export isl_map_compute_divs
[isl.git] / isl_convex_hull.c
blob41427f19ea70bc464922273120842257eec6bf6d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 tab = isl_tab_detect_implicit_equalities(tab);
107 if (isl_tab_detect_redundant(tab) < 0)
108 goto error;
109 bmap = isl_basic_map_update_from_tab(bmap, tab);
110 isl_tab_free(tab);
111 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
113 return bmap;
114 error:
115 isl_tab_free(tab);
116 isl_basic_map_free(bmap);
117 return NULL;
120 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
122 return (struct isl_basic_set *)
123 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
132 int first;
133 int j;
134 isl_int opt;
135 isl_int opt_denom;
137 isl_int_init(opt);
138 isl_int_init(opt_denom);
139 first = 1;
140 for (j = 0; j < set->n; ++j) {
141 enum isl_lp_result res;
143 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
144 continue;
146 res = isl_basic_set_solve_lp(set->p[j],
147 0, c, set->ctx->one, &opt, &opt_denom, NULL);
148 if (res == isl_lp_unbounded)
149 break;
150 if (res == isl_lp_error)
151 goto error;
152 if (res == isl_lp_empty) {
153 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
154 if (!set->p[j])
155 goto error;
156 continue;
158 if (first || isl_int_is_neg(opt)) {
159 if (!isl_int_is_one(opt_denom))
160 isl_seq_scale(c, c, opt_denom, len);
161 isl_int_sub(c[0], c[0], opt);
163 first = 0;
165 isl_int_clear(opt);
166 isl_int_clear(opt_denom);
167 return j >= set->n;
168 error:
169 isl_int_clear(opt);
170 isl_int_clear(opt_denom);
171 return -1;
174 /* Check if "c" is a direction that is independent of the previously found "n"
175 * bounds in "dirs".
176 * If so, add it to the list, with the negative of the lower bound
177 * in the constant position, i.e., such that c corresponds to a bounding
178 * hyperplane (but not necessarily a facet).
179 * Assumes set "set" is bounded.
181 static int is_independent_bound(struct isl_set *set, isl_int *c,
182 struct isl_mat *dirs, int n)
184 int is_bound;
185 int i = 0;
187 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
188 if (n != 0) {
189 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
190 if (pos < 0)
191 return 0;
192 for (i = 0; i < n; ++i) {
193 int pos_i;
194 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
195 if (pos_i < pos)
196 continue;
197 if (pos_i > pos)
198 break;
199 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
200 dirs->n_col-1, NULL);
201 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
202 if (pos < 0)
203 return 0;
207 is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col);
208 if (is_bound != 1)
209 return is_bound;
210 isl_seq_normalize(set->ctx, dirs->row[n], dirs->n_col);
211 if (i < n) {
212 int k;
213 isl_int *t = dirs->row[n];
214 for (k = n; k > i; --k)
215 dirs->row[k] = dirs->row[k-1];
216 dirs->row[i] = t;
218 return 1;
221 /* Compute and return a maximal set of linearly independent bounds
222 * on the set "set", based on the constraints of the basic sets
223 * in "set".
225 static struct isl_mat *independent_bounds(struct isl_set *set)
227 int i, j, n;
228 struct isl_mat *dirs = NULL;
229 unsigned dim = isl_set_n_dim(set);
231 dirs = isl_mat_alloc(set->ctx, dim, 1+dim);
232 if (!dirs)
233 goto error;
235 n = 0;
236 for (i = 0; n < dim && i < set->n; ++i) {
237 int f;
238 struct isl_basic_set *bset = set->p[i];
240 for (j = 0; n < dim && j < bset->n_eq; ++j) {
241 f = is_independent_bound(set, bset->eq[j], dirs, n);
242 if (f < 0)
243 goto error;
244 if (f)
245 ++n;
247 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
248 f = is_independent_bound(set, bset->ineq[j], dirs, n);
249 if (f < 0)
250 goto error;
251 if (f)
252 ++n;
255 dirs->n_row = n;
256 return dirs;
257 error:
258 isl_mat_free(dirs);
259 return NULL;
262 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
264 if (!bset)
265 return NULL;
267 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
268 return bset;
270 bset = isl_basic_set_cow(bset);
271 if (!bset)
272 return NULL;
274 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
276 return isl_basic_set_finalize(bset);
279 static struct isl_set *isl_set_set_rational(struct isl_set *set)
281 int i;
283 set = isl_set_cow(set);
284 if (!set)
285 return NULL;
286 for (i = 0; i < set->n; ++i) {
287 set->p[i] = isl_basic_set_set_rational(set->p[i]);
288 if (!set->p[i])
289 goto error;
291 return set;
292 error:
293 isl_set_free(set);
294 return NULL;
297 static struct isl_basic_set *isl_basic_set_add_equality(
298 struct isl_basic_set *bset, isl_int *c)
300 int i;
301 unsigned dim;
303 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
304 return bset;
306 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
307 isl_assert(bset->ctx, bset->n_div == 0, goto error);
308 dim = isl_basic_set_n_dim(bset);
309 bset = isl_basic_set_cow(bset);
310 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
311 i = isl_basic_set_alloc_equality(bset);
312 if (i < 0)
313 goto error;
314 isl_seq_cpy(bset->eq[i], c, 1 + dim);
315 return bset;
316 error:
317 isl_basic_set_free(bset);
318 return NULL;
321 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
323 int i;
325 set = isl_set_cow(set);
326 if (!set)
327 return NULL;
328 for (i = 0; i < set->n; ++i) {
329 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
330 if (!set->p[i])
331 goto error;
333 return set;
334 error:
335 isl_set_free(set);
336 return NULL;
339 /* Given a union of basic sets, construct the constraints for wrapping
340 * a facet around one of its ridges.
341 * In particular, if each of n the d-dimensional basic sets i in "set"
342 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
343 * and is defined by the constraints
344 * [ 1 ]
345 * A_i [ x ] >= 0
347 * then the resulting set is of dimension n*(1+d) and has as constraints
349 * [ a_i ]
350 * A_i [ x_i ] >= 0
352 * a_i >= 0
354 * \sum_i x_{i,1} = 1
356 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
358 struct isl_basic_set *lp;
359 unsigned n_eq;
360 unsigned n_ineq;
361 int i, j, k;
362 unsigned dim, lp_dim;
364 if (!set)
365 return NULL;
367 dim = 1 + isl_set_n_dim(set);
368 n_eq = 1;
369 n_ineq = set->n;
370 for (i = 0; i < set->n; ++i) {
371 n_eq += set->p[i]->n_eq;
372 n_ineq += set->p[i]->n_ineq;
374 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
375 if (!lp)
376 return NULL;
377 lp_dim = isl_basic_set_n_dim(lp);
378 k = isl_basic_set_alloc_equality(lp);
379 isl_int_set_si(lp->eq[k][0], -1);
380 for (i = 0; i < set->n; ++i) {
381 isl_int_set_si(lp->eq[k][1+dim*i], 0);
382 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
383 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
385 for (i = 0; i < set->n; ++i) {
386 k = isl_basic_set_alloc_inequality(lp);
387 isl_seq_clr(lp->ineq[k], 1+lp_dim);
388 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
390 for (j = 0; j < set->p[i]->n_eq; ++j) {
391 k = isl_basic_set_alloc_equality(lp);
392 isl_seq_clr(lp->eq[k], 1+dim*i);
393 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
394 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
397 for (j = 0; j < set->p[i]->n_ineq; ++j) {
398 k = isl_basic_set_alloc_inequality(lp);
399 isl_seq_clr(lp->ineq[k], 1+dim*i);
400 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
401 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
404 return lp;
407 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
408 * of that facet, compute the other facet of the convex hull that contains
409 * the ridge.
411 * We first transform the set such that the facet constraint becomes
413 * x_1 >= 0
415 * I.e., the facet lies in
417 * x_1 = 0
419 * and on that facet, the constraint that defines the ridge is
421 * x_2 >= 0
423 * (This transformation is not strictly needed, all that is needed is
424 * that the ridge contains the origin.)
426 * Since the ridge contains the origin, the cone of the convex hull
427 * will be of the form
429 * x_1 >= 0
430 * x_2 >= a x_1
432 * with this second constraint defining the new facet.
433 * The constant a is obtained by settting x_1 in the cone of the
434 * convex hull to 1 and minimizing x_2.
435 * Now, each element in the cone of the convex hull is the sum
436 * of elements in the cones of the basic sets.
