check) {
2848 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2849 if (v < 0)
2850 goto error;
2851 if (!v)
2852 check_gbr_integer_feasible(cgbr);
2854 if (update)
2855 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2856 return;
2857 error:
2858 isl_tab_free(cgbr->tab);
2859 cgbr->tab = NULL;
2862 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2863 isl_int *ineq, int strict)
2865 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2866 return tab_ineq_sign(cgbr->tab, ineq, strict);
2869 /* Check whether "ineq" can be added to the tableau without rendering
2870 * it infeasible.
2872 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2874 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2875 struct isl_tab_undo *snap;
2876 struct isl_tab_undo *shifted_snap = NULL;
2877 struct isl_tab_undo *cone_snap = NULL;
2878 int feasible;
2880 if (!cgbr->tab)
2881 return -1;
2883 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2884 return -1;
2886 snap = isl_tab_snap(cgbr->tab);
2887 if (cgbr->shifted)
2888 shifted_snap = isl_tab_snap(cgbr->shifted);
2889 if (cgbr->cone)
2890 cone_snap = isl_tab_snap(cgbr->cone);
2891 add_gbr_ineq(cgbr, ineq);
2892 check_gbr_integer_feasible(cgbr);
2893 if (!cgbr->tab)
2894 return -1;
2895 feasible = !cgbr->tab->empty;
2896 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2897 return -1;
2898 if (shifted_snap) {
2899 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2900 return -1;
2901 } else if (cgbr->shifted) {
2902 isl_tab_free(cgbr->shifted);
2903 cgbr->shifted = NULL;
2905 if (cone_snap) {
2906 if (isl_tab_rollback(cgbr->cone, cone_snap))
2907 return -1;
2908 } else if (cgbr->cone) {
2909 isl_tab_free(cgbr->cone);
2910 cgbr->cone = NULL;
2913 return feasible;
2916 /* Return the column of the last of the variables associated to
2917 * a column that has a non-zero coefficient.
2918 * This function is called in a context where only coefficients
2919 * of parameters or divs can be non-zero.
2921 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2923 int i;
2924 int col;
2925 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2927 if (tab->n_var == 0)
2928 return -1;
2930 for (i = tab->n_var - 1; i >= 0; --i) {
2931 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2932 continue;
2933 if (tab->var[i].is_row)
2934 continue;
2935 col = tab->var[i].index;
2936 if (!isl_int_is_zero(p[col]))
2937 return col;
2940 return -1;
2943 /* Look through all the recently added equalities in the context
2944 * to see if we can propagate any of them to the main tableau.
2946 * The newly added equalities in the context are encoded as pairs
2947 * of inequalities starting at inequality "first".
2949 * We tentatively add each of these equalities to the main tableau
2950 * and if this happens to result in a row with a final coefficient
2951 * that is one or negative one, we use it to kill a column
2952 * in the main tableau. Otherwise, we discard the tentatively
2953 * added row.
2955 static void propagate_equalities(struct isl_context_gbr *cgbr,
2956 struct isl_tab *tab, unsigned first)
2958 int i;
2959 struct isl_vec *eq = NULL;
2961 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2962 if (!eq)
2963 goto error;
2965 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2966 goto error;
2968 isl_seq_clr(eq->el + 1 + tab->n_param,
2969 tab->n_var - tab->n_param - tab->n_div);
2970 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2971 int j;
2972 int r;
2973 struct isl_tab_undo *snap;
2974 snap = isl_tab_snap(tab);
2976 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2977 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2978 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2979 tab->n_div);
2981 r = isl_tab_add_row(tab, eq->el);
2982 if (r < 0)
2983 goto error;
2984 r = tab->con[r].index;
2985 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2986 if (j < 0 || j < tab->n_dead ||
2987 !isl_int_is_one(tab->mat->row[r][0]) ||
2988 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2989 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2990 if (isl_tab_rollback(tab, snap) < 0)
2991 goto error;
2992 continue;
2994 if (isl_tab_pivot(tab, r, j) < 0)
2995 goto error;
2996 if (isl_tab_kill_col(tab, j) < 0)
2997 goto error;
2999 tab = restore_lexmin(tab);
3002 isl_vec_free(eq);
3004 return;
3005 error:
3006 isl_vec_free(eq);
3007 isl_tab_free(cgbr->tab);
3008 cgbr->tab = NULL;
3011 static int context_gbr_detect_equalities(struct isl_context *context,
3012 struct isl_tab *tab)
3014 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3015 struct isl_ctx *ctx;
3016 int i;
3017 enum isl_lp_result res;
3018 unsigned n_ineq;
3020 ctx = cgbr->tab->mat->ctx;
3022 if (!cgbr->cone) {
3023 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3024 cgbr->cone = isl_tab_from_recession_cone(bset);
3025 if (!cgbr->cone)
3026 goto error;
3027 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3028 goto error;
3030 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
3032 n_ineq = cgbr->tab->bmap->n_ineq;
3033 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3034 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3035 propagate_equalities(cgbr, tab, n_ineq);
3037 return 0;
3038 error:
3039 isl_tab_free(cgbr->tab);
