add isl_{set,map}_drop_constraints_involving_dims
[isl.git] / isl_affine_hull.c
blob655eb40a26dcbf0dd89020926d03fea0526b8fde
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include <isl/seq.h>
13 #include <isl/set.h>
14 #include <isl/lp.h>
15 #include <isl/map.h>
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
18 #include "isl_tab.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map *isl_basic_map_implicit_equalities(
22 struct isl_basic_map *bmap)
24 struct isl_tab *tab;
26 if (!bmap)
27 return bmap;
29 bmap = isl_basic_map_gauss(bmap, NULL);
30 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
31 return bmap;
32 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
33 return bmap;
34 if (bmap->n_ineq <= 1)
35 return bmap;
37 tab = isl_tab_from_basic_map(bmap, 0);
38 if (isl_tab_detect_implicit_equalities(tab) < 0)
39 goto error;
40 bmap = isl_basic_map_update_from_tab(bmap, tab);
41 isl_tab_free(tab);
42 bmap = isl_basic_map_gauss(bmap, NULL);
43 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
44 return bmap;
45 error:
46 isl_tab_free(tab);
47 isl_basic_map_free(bmap);
48 return NULL;
51 struct isl_basic_set *isl_basic_set_implicit_equalities(
52 struct isl_basic_set *bset)
54 return (struct isl_basic_set *)
55 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
58 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
60 int i;
62 if (!map)
63 return map;
65 for (i = 0; i < map->n; ++i) {
66 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
67 if (!map->p[i])
68 goto error;
71 return map;
72 error:
73 isl_map_free(map);
74 return NULL;
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
84 unsigned row, unsigned col)
86 isl_int m, c;
88 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
89 return;
91 isl_int_init(c);
92 isl_int_init(m);
93 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
94 isl_int_divexact(c, m, bset1->eq[row][col]);
95 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
96 isl_int_divexact(c, m, bset2->eq[row][col]);
97 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
98 isl_int_clear(c);
99 isl_int_clear(m);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set *bset, unsigned row)
106 isl_int *t;
107 int r;
109 t = bset->eq[row];
110 bset->n_eq--;
111 for (r = row; r < bset->n_eq; ++r)
112 bset->eq[r] = bset->eq[r+1];
113 bset->eq[bset->n_eq] = t;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
121 * B[i] = a * B[i]
122 * so that
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
127 unsigned row, unsigned col)
129 int r;
130 isl_int a;
131 isl_int b;
132 unsigned total;
134 isl_int_init(a);
135 isl_int_init(b);
136 total = 1 + isl_basic_set_n_dim(bset1);
137 for (r = 0; r < row; ++r) {
138 if (isl_int_is_zero(bset2->eq[r][col]))
139 continue;
140 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
141 isl_int_divexact(a, bset1->eq[row][col], b);
142 isl_int_divexact(b, bset2->eq[r][col], b);
143 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
144 b, bset1->eq[row], total);
145 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
147 isl_int_clear(a);
148 isl_int_clear(b);
149 delete_row(bset1, row);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
158 * so that
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
163 unsigned row, unsigned col)
165 int i, t;
166 isl_int a, b, g;
167 unsigned total;
169 for (t = row-1; t >= 0; --t)
170 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
171 break;
172 if (t < 0)
173 return 0;
175 total = 1 + isl_basic_set_n_dim(bset1);
176 isl_int_init(a);
177 isl_int_init(b);
178 isl_int_init(g);
179 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
180 for (i = 0; i < t; ++i) {
181 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
182 isl_int_gcd(g, a, b);
183 isl_int_divexact(a, a, g);
184 isl_int_divexact(g, b, g);
185 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
186 total);