437 * If a_i is the dilation factor of basic set i, then the problem
438 * we need to solve is
440 * min \sum_i x_{i,2}
441 * st
442 * \sum_i x_{i,1} = 1
443 * a_i >= 0
444 * [ a_i ]
445 * A [ x_i ] >= 0
447 * with
448 * [ 1 ]
449 * A_i [ x_i ] >= 0
451 * the constraints of each (transformed) basic set.
452 * If a = n/d, then the constraint defining the new facet (in the transformed
453 * space) is
455 * -n x_1 + d x_2 >= 0
457 * In the original space, we need to take the same combination of the
458 * corresponding constraints "facet" and "ridge".
460 * If a = -infty = "-1/0", then we just return the original facet constraint.
461 * This means that the facet is unbounded, but has a bounded intersection
462 * with the union of sets.
464 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
465 isl_int *facet, isl_int *ridge)
467 int i;
468 struct isl_mat *T = NULL;
469 struct isl_basic_set *lp = NULL;
470 struct isl_vec *obj;
471 enum isl_lp_result res;
472 isl_int num, den;
473 unsigned dim;
475 set = isl_set_copy(set);
477 dim = 1 + isl_set_n_dim(set);
478 T = isl_mat_alloc(set->ctx, 3, dim);
479 if (!T)
480 goto error;
481 isl_int_set_si(T->row[0][0], 1);
482 isl_seq_clr(T->row[0]+1, dim - 1);
483 isl_seq_cpy(T->row[1], facet, dim);
484 isl_seq_cpy(T->row[2], ridge, dim);
485 T = isl_mat_right_inverse(T);
486 set = isl_set_preimage(set, T);
487 T = NULL;
488 if (!set)
489 goto error;
490 lp = wrap_constraints(set);
491 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
492 if (!obj)
493 goto error;
494 isl_int_set_si(obj->block.data[0], 0);
495 for (i = 0; i < set->n; ++i) {
496 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
497 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
498 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
500 isl_int_init(num);
501 isl_int_init(den);
502 res = isl_basic_set_solve_lp(lp, 0,
503 obj->block.data, set->ctx->one, &num, &den, NULL);
504 if (res == isl_lp_ok) {
505 isl_int_neg(num, num);
506 isl_seq_combine(facet, num, facet, den, ridge, dim);
508 isl_int_clear(num);
509 isl_int_clear(den);
510 isl_vec_free(obj);
511 isl_basic_set_free(lp);
512 isl_set_free(set);
513 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
514 return NULL);
515 return facet;
516 error:
517 isl_basic_set_free(lp);
518 isl_mat_free(T);
519 isl_set_free(set);
520 return NULL;
523 /* Drop rows in "rows" that are redundant with respect to earlier rows,
524 * assuming that "rows" is of full column rank.
526 * We compute the column echelon form. The non-redundant rows are
527 * those that are the first to contain a non-zero entry in a column.
528 * All the other rows can be removed.
530 static __isl_give isl_mat *drop_redundant_rows(__isl_take isl_mat *rows)
532 struct isl_mat *H = NULL;
533 int col;
534 int row;
535 int last_row;
537 if (!rows)
538 return NULL;
540 isl_assert(rows->ctx, rows->n_row >= rows->n_col, goto error);
542 if (rows->n_row == rows->n_col)
543 return rows;
545 H = isl_mat_left_hermite(isl_mat_copy(rows), 0, NULL, NULL);
546 if (!H)
547 goto error;
549 last_row = rows->n_row;
550 for (col = rows->n_col - 1; col >= 0; --col) {
551 for (row = col; row < last_row; ++row)
552 if (!isl_int_is_zero(H->row[row][col]))
553 break;
554 isl_assert(rows->ctx, row < last_row, goto error);
555 if (row + 1 < last_row) {
556 rows = isl_mat_drop_rows(rows, row + 1, last_row - (row + 1));
557 if (rows->n_row == rows->n_col)
558 break;
560 last_row = row;
563 isl_mat_free(H);
565 return rows;
566 error:
567 isl_mat_free(H);
568 isl_mat_free(rows);
569 return NULL;
572 /* Given a set of d linearly independent bounding constraints of the
573 * convex hull of "set", compute the constraint of a facet of "set".
575 * We first compute the intersection with the first bounding hyperplane
576 * and remove the component corresponding to this hyperplane from
577 * other bounds (in homogeneous space).
578 * We then wrap around one of the remaining bounding constraints
579 * and continue the process until all bounding constraints have been
580 * taken into account.
581 * The resulting linear combination of the bounding constraints will
582 * correspond to a facet of the convex hull.
584 static struct isl_mat *initial_facet_constraint(struct isl_set *set,
585 struct isl_mat *bounds)
587 struct isl_set *slice = NULL;
588 struct isl_basic_set *face = NULL;
589 struct isl_mat *m, *U, *Q;
590 int i;
591 unsigned dim = isl_set_n_dim(set);
593 isl_assert(set->ctx, set->n > 0, goto error);
594 isl_assert(set->ctx, bounds->n_row == dim, goto error);
596 while (bounds->n_row > 1) {
597 slice = isl_set_copy(set);
598 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
599 face = isl_set_affine_hull(slice);
600 if (!face)
601 goto error;
602 if (face->n_eq == 1) {
603 isl_basic_set_free(face);
604 break;
606 m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim);
607 if (!m)
608 goto error;
609 isl_int_set_si(m->row[0][0], 1);
610 isl_seq_clr(m->row[0]+1, dim);
611 for (i = 0; i < face->n_eq; ++i)
612 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
613 U = isl_mat_right_inverse(m);
614 Q = isl_mat_right_inverse(isl_mat_copy(U));
615 U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq);
616 Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq);
617 U = isl_mat_drop_cols(U, 0, 1);
618 Q = isl_mat_drop_rows(Q, 0, 1);
619 bounds = isl_mat_product(bounds, U);
620 bounds = drop_redundant_rows(bounds);
621 bounds = isl_mat_product(bounds, Q);
622 isl_assert(set->ctx, bounds->n_row > 1, goto error);
623 if (!isl_set_wrap_facet(set, bounds->row[0],
624 bounds->row[bounds->n_row-1]))
625 goto error;
626 isl_basic_set_free(face);
627 bounds->n_row--;
629 return bounds;
630 error:
631 isl_basic_set_free(face);
632 isl_mat_free(bounds);
633 return NULL;
636 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
637 * compute a hyperplane description of the facet, i.e., compute the facets
638 * of the facet.
640 * We compute an affine transformation that transforms the constraint
642 * [ 1 ]
643 * c [ x ] = 0
645 * to the constraint
647 * z_1 = 0
649 * by computing the right inverse U of a matrix that starts with the rows
651 * [ 1 0 ]
652 * [ c ]
654 * Then
655 * [ 1 ] [ 1 ]
656 * [ x ] = U [ z ]
657 * and
658 * [ 1 ] [ 1 ]
659 * [ z ] = Q [ x ]
661 * with Q = U^{-1}
662 * Since z_1 is zero, we can drop this variable as well as the corresponding
663 * column of U to obtain
665 * [ 1 ] [ 1 ]
666 * [ x ] = U' [ z' ]
667 * and
668 * [ 1 ] [ 1 ]
669 * [ z' ] = Q' [ x ]
671 * with Q' equal to Q, but without the corresponding row.
672 * After computing the facets of the facet in the z' space,
673 * we convert them back to the x space through Q.
675 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
677 struct isl_mat *m, *U, *Q;
678 struct isl_basic_set *facet = NULL;
679 struct isl_ctx *ctx;
680 unsigned dim;
682 ctx = set->ctx;
683 set = isl_set_copy(set);
684 dim = isl_set_n_dim(set);
685 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
686 if (!m)
687 goto error;
688 isl_int_set_si(m->row[0][0], 1);
689 isl_seq_clr(m->row[0]+1, dim);
690 isl_seq_cpy(m->row[1], c, 1+dim);
691 U = isl_mat_right_inverse(m);
692 Q = isl_mat_right_inverse(isl_mat_copy(U));
693 U = isl_mat_drop_cols(U, 1, 1);
694 Q = isl_mat_drop_rows(Q, 1, 1);
695 set = isl_set_preimage(set, U);
696 facet = uset_convex_hull_wrap_bounded(set);
697 facet = isl_basic_set_preimage(facet, Q);
698 isl_assert(ctx, facet->n_eq == 0, goto error);
699 return facet;
700 error:
701 isl_basic_set_free(facet);
702 isl_set_free(set);
703 return NULL;
706 /* Given an initial facet constraint, compute the remaining facets.