3040 cgbr->tab = NULL;
3041 return -1;
3044 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3045 struct isl_vec *div)
3047 return get_div(tab, context, div);
3050 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div,
3051 int *nonneg)
3053 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3054 if (cgbr->cone) {
3055 int k;
3057 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3058 return -1;
3059 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3060 return -1;
3061 if (isl_tab_allocate_var(cgbr->cone) <0)
3062 return -1;
3064 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3065 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3066 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3067 if (k < 0)
3068 return -1;
3069 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3070 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3071 return -1;
3073 return context_tab_add_div(cgbr->tab, div, nonneg);
3076 static int context_gbr_best_split(struct isl_context *context,
3077 struct isl_tab *tab)
3079 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3080 struct isl_tab_undo *snap;
3081 int r;
3083 snap = isl_tab_snap(cgbr->tab);
3084 r = best_split(tab, cgbr->tab);
3086 if (isl_tab_rollback(cgbr->tab, snap) < 0)
3087 return -1;
3089 return r;
3092 static int context_gbr_is_empty(struct isl_context *context)
3094 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3095 if (!cgbr->tab)
3096 return -1;
3097 return cgbr->tab->empty;
3100 struct isl_gbr_tab_undo {
3101 struct isl_tab_undo *tab_snap;
3102 struct isl_tab_undo *shifted_snap;
3103 struct isl_tab_undo *cone_snap;
3106 static void *context_gbr_save(struct isl_context *context)
3108 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3109 struct isl_gbr_tab_undo *snap;
3111 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3112 if (!snap)
3113 return NULL;
3115 snap->tab_snap = isl_tab_snap(cgbr->tab);
3116 if (isl_tab_save_samples(cgbr->tab) < 0)
3117 goto error;
3119 if (cgbr->shifted)
3120 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3121 else
3122 snap->shifted_snap = NULL;
3124 if (cgbr->cone)
3125 snap->cone_snap = isl_tab_snap(cgbr->cone);
3126 else
3127 snap->cone_snap = NULL;
3129 return snap;
3130 error:
3131 free(snap);
3132 return NULL;
3135 static void context_gbr_restore(struct isl_context *context, void *save)
3137 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3138 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3139 if (!snap)
3140 goto error;
3141 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3142 isl_tab_free(cgbr->tab);
3143 cgbr->tab = NULL;
3146 if (snap->shifted_snap) {
3147 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3148 goto error;
3149 } else if (cgbr->shifted) {
3150 isl_tab_free(cgbr->shifted);
3151 cgbr->shifted = NULL;
3154 if (snap->cone_snap) {
3155 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3156 goto error;
3157 } else if (cgbr->cone) {
3158 isl_tab_free(cgbr->cone);
3159 cgbr->cone = NULL;
3162 free(snap);
3164 return;
3165 error:
3166 free(snap);
3167 isl_tab_free(cgbr->tab);
3168 cgbr->tab = NULL;
3171 static int context_gbr_is_ok(struct isl_context *context)
3173 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3174 return !!cgbr->tab;
3177 static void context_gbr_invalidate(struct isl_context *context)
3179 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3180 isl_tab_free(cgbr->tab);
3181 cgbr->tab = NULL;
3184 static void context_gbr_free(struct isl_context *context)
3186 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3187 isl_tab_free(cgbr->tab);
3188 isl_tab_free(cgbr->shifted);
3189 isl_tab_free(cgbr->cone);
3190 free(cgbr);
3193 struct isl_context_op isl_context_gbr_op = {
3194 context_gbr_detect_nonnegative_parameters,
3195 context_gbr_peek_basic_set,
3196 context_gbr_peek_tab,
3197 context_gbr_add_eq,
3198 context_gbr_add_ineq,
3199 context_gbr_ineq_sign,
3200 context_gbr_test_ineq,
3201 context_gbr_get_div,
3202 context_gbr_add_div,
3203 context_gbr_detect_equalities,
3204 context_gbr_best_split,
3205 context_gbr_is_empty,
3206 context_gbr_is_ok,
3207 context_gbr_save,
3208 context_gbr_restore,
3209 context_gbr_invalidate,
3210 context_gbr_free,
3213 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3215 struct isl_context_gbr *cgbr;
3217 if (!dom)
3218 return NULL;
3220 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3221 if (!cgbr)
3222 return NULL;
3224 cgbr->context.op = &isl_context_gbr_op;
3226 cgbr->shifted = NULL;
3227 cgbr->cone = NULL;
3228 cgbr->tab = isl_tab_from_basic_set(dom);
3229 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3230 if (!cgbr->tab)
3231 goto error;
3232 if (isl_tab_track_bset(cgbr->tab,
3233 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3234 goto error;
3235 check_gbr_integer_feasible(cgbr);
3237 return &cgbr->context;
3238 error:
3239 cgbr->context.op->free(&cgbr->context);
3240 return NULL;
3243 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3245 if (!dom)
3246 return NULL;
3248 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3249 return isl_context_lex_alloc(dom);
3250 else
3251 return isl_context_gbr_alloc(dom);
3254 /* Construct an isl_sol_map structure for accumulating the solution.