187 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
188 total);
190 isl_int_clear(a);
191 isl_int_clear(b);
192 isl_int_clear(g);
193 delete_row(bset1, t);
194 delete_row(bset2, t);
195 return 1;
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set *affine_hull(
204 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
206 unsigned total;
207 int col;
208 int row;
210 if (!bset1 || !bset2)
211 goto error;
213 total = 1 + isl_basic_set_n_dim(bset1);
215 row = 0;
216 for (col = total-1; col >= 0; --col) {
217 int is_zero1 = row >= bset1->n_eq ||
218 isl_int_is_zero(bset1->eq[row][col]);
219 int is_zero2 = row >= bset2->n_eq ||
220 isl_int_is_zero(bset2->eq[row][col]);
221 if (!is_zero1 && !is_zero2) {
222 set_common_multiple(bset1, bset2, row, col);
223 ++row;
224 } else if (!is_zero1 && is_zero2) {
225 construct_column(bset1, bset2, row, col);
226 } else if (is_zero1 && !is_zero2) {
227 construct_column(bset2, bset1, row, col);
228 } else {
229 if (transform_column(bset1, bset2, row, col))
230 --row;
233 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
234 isl_basic_set_free(bset2);
235 bset1 = isl_basic_set_normalize_constraints(bset1);
236 return bset1;
237 error:
238 isl_basic_set_free(bset1);
239 isl_basic_set_free(bset2);
240 return NULL;
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
260 struct isl_ctx *ctx;
261 struct isl_vec *sample = NULL;
262 struct isl_tab_undo *snap;
263 unsigned dim;
265 if (!tab)
266 return NULL;
267 ctx = tab->mat->ctx;
269 dim = tab->n_var;
270 sample = isl_vec_alloc(ctx, 1 + dim);
271 if (!sample)
272 return NULL;
273 isl_int_set_si(sample->el[0], 1);
274 isl_seq_combine(sample->el + 1,
275 ctx->one, tab->bmap->sample->el + 1,
276 up ? ctx->one : ctx->negone, eq + 1, dim);
277 if (isl_basic_map_contains(tab->bmap, sample))
278 return sample;
279 isl_vec_free(sample);
280 sample = NULL;
282 snap = isl_tab_snap(tab);
284 if (!up)
285 isl_seq_neg(eq, eq, 1 + dim);
286 isl_int_sub_ui(eq[0], eq[0], 1);
288 if (isl_tab_extend_cons(tab, 1) < 0)
289 goto error;
290 if (isl_tab_add_ineq(tab, eq) < 0)
291 goto error;
293 sample = isl_tab_sample(tab);
295 isl_int_add_ui(eq[0], eq[0], 1);
296 if (!up)
297 isl_seq_neg(eq, eq, 1 + dim);
299 if (sample && isl_tab_rollback(tab, snap) < 0)
300 goto error;
302 return sample;
303 error:
304 isl_vec_free(sample);
305 return NULL;
308 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
310 int i;
312 bset = isl_basic_set_cow(bset);
313 if (!bset)
314 return NULL;
315 isl_assert(bset->ctx, bset->n_div == 0, goto error);
317 for (i = 0; i < bset->n_eq; ++i)
318 isl_int_set_si(bset->eq[i][0], 0);
320 for (i = 0; i < bset->n_ineq; ++i)
321 isl_int_set_si(bset->ineq[i][0], 0);
323 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
324 return isl_basic_set_implicit_equalities(bset);
325 error:
326 isl_basic_set_free(bset);
327 return NULL;
330 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
332 int i;
334 if (!set)
335 return NULL;
336 if (set->n == 0)
337 return set;
339 set = isl_set_remove_divs(set);
340 set = isl_set_cow(set);
341 if (!set)
342 return NULL;
344 for (i = 0; i < set->n; ++i) {
345 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
346 if (!set->p[i])
347 goto error;
350 return set;
351 error:
352 isl_set_free(set);
353 return NULL;
356 /* Move "sample" to a point that is one up (or down) from the original
357 * point in dimension "pos".
359 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
361 if (up)
362 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
363 else
364 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
367 /* Check if any points that are adjacent to "sample" also belong to "bset".
368 * If so, add them to "hull" and return the updated hull.
370 * Before checking whether and adjacent point belongs to "bset", we first
371 * check whether it already belongs to "hull" as this test is typically
372 * much cheaper.