707 * We do this by running through all facets found so far and computing
708 * the adjacent facets through wrapping, adding those facets that we
709 * hadn't already found before.
711 * For each facet we have found so far, we first compute its facets
712 * in the resulting convex hull. That is, we compute the ridges
713 * of the resulting convex hull contained in the facet.
714 * We also compute the corresponding facet in the current approximation
715 * of the convex hull. There is no need to wrap around the ridges
716 * in this facet since that would result in a facet that is already
717 * present in the current approximation.
719 * This function can still be significantly optimized by checking which of
720 * the facets of the basic sets are also facets of the convex hull and
721 * using all the facets so far to help in constructing the facets of the
722 * facets
723 * and/or
724 * using the technique in section "3.1 Ridge Generation" of
725 * "Extended Convex Hull" by Fukuda et al.
727 static struct isl_basic_set *extend(struct isl_basic_set *hull,
728 struct isl_set *set)
730 int i, j, f;
731 int k;
732 struct isl_basic_set *facet = NULL;
733 struct isl_basic_set *hull_facet = NULL;
734 unsigned dim;
736 if (!hull)
737 return NULL;
739 isl_assert(set->ctx, set->n > 0, goto error);
741 dim = isl_set_n_dim(set);
743 for (i = 0; i < hull->n_ineq; ++i) {
744 facet = compute_facet(set, hull->ineq[i]);
745 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
746 facet = isl_basic_set_gauss(facet, NULL);
747 facet = isl_basic_set_normalize_constraints(facet);
748 hull_facet = isl_basic_set_copy(hull);
749 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
750 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
751 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
752 if (!facet)
753 goto error;
754 hull = isl_basic_set_cow(hull);
755 hull = isl_basic_set_extend_dim(hull,
756 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
757 for (j = 0; j < facet->n_ineq; ++j) {
758 for (f = 0; f < hull_facet->n_ineq; ++f)
759 if (isl_seq_eq(facet->ineq[j],
760 hull_facet->ineq[f], 1 + dim))
761 break;
762 if (f < hull_facet->n_ineq)
763 continue;
764 k = isl_basic_set_alloc_inequality(hull);
765 if (k < 0)
766 goto error;
767 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
768 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
769 goto error;
771 isl_basic_set_free(hull_facet);
772 isl_basic_set_free(facet);
774 hull = isl_basic_set_simplify(hull);
775 hull = isl_basic_set_finalize(hull);
776 return hull;
777 error:
778 isl_basic_set_free(hull_facet);
779 isl_basic_set_free(facet);
780 isl_basic_set_free(hull);
781 return NULL;
784 /* Special case for computing the convex hull of a one dimensional set.
785 * We simply collect the lower and upper bounds of each basic set
786 * and the biggest of those.
788 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
790 struct isl_mat *c = NULL;
791 isl_int *lower = NULL;
792 isl_int *upper = NULL;
793 int i, j, k;
794 isl_int a, b;
795 struct isl_basic_set *hull;
797 for (i = 0; i < set->n; ++i) {
798 set->p[i] = isl_basic_set_simplify(set->p[i]);
799 if (!set->p[i])
800 goto error;
802 set = isl_set_remove_empty_parts(set);
803 if (!set)
804 goto error;
805 isl_assert(set->ctx, set->n > 0, goto error);
806 c = isl_mat_alloc(set->ctx, 2, 2);
807 if (!c)
808 goto error;
810 if (set->p[0]->n_eq > 0) {
811 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
812 lower = c->row[0];
813 upper = c->row[1];
814 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
815 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
816 isl_seq_neg(upper, set->p[0]->eq[0], 2);
817 } else {
818 isl_seq_neg(lower, set->p[0]->eq[0], 2);
819 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
821 } else {
822 for (j = 0; j < set->p[0]->n_ineq; ++j) {
823 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
824 lower = c->row[0];
825 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
826 } else {
827 upper = c->row[1];
828 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
833 isl_int_init(a);
834 isl_int_init(b);
835 for (i = 0; i < set->n; ++i) {
836 struct isl_basic_set *bset = set->p[i];
837 int has_lower = 0;
838 int has_upper = 0;
840 for (j = 0; j < bset->n_eq; ++j) {
841 has_lower = 1;
842 has_upper = 1;
843 if (lower) {
844 isl_int_mul(a, lower[0], bset->eq[j][1]);
845 isl_int_mul(b, lower[1], bset->eq[j][0]);
846 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
847 isl_seq_cpy(lower, bset->eq[j], 2);
848 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
849 isl_seq_neg(lower, bset->eq[j], 2);
851 if (upper) {
852 isl_int_mul(a, upper[0], bset->eq[j][1]);
853 isl_int_mul(b, upper[1], bset->eq[j][0]);
854 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
855 isl_seq_neg(upper, bset->eq[j], 2);
856 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
857 isl_seq_cpy(upper, bset->eq[j], 2);
860 for (j = 0; j < bset->n_ineq; ++j) {
861 if (isl_int_is_pos(bset->ineq[j][1]))
862 has_lower = 1;
863 if (isl_int_is_neg(bset->ineq[j][1]))
864 has_upper = 1;
865 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
866 isl_int_mul(a, lower[0], bset->ineq[j][1]);
867 isl_int_mul(b, lower[1], bset->ineq[j][0]);
868 if (isl_int_lt(a, b))
869 isl_seq_cpy(lower, bset->ineq[j], 2);
871 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
872 isl_int_mul(a, upper[0], bset->ineq[j][1]);
873 isl_int_mul(b, upper[1], bset->ineq[j][0]);
874 if (isl_int_gt(a, b))
875 isl_seq_cpy(upper, bset->ineq[j], 2);
878 if (!has_lower)
879 lower = NULL;
880 if (!has_upper)
881 upper = NULL;
883 isl_int_clear(a);
884 isl_int_clear(b);
886 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
887 hull = isl_basic_set_set_rational(hull);
888 if (!hull)
889 goto error;
890 if (lower) {
891 k = isl_basic_set_alloc_inequality(hull);
892 isl_seq_cpy(hull->ineq[k], lower, 2);
894 if (upper) {
895 k = isl_basic_set_alloc_inequality(hull);
896 isl_seq_cpy(hull->ineq[k], upper, 2);
898 hull = isl_basic_set_finalize(hull);
899 isl_set_free(set);
900 isl_mat_free(c);
901 return hull;
902 error:
903 isl_set_free(set);
904 isl_mat_free(c);
905 return NULL;
908 /* Project out final n dimensions using Fourier-Motzkin */
909 static struct isl_set *set_project_out(struct isl_ctx *ctx,
910 struct isl_set *set, unsigned n)
912 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
915 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
917 struct isl_basic_set *convex_hull;
919 if (!set)
920 return NULL;
922 if (isl_set_is_empty(set))
923 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
924 else
925 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
926 isl_set_free(set);
927 return convex_hull;
930 /* Compute the convex hull of a pair of basic sets without any parameters or
931 * integer divisions using Fourier-Motzkin elimination.
932 * The convex hull is the set of all points that can be written as
933 * the sum of points from both basic sets (in homogeneous coordinates).
934 * We set up the constraints in a space with dimensions for each of
935 * the three sets and then project out the dimensions corresponding
936 * to the two original basic sets, retaining only those corresponding
937 * to the convex hull.
