isl_tab_basic_map_partial_lexopt: split on parametric rows first
[isl.git] / isl_tab_pip.c
blobfea0f253a2010ff8da7adb469ba1d0d864a0df19
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2016-2017 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14 #include <isl_ctx_private.h>
15 #include "isl_map_private.h"
16 #include <isl_seq.h>
17 #include "isl_tab.h"
18 #include "isl_sample.h"
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
21 #include <isl_aff_private.h>
22 #include <isl_constraint_private.h>
23 #include <isl_options_private.h>
24 #include <isl_config.h>
26 #include <bset_to_bmap.c>
29 * The implementation of parametric integer linear programming in this file
30 * was inspired by the paper "Parametric Integer Programming" and the
31 * report "Solving systems of affine (in)equalities" by Paul Feautrier
32 * (and others).
34 * The strategy used for obtaining a feasible solution is different
35 * from the one used in isl_tab.c. In particular, in isl_tab.c,
36 * upon finding a constraint that is not yet satisfied, we pivot
37 * in a row that increases the constant term of the row holding the
38 * constraint, making sure the sample solution remains feasible
39 * for all the constraints it already satisfied.
40 * Here, we always pivot in the row holding the constraint,
41 * choosing a column that induces the lexicographically smallest
42 * increment to the sample solution.
44 * By starting out from a sample value that is lexicographically
45 * smaller than any integer point in the problem space, the first
46 * feasible integer sample point we find will also be the lexicographically
47 * smallest. If all variables can be assumed to be non-negative,
48 * then the initial sample value may be chosen equal to zero.
49 * However, we will not make this assumption. Instead, we apply
50 * the "big parameter" trick. Any variable x is then not directly
51 * used in the tableau, but instead it is represented by another
52 * variable x' = M + x, where M is an arbitrarily large (positive)
53 * value. x' is therefore always non-negative, whatever the value of x.
54 * Taking as initial sample value x' = 0 corresponds to x = -M,
55 * which is always smaller than any possible value of x.
57 * The big parameter trick is used in the main tableau and
58 * also in the context tableau if isl_context_lex is used.
59 * In this case, each tableaus has its own big parameter.
60 * Before doing any real work, we check if all the parameters
61 * happen to be non-negative. If so, we drop the column corresponding
62 * to M from the initial context tableau.
63 * If isl_context_gbr is used, then the big parameter trick is only
64 * used in the main tableau.
67 struct isl_context;
68 struct isl_context_op {
69 /* detect nonnegative parameters in context and mark them in tab */
70 struct isl_tab *(*detect_nonnegative_parameters)(
71 struct isl_context *context, struct isl_tab *tab);
72 /* return temporary reference to basic set representation of context */
73 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
74 /* return temporary reference to tableau representation of context */
75 struct isl_tab *(*peek_tab)(struct isl_context *context);
76 /* add equality; check is 1 if eq may not be valid;
77 * update is 1 if we may want to call ineq_sign on context later.
79 void (*add_eq)(struct isl_context *context, isl_int *eq,
80 int check, int update);
81 /* add inequality; check is 1 if ineq may not be valid;
82 * update is 1 if we may want to call ineq_sign on context later.
84 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
85 int check, int update);
86 /* check sign of ineq based on previous information.
87 * strict is 1 if saturation should be treated as a positive sign.
89 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
90 isl_int *ineq, int strict);
91 /* check if inequality maintains feasibility */
92 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
93 /* return index of a div that corresponds to "div" */
94 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
95 struct isl_vec *div);
96 /* insert div "div" to context at "pos" and return non-negativity */
97 isl_bool (*insert_div)(struct isl_context *context, int pos,
98 __isl_keep isl_vec *div);
99 int (*detect_equalities)(struct isl_context *context,
100 struct isl_tab *tab);
101 /* return row index of "best" split */
102 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
103 /* check if context has already been determined to be empty */
104 int (*is_empty)(struct isl_context *context);
105 /* check if context is still usable */
106 int (*is_ok)(struct isl_context *context);
107 /* save a copy/snapshot of context */
108 void *(*save)(struct isl_context *context);
109 /* restore saved context */
110 void (*restore)(struct isl_context *context, void *);
111 /* discard saved context */
112 void (*discard)(void *);
113 /* invalidate context */
114 void (*invalidate)(struct isl_context *context);
115 /* free context */
116 __isl_null struct isl_context *(*free)(struct isl_context *context);
119 /* Shared parts of context representation.
121 * "n_unknown" is the number of final unknown integer divisions
122 * in the input domain.
124 struct isl_context {
125 struct isl_context_op *op;
126 int n_unknown;
129 struct isl_context_lex {
130 struct isl_context context;
131 struct isl_tab *tab;
134 /* A stack (linked list) of solutions of subtrees of the search space.
136 * "ma" describes the solution as a function of "dom".
137 * In particular, the domain space of "ma" is equal to the space of "dom".
139 * If "ma" is NULL, then there is no solution on "dom".
141 struct isl_partial_sol {
142 int level;
143 struct isl_basic_set *dom;
144 isl_multi_aff *ma;
146 struct isl_partial_sol *next;
149 struct isl_sol;
150 struct isl_sol_callback {
151 struct isl_tab_callback callback;
152 struct isl_sol *sol;
155 /* isl_sol is an interface for constructing a solution to
156 * a parametric integer linear programming problem.
157 * Every time the algorithm reaches a state where a solution
158 * can be read off from the tableau, the function "add" is called
159 * on the isl_sol passed to find_solutions_main. In a state where
160 * the tableau is empty, "add_empty" is called instead.
161 * "free" is called to free the implementation specific fields, if any.
163 * "error" is set if some error has occurred. This flag invalidates
164 * the remainder of the data structure.
165 * If "rational" is set, then a rational optimization is being performed.
166 * "level" is the current level in the tree with nodes for each
167 * split in the context.
168 * If "max" is set, then a maximization problem is being solved, rather than
169 * a minimization problem, which means that the variables in the
170 * tableau have value "M - x" rather than "M + x".
171 * "n_out" is the number of output dimensions in the input.
172 * "space" is the space in which the solution (and also the input) lives.
174 * The context tableau is owned by isl_sol and is updated incrementally.
176 * There are currently three implementations of this interface,
177 * isl_sol_map, which simply collects the solutions in an isl_map
178 * and (optionally) the parts of the context where there is no solution
179 * in an isl_set,
180 * isl_sol_pma, which collects an isl_pw_multi_aff instead, and
181 * isl_sol_for, which calls a user-defined function for each part of
182 * the solution.