374 static __isl_give isl_basic_set *add_adjacent_points(
375 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
376 __isl_keep isl_basic_set *bset)
378 int i, up;
379 int dim;
381 if (!sample)
382 goto error;
384 dim = isl_basic_set_dim(hull, isl_dim_set);
386 for (i = 0; i < dim; ++i) {
387 for (up = 0; up <= 1; ++up) {
388 int contains;
389 isl_basic_set *point;
391 adjacent_point(sample, i, up);
392 contains = isl_basic_set_contains(hull, sample);
393 if (contains < 0)
394 goto error;
395 if (contains) {
396 adjacent_point(sample, i, !up);
397 continue;
399 contains = isl_basic_set_contains(bset, sample);
400 if (contains < 0)
401 goto error;
402 if (contains) {
403 point = isl_basic_set_from_vec(
404 isl_vec_copy(sample));
405 hull = affine_hull(hull, point);
407 adjacent_point(sample, i, !up);
408 if (contains)
409 break;
413 isl_vec_free(sample);
415 return hull;
416 error:
417 isl_vec_free(sample);
418 isl_basic_set_free(hull);
419 return NULL;
422 /* Extend an initial (under-)approximation of the affine hull of basic
423 * set represented by the tableau "tab"
424 * by looking for points that do not satisfy one of the equalities
425 * in the current approximation and adding them to that approximation
426 * until no such points can be found any more.
428 * The caller of this function ensures that "tab" is bounded or
429 * that tab->basis and tab->n_unbounded have been set appropriately.
431 * "bset" may be either NULL or the basic set represented by "tab".
432 * If "bset" is not NULL, we check for any point we find if any
433 * of its adjacent points also belong to "bset".
435 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
436 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
438 int i, j;
439 unsigned dim;
441 if (!tab || !hull)
442 goto error;
444 dim = tab->n_var;
446 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
447 goto error;
449 for (i = 0; i < dim; ++i) {
450 struct isl_vec *sample;
451 struct isl_basic_set *point;
452 for (j = 0; j < hull->n_eq; ++j) {
453 sample = outside_point(tab, hull->eq[j], 1);
454 if (!sample)
455 goto error;
456 if (sample->size > 0)
457 break;
458 isl_vec_free(sample);
459 sample = outside_point(tab, hull->eq[j], 0);
460 if (!sample)
461 goto error;
462 if (sample->size > 0)
463 break;
464 isl_vec_free(sample);
466 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
467 goto error;
469 if (j == hull->n_eq)
470 break;
471 if (tab->samples)
472 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
473 if (!tab)
474 goto error;
475 if (bset)
476 hull = add_adjacent_points(hull, isl_vec_copy(sample),
477 bset);
478 point = isl_basic_set_from_vec(sample);
479 hull = affine_hull(hull, point);
480 if (!hull)
481 return NULL;
484 return hull;
485 error:
486 isl_basic_set_free(hull);
487 return NULL;
490 /* Drop all constraints in bmap that involve any of the dimensions
491 * first to first+n-1.
493 static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving(
494 __isl_take isl_basic_map *bmap, unsigned first, unsigned n)
496 int i;
498 if (n == 0)
499 return bmap;
501 bmap = isl_basic_map_cow(bmap);
503 if (!bmap)
504 return NULL;
506 for (i = bmap->n_eq - 1; i >= 0; --i) {
507 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1)
508 continue;
509 isl_basic_map_drop_equality(bmap, i);
512 for (i = bmap->n_ineq - 1; i >= 0; --i) {
513 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1)
514 continue;
515 isl_basic_map_drop_inequality(bmap, i);
518 return bmap;
521 /* Drop all constraints in bset that involve any of the dimensions
522 * first to first+n-1.
524 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
525 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
527 return isl_basic_map_drop_constraints_involving(bset, first, n);
530 /* Drop all constraints in bmap that involve any of the dimensions
531 * first to first + n - 1 of the given type.
533 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims(
534 __isl_take isl_basic_map *bmap,
535 enum isl_dim_type type, unsigned first, unsigned n)
537 unsigned dim;
539 if (!bmap)
540 return NULL;
541 if (n == 0)
542 return bmap;
544 dim = isl_basic_map_dim(bmap, type);
545 if (first + n > dim || first + n < first)
546 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
547 "index out of bounds", return isl_basic_map_free(bmap));
549 bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n);
550 first += isl_basic_map_offset(bmap, type) - 1;
551 return isl_basic_map_drop_constraints_involving(bmap, first, n);
554 /* Drop all constraints in bset that involve any of the dimensions
555 * first to first + n - 1 of the given type.
557 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims(
558 __isl_take isl_basic_set *bset,
559 enum isl_dim_type type, unsigned first, unsigned n)
561 return isl_basic_map_drop_constraints_involving_dims(bset,
562 type, first, n);
565 /* Drop all constraints in map that involve any of the dimensions
566 * first to first + n - 1 of the given type.