939 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
940 struct isl_basic_set *bset2)
942 int i, j, k;
943 struct isl_basic_set *bset[2];
944 struct isl_basic_set *hull = NULL;
945 unsigned dim;
947 if (!bset1 || !bset2)
948 goto error;
950 dim = isl_basic_set_n_dim(bset1);
951 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
952 1 + dim + bset1->n_eq + bset2->n_eq,
953 2 + bset1->n_ineq + bset2->n_ineq);
954 bset[0] = bset1;
955 bset[1] = bset2;
956 for (i = 0; i < 2; ++i) {
957 for (j = 0; j < bset[i]->n_eq; ++j) {
958 k = isl_basic_set_alloc_equality(hull);
959 if (k < 0)
960 goto error;
961 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
962 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
963 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
964 1+dim);
966 for (j = 0; j < bset[i]->n_ineq; ++j) {
967 k = isl_basic_set_alloc_inequality(hull);
968 if (k < 0)
969 goto error;
970 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
971 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
972 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
973 bset[i]->ineq[j], 1+dim);
975 k = isl_basic_set_alloc_inequality(hull);
976 if (k < 0)
977 goto error;
978 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
979 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
981 for (j = 0; j < 1+dim; ++j) {
982 k = isl_basic_set_alloc_equality(hull);
983 if (k < 0)
984 goto error;
985 isl_seq_clr(hull->eq[k], 1+2+3*dim);
986 isl_int_set_si(hull->eq[k][j], -1);
987 isl_int_set_si(hull->eq[k][1+dim+j], 1);
988 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
990 hull = isl_basic_set_set_rational(hull);
991 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
992 hull = isl_basic_set_convex_hull(hull);
993 isl_basic_set_free(bset1);
994 isl_basic_set_free(bset2);
995 return hull;
996 error:
997 isl_basic_set_free(bset1);
998 isl_basic_set_free(bset2);
999 isl_basic_set_free(hull);
1000 return NULL;
1003 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
1005 struct isl_tab *tab;
1006 int bounded;
1008 tab = isl_tab_from_recession_cone(bset);
1009 bounded = isl_tab_cone_is_bounded(tab);
1010 isl_tab_free(tab);
1011 return bounded;
1014 static int isl_set_is_bounded(struct isl_set *set)
1016 int i;
1018 for (i = 0; i < set->n; ++i) {
1019 int bounded = isl_basic_set_is_bounded(set->p[i]);
1020 if (!bounded || bounded < 0)
1021 return bounded;
1023 return 1;
1026 /* Compute the lineality space of the convex hull of bset1 and bset2.
1028 * We first compute the intersection of the recession cone of bset1
1029 * with the negative of the recession cone of bset2 and then compute
1030 * the linear hull of the resulting cone.
1032 static struct isl_basic_set *induced_lineality_space(
1033 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1035 int i, k;
1036 struct isl_basic_set *lin = NULL;
1037 unsigned dim;
1039 if (!bset1 || !bset2)
1040 goto error;
1042 dim = isl_basic_set_total_dim(bset1);
1043 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
1044 bset1->n_eq + bset2->n_eq,
1045 bset1->n_ineq + bset2->n_ineq);
1046 lin = isl_basic_set_set_rational(lin);
1047 if (!lin)
1048 goto error;
1049 for (i = 0; i < bset1->n_eq; ++i) {
1050 k = isl_basic_set_alloc_equality(lin);
1051 if (k < 0)
1052 goto error;
1053 isl_int_set_si(lin->eq[k][0], 0);
1054 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
1056 for (i = 0; i < bset1->n_ineq; ++i) {
1057 k = isl_basic_set_alloc_inequality(lin);
1058 if (k < 0)
1059 goto error;
1060 isl_int_set_si(lin->ineq[k][0], 0);
1061 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
1063 for (i = 0; i < bset2->n_eq; ++i) {
1064 k = isl_basic_set_alloc_equality(lin);
1065 if (k < 0)
1066 goto error;
1067 isl_int_set_si(lin->eq[k][0], 0);
1068 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
1070 for (i = 0; i < bset2->n_ineq; ++i) {
1071 k = isl_basic_set_alloc_inequality(lin);
1072 if (k < 0)
1073 goto error;
1074 isl_int_set_si(lin->ineq[k][0], 0);
1075 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
1078 isl_basic_set_free(bset1);
1079 isl_basic_set_free(bset2);
1080 return isl_basic_set_affine_hull(lin);
1081 error:
1082 isl_basic_set_free(lin);
1083 isl_basic_set_free(bset1);
1084 isl_basic_set_free(bset2);
1085 return NULL;
1088 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1090 /* Given a set and a linear space "lin" of dimension n > 0,
1091 * project the linear space from the set, compute the convex hull
1092 * and then map the set back to the original space.
1094 * Let
1096 * M x = 0
1098 * describe the linear space. We first compute the Hermite normal
1099 * form H = M U of M = H Q, to obtain
1101 * H Q x = 0
1103 * The last n rows of H will be zero, so the last n variables of x' = Q x
1104 * are the one we want to project out. We do this by transforming each
1105 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1106 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1107 * we transform the hull back to the original space as A' Q_1 x >= b',
1108 * with Q_1 all but the last n rows of Q.
1110 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1111 struct isl_basic_set *lin)
1113 unsigned total = isl_basic_set_total_dim(lin);
1114 unsigned lin_dim;
1115 struct isl_basic_set *hull;
1116 struct isl_mat *M, *U, *Q;
1118 if (!set || !lin)
1119 goto error;
1120 lin_dim = total - lin->n_eq;
1121 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1122 M = isl_mat_left_hermite(M, 0, &U, &Q);
1123 if (!M)
1124 goto error;
1125 isl_mat_free(M);
1126 isl_basic_set_free(lin);
1128 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1130 U = isl_mat_lin_to_aff(U);
1131 Q = isl_mat_lin_to_aff(Q);
1133 set = isl_set_preimage(set, U);
1134 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1135 hull = uset_convex_hull(set);
1136 hull = isl_basic_set_preimage(hull, Q);
1138 return hull;
1139 error:
1140 isl_basic_set_free(lin);
1141 isl_set_free(set);
1142 return NULL;
1145 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1146 * set up an LP for solving
1148 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1150 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1151 * The next \alpha{ij} correspond to the equalities and come in pairs.
1152 * The final \alpha{ij} correspond to the inequalities.
1154 static struct isl_basic_set *valid_direction_lp(
1155 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1157 struct isl_dim *dim;
1158 struct isl_basic_set *lp;
1159 unsigned d;
1160 int n;
1161 int i, j, k;
1163 if (!bset1 || !bset2)
1164 goto error;
1165 d = 1 + isl_basic_set_total_dim(bset1);
1166 n = 2 +
1167 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1168 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1169 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1170 if (!lp)
1171 goto error;
1172 for (i = 0; i < n; ++i) {
1173 k = isl_basic_set_alloc_inequality(lp);
1174 if (k < 0)
1175 goto error;
1176 isl_seq_clr(lp->ineq[k] + 1, n);
1177 isl_int_set_si(lp->ineq[k][0], -1);
1178 isl_int_set_si(lp->ineq[k][1 + i], 1);
1180 for (i = 0; i < d; ++i) {
1181 k = isl_basic_set_alloc_equality(lp);
1182 if (k < 0)
1183 goto error;
1184 n = 0;
1185 isl_int_set_si(lp->eq[k][n++], 0);
1186 /* positivity constraint 1 >= 0 */
1187 isl_int_set_si(lp->eq[k][n++], i == 0);
1188 for (j = 0; j < bset1->n_eq; ++j) {
1189 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1190 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1192 for (j = 0; j < bset1->n_ineq; ++j)
1193 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1194 /* positivity constraint 1 >= 0 */
1195 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1196 for (j = 0; j < bset2->n_eq; ++j) {
1197 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1198 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1200 for (j = 0; j < bset2->n_ineq; ++j)
1201 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1203 lp = isl_basic_set_gauss(lp, NULL);
1204 isl_basic_set_free(bset1);
1205 isl_basic_set_free(bset2);
1206 return lp;
1207 error:
1208 isl_basic_set_free(bset1);
1209 isl_basic_set_free(bset2);
1210 return NULL;
1213 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1214 * for all rays in the homogeneous space of the two cones that correspond
1215 * to the input polyhedra bset1 and bset2.
1217 * We compute s as a vector that satisfies
1219 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1221 * with h_{ij} the normals of the facets of polyhedron i
1222 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1223 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1224 * We first set up an LP with as variables the \alpha{ij}.
1225 * In this formulateion, for each polyhedron i,
1226 * the first constraint is the positivity constraint, followed by pairs
1227 * of variables for the equalities, followed by variables for the inequalities.
1228 * We then simply pick a feasible solution and compute s using (*).
1230 * Note that we simply pick any valid direction and make no attempt
1231 * to pick a "good" or even the "best" valid direction.