184 struct isl_sol {
185 int error;
186 int rational;
187 int level;
188 int max;
189 int n_out;
190 isl_space *space;
191 struct isl_context *context;
192 struct isl_partial_sol *partial;
193 void (*add)(struct isl_sol *sol,
194 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma);
195 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
196 void (*free)(struct isl_sol *sol);
197 struct isl_sol_callback dec_level;
200 static void sol_free(struct isl_sol *sol)
202 struct isl_partial_sol *partial, *next;
203 if (!sol)
204 return;
205 for (partial = sol->partial; partial; partial = next) {
206 next = partial->next;
207 isl_basic_set_free(partial->dom);
208 isl_multi_aff_free(partial->ma);
209 free(partial);
211 isl_space_free(sol->space);
212 if (sol->context)
213 sol->context->op->free(sol->context);
214 sol->free(sol);
215 free(sol);
218 /* Push a partial solution represented by a domain and function "ma"
219 * onto the stack of partial solutions.
220 * If "ma" is NULL, then "dom" represents a part of the domain
221 * with no solution.
223 static void sol_push_sol(struct isl_sol *sol,
224 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
226 struct isl_partial_sol *partial;
228 if (sol->error || !dom)
229 goto error;
231 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
232 if (!partial)
233 goto error;
235 partial->level = sol->level;
236 partial->dom = dom;
237 partial->ma = ma;
238 partial->next = sol->partial;
240 sol->partial = partial;
242 return;
243 error:
244 isl_basic_set_free(dom);
245 isl_multi_aff_free(ma);
246 sol->error = 1;
249 /* Check that the final columns of "M", starting at "first", are zero.
251 static isl_stat check_final_columns_are_zero(__isl_keep isl_mat *M,
252 unsigned first)
254 int i;
255 unsigned rows, cols, n;
257 if (!M)
258 return isl_stat_error;
259 rows = isl_mat_rows(M);
260 cols = isl_mat_cols(M);
261 n = cols - first;
262 for (i = 0; i < rows; ++i)
263 if (isl_seq_first_non_zero(M->row[i] + first, n) != -1)
264 isl_die(isl_mat_get_ctx(M), isl_error_internal,
265 "final columns should be zero",
266 return isl_stat_error);
267 return isl_stat_ok;
270 /* Set the affine expressions in "ma" according to the rows in "M", which
271 * are defined over the local space "ls".
272 * The matrix "M" may have extra (zero) columns beyond the number
273 * of variables in "ls".
275 static __isl_give isl_multi_aff *set_from_affine_matrix(
276 __isl_take isl_multi_aff *ma, __isl_take isl_local_space *ls,
277 __isl_take isl_mat *M)
279 int i, dim;
280 isl_aff *aff;
282 if (!ma || !ls || !M)
283 goto error;
285 dim = isl_local_space_dim(ls, isl_dim_all);
286 if (check_final_columns_are_zero(M, 1 + dim) < 0)
287 goto error;
288 for (i = 1; i < M->n_row; ++i) {
289 aff = isl_aff_alloc(isl_local_space_copy(ls));
290 if (aff) {
291 isl_int_set(aff->v->el[0], M->row[0][0]);
292 isl_seq_cpy(aff->v->el + 1, M->row[i], 1 + dim);
294 aff = isl_aff_normalize(aff);
295 ma = isl_multi_aff_set_aff(ma, i - 1, aff);
297 isl_local_space_free(ls);
298 isl_mat_free(M);
300 return ma;
301 error:
302 isl_local_space_free(ls);
303 isl_mat_free(M);
304 isl_multi_aff_free(ma);
305 return NULL;
308 /* Push a partial solution represented by a domain and mapping M
309 * onto the stack of partial solutions.
311 * The affine matrix "M" maps the dimensions of the context
312 * to the output variables. Convert it into an isl_multi_aff and
313 * then call sol_push_sol.
315 * Note that the description of the initial context may have involved
316 * existentially quantified variables, in which case they also appear
317 * in "dom". These need to be removed before creating the affine
318 * expression because an affine expression cannot be defined in terms
319 * of existentially quantified variables without a known representation.
320 * Since newly added integer divisions are inserted before these
321 * existentially quantified variables, they are still in the final
322 * positions and the corresponding final columns of "M" are zero
323 * because align_context_divs adds the existentially quantified
324 * variables of the context to the main tableau without any constraints and
325 * any equality constraints that are added later on can only serve
326 * to eliminate these existentially quantified variables.
328 static void sol_push_sol_mat(struct isl_sol *sol,
329 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
331 isl_local_space *ls;
332 isl_multi_aff *ma;
333 int n_div, n_known;
335 n_div = isl_basic_set_dim(dom, isl_dim_div);
336 n_known = n_div - sol->context->n_unknown;
338 ma = isl_multi_aff_alloc(isl_space_copy(sol->space));
339 ls = isl_basic_set_get_local_space(dom);
340 ls = isl_local_space_drop_dims(ls, isl_dim_div,
341 n_known, n_div - n_known);
342 ma = set_from_affine_matrix(ma, ls, M);
344 if (!ma)
345 dom = isl_basic_set_free(dom);
346 sol_push_sol(sol, dom, ma);
349 /* Pop one partial solution from the partial solution stack and
350 * pass it on to sol->add or sol->add_empty.
352 static void sol_pop_one(struct isl_sol *sol)
354 struct isl_partial_sol *partial;
356 partial = sol->partial;
357 sol->partial = partial->next;
359 if (partial->ma)
360 sol->add(sol, partial->dom, partial->ma);
361 else
362 sol->add_empty(sol, partial->dom);
363 free(partial);
366 /* Return a fresh copy of the domain represented by the context tableau.
368 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
370 struct isl_basic_set *bset;
372 if (sol->error)
373 return NULL;
375 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
376 bset = isl_basic_set_update_from_tab(bset,
377 sol->context->op->peek_tab(sol->context));
379 return bset;
382 /* Check whether two partial solutions have the same affine expressions.
384 static isl_bool same_solution(struct isl_partial_sol *s1,
385 struct isl_partial_sol *s2)
387 if (!s1->ma != !s2->ma)
388 return isl_bool_false;
389 if (!s1->ma)
390 return isl_bool_true;
392 return isl_multi_aff_plain_is_equal(s1->ma, s2->ma);
395 /* Swap the initial two partial solutions in "sol".
397 * That is, go from
399 * sol->partial = p1; p1->next = p2; p2->next = p3
401 * to
403 * sol->partial = p2; p2->next = p1; p1->next = p3
405 static void swap_initial(struct isl_sol *sol)
407 struct isl_partial_sol *partial;
409 partial = sol->partial;
410 sol->partial = partial->next;
411 partial->next = partial->next->next;
412 sol->partial->next = partial;
415 /* Combine the initial two partial solution of "sol" into
416 * a partial solution with the current context domain of "sol" and
417 * the function description of the second partial solution in the list.