3255 * If track_empty is set, then we also keep track of the parts
3256 * of the context where there is no solution.
3257 * If max is set, then we are solving a maximization, rather than
3258 * a minimization problem, which means that the variables in the
3259 * tableau have value "M - x" rather than "M + x".
3261 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3262 struct isl_basic_set *dom, int track_empty, int max)
3264 struct isl_sol_map *sol_map;
3266 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
3267 if (!sol_map)
3268 goto error;
3270 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3271 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3272 sol_map->sol.dec_level.sol = &sol_map->sol;
3273 sol_map->sol.max = max;
3274 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3275 sol_map->sol.add = &sol_map_add_wrap;
3276 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3277 sol_map->sol.free = &sol_map_free_wrap;
3278 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3279 ISL_MAP_DISJOINT);
3280 if (!sol_map->map)
3281 goto error;
3283 sol_map->sol.context = isl_context_alloc(dom);
3284 if (!sol_map->sol.context)
3285 goto error;
3287 if (track_empty) {
3288 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3289 1, ISL_SET_DISJOINT);
3290 if (!sol_map->empty)
3291 goto error;
3294 isl_basic_set_free(dom);
3295 return sol_map;
3296 error:
3297 isl_basic_set_free(dom);
3298 sol_map_free(sol_map);
3299 return NULL;
3302 /* Check whether all coefficients of (non-parameter) variables
3303 * are non-positive, meaning that no pivots can be performed on the row.
3305 static int is_critical(struct isl_tab *tab, int row)
3307 int j;
3308 unsigned off = 2 + tab->M;
3310 for (j = tab->n_dead; j < tab->n_col; ++j) {
3311 if (tab->col_var[j] >= 0 &&
3312 (tab->col_var[j] < tab->n_param ||
3313 tab->col_var[j] >= tab->n_var - tab->n_div))
3314 continue;
3316 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3317 return 0;
3320 return 1;
3323 /* Check whether the inequality represented by vec is strict over the integers,
3324 * i.e., there are no integer values satisfying the constraint with
3325 * equality. This happens if the gcd of the coefficients is not a divisor
3326 * of the constant term. If so, scale the constraint down by the gcd
3327 * of the coefficients.
3329 static int is_strict(struct isl_vec *vec)
3331 isl_int gcd;
3332 int strict = 0;
3334 isl_int_init(gcd);
3335 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3336 if (!isl_int_is_one(gcd)) {
3337 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3338 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3339 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3341 isl_int_clear(gcd);
3343 return strict;
3346 /* Determine the sign of the given row of the main tableau.
3347 * The result is one of
3348 * isl_tab_row_pos: always non-negative; no pivot needed
3349 * isl_tab_row_neg: always non-positive; pivot
3350 * isl_tab_row_any: can be both positive and negative; split
3352 * We first handle some simple cases
3353 * - the row sign may be known already
3354 * - the row may be obviously non-negative
3355 * - the parametric constant may be equal to that of another row
3356 * for which we know the sign. This sign will be either "pos" or
3357 * "any". If it had been "neg" then we would have pivoted before.
3359 * If none of these cases hold, we check the value of the row for each
3360 * of the currently active samples. Based on the signs of these values
3361 * we make an initial determination of the sign of the row.
3363 * all zero -> unk(nown)
3364 * all non-negative -> pos
3365 * all non-positive -> neg
3366 * both negative and positive -> all
3368 * If we end up with "all", we are done.
3369 * Otherwise, we perform a check for positive and/or negative
3370 * values as follows.
3372 * samples neg unk pos
3373 * <0 ? Y N Y N
3374 * pos any pos
3375 * >0 ? Y N Y N
3376 * any neg any neg
3378 * There is no special sign for "zero", because we can usually treat zero
3379 * as either non-negative or non-positive, whatever works out best.