1233 static struct isl_vec *valid_direction(
1234 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1236 struct isl_basic_set *lp;
1237 struct isl_tab *tab;
1238 struct isl_vec *sample = NULL;
1239 struct isl_vec *dir;
1240 unsigned d;
1241 int i;
1242 int n;
1244 if (!bset1 || !bset2)
1245 goto error;
1246 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1247 isl_basic_set_copy(bset2));
1248 tab = isl_tab_from_basic_set(lp);
1249 sample = isl_tab_get_sample_value(tab);
1250 isl_tab_free(tab);
1251 isl_basic_set_free(lp);
1252 if (!sample)
1253 goto error;
1254 d = isl_basic_set_total_dim(bset1);
1255 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1256 if (!dir)
1257 goto error;
1258 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1259 n = 1;
1260 /* positivity constraint 1 >= 0 */
1261 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1262 for (i = 0; i < bset1->n_eq; ++i) {
1263 isl_int_sub(sample->block.data[n],
1264 sample->block.data[n], sample->block.data[n+1]);
1265 isl_seq_combine(dir->block.data,
1266 bset1->ctx->one, dir->block.data,
1267 sample->block.data[n], bset1->eq[i], 1 + d);
1269 n += 2;
1271 for (i = 0; i < bset1->n_ineq; ++i)
1272 isl_seq_combine(dir->block.data,
1273 bset1->ctx->one, dir->block.data,
1274 sample->block.data[n++], bset1->ineq[i], 1 + d);
1275 isl_vec_free(sample);
1276 isl_seq_normalize(bset1->ctx, dir->block.data + 1, dir->size - 1);
1277 isl_basic_set_free(bset1);
1278 isl_basic_set_free(bset2);
1279 return dir;
1280 error:
1281 isl_vec_free(sample);
1282 isl_basic_set_free(bset1);
1283 isl_basic_set_free(bset2);
1284 return NULL;
1287 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1288 * compute b_i' + A_i' x' >= 0, with
1290 * [ b_i A_i ] [ y' ] [ y' ]
1291 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1293 * In particular, add the "positivity constraint" and then perform
1294 * the mapping.
1296 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1297 struct isl_mat *T)
1299 int k;
1301 if (!bset)
1302 goto error;
1303 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1304 k = isl_basic_set_alloc_inequality(bset);
1305 if (k < 0)
1306 goto error;
1307 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1308 isl_int_set_si(bset->ineq[k][0], 1);
1309 bset = isl_basic_set_preimage(bset, T);
1310 return bset;
1311 error:
1312 isl_mat_free(T);
1313 isl_basic_set_free(bset);
1314 return NULL;
1317 /* Compute the convex hull of a pair of basic sets without any parameters or
1318 * integer divisions, where the convex hull is known to be pointed,
1319 * but the basic sets may be unbounded.
1321 * We turn this problem into the computation of a convex hull of a pair
1322 * _bounded_ polyhedra by "changing the direction of the homogeneous
1323 * dimension". This idea is due to Matthias Koeppe.
1325 * Consider the cones in homogeneous space that correspond to the
1326 * input polyhedra. The rays of these cones are also rays of the
1327 * polyhedra if the coordinate that corresponds to the homogeneous
1328 * dimension is zero. That is, if the inner product of the rays
1329 * with the homogeneous direction is zero.
1330 * The cones in the homogeneous space can also be considered to
1331 * correspond to other pairs of polyhedra by chosing a different
1332 * homogeneous direction. To ensure that both of these polyhedra
1333 * are bounded, we need to make sure that all rays of the cones
1334 * correspond to vertices and not to rays.
1335 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1336 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1337 * The vector s is computed in valid_direction.
1339 * Note that we need to consider _all_ rays of the cones and not just
1340 * the rays that correspond to rays in the polyhedra. If we were to
1341 * only consider those rays and turn them into vertices, then we
1342 * may inadvertently turn some vertices into rays.
1344 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1345 * We therefore transform the two polyhedra such that the selected
1346 * direction is mapped onto this standard direction and then proceed
1347 * with the normal computation.
1348 * Let S be a non-singular square matrix with s as its first row,
1349 * then we want to map the polyhedra to the space
1351 * [ y' ] [ y ] [ y ] [ y' ]
1352 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1354 * We take S to be the unimodular completion of s to limit the growth
1355 * of the coefficients in the following computations.
1357 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1358 * We first move to the homogeneous dimension
1360 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1361 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1363 * Then we change directoin
1365 * [ b_i A_i ] [ y' ] [ y' ]
1366 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1368 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1369 * resulting in b' + A' x' >= 0, which we then convert back
1371 * [ y ] [ y ]
1372 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1374 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1376 static struct isl_basic_set *convex_hull_pair_pointed(
1377 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1379 struct isl_ctx *ctx = NULL;
1380 struct isl_vec *dir = NULL;
1381 struct isl_mat *T = NULL;
1382 struct isl_mat *T2 = NULL;
1383 struct isl_basic_set *hull;
1384 struct isl_set *set;
1386 if (!bset1 || !bset2)
1387 goto error;
1388 ctx = bset1->ctx;
1389 dir = valid_direction(isl_basic_set_copy(bset1),
1390 isl_basic_set_copy(bset2));
1391 if (!dir)
1392 goto error;
1393 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1394 if (!T)
1395 goto error;
1396 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1397 T = isl_mat_unimodular_complete(T, 1);
1398 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1400 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1401 bset2 = homogeneous_map(bset2, T2);
1402 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1403 set = isl_set_add_basic_set(set, bset1);
1404 set = isl_set_add_basic_set(set, bset2);
1405 hull = uset_convex_hull(set);
1406 hull = isl_basic_set_preimage(hull, T);
1408 isl_vec_free(dir);
1410 return hull;
1411 error:
1412 isl_vec_free(dir);
1413 isl_basic_set_free(bset1);
1414 isl_basic_set_free(bset2);
1415 return NULL;
1418 /* Compute the convex hull of a pair of basic sets without any parameters or
1419 * integer divisions.
1421 * If the convex hull of the two basic sets would have a non-trivial
1422 * lineality space, we first project out this lineality space.
1424 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1425 struct isl_basic_set *bset2)
1427 struct isl_basic_set *lin;
1429 if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2))
1430 return convex_hull_pair_pointed(bset1, bset2);
1432 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1433 isl_basic_set_copy(bset2));
1434 if (!lin)
1435 goto error;
1436 if (isl_basic_set_is_universe(lin)) {
1437 isl_basic_set_free(bset1);
1438 isl_basic_set_free(bset2);
1439 return lin;
1441 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1442 struct isl_set *set;
1443 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1444 set = isl_set_add_basic_set(set, bset1);
1445 set = isl_set_add_basic_set(set, bset2);
1446 return modulo_lineality(set, lin);
1448 isl_basic_set_free(lin);
1450 return convex_hull_pair_pointed(bset1, bset2);
1451 error:
1452 isl_basic_set_free(bset1);
1453 isl_basic_set_free(bset2);
1454 return NULL;
1457 /* Compute the lineality space of a basic set.
1458 * We currently do not allow the basic set to have any divs.
1459 * We basically just drop the constants and turn every inequality
1460 * into an equality.
1462 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1464 int i, k;
1465 struct isl_basic_set *lin = NULL;
1466 unsigned dim;
1468 if (!bset)
1469 goto error;
1470 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1471 dim = isl_basic_set_total_dim(bset);
1473 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1474 if (!lin)
1475 goto error;
1476 for (i = 0; i < bset->n_eq; ++i) {
1477 k = isl_basic_set_alloc_equality(lin);
1478 if (k < 0)
1479 goto error;
1480 isl_int_set_si(lin->eq[k][0], 0);
1481 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1483 lin = isl_basic_set_gauss(lin, NULL);
1484 if (!lin)
1485 goto error;
1486 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1487 k = isl_basic_set_alloc_equality(lin);
1488 if (k < 0)
1489 goto error;
1490 isl_int_set_si(lin->eq[k][0], 0);
1491 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1492 lin = isl_basic_set_gauss(lin, NULL);
1493 if (!lin)
1494 goto error;
1496 isl_basic_set_free(bset);
1497 return lin;
1498 error:
1499 isl_basic_set_free(lin);
1500 isl_basic_set_free(bset);
1501 return NULL;
1504 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1505 * "underlying" set "set".
1507 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1509 int i;
1510 struct isl_set *lin = NULL;
1512 if (!set)
1513 return NULL;
1514 if (set->n == 0) {
1515 struct isl_dim *dim = isl_set_get_dim(set);
1516 isl_set_free(set);
1517 return isl_basic_set_empty(dim);
1520 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1521 for (i = 0; i < set->n; ++i)
1522 lin = isl_set_add_basic_set(lin,
1523 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1524 isl_set_free(set);
1525 return isl_set_affine_hull(lin);
1528 /* Compute the convex hull of a set without any parameters or
1529 * integer divisions.
1530 * In each step, we combined two basic sets until only one
1531 * basic set is left.
1532 * The input basic sets are assumed not to have a non-trivial
1533 * lineality space. If any of the intermediate results has
1534 * a non-trivial lineality space, it is projected out.