418 * The level of the new partial solution is set to the current level.
420 * That is, the first two partial solutions (D1,M1) and (D2,M2) are
421 * replaced by (D,M2), where D is the domain of "sol", which is assumed
422 * to be the union of D1 and D2, while M1 is assumed to be equal to M2
423 * (at least on D1).
425 static isl_stat combine_initial_into_second(struct isl_sol *sol)
427 struct isl_partial_sol *partial;
428 isl_basic_set *bset;
430 partial = sol->partial;
432 bset = sol_domain(sol);
433 isl_basic_set_free(partial->next->dom);
434 partial->next->dom = bset;
435 partial->next->level = sol->level;
437 if (!bset)
438 return isl_stat_error;
440 sol->partial = partial->next;
441 isl_basic_set_free(partial->dom);
442 isl_multi_aff_free(partial->ma);
443 free(partial);
445 return isl_stat_ok;
448 /* Are "ma1" and "ma2" equal to each other on "dom"?
450 * Combine "ma1" and "ma2" with "dom" and check if the results are the same.
451 * "dom" may have existentially quantified variables. Eliminate them first
452 * as otherwise they would have to be eliminated twice, in a more complicated
453 * context.
455 static isl_bool equal_on_domain(__isl_keep isl_multi_aff *ma1,
456 __isl_keep isl_multi_aff *ma2, __isl_keep isl_basic_set *dom)
458 isl_set *set;
459 isl_pw_multi_aff *pma1, *pma2;
460 isl_bool equal;
462 set = isl_basic_set_compute_divs(isl_basic_set_copy(dom));
463 pma1 = isl_pw_multi_aff_alloc(isl_set_copy(set),
464 isl_multi_aff_copy(ma1));
465 pma2 = isl_pw_multi_aff_alloc(set, isl_multi_aff_copy(ma2));
466 equal = isl_pw_multi_aff_is_equal(pma1, pma2);
467 isl_pw_multi_aff_free(pma1);
468 isl_pw_multi_aff_free(pma2);
470 return equal;
473 /* The initial two partial solutions of "sol" are known to be at
474 * the same level.
475 * If they represent the same solution (on different parts of the domain),
476 * then combine them into a single solution at the current level.
477 * Otherwise, pop them both.
479 * Even if the two partial solution are not obviously the same,
480 * one may still be a simplification of the other over its own domain.
481 * Also check if the two sets of affine functions are equal when
482 * restricted to one of the domains. If so, combine the two
483 * using the set of affine functions on the other domain.
484 * That is, for two partial solutions (D1,M1) and (D2,M2),
485 * if M1 = M2 on D1, then the pair of partial solutions can
486 * be replaced by (D1+D2,M2) and similarly when M1 = M2 on D2.
488 static isl_stat combine_initial_if_equal(struct isl_sol *sol)
490 struct isl_partial_sol *partial;
491 isl_bool same;
493 partial = sol->partial;
495 same = same_solution(partial, partial->next);
496 if (same < 0)
497 return isl_stat_error;
498 if (same)
499 return combine_initial_into_second(sol);
500 if (partial->ma && partial->next->ma) {
501 same = equal_on_domain(partial->ma, partial->next->ma,
502 partial->dom);
503 if (same < 0)
504 return isl_stat_error;
505 if (same)
506 return combine_initial_into_second(sol);
507 same = equal_on_domain(partial->ma, partial->next->ma,
508 partial->next->dom);
509 if (same) {
510 swap_initial(sol);
511 return combine_initial_into_second(sol);
515 sol_pop_one(sol);
516 sol_pop_one(sol);
518 return isl_stat_ok;
521 /* Pop all solutions from the partial solution stack that were pushed onto
522 * the stack at levels that are deeper than the current level.
523 * If the two topmost elements on the stack have the same level
524 * and represent the same solution, then their domains are combined.
525 * This combined domain is the same as the current context domain
526 * as sol_pop is called each time we move back to a higher level.
527 * If the outer level (0) has been reached, then all partial solutions
528 * at the current level are also popped off.
530 static void sol_pop(struct isl_sol *sol)
532 struct isl_partial_sol *partial;
534 if (sol->error)
535 return;
537 partial = sol->partial;
538 if (!partial)
539 return;
541 if (partial->level == 0 && sol->level == 0) {
542 for (partial = sol->partial; partial; partial = sol->partial)
543 sol_pop_one(sol);
544 return;
547 if (partial->level <= sol->level)
548 return;
550 if (partial->next && partial->next->level == partial->level) {
551 if (combine_initial_if_equal(sol) < 0)
552 goto error;
553 } else
554 sol_pop_one(sol);
556 if (sol->level == 0) {
557 for (partial = sol->partial; partial; partial = sol->partial)
558 sol_pop_one(sol);
559 return;
562 if (0)
563 error: sol->error = 1;
566 static void sol_dec_level(struct isl_sol *sol)
568 if (sol->error)
569 return;
571 sol->level--;
573 sol_pop(sol);
576 static isl_stat sol_dec_level_wrap(struct isl_tab_callback *cb)
578 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
580 sol_dec_level(callback->sol);
582 return callback->sol->error ? isl_stat_error : isl_stat_ok;
585 /* Move down to next level and push callback onto context tableau
586 * to decrease the level again when it gets rolled back across
587 * the current state. That is, dec_level will be called with
588 * the context tableau in the same state as it is when inc_level
589 * is called.
591 static void sol_inc_level(struct isl_sol *sol)
593 struct isl_tab *tab;
595 if (sol->error)
596 return;
598 sol->level++;
599 tab = sol->context->op->peek_tab(sol->context);
600 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
601 sol->error = 1;
604 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
606 int i;
608 if (isl_int_is_one(m))
609 return;
611 for (i = 0; i < n_row; ++i)
612 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
615 /* Add the solution identified by the tableau and the context tableau.
617 * The layout of the variables is as follows.
618 * tab->n_var is equal to the total number of variables in the input
619 * map (including divs that were copied from the context)
620 * + the number of extra divs constructed
621 * Of these, the first tab->n_param and the last tab->n_div variables
622 * correspond to the variables in the context, i.e.,
623 * tab->n_param + tab->n_div = context_tab->n_var
624 * tab->n_param is equal to the number of parameters and input
625 * dimensions in the input map
626 * tab->n_div is equal to the number of divs in the context
628 * If there is no solution, then call add_empty with a basic set
629 * that corresponds to the context tableau. (If add_empty is NULL,
630 * then do nothing).