3380 * However, if the row is "critical", meaning that pivoting is impossible
3381 * then we don't want to limp zero with the non-positive case, because
3382 * then we we would lose the solution for those values of the parameters
3383 * where the value of the row is zero. Instead, we treat 0 as non-negative
3384 * ensuring a split if the row can attain both zero and negative values.
3385 * The same happens when the original constraint was one that could not
3386 * be satisfied with equality by any integer values of the parameters.
3387 * In this case, we normalize the constraint, but then a value of zero
3388 * for the normalized constraint is actually a positive value for the
3389 * original constraint, so again we need to treat zero as non-negative.
3390 * In both these cases, we have the following decision tree instead:
3392 * all non-negative -> pos
3393 * all negative -> neg
3394 * both negative and non-negative -> all
3396 * samples neg pos
3397 * <0 ? Y N
3398 * any pos
3399 * >=0 ? Y N
3400 * any neg
3402 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3403 struct isl_sol *sol, int row)
3405 struct isl_vec *ineq = NULL;
3406 int res = isl_tab_row_unknown;
3407 int critical;
3408 int strict;
3409 int row2;
3411 if (tab->row_sign[row] != isl_tab_row_unknown)
3412 return tab->row_sign[row];
3413 if (is_obviously_nonneg(tab, row))
3414 return isl_tab_row_pos;
3415 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3416 if (tab->row_sign[row2] == isl_tab_row_unknown)
3417 continue;
3418 if (identical_parameter_line(tab, row, row2))
3419 return tab->row_sign[row2];
3422 critical = is_critical(tab, row);
3424 ineq = get_row_parameter_ineq(tab, row);
3425 if (!ineq)
3426 goto error;
3428 strict = is_strict(ineq);
3430 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3431 critical || strict);
3433 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3434 /* test for negative values */
3435 int feasible;
3436 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3437 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3439 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3440 if (feasible < 0)
3441 goto error;
3442 if (!feasible)
3443 res = isl_tab_row_pos;
3444 else
3445 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3446 : isl_tab_row_any;
3447 if (res == isl_tab_row_neg) {
3448 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3449 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3453 if (res == isl_tab_row_neg) {
3454 /* test for positive values */
3455 int feasible;
3456 if (!critical && !strict)
3457 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3459 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3460 if (feasible < 0)
3461 goto error;
3462 if (feasible)
3463 res = isl_tab_row_any;
3466 isl_vec_free(ineq);
3467 return res;
3468 error:
3469 isl_vec_free(ineq);
3470 return 0;
3473 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3475 /* Find solutions for values of the parameters that satisfy the given
3476 * inequality.
3478 * We currently take a snapshot of the context tableau that is reset
3479 * when we return from this function, while we make a copy of the main
3480 * tableau, leaving the original main tableau untouched.
3481 * These are fairly arbitrary choices. Making a copy also of the context
3482 * tableau would obviate the need to undo any changes made to it later,
3483 * while taking a snapshot of the main tableau could reduce memory usage.
3484 * If we were to switch to taking a snapshot of the main tableau,
3485 * we would have to keep in mind that we need to save the row signs
3486 * and that we need to do this before saving the current basis
3487 * such that the basis has been restore before we restore the row signs.
3489 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3491 void *saved;
3493 if (!sol->context)
3494 goto error;
3495 saved = sol->context->op->save(sol->context);
3497 tab = isl_tab_dup(tab);
3498 if (!tab)
3499 goto error;
3501 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3503 find_solutions(sol, tab);
3505 sol->context->op->restore(sol->context, saved);
3506 return;
3507 error:
3508 sol->error = 1;
3511 /* Record the absence of solutions for those values of the parameters
3512 * that do not satisfy the given inequality with equality.
3514 static void no_sol_in_strict(struct isl_sol *sol,
3515 struct isl_tab *tab, struct isl_vec *ineq)
3517 int empty;
3518 void *saved;
3520 if (!sol->context)
3521 goto error;
3522 saved = sol->context->op->save(sol->context);
3524 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3526 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3527 if (!sol->context)
3528 goto error;
3530 empty = tab->empty;
3531 tab->empty = 1;
3532 sol_add(sol, tab);
3533 tab->empty = empty;
3535 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3537 sol->context->op->restore(sol->context, saved);
3538 return;
3539 error:
3540 sol->error = 1;
3543 /* Compute the lexicographic minimum of the set represented by the main
3544 * tableau "tab" within the context "sol->context_tab".
3545 * On entry the sample value of the main tableau is lexicographically
3546 * less than or equal to this lexicographic minimum.
3547 * Pivots are performed until a feasible point is found, which is then
3548 * necessarily equal to the minimum, or until the tableau is found to
3549 * be infeasible. Some pivots may need to be performed for only some
3550 * feasible values of the context tableau. If so, the context tableau
3551 * is split into a part where the pivot is needed and a part where it is not.