1536 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1538 struct isl_basic_set *convex_hull = NULL;
1540 convex_hull = isl_set_copy_basic_set(set);
1541 set = isl_set_drop_basic_set(set, convex_hull);
1542 if (!set)
1543 goto error;
1544 while (set->n > 0) {
1545 struct isl_basic_set *t;
1546 t = isl_set_copy_basic_set(set);
1547 if (!t)
1548 goto error;
1549 set = isl_set_drop_basic_set(set, t);
1550 if (!set)
1551 goto error;
1552 convex_hull = convex_hull_pair(convex_hull, t);
1553 if (set->n == 0)
1554 break;
1555 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1556 if (!t)
1557 goto error;
1558 if (isl_basic_set_is_universe(t)) {
1559 isl_basic_set_free(convex_hull);
1560 convex_hull = t;
1561 break;
1563 if (t->n_eq < isl_basic_set_total_dim(t)) {
1564 set = isl_set_add_basic_set(set, convex_hull);
1565 return modulo_lineality(set, t);
1567 isl_basic_set_free(t);
1569 isl_set_free(set);
1570 return convex_hull;
1571 error:
1572 isl_set_free(set);
1573 isl_basic_set_free(convex_hull);
1574 return NULL;
1577 /* Compute an initial hull for wrapping containing a single initial
1578 * facet by first computing bounds on the set and then using these
1579 * bounds to construct an initial facet.
1580 * This function is a remnant of an older implementation where the
1581 * bounds were also used to check whether the set was bounded.
1582 * Since this function will now only be called when we know the
1583 * set to be bounded, the initial facet should probably be constructed
1584 * by simply using the coordinate directions instead.
1586 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1587 struct isl_set *set)
1589 struct isl_mat *bounds = NULL;
1590 unsigned dim;
1591 int k;
1593 if (!hull)
1594 goto error;
1595 bounds = independent_bounds(set);
1596 if (!bounds)
1597 goto error;
1598 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1599 bounds = initial_facet_constraint(set, bounds);
1600 if (!bounds)
1601 goto error;
1602 k = isl_basic_set_alloc_inequality(hull);
1603 if (k < 0)
1604 goto error;
1605 dim = isl_set_n_dim(set);
1606 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1607 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1608 isl_mat_free(bounds);
1610 return hull;
1611 error:
1612 isl_basic_set_free(hull);
1613 isl_mat_free(bounds);
1614 return NULL;
1617 struct max_constraint {
1618 struct isl_mat *c;
1619 int count;
1620 int ineq;
1623 static int max_constraint_equal(const void *entry, const void *val)
1625 struct max_constraint *a = (struct max_constraint *)entry;
1626 isl_int *b = (isl_int *)val;
1628 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1631 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1632 isl_int *con, unsigned len, int n, int ineq)
1634 struct isl_hash_table_entry *entry;
1635 struct max_constraint *c;
1636 uint32_t c_hash;
1638 c_hash = isl_seq_get_hash(con + 1, len);
1639 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1640 con + 1, 0);
1641 if (!entry)
1642 return;
1643 c = entry->data;
1644 if (c->count < n) {
1645 isl_hash_table_remove(ctx, table, entry);
1646 return;
1648 c->count++;
1649 if (isl_int_gt(c->c->row[0][0], con[0]))
1650 return;
1651 if (isl_int_eq(c->c->row[0][0], con[0])) {
1652 if (ineq)
1653 c->ineq = ineq;
1654 return;
1656 c->c = isl_mat_cow(c->c);
1657 isl_int_set(c->c->row[0][0], con[0]);
1658 c->ineq = ineq;
1661 /* Check whether the constraint hash table "table" constains the constraint
1662 * "con".
1664 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1665 isl_int *con, unsigned len, int n)
1667 struct isl_hash_table_entry *entry;
1668 struct max_constraint *c;
1669 uint32_t c_hash;
1671 c_hash = isl_seq_get_hash(con + 1, len);
1672 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1673 con + 1, 0);
1674 if (!entry)
1675 return 0;
1676 c = entry->data;
1677 if (c->count < n)
1678 return 0;
1679 return isl_int_eq(c->c->row[0][0], con[0]);
1682 /* Check for inequality constraints of a basic set without equalities
1683 * such that the same or more stringent copies of the constraint appear
1684 * in all of the basic sets. Such constraints are necessarily facet
1685 * constraints of the convex hull.
1687 * If the resulting basic set is by chance identical to one of
1688 * the basic sets in "set", then we know that this basic set contains
1689 * all other basic sets and is therefore the convex hull of set.
1690 * In this case we set *is_hull to 1.
1692 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1693 struct isl_set *set, int *is_hull)
1695 int i, j, s, n;
1696 int min_constraints;
1697 int best;
1698 struct max_constraint *constraints = NULL;
1699 struct isl_hash_table *table = NULL;
1700 unsigned total;
1702 *is_hull = 0;
1704 for (i = 0; i < set->n; ++i)
1705 if (set->p[i]->n_eq == 0)
1706 break;
1707 if (i >= set->n)
1708 return hull;
1709 min_constraints = set->p[i]->n_ineq;
1710 best = i;
1711 for (i = best + 1; i < set->n; ++i) {
1712 if (set->p[i]->n_eq != 0)
1713 continue;
1714 if (set->p[i]->n_ineq >= min_constraints)
1715 continue;
1716 min_constraints = set->p[i]->n_ineq;
1717 best = i;
1719 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1720 min_constraints);
1721 if (!constraints)
1722 return hull;
1723 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1724 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1725 goto error;
1727 total = isl_dim_total(set->dim);
1728 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1729 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1730 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1731 if (!constraints[i].c)
1732 goto error;
1733 constraints[i].ineq = 1;
1735 for (i = 0; i < min_constraints; ++i) {
1736 struct isl_hash_table_entry *entry;
1737 uint32_t c_hash;
1738 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1739 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1740 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1741 if (!entry)
1742 goto error;
1743 isl_assert(hull->ctx, !entry->data, goto error);
1744 entry->data = &constraints[i];
1747 n = 0;
1748 for (s = 0; s < set->n; ++s) {
1749 if (s == best)
1750 continue;
1752 for (i = 0; i < set->p[s]->n_eq; ++i) {
1753 isl_int *eq = set->p[s]->eq[i];
1754 for (j = 0; j < 2; ++j) {
1755 isl_seq_neg(eq, eq, 1 + total);
1756 update_constraint(hull->ctx, table,
1757 eq, total, n, 0);
1760 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1761 isl_int *ineq = set->p[s]->ineq[i];
1762 update_constraint(hull->ctx, table, ineq, total, n,
1763 set->p[s]->n_eq == 0);
1765 ++n;
1768 for (i = 0; i < min_constraints; ++i) {
1769 if (constraints[i].count < n)
1770 continue;
1771 if (!constraints[i].ineq)
1772 continue;
1773 j = isl_basic_set_alloc_inequality(hull);
1774 if (j < 0)
1775 goto error;
1776 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1779 for (s = 0; s < set->n; ++s) {
1780 if (set->p[s]->n_eq)
1781 continue;
1782 if (set->p[s]->n_ineq != hull->n_ineq)
1783 continue;
1784 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1785 isl_int *ineq = set->p[s]->ineq[i];
1786 if (!has_constraint(hull->ctx, table, ineq, total, n))
1787 break;
1789 if (i == set->p[s]->n_ineq)
1790 *is_hull = 1;
1793 isl_hash_table_clear(table);
1794 for (i = 0; i < min_constraints; ++i)
1795 isl_mat_free(constraints[i].c);
1796 free(constraints);
1797 free(table);
1798 return hull;
1799 error:
1800 isl_hash_table_clear(table);
1801 free(table);
1802 if (constraints)
1803 for (i = 0; i < min_constraints; ++i)
1804 isl_mat_free(constraints[i].c);
1805 free(constraints);
1806 return hull;
1809 /* Create a template for the convex hull of "set" and fill it up
1810 * obvious facet constraints, if any. If the result happens to
1811 * be the convex hull of "set" then *is_hull is set to 1.