568 __isl_give isl_map *isl_map_drop_constraints_involving_dims(
569 __isl_take isl_map *map,
570 enum isl_dim_type type, unsigned first, unsigned n)
572 int i;
573 unsigned dim;
575 if (!map)
576 return NULL;
577 if (n == 0)
578 return map;
580 dim = isl_map_dim(map, type);
581 if (first + n > dim || first + n < first)
582 isl_die(isl_map_get_ctx(map), isl_error_invalid,
583 "index out of bounds", return isl_map_free(map));
585 map = isl_map_cow(map);
586 if (!map)
587 return NULL;
589 for (i = 0; i < map->n; ++i) {
590 map->p[i] = isl_basic_map_drop_constraints_involving_dims(
591 map->p[i], type, first, n);
592 if (!map->p[i])
593 return isl_map_free(map);
596 return map;
599 /* Drop all constraints in set that involve any of the dimensions
600 * first to first + n - 1 of the given type.
602 __isl_give isl_set *isl_set_drop_constraints_involving_dims(
603 __isl_take isl_set *set,
604 enum isl_dim_type type, unsigned first, unsigned n)
606 return isl_map_drop_constraints_involving_dims(set, type, first, n);
609 /* Construct an initial underapproximatino of the hull of "bset"
610 * from "sample" and any of its adjacent points that also belong to "bset".
612 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
613 __isl_take isl_vec *sample)
615 isl_basic_set *hull;
617 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
618 hull = add_adjacent_points(hull, sample, bset);
620 return hull;
623 /* Look for all equalities satisfied by the integer points in bset,
624 * which is assumed to be bounded.
626 * The equalities are obtained by successively looking for
627 * a point that is affinely independent of the points found so far.
628 * In particular, for each equality satisfied by the points so far,
629 * we check if there is any point on a hyperplane parallel to the
630 * corresponding hyperplane shifted by at least one (in either direction).
632 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
634 struct isl_vec *sample = NULL;
635 struct isl_basic_set *hull;
636 struct isl_tab *tab = NULL;
637 unsigned dim;
639 if (isl_basic_set_plain_is_empty(bset))
640 return bset;
642 dim = isl_basic_set_n_dim(bset);
644 if (bset->sample && bset->sample->size == 1 + dim) {
645 int contains = isl_basic_set_contains(bset, bset->sample);
646 if (contains < 0)
647 goto error;
648 if (contains) {
649 if (dim == 0)
650 return bset;
651 sample = isl_vec_copy(bset->sample);
652 } else {
653 isl_vec_free(bset->sample);
654 bset->sample = NULL;
658 tab = isl_tab_from_basic_set(bset, 1);
659 if (!tab)
660 goto error;
661 if (tab->empty) {
662 isl_tab_free(tab);
663 isl_vec_free(sample);
664 return isl_basic_set_set_to_empty(bset);
667 if (!sample) {
668 struct isl_tab_undo *snap;
669 snap = isl_tab_snap(tab);
670 sample = isl_tab_sample(tab);
671 if (isl_tab_rollback(tab, snap) < 0)
672 goto error;
673 isl_vec_free(tab->bmap->sample);
674 tab->bmap->sample = isl_vec_copy(sample);
677 if (!sample)
678 goto error;
679 if (sample->size == 0) {
680 isl_tab_free(tab);
681 isl_vec_free(sample);
682 return isl_basic_set_set_to_empty(bset);
685 hull = initialize_hull(bset, sample);
687 hull = extend_affine_hull(tab, hull, bset);
688 isl_basic_set_free(bset);
689 isl_tab_free(tab);
691 return hull;
692 error:
693 isl_vec_free(sample);
694 isl_tab_free(tab);
695 isl_basic_set_free(bset);
696 return NULL;
699 /* Given an unbounded tableau and an integer point satisfying the tableau,
700 * construct an initial affine hull containing the recession cone
701 * shifted to the given point.
703 * The unbounded directions are taken from the last rows of the basis,
704 * which is assumed to have been initialized appropriately.