3553 * Whenever we enter the main loop, the main tableau is such that no
3554 * "obvious" pivots need to be performed on it, where "obvious" means
3555 * that the given row can be seen to be negative without looking at
3556 * the context tableau. In particular, for non-parametric problems,
3557 * no pivots need to be performed on the main tableau.
3558 * The caller of find_solutions is responsible for making this property
3559 * hold prior to the first iteration of the loop, while restore_lexmin
3560 * is called before every other iteration.
3562 * Inside the main loop, we first examine the signs of the rows of
3563 * the main tableau within the context of the context tableau.
3564 * If we find a row that is always non-positive for all values of
3565 * the parameters satisfying the context tableau and negative for at
3566 * least one value of the parameters, we perform the appropriate pivot
3567 * and start over. An exception is the case where no pivot can be
3568 * performed on the row. In this case, we require that the sign of
3569 * the row is negative for all values of the parameters (rather than just
3570 * non-positive). This special case is handled inside row_sign, which
3571 * will say that the row can have any sign if it determines that it can
3572 * attain both negative and zero values.
3574 * If we can't find a row that always requires a pivot, but we can find
3575 * one or more rows that require a pivot for some values of the parameters
3576 * (i.e., the row can attain both positive and negative signs), then we split
3577 * the context tableau into two parts, one where we force the sign to be
3578 * non-negative and one where we force is to be negative.
3579 * The non-negative part is handled by a recursive call (through find_in_pos).
3580 * Upon returning from this call, we continue with the negative part and
3581 * perform the required pivot.
3583 * If no such rows can be found, all rows are non-negative and we have
3584 * found a (rational) feasible point. If we only wanted a rational point
3585 * then we are done.
3586 * Otherwise, we check if all values of the sample point of the tableau
3587 * are integral for the variables. If so, we have found the minimal
3588 * integral point and we are done.
3589 * If the sample point is not integral, then we need to make a distinction
3590 * based on whether the constant term is non-integral or the coefficients
3591 * of the parameters. Furthermore, in order to decide how to handle
3592 * the non-integrality, we also need to know whether the coefficients
3593 * of the other columns in the tableau are integral. This leads
3594 * to the following table. The first two rows do not correspond
3595 * to a non-integral sample point and are only mentioned for completeness.
3597 * constant parameters other
3599 * int int int |
3600 * int int rat | -> no problem
3602 * rat int int -> fail
3604 * rat int rat -> cut
3606 * int rat rat |
3607 * rat rat rat | -> parametric cut
3609 * int rat int |
3610 * rat rat int | -> split context
3612 * If the parametric constant is completely integral, then there is nothing
3613 * to be done. If the constant term is non-integral, but all the other
3614 * coefficient are integral, then there is nothing that can be done
3615 * and the tableau has no integral solution.
3616 * If, on the other hand, one or more of the other columns have rational
3617 * coeffcients, but the parameter coefficients are all integral, then
3618 * we can perform a regular (non-parametric) cut.
3619 * Finally, if there is any parameter coefficient that is non-integral,
3620 * then we need to involve the context tableau. There are two cases here.
3621 * If at least one other column has a rational coefficient, then we
3622 * can perform a parametric cut in the main tableau by adding a new
3623 * integer division in the context tableau.
3624 * If all other columns have integral coefficients, then we need to
3625 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3626 * is always integral. We do this by introducing an integer division
3627 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3628 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3629 * Since q is expressed in the tableau as
3630 * c + \sum a_i y_i - m q >= 0
3631 * -c - \sum a_i y_i + m q + m - 1 >= 0
3632 * it is sufficient to add the inequality
3633 * -c - \sum a_i y_i + m q >= 0
3634 * In the part of the context where this inequality does not hold, the
3635 * main tableau is marked as being empty.