632 * If there is a solution, then first construct a matrix that maps
633 * all dimensions of the context to the output variables, i.e.,
634 * the output dimensions in the input map.
635 * The divs in the input map (if any) that do not correspond to any
636 * div in the context do not appear in the solution.
637 * The algorithm will make sure that they have an integer value,
638 * but these values themselves are of no interest.
639 * We have to be careful not to drop or rearrange any divs in the
640 * context because that would change the meaning of the matrix.
642 * To extract the value of the output variables, it should be noted
643 * that we always use a big parameter M in the main tableau and so
644 * the variable stored in this tableau is not an output variable x itself, but
645 * x' = M + x (in case of minimization)
646 * or
647 * x' = M - x (in case of maximization)
648 * If x' appears in a column, then its optimal value is zero,
649 * which means that the optimal value of x is an unbounded number
650 * (-M for minimization and M for maximization).
651 * We currently assume that the output dimensions in the original map
652 * are bounded, so this cannot occur.
653 * Similarly, when x' appears in a row, then the coefficient of M in that
654 * row is necessarily 1.
655 * If the row in the tableau represents
656 * d x' = c + d M + e(y)
657 * then, in case of minimization, the corresponding row in the matrix
658 * will be
659 * a c + a e(y)
660 * with a d = m, the (updated) common denominator of the matrix.
661 * In case of maximization, the row will be
662 * -a c - a e(y)
664 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
666 struct isl_basic_set *bset = NULL;
667 struct isl_mat *mat = NULL;
668 unsigned off;
669 int row;
670 isl_int m;
672 if (sol->error || !tab)
673 goto error;
675 if (tab->empty && !sol->add_empty)
676 return;
677 if (sol->context->op->is_empty(sol->context))
678 return;
680 bset = sol_domain(sol);
682 if (tab->empty) {
683 sol_push_sol(sol, bset, NULL);
684 return;
687 off = 2 + tab->M;
689 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
690 1 + tab->n_param + tab->n_div);
691 if (!mat)
692 goto error;
694 isl_int_init(m);
696 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
697 isl_int_set_si(mat->row[0][0], 1);
698 for (row = 0; row < sol->n_out; ++row) {
699 int i = tab->n_param + row;
700 int r, j;
702 isl_seq_clr(mat->row[1 + row], mat->n_col);
703 if (!tab->var[i].is_row) {
704 if (tab->M)
705 isl_die(mat->ctx, isl_error_invalid,
706 "unbounded optimum", goto error2);
707 continue;
710 r = tab->var[i].index;
711 if (tab->M &&
712 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
713 isl_die(mat->ctx, isl_error_invalid,
714 "unbounded optimum", goto error2);
715 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
716 isl_int_divexact(m, tab->mat->row[r][0], m);
717 scale_rows(mat, m, 1 + row);
718 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
719 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
720 for (j = 0; j < tab->n_param; ++j) {
721 int col;
722 if (tab->var[j].is_row)
723 continue;
724 col = tab->var[j].index;
725 isl_int_mul(mat->row[1 + row][1 + j], m,
726 tab->mat->row[r][off + col]);
728 for (j = 0; j < tab->n_div; ++j) {
729 int col;
730 if (tab->var[tab->n_var - tab->n_div+j].is_row)
731 continue;
732 col = tab->var[tab->n_var - tab->n_div+j].index;
733 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
734 tab->mat->row[r][off + col]);
736 if (sol->max)
737 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
738 mat->n_col);
741 isl_int_clear(m);
743 sol_push_sol_mat(sol, bset, mat);
744 return;
745 error2:
746 isl_int_clear(m);
747 error:
748 isl_basic_set_free(bset);
749 isl_mat_free(mat);
750 sol->error = 1;
753 struct isl_sol_map {
754 struct isl_sol sol;
755 struct isl_map *map;
756 struct isl_set *empty;
759 static void sol_map_free(struct isl_sol *sol)
761 struct isl_sol_map *sol_map = (struct isl_sol_map *) sol;
762 isl_map_free(sol_map->map);
763 isl_set_free(sol_map->empty);
766 /* This function is called for parts of the context where there is
767 * no solution, with "bset" corresponding to the context tableau.
768 * Simply add the basic set to the set "empty".
770 static void sol_map_add_empty(struct isl_sol_map *sol,
771 struct isl_basic_set *bset)
773 if (!bset || !sol->empty)
774 goto error;
776 sol->empty = isl_set_grow(sol->empty, 1);
777 bset = isl_basic_set_simplify(bset);
778 bset = isl_basic_set_finalize(bset);
779 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
780 if (!sol->empty)
781 goto error;
782 isl_basic_set_free(bset);
783 return;
784 error:
785 isl_basic_set_free(bset);
786 sol->sol.error = 1;
789 static void sol_map_add_empty_wrap(struct isl_sol *sol,
790 struct isl_basic_set *bset)
792 sol_map_add_empty((struct isl_sol_map *)sol, bset);
795 /* Given a basic set "dom" that represents the context and a tuple of
796 * affine expressions "ma" defined over this domain, construct a basic map
797 * that expresses this function on the domain.
799 static void sol_map_add(struct isl_sol_map *sol,
800 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
802 isl_basic_map *bmap;
804 if (sol->sol.error || !dom || !ma)
805 goto error;
807 bmap = isl_basic_map_from_multi_aff2(ma, sol->sol.rational);
808 bmap = isl_basic_map_intersect_domain(bmap, dom);
809 sol->map = isl_map_grow(sol->map, 1);
810 sol->map = isl_map_add_basic_map(sol->map, bmap);
811 if (!sol->map)
812 sol->sol.error = 1;
813 return;
814 error:
815 isl_basic_set_free(dom);
816 isl_multi_aff_free(ma);
817 sol->sol.error = 1;
820 static void sol_map_add_wrap(struct isl_sol *sol,
821 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
823 sol_map_add((struct isl_sol_map *)sol, dom, ma);
827 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
828 * i.e., the constant term and the coefficients of all variables that
829 * appear in the context tableau.
830 * Note that the coefficient of the big parameter M is NOT copied.
831 * The context tableau may not have a big parameter and even when it
832 * does, it is a different big parameter.
834 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
836 int i;
837 unsigned off = 2 + tab->M;
839 isl_int_set(line[0], tab->mat->row[row][1]);
840 for (i = 0; i < tab->n_param; ++i) {
841 if (tab->var[i].is_row)
842 isl_int_set_si(line[1 + i], 0);
843 else {
844 int col = tab->var[i].index;
845 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
848 for (i = 0; i < tab->n_div; ++i) {
849 if (tab->var[tab->n_var - tab->n_div + i].is_row)
850 isl_int_set_si(line[1 + tab->n_param + i], 0);
851 else {
852 int col = tab->var[tab->n_var - tab->n_div + i].index;
853 isl_int_set(line[1 + tab->n_param + i],
854 tab->mat->row[row][off + col]);
859 /* Check if rows "row1" and "row2" have identical "parametric constants",
860 * as explained above.