706 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
707 __isl_take isl_vec *vec)
709 int i;
710 int k;
711 struct isl_basic_set *bset = NULL;
712 struct isl_ctx *ctx;
713 unsigned dim;
715 if (!vec || !tab)
716 return NULL;
717 ctx = vec->ctx;
718 isl_assert(ctx, vec->size != 0, goto error);
720 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
721 if (!bset)
722 goto error;
723 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
724 for (i = 0; i < dim; ++i) {
725 k = isl_basic_set_alloc_equality(bset);
726 if (k < 0)
727 goto error;
728 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
729 vec->size - 1);
730 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
731 vec->size - 1, &bset->eq[k][0]);
732 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
734 bset->sample = vec;
735 bset = isl_basic_set_gauss(bset, NULL);
737 return bset;
738 error:
739 isl_basic_set_free(bset);
740 isl_vec_free(vec);
741 return NULL;
744 /* Given a tableau of a set and a tableau of the corresponding
745 * recession cone, detect and add all equalities to the tableau.
746 * If the tableau is bounded, then we can simply keep the
747 * tableau in its state after the return from extend_affine_hull.
748 * However, if the tableau is unbounded, then
749 * isl_tab_set_initial_basis_with_cone will add some additional
750 * constraints to the tableau that have to be removed again.
751 * In this case, we therefore rollback to the state before
752 * any constraints were added and then add the equalities back in.
754 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
755 struct isl_tab *tab_cone)
757 int j;
758 struct isl_vec *sample;
759 struct isl_basic_set *hull;
760 struct isl_tab_undo *snap;
762 if (!tab || !tab_cone)
763 goto error;
765 snap = isl_tab_snap(tab);
767 isl_mat_free(tab->basis);
768 tab->basis = NULL;
770 isl_assert(tab->mat->ctx, tab->bmap, goto error);
771 isl_assert(tab->mat->ctx, tab->samples, goto error);
772 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
773 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
775 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
776 goto error;
778 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
779 if (!sample)
780 goto error;
782 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
784 isl_vec_free(tab->bmap->sample);
785 tab->bmap->sample = isl_vec_copy(sample);
787 if (tab->n_unbounded == 0)
788 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
789 else
790 hull = initial_hull(tab, isl_vec_copy(sample));
792 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
793 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
794 hull = affine_hull(hull,
795 isl_basic_set_from_vec(isl_vec_copy(sample)));
798 isl_vec_free(sample);
800 hull = extend_affine_hull(tab, hull, NULL);
801 if (!hull)
802 goto error;
804 if (tab->n_unbounded == 0) {
805 isl_basic_set_free(hull);
806 return tab;
809 if (isl_tab_rollback(tab, snap) < 0)
810 goto error;
812 if (hull->n_eq > tab->n_zero) {
813 for (j = 0; j < hull->n_eq; ++j) {
814 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
815 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
816 goto error;
820 isl_basic_set_free(hull);
822 return tab;
823 error:
824 isl_tab_free(tab);
825 return NULL;
828 /* Compute the affine hull of "bset", where "cone" is the recession cone
829 * of "bset".
831 * We first compute a unimodular transformation that puts the unbounded
832 * directions in the last dimensions. In particular, we take a transformation
833 * that maps all equalities to equalities (in HNF) on the first dimensions.
834 * Let x be the original dimensions and y the transformed, with y_1 bounded
835 * and y_2 unbounded.
837 * [ y_1 ] [ y_1 ] [ Q_1 ]
838 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
840 * Let's call the input basic set S. We compute S' = preimage(S, U)
841 * and drop the final dimensions including any constraints involving them.
842 * This results in set S''.
843 * Then we compute the affine hull A'' of S''.
844 * Let F y_1 >= g be the constraint system of A''. In the transformed
845 * space the y_2 are unbounded, so we can add them back without any constraints,
846 * resulting in
848 * [ y_1 ]
849 * [ F 0 ] [ y_2 ] >= g
850 * or
851 * [ Q_1 ]
852 * [ F 0 ] [ Q_2 ] x >= g
853 * or
854 * F Q_1 x >= g
856 * The affine hull in the original space is then obtained as
857 * A = preimage(A'', Q_1).