1813 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1815 struct isl_basic_set *hull;
1816 unsigned n_ineq;
1817 int i;
1819 n_ineq = 1;
1820 for (i = 0; i < set->n; ++i) {
1821 n_ineq += set->p[i]->n_eq;
1822 n_ineq += set->p[i]->n_ineq;
1824 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1825 hull = isl_basic_set_set_rational(hull);
1826 if (!hull)
1827 return NULL;
1828 return common_constraints(hull, set, is_hull);
1831 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1833 struct isl_basic_set *hull;
1834 int is_hull;
1836 hull = proto_hull(set, &is_hull);
1837 if (hull && !is_hull) {
1838 if (hull->n_ineq == 0)
1839 hull = initial_hull(hull, set);
1840 hull = extend(hull, set);
1842 isl_set_free(set);
1844 return hull;
1847 /* Compute the convex hull of a set without any parameters or
1848 * integer divisions. Depending on whether the set is bounded,
1849 * we pass control to the wrapping based convex hull or
1850 * the Fourier-Motzkin elimination based convex hull.
1851 * We also handle a few special cases before checking the boundedness.
1853 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1855 struct isl_basic_set *convex_hull = NULL;
1856 struct isl_basic_set *lin;
1858 if (isl_set_n_dim(set) == 0)
1859 return convex_hull_0d(set);
1861 set = isl_set_coalesce(set);
1862 set = isl_set_set_rational(set);
1864 if (!set)
1865 goto error;
1866 if (!set)
1867 return NULL;
1868 if (set->n == 1) {
1869 convex_hull = isl_basic_set_copy(set->p[0]);
1870 isl_set_free(set);
1871 return convex_hull;
1873 if (isl_set_n_dim(set) == 1)
1874 return convex_hull_1d(set);
1876 if (isl_set_is_bounded(set))
1877 return uset_convex_hull_wrap(set);
1879 lin = uset_combined_lineality_space(isl_set_copy(set));
1880 if (!lin)
1881 goto error;
1882 if (isl_basic_set_is_universe(lin)) {
1883 isl_set_free(set);
1884 return lin;
1886 if (lin->n_eq < isl_basic_set_total_dim(lin))
1887 return modulo_lineality(set, lin);
1888 isl_basic_set_free(lin);
1890 return uset_convex_hull_unbounded(set);
1891 error:
1892 isl_set_free(set);
1893 isl_basic_set_free(convex_hull);
1894 return NULL;
1897 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1898 * without parameters or divs and where the convex hull of set is
1899 * known to be full-dimensional.
1901 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1903 struct isl_basic_set *convex_hull = NULL;
1905 if (isl_set_n_dim(set) == 0) {
1906 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1907 isl_set_free(set);
1908 convex_hull = isl_basic_set_set_rational(convex_hull);
1909 return convex_hull;
1912 set = isl_set_set_rational(set);
1914 if (!set)
1915 goto error;
1916 set = isl_set_coalesce(set);
1917 if (!set)
1918 goto error;
1919 if (set->n == 1) {
1920 convex_hull = isl_basic_set_copy(set->p[0]);
1921 isl_set_free(set);
1922 return convex_hull;
1924 if (isl_set_n_dim(set) == 1)
1925 return convex_hull_1d(set);
1927 return uset_convex_hull_wrap(set);
1928 error:
1929 isl_set_free(set);
1930 return NULL;
1933 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1934 * We first remove the equalities (transforming the set), compute the
1935 * convex hull of the transformed set and then add the equalities back
1936 * (after performing the inverse transformation.
1938 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1939 struct isl_set *set, struct isl_basic_set *affine_hull)
1941 struct isl_mat *T;
1942 struct isl_mat *T2;
1943 struct isl_basic_set *dummy;
1944 struct isl_basic_set *convex_hull;
1946 dummy = isl_basic_set_remove_equalities(
1947 isl_basic_set_copy(affine_hull), &T, &T2);
1948 if (!dummy)
1949 goto error;
1950 isl_basic_set_free(dummy);
1951 set = isl_set_preimage(set, T);
1952 convex_hull = uset_convex_hull(set);
1953 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1954 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1955 return convex_hull;
1956 error:
1957 isl_basic_set_free(affine_hull);
1958 isl_set_free(set);
1959 return NULL;
1962 /* Compute the convex hull of a map.
1964 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1965 * specifically, the wrapping of facets to obtain new facets.
1967 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1969 struct isl_basic_set *bset;
1970 struct isl_basic_map *model = NULL;
1971 struct isl_basic_set *affine_hull = NULL;
1972 struct isl_basic_map *convex_hull = NULL;
1973 struct isl_set *set = NULL;
1974 struct isl_ctx *ctx;
1976 if (!map)
1977 goto error;
1979 ctx = map->ctx;
1980 if (map->n == 0) {
1981 convex_hull = isl_basic_map_empty_like_map(map);
1982 isl_map_free(map);
1983 return convex_hull;
1986 map = isl_map_detect_equalities(map);
1987 map = isl_map_align_divs(map);
1988 model = isl_basic_map_copy(map->p[0]);
1989 set = isl_map_underlying_set(map);
1990 if (!set)
1991 goto error;
1993 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1994 if (!affine_hull)
1995 goto error;
1996 if (affine_hull->n_eq != 0)
1997 bset = modulo_affine_hull(ctx, set, affine_hull);
1998 else {
1999 isl_basic_set_free(affine_hull);
2000 bset = uset_convex_hull(set);
2003 convex_hull = isl_basic_map_overlying_set(bset, model);
2005 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
2006 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2007 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
2008 return convex_hull;
2009 error:
2010 isl_set_free(set);
2011 isl_basic_map_free(model);
2012 return NULL;
2015 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
2017 return (struct isl_basic_set *)
2018 isl_map_convex_hull((struct isl_map *)set);
2021 struct sh_data_entry {
2022 struct isl_hash_table *table;
2023 struct isl_tab *tab;
2026 /* Holds the data needed during the simple hull computation.
2027 * In particular,
2028 * n the number of basic sets in the original set
2029 * hull_table a hash table of already computed constraints
2030 * in the simple hull
2031 * p for each basic set,
2032 * table a hash table of the constraints
2033 * tab the tableau corresponding to the basic set
2035 struct sh_data {
2036 struct isl_ctx *ctx;
2037 unsigned n;
2038 struct isl_hash_table *hull_table;
2039 struct sh_data_entry p[1];
2042 static void sh_data_free(struct sh_data *data)
2044 int i;
2046 if (!data)
2047 return;
2048 isl_hash_table_free(data->ctx, data->hull_table);
2049 for (i = 0; i < data->n; ++i) {
2050 isl_hash_table_free(data->ctx, data->p[i].table);
2051 isl_tab_free(data->p[i].tab);
2053 free(data);
2056 struct ineq_cmp_data {
2057 unsigned len;
2058 isl_int *p;
2061 static int has_ineq(const void *entry, const void *val)
2063 isl_int *row = (isl_int *)entry;
2064 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2066 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2067 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2070 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2071 isl_int *ineq, unsigned len)
2073 uint32_t c_hash;
2074 struct ineq_cmp_data v;
2075 struct isl_hash_table_entry *entry;
2077 v.len = len;
2078 v.p = ineq;
2079 c_hash = isl_seq_get_hash(ineq + 1, len);
2080 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2081 if (!entry)
2082 return - 1;
2083 entry->data = ineq;
2084 return 0;
2087 /* Fill hash table "table" with the constraints of "bset".
2088 * Equalities are added as two inequalities.
2089 * The value in the hash table is a pointer to the (in)equality of "bset".
2091 static int hash_basic_set(struct isl_hash_table *table,
2092 struct isl_basic_set *bset)
2094 int i, j;
2095 unsigned dim = isl_basic_set_total_dim(bset);
2097 for (i = 0; i < bset->n_eq; ++i) {
2098 for (j = 0; j < 2; ++j) {
2099 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2100 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2101 return -1;
2104 for (i = 0; i < bset->n_ineq; ++i) {
2105 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2106 return -1;
2108 return 0;
2111 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2113 struct sh_data *data;
2114 int i;
2116 data = isl_calloc(set->ctx, struct sh_data,
2117 sizeof(struct sh_data) +
2118 (set->n - 1) * sizeof(struct sh_data_entry));
2119 if (!data)
2120 return NULL;
2121 data->ctx = set->ctx;
2122 data->n = set->n;
2123 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2124 if (!data->hull_table)
2125 goto error;
2126 for (i = 0; i < set->n; ++i) {
2127 data->p[i].table = isl_hash_table_alloc(set->ctx,
2128 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2129 if (!data->p[i].table)
2130 goto error;
2131 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2132 goto error;
2134 return data;
2135 error:
2136 sh_data_free(data);
2137 return NULL;
2140 /* Check if inequality "ineq" is a bound for basic set "j" or if
2141 * it can be relaxed (by increasing the constant term) to become
2142 * a bound for that basic set. In the latter case, the constant
2143 * term is updated.