861 * In this case, we also insist that the coefficients of the big parameter
862 * be the same as the values of the constants will only be the same
863 * if these coefficients are also the same.
865 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
867 int i;
868 unsigned off = 2 + tab->M;
870 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
871 return 0;
873 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
874 tab->mat->row[row2][2]))
875 return 0;
877 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
878 int pos = i < tab->n_param ? i :
879 tab->n_var - tab->n_div + i - tab->n_param;
880 int col;
882 if (tab->var[pos].is_row)
883 continue;
884 col = tab->var[pos].index;
885 if (isl_int_ne(tab->mat->row[row1][off + col],
886 tab->mat->row[row2][off + col]))
887 return 0;
889 return 1;
892 /* Return an inequality that expresses that the "parametric constant"
893 * should be non-negative.
894 * This function is only called when the coefficient of the big parameter
895 * is equal to zero.
897 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
899 struct isl_vec *ineq;
901 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
902 if (!ineq)
903 return NULL;
905 get_row_parameter_line(tab, row, ineq->el);
906 if (ineq)
907 ineq = isl_vec_normalize(ineq);
909 return ineq;
912 /* Normalize a div expression of the form
914 * [(g*f(x) + c)/(g * m)]
916 * with c the constant term and f(x) the remaining coefficients, to
918 * [(f(x) + [c/g])/m]
920 static void normalize_div(__isl_keep isl_vec *div)
922 isl_ctx *ctx = isl_vec_get_ctx(div);
923 int len = div->size - 2;
925 isl_seq_gcd(div->el + 2, len, &ctx->normalize_gcd);
926 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]);
928 if (isl_int_is_one(ctx->normalize_gcd))
929 return;
931 isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd);
932 isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd);
933 isl_seq_scale_down(div->el + 2, div->el + 2, ctx->normalize_gcd, len);
936 /* Return an integer division for use in a parametric cut based
937 * on the given row.
938 * In particular, let the parametric constant of the row be
940 * \sum_i a_i y_i
942 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
943 * The div returned is equal to
945 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
947 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
949 struct isl_vec *div;
951 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
952 if (!div)
953 return NULL;
955 isl_int_set(div->el[0], tab->mat->row[row][0]);
956 get_row_parameter_line(tab, row, div->el + 1);
957 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
958 normalize_div(div);
959 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
961 return div;
964 /* Return an integer division for use in transferring an integrality constraint
965 * to the context.
966 * In particular, let the parametric constant of the row be
968 * \sum_i a_i y_i
970 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
971 * The the returned div is equal to
973 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
975 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
977 struct isl_vec *div;
979 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
980 if (!div)
981 return NULL;
983 isl_int_set(div->el[0], tab->mat->row[row][0]);
984 get_row_parameter_line(tab, row, div->el + 1);
985 normalize_div(div);
986 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
988 return div;
991 /* Construct and return an inequality that expresses an upper bound
992 * on the given div.
993 * In particular, if the div is given by
995 * d = floor(e/m)
997 * then the inequality expresses
999 * m d <= e
1001 static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_set *bset,
1002 unsigned div)
1004 unsigned total;
1005 unsigned div_pos;
1006 struct isl_vec *ineq;
1008 if (!bset)
1009 return NULL;
1011 total = isl_basic_set_total_dim(bset);
1012 div_pos = 1 + total - bset->n_div + div;
1014 ineq = isl_vec_alloc(bset->ctx, 1 + total);
1015 if (!ineq)
1016 return NULL;
1018 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
1019 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
1020 return ineq;
1023 /* Given a row in the tableau and a div that was created
1024 * using get_row_split_div and that has been constrained to equality, i.e.,
1026 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
1028 * replace the expression "\sum_i {a_i} y_i" in the row by d,
1029 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
1030 * The coefficients of the non-parameters in the tableau have been
1031 * verified to be integral. We can therefore simply replace coefficient b
1032 * by floor(b). For the coefficients of the parameters we have
1033 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
1034 * floor(b) = b.
1036 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
1038 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
1039 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
1041 isl_int_set_si(tab->mat->row[row][0], 1);
1043 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
1044 int drow = tab->var[tab->n_var - tab->n_div + div].index;
1046 isl_assert(tab->mat->ctx,
1047 isl_int_is_one(tab->mat->row[drow][0]), goto error);
1048 isl_seq_combine(tab->mat->row[row] + 1,
1049 tab->mat->ctx->one, tab->mat->row[row] + 1,
1050 tab->mat->ctx->one, tab->mat->row[drow] + 1,
1051 1 + tab->M + tab->n_col);
1052 } else {
1053 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
1055 isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],
1056 tab->mat->row[row][2 + tab->M + dcol], 1);
1059 return tab;
1060 error:
1061 isl_tab_free(tab);
1062 return NULL;
1065 /* Check if the (parametric) constant of the given row is obviously
1066 * negative, meaning that we don't need to consult the context tableau.
1067 * If there is a big parameter and its coefficient is non-zero,
1068 * then this coefficient determines the outcome.
1069 * Otherwise, we check whether the constant is negative and
1070 * all non-zero coefficients of parameters are negative and
1071 * belong to non-negative parameters.
1073 static int is_obviously_neg(struct isl_tab *tab, int row)
1075 int i;
1076 int col;
1077 unsigned off = 2 + tab->M;
1079 if (tab->M) {
1080 if (isl_int_is_pos(tab->mat->row[row][2]))
1081 return 0;
1082 if (isl_int_is_neg(tab->mat->row[row][2]))
1083 return 1;
1086 if (isl_int_is_nonneg(tab->mat->row[row][1]))
1087 return 0;
1088 for (i = 0; i < tab->n_param; ++i) {
1089 /* Eliminated parameter */
1090 if (tab->var[i].is_row)
1091 continue;
1092 col = tab->var[i].index;
1093 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1094 continue;
1095 if (!tab->var[i].is_nonneg)
1096 return 0;
1097 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1098 return 0;
1100 for (i = 0; i < tab->n_div; ++i) {
1101 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1102 continue;
1103 col = tab->var[tab->n_var - tab->n_div + i].index;
1104 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1105 continue;
1106 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
1107 return 0;
1108 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1109 return 0;
1111 return 1;
1114 /* Check if the (parametric) constant of the given row is obviously
1115 * non-negative, meaning that we don't need to consult the context tableau.