859 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
860 struct isl_basic_set *cone)
862 unsigned total;
863 unsigned cone_dim;
864 struct isl_basic_set *hull;
865 struct isl_mat *M, *U, *Q;
867 if (!bset || !cone)
868 goto error;
870 total = isl_basic_set_total_dim(cone);
871 cone_dim = total - cone->n_eq;
873 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
874 M = isl_mat_left_hermite(M, 0, &U, &Q);
875 if (!M)
876 goto error;
877 isl_mat_free(M);
879 U = isl_mat_lin_to_aff(U);
880 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
882 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
883 cone_dim);
884 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
886 Q = isl_mat_lin_to_aff(Q);
887 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
889 if (bset && bset->sample && bset->sample->size == 1 + total)
890 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
892 hull = uset_affine_hull_bounded(bset);
894 if (!hull)
895 isl_mat_free(U);
896 else {
897 struct isl_vec *sample = isl_vec_copy(hull->sample);
898 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
899 if (sample && sample->size > 0)
900 sample = isl_mat_vec_product(U, sample);
901 else
902 isl_mat_free(U);
903 hull = isl_basic_set_preimage(hull, Q);
904 if (hull) {
905 isl_vec_free(hull->sample);
906 hull->sample = sample;
907 } else
908 isl_vec_free(sample);
911 isl_basic_set_free(cone);
913 return hull;
914 error:
915 isl_basic_set_free(bset);
916 isl_basic_set_free(cone);
917 return NULL;
920 /* Look for all equalities satisfied by the integer points in bset,
921 * which is assumed not to have any explicit equalities.
923 * The equalities are obtained by successively looking for
924 * a point that is affinely independent of the points found so far.
925 * In particular, for each equality satisfied by the points so far,
926 * we check if there is any point on a hyperplane parallel to the
927 * corresponding hyperplane shifted by at least one (in either direction).
929 * Before looking for any outside points, we first compute the recession
930 * cone. The directions of this recession cone will always be part
931 * of the affine hull, so there is no need for looking for any points
932 * in these directions.
933 * In particular, if the recession cone is full-dimensional, then
934 * the affine hull is simply the whole universe.
936 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
938 struct isl_basic_set *cone;
940 if (isl_basic_set_plain_is_empty(bset))
941 return bset;
943 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
944 if (!cone)
945 goto error;
946 if (cone->n_eq == 0) {
947 struct isl_basic_set *hull;
948 isl_basic_set_free(cone);
949 hull = isl_basic_set_universe_like(bset);
950 isl_basic_set_free(bset);
951 return hull;
954 if (cone->n_eq < isl_basic_set_total_dim(cone))
955 return affine_hull_with_cone(bset, cone);
957 isl_basic_set_free(cone);
958 return uset_affine_hull_bounded(bset);
959 error:
960 isl_basic_set_free(bset);
961 return NULL;
964 /* Look for all equalities satisfied by the integer points in bmap
965 * that are independent of the equalities already explicitly available
966 * in bmap.
968 * We first remove all equalities already explicitly available,
969 * then look for additional equalities in the reduced space
970 * and then transform the result to the original space.
971 * The original equalities are _not_ added to this set. This is
972 * the responsibility of the calling function.
973 * The resulting basic set has all meaning about the dimensions removed.
974 * In particular, dimensions that correspond to existential variables
975 * in bmap and that are found to be fixed are not removed.
977 static struct isl_basic_set *equalities_in_underlying_set(
978 struct isl_basic_map *bmap)
980 struct isl_mat *T1 = NULL;
981 struct isl_mat *T2 = NULL;
982 struct isl_basic_set *bset = NULL;
983 struct isl_basic_set *hull = NULL;
985 bset = isl_basic_map_underlying_set(bmap);
986 if (!bset)
987 return NULL;
988 if (bset->n_eq)
989 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
990 if (!bset)
991 goto error;
993 hull = uset_affine_hull(bset);
994 if (!T2)
995 return hull;
997 if (!hull) {
998 isl_mat_free(T1);
999 isl_mat_free(T2);
1000 } else {
1001 struct isl_vec *sample = isl_vec_copy(hull->sample);
1002 if (sample && sample->size > 0)
1003 sample = isl_mat_vec_product(T1, sample);
1004 else
1005 isl_mat_free(T1);
1006 hull = isl_basic_set_preimage(hull, T2);
1007 if (hull) {
1008 isl_vec_free(hull->sample);
1009 hull->sample = sample;
1010 } else
1011 isl_vec_free(sample);
1014 return hull;
1015 error:
1016 isl_mat_free(T2);
1017 isl_basic_set_free(bset);
1018 isl_basic_set_free(hull);
1019 return NULL;
1022 /* Detect and make explicit all equalities satisfied by the (integer)
1023 * points in bmap.