3637 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3639 struct isl_context *context;
3641 if (!tab || sol->error)
3642 goto error;
3644 context = sol->context;
3646 if (tab->empty)
3647 goto done;
3648 if (context->op->is_empty(context))
3649 goto done;
3651 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3652 int flags;
3653 int row;
3654 int sgn;
3655 int split = -1;
3656 int n_split = 0;
3658 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3659 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3660 continue;
3661 sgn = row_sign(tab, sol, row);
3662 if (!sgn)
3663 goto error;
3664 tab->row_sign[row] = sgn;
3665 if (sgn == isl_tab_row_any)
3666 n_split++;
3667 if (sgn == isl_tab_row_any && split == -1)
3668 split = row;
3669 if (sgn == isl_tab_row_neg)
3670 break;
3672 if (row < tab->n_row)
3673 continue;
3674 if (split != -1) {
3675 struct isl_vec *ineq;
3676 if (n_split != 1)
3677 split = context->op->best_split(context, tab);
3678 if (split < 0)
3679 goto error;
3680 ineq = get_row_parameter_ineq(tab, split);
3681 if (!ineq)
3682 goto error;
3683 is_strict(ineq);
3684 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3685 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3686 continue;
3687 if (tab->row_sign[row] == isl_tab_row_any)
3688 tab->row_sign[row] = isl_tab_row_unknown;
3690 tab->row_sign[split] = isl_tab_row_pos;
3691 sol_inc_level(sol);
3692 find_in_pos(sol, tab, ineq->el);
3693 tab->row_sign[split] = isl_tab_row_neg;
3694 row = split;
3695 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3696 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3697 context->op->add_ineq(context, ineq->el, 0, 1);
3698 isl_vec_free(ineq);
3699 if (sol->error)
3700 goto error;
3701 continue;
3703 if (tab->rational)
3704 break;
3705 row = first_non_integer_row(tab, &flags);
3706 if (row < 0)
3707 break;
3708 if (ISL_FL_ISSET(flags, I_PAR)) {
3709 if (ISL_FL_ISSET(flags, I_VAR)) {
3710 if (isl_tab_mark_empty(tab) < 0)
3711 goto error;
3712 break;
3714 row = add_cut(tab, row);
3715 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3716 struct isl_vec *div;
3717 struct isl_vec *ineq;
3718 int d;
3719 div = get_row_split_div(tab, row);
3720 if (!div)
3721 goto error;
3722 d = context->op->get_div(context, tab, div);
3723 isl_vec_free(div);
3724 if (d < 0)
3725 goto error;
3726 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3727 sol_inc_level(sol);
3728 no_sol_in_strict(sol, tab, ineq);
3729 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3730 context->op->add_ineq(context, ineq->el, 1, 1);
3731 isl_vec_free(ineq);
3732 if (sol->error || !context->op->is_ok(context))
3733 goto error;
3734 tab = set_row_cst_to_div(tab, row, d);
3735 if (context->op->is_empty(context))
3736 break;
3737 } else
3738 row = add_parametric_cut(tab, row, context);
3739 if (row < 0)
3740 goto error;
3742 done:
3743 sol_add(sol, tab);
3744 isl_tab_free(tab);
3745 return;
3746 error:
3747 isl_tab_free(tab);
3748 sol_free(sol);
3751 /* Compute the lexicographic minimum of the set represented by the main
3752 * tableau "tab" within the context "sol->context_tab".
3754 * As a preprocessing step, we first transfer all the purely parametric
3755 * equalities from the main tableau to the context tableau, i.e.,
3756 * parameters that have been pivoted to a row.
3757 * These equalities are ignored by the main algorithm, because the
3758 * corresponding rows may not be marked as being non-negative.
3759 * In parts of the context where the added equality does not hold,
3760 * the main tableau is marked as being empty.
3762 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3764 int row;
3766 sol->level = 0;
3768 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3769 int p;
3770 struct isl_vec *eq;
3772 if (tab->row_var[row] < 0)
3773 continue;
3774 if (tab->row_var[row] >= tab->n_param &&
3775 tab->row_var[row] < tab->n_var - tab->n_div)
3776 continue;
3777 if (tab->row_var[row] < tab->n_param)
3778 p = tab->row_var[row];
3779 else
3780 p = tab->row_var[row]
3781 + tab->n_param - (tab->n_var - tab->n_div);
3783 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3784 get_row_parameter_line(tab, row, eq->el);
3785 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3786 eq = isl_vec_normalize(eq);
3788 sol_inc_level(sol);
3789 no_sol_in_strict(sol, tab, eq);
3791 isl_seq_neg(eq->el, eq->el, eq->size);
3792 sol_inc_level(sol);
3793 no_sol_in_strict(sol, tab, eq);
3794 isl_seq_neg(eq->el, eq->el, eq->size);
3796 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3798 isl_vec_free(eq);
3800 if (isl_tab_mark_redundant(tab, row) < 0)
3801 goto error;
3803 if (sol->context->op->is_empty(sol->context))
3804 break;
3806 row = tab->n_redundant - 1;
3809 find_solutions(sol, tab);
3811 sol->level = 0;
3812 sol_pop(sol);
3814 return;
3815 error:
3816 isl_tab_free(tab);
3817 sol_free(sol);
3820 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3821 struct isl_tab *tab)
3823 find_solutions_main(&sol_map->sol, tab);
3826 /* Check if integer division "div" of "dom" also occurs in "bmap".
3827 * If so, return its position within the divs.
3828 * If not, return -1.