1116 * If there is a big parameter and its coefficient is non-zero,
1117 * then this coefficient determines the outcome.
1118 * Otherwise, we check whether the constant is non-negative and
1119 * all non-zero coefficients of parameters are positive and
1120 * belong to non-negative parameters.
1122 static int is_obviously_nonneg(struct isl_tab *tab, int row)
1124 int i;
1125 int col;
1126 unsigned off = 2 + tab->M;
1128 if (tab->M) {
1129 if (isl_int_is_pos(tab->mat->row[row][2]))
1130 return 1;
1131 if (isl_int_is_neg(tab->mat->row[row][2]))
1132 return 0;
1135 if (isl_int_is_neg(tab->mat->row[row][1]))
1136 return 0;
1137 for (i = 0; i < tab->n_param; ++i) {
1138 /* Eliminated parameter */
1139 if (tab->var[i].is_row)
1140 continue;
1141 col = tab->var[i].index;
1142 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1143 continue;
1144 if (!tab->var[i].is_nonneg)
1145 return 0;
1146 if (isl_int_is_neg(tab->mat->row[row][off + col]))
1147 return 0;
1149 for (i = 0; i < tab->n_div; ++i) {
1150 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1151 continue;
1152 col = tab->var[tab->n_var - tab->n_div + i].index;
1153 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1154 continue;
1155 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
1156 return 0;
1157 if (isl_int_is_neg(tab->mat->row[row][off + col]))
1158 return 0;
1160 return 1;
1163 /* Given a row r and two columns, return the column that would
1164 * lead to the lexicographically smallest increment in the sample
1165 * solution when leaving the basis in favor of the row.
1166 * Pivoting with column c will increment the sample value by a non-negative
1167 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1168 * corresponding to the non-parametric variables.
1169 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1170 * with all other entries in this virtual row equal to zero.
1171 * If variable v appears in a row, then a_{v,c} is the element in column c
1172 * of that row.
1174 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1175 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1176 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1177 * increment. Otherwise, it's c2.
1179 static int lexmin_col_pair(struct isl_tab *tab,
1180 int row, int col1, int col2, isl_int tmp)
1182 int i;
1183 isl_int *tr;
1185 tr = tab->mat->row[row] + 2 + tab->M;
1187 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1188 int s1, s2;
1189 isl_int *r;
1191 if (!tab->var[i].is_row) {
1192 if (tab->var[i].index == col1)
1193 return col2;
1194 if (tab->var[i].index == col2)
1195 return col1;
1196 continue;
1199 if (tab->var[i].index == row)
1200 continue;
1202 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1203 s1 = isl_int_sgn(r[col1]);
1204 s2 = isl_int_sgn(r[col2]);
1205 if (s1 == 0 && s2 == 0)
1206 continue;
1207 if (s1 < s2)
1208 return col1;
1209 if (s2 < s1)
1210 return col2;
1212 isl_int_mul(tmp, r[col2], tr[col1]);
1213 isl_int_submul(tmp, r[col1], tr[col2]);
1214 if (isl_int_is_pos(tmp))
1215 return col1;
1216 if (isl_int_is_neg(tmp))
1217 return col2;
1219 return -1;
1222 /* Does the index into the tab->var or tab->con array "index"
1223 * correspond to a variable in the context tableau?
1224 * In particular, it needs to be an index into the tab->var array and
1225 * it needs to refer to either one of the first tab->n_param variables or
1226 * one of the last tab->n_div variables.
1228 static int is_parameter_var(struct isl_tab *tab, int index)
1230 if (index < 0)
1231 return 0;
1232 if (index < tab->n_param)
1233 return 1;
1234 if (index >= tab->n_var - tab->n_div)
1235 return 1;
1236 return 0;
1239 /* Does column "col" of "tab" refer to a variable in the context tableau?
1241 static int col_is_parameter_var(struct isl_tab *tab, int col)
1243 return is_parameter_var(tab, tab->col_var[col]);
1246 /* Does row "row" of "tab" refer to a variable in the context tableau?
1248 static int row_is_parameter_var(struct isl_tab *tab, int row)
1250 return is_parameter_var(tab, tab->row_var[row]);
1253 /* Given a row in the tableau, find and return the column that would
1254 * result in the lexicographically smallest, but positive, increment
1255 * in the sample point.
1256 * If there is no such column, then return tab->n_col.
1257 * If anything goes wrong, return -1.
1259 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1261 int j;
1262 int col = tab->n_col;
1263 isl_int *tr;
1264 isl_int tmp;
1266 tr = tab->mat->row[row] + 2 + tab->M;
1268 isl_int_init(tmp);
1270 for (j = tab->n_dead; j < tab->n_col; ++j) {
1271 if (col_is_parameter_var(tab, j))
1272 continue;
1274 if (!isl_int_is_pos(tr[j]))
1275 continue;
1277 if (col == tab->n_col)
1278 col = j;
1279 else
1280 col = lexmin_col_pair(tab, row, col, j, tmp);
1281 isl_assert(tab->mat->ctx, col >= 0, goto error);
1284 isl_int_clear(tmp);
1285 return col;
1286 error:
1287 isl_int_clear(tmp);
1288 return -1;
1291 /* Return the first known violated constraint, i.e., a non-negative
1292 * constraint that currently has an either obviously negative value
1293 * or a previously determined to be negative value.
1295 * If any constraint has a negative coefficient for the big parameter,
1296 * if any, then we return one of these first.
1298 static int first_neg(struct isl_tab *tab)
1300 int row;
1302 if (tab->M)
1303 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1304 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1305 continue;
1306 if (!isl_int_is_neg(tab->mat->row[row][2]))
1307 continue;
1308 if (tab->row_sign)
1309 tab->row_sign[row] = isl_tab_row_neg;
1310 return row;
1312 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1313 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1314 continue;
1315 if (tab->row_sign) {
1316 if (tab->row_sign[row] == 0 &&
1317 is_obviously_neg(tab, row))
1318 tab->row_sign[row] = isl_tab_row_neg;
1319 if (tab->row_sign[row] != isl_tab_row_neg)
1320 continue;
1321 } else if (!is_obviously_neg(tab, row))
1322 continue;
1323 return row;
1325 return -1;
1328 /* Check whether the invariant that all columns are lexico-positive
1329 * is satisfied. This function is not called from the current code
1330 * but is useful during debugging.