2144 * Return 1 if "ineq" is a bound
2145 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2146 * -1 if some error occurred
2148 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2149 isl_int *ineq)
2151 enum isl_lp_result res;
2152 isl_int opt;
2154 if (!data->p[j].tab) {
2155 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2156 if (!data->p[j].tab)
2157 return -1;
2160 isl_int_init(opt);
2162 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2163 &opt, NULL, 0);
2164 if (res == isl_lp_ok && isl_int_is_neg(opt))
2165 isl_int_sub(ineq[0], ineq[0], opt);
2167 isl_int_clear(opt);
2169 return res == isl_lp_ok ? 1 :
2170 res == isl_lp_unbounded ? 0 : -1;
2173 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2174 * become a bound on the whole set. If so, add the (relaxed) inequality
2175 * to "hull".
2177 * We first check if "hull" already contains a translate of the inequality.
2178 * If so, we are done.
2179 * Then, we check if any of the previous basic sets contains a translate
2180 * of the inequality. If so, then we have already considered this
2181 * inequality and we are done.
2182 * Otherwise, for each basic set other than "i", we check if the inequality
2183 * is a bound on the basic set.
2184 * For previous basic sets, we know that they do not contain a translate
2185 * of the inequality, so we directly call is_bound.
2186 * For following basic sets, we first check if a translate of the
2187 * inequality appears in its description and if so directly update
2188 * the inequality accordingly.
2190 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2191 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2193 uint32_t c_hash;
2194 struct ineq_cmp_data v;
2195 struct isl_hash_table_entry *entry;
2196 int j, k;
2198 if (!hull)
2199 return NULL;
2201 v.len = isl_basic_set_total_dim(hull);
2202 v.p = ineq;
2203 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2205 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2206 has_ineq, &v, 0);
2207 if (entry)
2208 return hull;
2210 for (j = 0; j < i; ++j) {
2211 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2212 c_hash, has_ineq, &v, 0);
2213 if (entry)
2214 break;
2216 if (j < i)
2217 return hull;
2219 k = isl_basic_set_alloc_inequality(hull);
2220 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2221 if (k < 0)
2222 goto error;
2224 for (j = 0; j < i; ++j) {
2225 int bound;
2226 bound = is_bound(data, set, j, hull->ineq[k]);
2227 if (bound < 0)
2228 goto error;
2229 if (!bound)
2230 break;
2232 if (j < i) {
2233 isl_basic_set_free_inequality(hull, 1);
2234 return hull;
2237 for (j = i + 1; j < set->n; ++j) {
2238 int bound, neg;
2239 isl_int *ineq_j;
2240 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2241 c_hash, has_ineq, &v, 0);
2242 if (entry) {
2243 ineq_j = entry->data;
2244 neg = isl_seq_is_neg(ineq_j + 1,
2245 hull->ineq[k] + 1, v.len);
2246 if (neg)
2247 isl_int_neg(ineq_j[0], ineq_j[0]);
2248 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2249 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2250 if (neg)
2251 isl_int_neg(ineq_j[0], ineq_j[0]);
2252 continue;
2254 bound = is_bound(data, set, j, hull->ineq[k]);
2255 if (bound < 0)
2256 goto error;
2257 if (!bound)
2258 break;
2260 if (j < set->n) {
2261 isl_basic_set_free_inequality(hull, 1);
2262 return hull;
2265 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2266 has_ineq, &v, 1);
2267 if (!entry)
2268 goto error;
2269 entry->data = hull->ineq[k];
2271 return hull;
2272 error:
2273 isl_basic_set_free(hull);
2274 return NULL;
2277 /* Check if any inequality from basic set "i" can be relaxed to
2278 * become a bound on the whole set. If so, add the (relaxed) inequality
2279 * to "hull".
2281 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2282 struct sh_data *data, struct isl_set *set, int i)
2284 int j, k;
2285 unsigned dim = isl_basic_set_total_dim(bset);
2287 for (j = 0; j < set->p[i]->n_eq; ++j) {
2288 for (k = 0; k < 2; ++k) {
2289 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2290 add_bound(bset, data, set, i, set->p[i]->eq[j]);
2293 for (j = 0; j < set->p[i]->n_ineq; ++j)
2294 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2295 return bset;
2298 /* Compute a superset of the convex hull of set that is described
2299 * by only translates of the constraints in the constituents of set.
2301 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2303 struct sh_data *data = NULL;
2304 struct isl_basic_set *hull = NULL;
2305 unsigned n_ineq;
2306 int i;
2308 if (!set)
2309 return NULL;
2311 n_ineq = 0;
2312 for (i = 0; i < set->n; ++i) {
2313 if (!set->p[i])
2314 goto error;
2315 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2318 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2319 if (!hull)
2320 goto error;
2322 data = sh_data_alloc(set, n_ineq);
2323 if (!data)
2324 goto error;
2326 for (i = 0; i < set->n; ++i)
2327 hull = add_bounds(hull, data, set, i);
2329 sh_data_free(data);
2330 isl_set_free(set);
2332 return hull;
2333 error:
2334 sh_data_free(data);
2335 isl_basic_set_free(hull);
2336 isl_set_free(set);
2337 return NULL;
2340 /* Compute a superset of the convex hull of map that is described
2341 * by only translates of the constraints in the constituents of map.
2343 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2345 struct isl_set *set = NULL;
2346 struct isl_basic_map *model = NULL;
2347 struct isl_basic_map *hull;
2348 struct isl_basic_map *affine_hull;
2349 struct isl_basic_set *bset = NULL;
2351 if (!map)
2352 return NULL;
2353 if (map->n == 0) {
2354 hull = isl_basic_map_empty_like_map(map);
2355 isl_map_free(map);
2356 return hull;
2358 if (map->n == 1) {
2359 hull = isl_basic_map_copy(map->p[0]);
2360 isl_map_free(map);
2361 return hull;
2364 map = isl_map_detect_equalities(map);
2365 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2366 map = isl_map_align_divs(map);
2367 model = isl_basic_map_copy(map->p[0]);
2369 set = isl_map_underlying_set(map);
2371 bset = uset_simple_hull(set);
2373 hull = isl_basic_map_overlying_set(bset, model);
2375 hull = isl_basic_map_intersect(hull, affine_hull);
2376 hull = isl_basic_map_convex_hull(hull);
2377 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2378 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2380 return hull;
2383 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2385 return (struct isl_basic_set *)
2386 isl_map_simple_hull((struct isl_map *)set);
2389 /* Given a set "set", return parametric bounds on the dimension "dim".
2391 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2393 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2394 set = isl_set_copy(set);
2395 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2396 set = isl_set_eliminate_dims(set, 0, dim);
2397 return isl_set_convex_hull(set);
2400 /* Computes a "simple hull" and then check if each dimension in the
2401 * resulting hull is bounded by a symbolic constant. If not, the
2402 * hull is intersected with the corresponding bounds on the whole set.
2404 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2406 int i, j;
2407 struct isl_basic_set *hull;
2408 unsigned nparam, left;
2409 int removed_divs = 0;
2411 hull = isl_set_simple_hull(isl_set_copy(set));
2412 if (!hull)
2413 goto error;
2415 nparam = isl_basic_set_dim(hull, isl_dim_param);
2416 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2417 int lower = 0, upper = 0;
2418 struct isl_basic_set *bounds;
2420 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2421 for (j = 0; j < hull->n_eq; ++j) {
2422 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2423 continue;
2424 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2425 left) == -1)
2426 break;
2428 if (j < hull->n_eq)
2429 continue;
2431 for (j = 0; j < hull->n_ineq; ++j) {
2432 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2433 continue;
2434 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2435 left) != -1 ||
2436 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2437 i) != -1)
2438 continue;
2439 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2440 lower = 1;
2441 else
2442 upper = 1;
2443 if (lower && upper)
2444 break;
2447 if (lower && upper)
2448 continue;
2450 if (!removed_divs) {
2451 set = isl_set_remove_divs(set);
2452 if (!set)
2453 goto error;
2454 removed_divs = 1;
2456 bounds = set_bounds(set, i);
2457 hull = isl_basic_set_intersect(hull, bounds);
2458 if (!hull)
2459 goto error;
2462 isl_set_free(set);
2463 return hull;
2464 error:
2465 isl_set_free(set);
2466 return NULL;