3830 static int find_context_div(struct isl_basic_map *bmap,
3831 struct isl_basic_set *dom, unsigned div)
3833 int i;
3834 unsigned b_dim = isl_dim_total(bmap->dim);
3835 unsigned d_dim = isl_dim_total(dom->dim);
3837 if (isl_int_is_zero(dom->div[div][0]))
3838 return -1;
3839 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3840 return -1;
3842 for (i = 0; i < bmap->n_div; ++i) {
3843 if (isl_int_is_zero(bmap->div[i][0]))
3844 continue;
3845 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3846 (b_dim - d_dim) + bmap->n_div) != -1)
3847 continue;
3848 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3849 return i;
3851 return -1;
3854 /* The correspondence between the variables in the main tableau,
3855 * the context tableau, and the input map and domain is as follows.
3856 * The first n_param and the last n_div variables of the main tableau
3857 * form the variables of the context tableau.
3858 * In the basic map, these n_param variables correspond to the
3859 * parameters and the input dimensions. In the domain, they correspond
3860 * to the parameters and the set dimensions.
3861 * The n_div variables correspond to the integer divisions in the domain.
3862 * To ensure that everything lines up, we may need to copy some of the
3863 * integer divisions of the domain to the map. These have to be placed
3864 * in the same order as those in the context and they have to be placed
3865 * after any other integer divisions that the map may have.
3866 * This function performs the required reordering.
3868 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3869 struct isl_basic_set *dom)
3871 int i;
3872 int common = 0;
3873 int other;
3875 for (i = 0; i < dom->n_div; ++i)
3876 if (find_context_div(bmap, dom, i) != -1)
3877 common++;
3878 other = bmap->n_div - common;
3879 if (dom->n_div - common > 0) {
3880 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3881 dom->n_div - common, 0, 0);
3882 if (!bmap)
3883 return NULL;
3885 for (i = 0; i < dom->n_div; ++i) {
3886 int pos = find_context_div(bmap, dom, i);
3887 if (pos < 0) {
3888 pos = isl_basic_map_alloc_div(bmap);
3889 if (pos < 0)
3890 goto error;
3891 isl_int_set_si(bmap->div[pos][0], 0);
3893 if (pos != other + i)
3894 isl_basic_map_swap_div(bmap, pos, other + i);
3896 return bmap;
3897 error:
3898 isl_basic_map_free(bmap);
3899 return NULL;
3902 /* Compute the lexicographic minimum (or maximum if "max" is set)
3903 * of "bmap" over the domain "dom" and return the result as a map.
3904 * If "empty" is not NULL, then *empty is assigned a set that
3905 * contains those parts of the domain where there is no solution.
3906 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3907 * then we compute the rational optimum. Otherwise, we compute
3908 * the integral optimum.
3910 * We perform some preprocessing. As the PILP solver does not
3911 * handle implicit equalities very well, we first make sure all
3912 * the equalities are explicitly available.
3913 * We also make sure the divs in the domain are properly order,
3914 * because they will be added one by one in the given order
3915 * during the construction of the solution map.
3917 struct isl_map *isl_tab_basic_map_partial_lexopt(
3918 struct isl_basic_map *bmap, struct isl_basic_set *dom,
3919 struct isl_set **empty, int max)
3921 struct isl_tab *tab;
3922 struct isl_map *result = NULL;
3923 struct isl_sol_map *sol_map = NULL;
3924 struct isl_context *context;
3925 struct isl_basic_map *eq;
3927 if (empty)
3928 *empty = NULL;
3929 if (!bmap || !dom)
3930 goto error;
3932 isl_assert(bmap->ctx,
3933 isl_basic_map_compatible_domain(bmap, dom), goto error);
3935 eq = isl_basic_map_copy(bmap);
3936 eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom));
3937 eq = isl_basic_map_affine_hull(eq);
3938 bmap = isl_basic_map_intersect(bmap, eq);
3940 if (dom->n_div) {
3941 dom = isl_basic_set_order_divs(dom);
3942 bmap = align_context_divs(bmap, dom);
3944 sol_map = sol_map_init(bmap, dom, !!empty, max);
3945 if (!sol_map)
3946 goto error;
3948 context = sol_map->sol.context;
3949 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3950 /* nothing */;
3951 else if (isl_basic_map_fast_is_empty(bmap))
3952 sol_map_add_empty_if_needed(sol_map,
3953 isl_basic_set_copy(context->op->peek_basic_set(context)));
3954 else {
3955 tab = tab_for_lexmin(bmap,
3956 context->op->peek_basic_set(context), 1, max);
3957 tab = context->op->detect_nonnegative_parameters(context, tab);
3958 sol_map_find_solutions(sol_map, tab);
3960 if (sol_map->sol.error)
3961 goto error;
3963 result = isl_map_copy(sol_map->map);
3964 if (empty)
3965 *empty = isl_set_copy(sol_map->empty);
3966 sol_free(&sol_map->sol);
3967 isl_basic_map_free(bmap);
3968 return result;
3969 error:
3970 sol_free(&sol_map->sol);
3971 isl_basic_map_free(bmap);
3972 return NULL;
3975 struct isl_sol_for {
3976 struct isl_sol sol;
3977 int (*fn)(__isl_take isl_basic_set *dom,
3978 __isl_take isl_mat *map, void *user);
3979 void *user;
3982 static void sol_for_free(struct isl_sol_for *sol_for)
3984 if (sol_for->sol.context)
3985 sol_for->sol.context->op->free(sol_for->sol.context);
3986 free(sol_for);
3989 static void sol_for_free_wrap(struct isl_sol *sol)
3991 sol_for_free((struct isl_sol_for *)sol);
3994 /* Add the solution identified by the tableau and the context tableau.