1332 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1333 static void check_lexpos(struct isl_tab *tab)
1335 unsigned off = 2 + tab->M;
1336 int col;
1337 int var;
1338 int row;
1340 for (col = tab->n_dead; col < tab->n_col; ++col) {
1341 if (col_is_parameter_var(tab, col))
1342 continue;
1343 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1344 if (!tab->var[var].is_row) {
1345 if (tab->var[var].index == col)
1346 break;
1347 else
1348 continue;
1350 row = tab->var[var].index;
1351 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1352 continue;
1353 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1354 break;
1355 fprintf(stderr, "lexneg column %d (row %d)\n",
1356 col, row);
1358 if (var >= tab->n_var - tab->n_div)
1359 fprintf(stderr, "zero column %d\n", col);
1363 /* Report to the caller that the given constraint is part of an encountered
1364 * conflict.
1366 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1368 return tab->conflict(con, tab->conflict_user);
1371 /* Given a conflicting row in the tableau, report all constraints
1372 * involved in the row to the caller. That is, the row itself
1373 * (if it represents a constraint) and all constraint columns with
1374 * non-zero (and therefore negative) coefficients.
1376 static int report_conflict(struct isl_tab *tab, int row)
1378 int j;
1379 isl_int *tr;
1381 if (!tab->conflict)
1382 return 0;
1384 if (tab->row_var[row] < 0 &&
1385 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1386 return -1;
1388 tr = tab->mat->row[row] + 2 + tab->M;
1390 for (j = tab->n_dead; j < tab->n_col; ++j) {
1391 if (col_is_parameter_var(tab, j))
1392 continue;
1394 if (!isl_int_is_neg(tr[j]))
1395 continue;
1397 if (tab->col_var[j] < 0 &&
1398 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1399 return -1;
1402 return 0;
1405 /* Resolve all known or obviously violated constraints through pivoting.
1406 * In particular, as long as we can find any violated constraint, we
1407 * look for a pivoting column that would result in the lexicographically
1408 * smallest increment in the sample point. If there is no such column
1409 * then the tableau is infeasible.
1411 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1412 static int restore_lexmin(struct isl_tab *tab)
1414 int row, col;
1416 if (!tab)
1417 return -1;
1418 if (tab->empty)
1419 return 0;
1420 while ((row = first_neg(tab)) != -1) {
1421 col = lexmin_pivot_col(tab, row);
1422 if (col >= tab->n_col) {
1423 if (report_conflict(tab, row) < 0)
1424 return -1;
1425 if (isl_tab_mark_empty(tab) < 0)
1426 return -1;
1427 return 0;
1429 if (col < 0)
1430 return -1;
1431 if (isl_tab_pivot(tab, row, col) < 0)
1432 return -1;
1434 return 0;
1437 /* Given a row that represents an equality, look for an appropriate
1438 * pivoting column.
1439 * In particular, if there are any non-zero coefficients among
1440 * the non-parameter variables, then we take the last of these
1441 * variables. Eliminating this variable in terms of the other
1442 * variables and/or parameters does not influence the property
1443 * that all column in the initial tableau are lexicographically
1444 * positive. The row corresponding to the eliminated variable
1445 * will only have non-zero entries below the diagonal of the
1446 * initial tableau. That is, we transform
1448 * I I
1449 * 1 into a
1450 * I I
1452 * If there is no such non-parameter variable, then we are dealing with
1453 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1454 * for elimination. This will ensure that the eliminated parameter
1455 * always has an integer value whenever all the other parameters are integral.
1456 * If there is no such parameter then we return -1.
1458 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1460 unsigned off = 2 + tab->M;
1461 int i;
1463 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1464 int col;
1465 if (tab->var[i].is_row)
1466 continue;
1467 col = tab->var[i].index;
1468 if (col <= tab->n_dead)
1469 continue;
1470 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1471 return col;
1473 for (i = tab->n_dead; i < tab->n_col; ++i) {
1474 if (isl_int_is_one(tab->mat->row[row][off + i]))
1475 return i;
1476 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1477 return i;
1479 return -1;
1482 /* Add an equality that is known to be valid to the tableau.
1483 * We first check if we can eliminate a variable or a parameter.
1484 * If not, we add the equality as two inequalities.
1485 * In this case, the equality was a pure parameter equality and there
1486 * is no need to resolve any constraint violations.
1488 * This function assumes that at least two more rows and at least
1489 * two more elements in the constraint array are available in the tableau.
1491 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1493 int i;
1494 int r;
1496 if (!tab)
1497 return NULL;
1498 r = isl_tab_add_row(tab, eq);
1499 if (r < 0)
1500 goto error;
1502 r = tab->con[r].index;
1503 i = last_var_col_or_int_par_col(tab, r);
1504 if (i < 0) {
1505 tab->con[r].is_nonneg = 1;
1506 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1507 goto error;
1508 isl_seq_neg(eq, eq, 1 + tab->n_var);
1509 r = isl_tab_add_row(tab, eq);
1510 if (r < 0)
1511 goto error;
1512 tab->con[r].is_nonneg = 1;
1513 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1514 goto error;
1515 } else {
1516 if (isl_tab_pivot(tab, r, i) < 0)
1517 goto error;
1518 if (isl_tab_kill_col(tab, i) < 0)
1519 goto error;
1520 tab->n_eq++;
1523 return tab;
1524 error:
1525 isl_tab_free(tab);
1526 return NULL;
1529 /* Check if the given row is a pure constant.
1531 static int is_constant(struct isl_tab *tab, int row)
1533 unsigned off = 2 + tab->M;
1535 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1536 tab->n_col - tab->n_dead) == -1;
1539 /* Is the given row a parametric constant?
1540 * That is, does it only involve variables that also appear in the context?
1542 static int is_parametric_constant(struct isl_tab *tab, int row)
1544 unsigned off = 2 + tab->M;
1545 int col;
1547 for (col = tab->n_dead; col < tab->n_col; ++col) {
1548 if (col_is_parameter_var(tab, col))
1549 continue;
1550 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1551 continue;
1552 return 0;
1555 return 1;
1558 /* Add an equality that may or may not be valid to the tableau.
1559 * If the resulting row is a pure constant, then it must be zero.
1560 * Otherwise, the resulting tableau is empty.
1562 * If the row is not a pure constant, then we add two inequalities,
1563 * each time checking that they can be satisfied.
1564 * In the end we try to use one of the two constraints to eliminate
1565 * a column.
1567 * This function assumes that at least two more rows and at least
1568 * two more elements in the constraint array are available in the tableau.