1025 struct isl_basic_map *isl_basic_map_detect_equalities(
1026 struct isl_basic_map *bmap)
1028 int i, j;
1029 struct isl_basic_set *hull = NULL;
1031 if (!bmap)
1032 return NULL;
1033 if (bmap->n_ineq == 0)
1034 return bmap;
1035 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1036 return bmap;
1037 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
1038 return bmap;
1039 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
1040 return isl_basic_map_implicit_equalities(bmap);
1042 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
1043 if (!hull)
1044 goto error;
1045 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
1046 isl_basic_set_free(hull);
1047 return isl_basic_map_set_to_empty(bmap);
1049 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
1050 hull->n_eq, 0);
1051 for (i = 0; i < hull->n_eq; ++i) {
1052 j = isl_basic_map_alloc_equality(bmap);
1053 if (j < 0)
1054 goto error;
1055 isl_seq_cpy(bmap->eq[j], hull->eq[i],
1056 1 + isl_basic_set_total_dim(hull));
1058 isl_vec_free(bmap->sample);
1059 bmap->sample = isl_vec_copy(hull->sample);
1060 isl_basic_set_free(hull);
1061 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
1062 bmap = isl_basic_map_simplify(bmap);
1063 return isl_basic_map_finalize(bmap);
1064 error:
1065 isl_basic_set_free(hull);
1066 isl_basic_map_free(bmap);
1067 return NULL;
1070 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1071 __isl_take isl_basic_set *bset)
1073 return (isl_basic_set *)
1074 isl_basic_map_detect_equalities((isl_basic_map *)bset);
1077 __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map,
1078 __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap))
1080 struct isl_basic_map *bmap;
1081 int i;
1083 if (!map)
1084 return NULL;
1086 for (i = 0; i < map->n; ++i) {
1087 bmap = isl_basic_map_copy(map->p[i]);
1088 bmap = fn(bmap);
1089 if (!bmap)
1090 goto error;
1091 isl_basic_map_free(map->p[i]);
1092 map->p[i] = bmap;
1095 return map;
1096 error:
1097 isl_map_free(map);
1098 return NULL;
1101 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
1103 return isl_map_inline_foreach_basic_map(map,
1104 &isl_basic_map_detect_equalities);
1107 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
1109 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
1112 /* After computing the rational affine hull (by detecting the implicit
1113 * equalities), we compute the additional equalities satisfied by
1114 * the integer points (if any) and add the original equalities back in.
1116 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1118 bmap = isl_basic_map_detect_equalities(bmap);
1119 bmap = isl_basic_map_cow(bmap);
1120 if (bmap)
1121 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
1122 bmap = isl_basic_map_finalize(bmap);
1123 return bmap;
1126 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1128 return (struct isl_basic_set *)
1129 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
1132 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
1134 int i;
1135 struct isl_basic_map *model = NULL;
1136 struct isl_basic_map *hull = NULL;
1137 struct isl_set *set;
1139 map = isl_map_detect_equalities(map);
1140 map = isl_map_align_divs(map);
1142 if (!map)
1143 return NULL;
1145 if (map->n == 0) {
1146 hull = isl_basic_map_empty_like_map(map);
1147 isl_map_free(map);
1148 return hull;
1151 model = isl_basic_map_copy(map->p[0]);
1152 set = isl_map_underlying_set(map);
1153 set = isl_set_cow(set);
1154 if (!set)
1155 goto error;
1157 for (i = 0; i < set->n; ++i) {
1158 set->p[i] = isl_basic_set_cow(set->p[i]);
1159 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
1160 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
1161 if (!set->p[i])
1162 goto error;
1164 set = isl_set_remove_empty_parts(set);
1165 if (set->n == 0) {
1166 hull = isl_basic_map_empty_like(model);
1167 isl_basic_map_free(model);
1168 } else {
1169 struct isl_basic_set *bset;
1170 while (set->n > 1) {
1171 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1172 if (!set->p[0])
1173 goto error;
1175 bset = isl_basic_set_copy(set->p[0]);
1176 hull = isl_basic_map_overlying_set(bset, model);
1178 isl_set_free(set);
1179 hull = isl_basic_map_simplify(hull);
1180 return isl_basic_map_finalize(hull);
1181 error:
1182 isl_basic_map_free(model);
1183 isl_set_free(set);
1184 return NULL;
1187 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1189 return (struct isl_basic_set *)
1190 isl_map_affine_hull((struct isl_map *)set);