3996 * See documentation of sol_add for more details.
3998 * Instead of constructing a basic map, this function calls a user
3999 * defined function with the current context as a basic set and
4000 * an affine matrix reprenting the relation between the input and output.
4001 * The number of rows in this matrix is equal to one plus the number
4002 * of output variables. The number of columns is equal to one plus
4003 * the total dimension of the context, i.e., the number of parameters,
4004 * input variables and divs. Since some of the columns in the matrix
4005 * may refer to the divs, the basic set is not simplified.
4006 * (Simplification may reorder or remove divs.)
4008 static void sol_for_add(struct isl_sol_for *sol,
4009 struct isl_basic_set *dom, struct isl_mat *M)
4011 if (sol->sol.error || !dom || !M)
4012 goto error;
4014 dom = isl_basic_set_simplify(dom);
4015 dom = isl_basic_set_finalize(dom);
4017 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4018 goto error;
4020 isl_basic_set_free(dom);
4021 isl_mat_free(M);
4022 return;
4023 error:
4024 isl_basic_set_free(dom);
4025 isl_mat_free(M);
4026 sol->sol.error = 1;
4029 static void sol_for_add_wrap(struct isl_sol *sol,
4030 struct isl_basic_set *dom, struct isl_mat *M)
4032 sol_for_add((struct isl_sol_for *)sol, dom, M);
4035 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4036 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4037 void *user),
4038 void *user)
4040 struct isl_sol_for *sol_for = NULL;
4041 struct isl_dim *dom_dim;
4042 struct isl_basic_set *dom = NULL;
4044 sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for);
4045 if (!sol_for)
4046 goto error;
4048 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4049 dom = isl_basic_set_universe(dom_dim);
4051 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4052 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4053 sol_for->sol.dec_level.sol = &sol_for->sol;
4054 sol_for->fn = fn;
4055 sol_for->user = user;
4056 sol_for->sol.max = max;
4057 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4058 sol_for->sol.add = &sol_for_add_wrap;
4059 sol_for->sol.add_empty = NULL;
4060 sol_for->sol.free = &sol_for_free_wrap;
4062 sol_for->sol.context = isl_context_alloc(dom);
4063 if (!sol_for->sol.context)
4064 goto error;
4066 isl_basic_set_free(dom);
4067 return sol_for;
4068 error:
4069 isl_basic_set_free(dom);
4070 sol_for_free(sol_for);
4071 return NULL;
4074 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4075 struct isl_tab *tab)
4077 find_solutions_main(&sol_for->sol, tab);
4080 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4081 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4082 void *user),
4083 void *user)
4085 struct isl_sol_for *sol_for = NULL;
4087 bmap = isl_basic_map_copy(bmap);
4088 if (!bmap)
4089 return -1;
4091 bmap = isl_basic_map_detect_equalities(bmap);
4092 sol_for = sol_for_init(bmap, max, fn, user);
4094 if (isl_basic_map_fast_is_empty(bmap))
4095 /* nothing */;
4096 else {
4097 struct isl_tab *tab;
4098 struct isl_context *context = sol_for->sol.context;
4099 tab = tab_for_lexmin(bmap,
4100 context->op->peek_basic_set(context), 1, max);
4101 tab = context->op->detect_nonnegative_parameters(context, tab);
4102 sol_for_find_solutions(sol_for, tab);
4103 if (sol_for->sol.error)
4104 goto error;
4107 sol_free(&sol_for->sol);
4108 isl_basic_map_free(bmap);
4109 return 0;
4110 error:
4111 sol_free(&sol_for->sol);
4112 isl_basic_map_free(bmap);
4113 return -1;
4116 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4117 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4118 void *user),
4119 void *user)
4121 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4124 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4125 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4126 void *user),
4127 void *user)
4129 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);