1570 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1571 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1573 int r1, r2;
1574 int row;
1575 struct isl_tab_undo *snap;
1577 if (!tab)
1578 return -1;
1579 snap = isl_tab_snap(tab);
1580 r1 = isl_tab_add_row(tab, eq);
1581 if (r1 < 0)
1582 return -1;
1583 tab->con[r1].is_nonneg = 1;
1584 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1585 return -1;
1587 row = tab->con[r1].index;
1588 if (is_constant(tab, row)) {
1589 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1590 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1591 if (isl_tab_mark_empty(tab) < 0)
1592 return -1;
1593 return 0;
1595 if (isl_tab_rollback(tab, snap) < 0)
1596 return -1;
1597 return 0;
1600 if (restore_lexmin(tab) < 0)
1601 return -1;
1602 if (tab->empty)
1603 return 0;
1605 isl_seq_neg(eq, eq, 1 + tab->n_var);
1607 r2 = isl_tab_add_row(tab, eq);
1608 if (r2 < 0)
1609 return -1;
1610 tab->con[r2].is_nonneg = 1;
1611 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1612 return -1;
1614 if (restore_lexmin(tab) < 0)
1615 return -1;
1616 if (tab->empty)
1617 return 0;
1619 if (!tab->con[r1].is_row) {
1620 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1621 return -1;
1622 } else if (!tab->con[r2].is_row) {
1623 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1624 return -1;
1627 if (tab->bmap) {
1628 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1629 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1630 return -1;
1631 isl_seq_neg(eq, eq, 1 + tab->n_var);
1632 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1633 isl_seq_neg(eq, eq, 1 + tab->n_var);
1634 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1635 return -1;
1636 if (!tab->bmap)
1637 return -1;
1640 return 0;
1643 /* Add an inequality to the tableau, resolving violations using
1644 * restore_lexmin.
1646 * This function assumes that at least one more row and at least
1647 * one more element in the constraint array are available in the tableau.
1649 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1651 int r;
1653 if (!tab)
1654 return NULL;
1655 if (tab->bmap) {
1656 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1657 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1658 goto error;
1659 if (!tab->bmap)
1660 goto error;
1662 r = isl_tab_add_row(tab, ineq);
1663 if (r < 0)
1664 goto error;
1665 tab->con[r].is_nonneg = 1;
1666 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1667 goto error;
1668 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1669 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1670 goto error;
1671 return tab;
1674 if (restore_lexmin(tab) < 0)
1675 goto error;
1676 if (!tab->empty && tab->con[r].is_row &&
1677 isl_tab_row_is_redundant(tab, tab->con[r].index))
1678 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1679 goto error;
1680 return tab;
1681 error:
1682 isl_tab_free(tab);
1683 return NULL;
1686 /* Check if the coefficients of the parameters are all integral.
1688 static int integer_parameter(struct isl_tab *tab, int row)
1690 int i;
1691 int col;
1692 unsigned off = 2 + tab->M;
1694 for (i = 0; i < tab->n_param; ++i) {
1695 /* Eliminated parameter */
1696 if (tab->var[i].is_row)
1697 continue;
1698 col = tab->var[i].index;
1699 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1700 tab->mat->row[row][0]))
1701 return 0;
1703 for (i = 0; i < tab->n_div; ++i) {
1704 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1705 continue;
1706 col = tab->var[tab->n_var - tab->n_div + i].index;
1707 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1708 tab->mat->row[row][0]))
1709 return 0;
1711 return 1;
1714 /* Check if the coefficients of the non-parameter variables are all integral.
1716 static int integer_variable(struct isl_tab *tab, int row)
1718 int i;
1719 unsigned off = 2 + tab->M;
1721 for (i = tab->n_dead; i < tab->n_col; ++i) {
1722 if (col_is_parameter_var(tab, i))
1723 continue;
1724 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1725 tab->mat->row[row][0]))
1726 return 0;
1728 return 1;
1731 /* Check if the constant term is integral.
1733 static int integer_constant(struct isl_tab *tab, int row)
1735 return isl_int_is_divisible_by(tab->mat->row[row][1],
1736 tab->mat->row[row][0]);
1739 #define I_CST 1 << 0
1740 #define I_PAR 1 << 1
1741 #define I_VAR 1 << 2
1743 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1744 * that is non-integer and therefore requires a cut and return
1745 * the index of the variable.
1746 * For parametric tableaus, there are three parts in a row,
1747 * the constant, the coefficients of the parameters and the rest.
1748 * For each part, we check whether the coefficients in that part
1749 * are all integral and if so, set the corresponding flag in *f.
1750 * If the constant and the parameter part are integral, then the
1751 * current sample value is integral and no cut is required
1752 * (irrespective of whether the variable part is integral).
1754 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1756 var = var < 0 ? tab->n_param : var + 1;
1758 for (; var < tab->n_var - tab->n_div; ++var) {
1759 int flags = 0;
1760 int row;
1761 if (!tab->var[var].is_row)
1762 continue;
1763 row = tab->var[var].index;
1764 if (integer_constant(tab, row))
1765 ISL_FL_SET(flags, I_CST);
1766 if (integer_parameter(tab, row))
1767 ISL_FL_SET(flags, I_PAR);
1768 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1769 continue;
1770 if (integer_variable(tab, row))
1771 ISL_FL_SET(flags, I_VAR);
1772 *f = flags;
1773 return var;
1775 return -1;
1778 /* Check for first (non-parameter) variable that is non-integer and
1779 * therefore requires a cut and return the corresponding row.
1780 * For parametric tableaus, there are three parts in a row,
1781 * the constant, the coefficients of the parameters and the rest.
1782 * For each part, we check whether the coefficients in that part
1783 * are all integral and if so, set the corresponding flag in *f.
1784 * If the constant and the parameter part are integral, then the
1785 * current sample value is integral and no cut is required
1786 * (irrespective of whether the variable part is integral).
1788 static int first_non_integer_row(struct isl_tab *tab, int *f)
1790 int var = next_non_integer_var(tab, -1, f);
1792 return var < 0 ? -1 : tab->var[var].index;
1795 /* Add a (non-parametric) cut to cut away the non-integral sample
1796 * value of the given row.
1798 * If the row is given by
1800 * m r = f + \sum_i a_i y_i
1802 * then the cut is
1804 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1806 * The big parameter, if any, is ignored, since it is assumed to be big
1807 * enough to be divisible by any integer.
1808 * If the tableau is actually a parametric tableau, then this function
1809 * is only called when all coefficients of the parameters are integral.
1810 * The cut therefore has zero coefficients for the parameters.
1812 * The current value is known to be negative, so row_sign, if it
1813 * exists, is set accordingly.
1815 * Return the row of the cut or -1.
1817 static int add_cut(struct isl_tab *tab, int row)
1819 int i;
1820 int r;
1821 isl_int *r_row;
1822 unsigned off = 2 + tab->M;
1824 if (isl_tab_extend_cons(tab, 1) < 0)
1825 return -1;
1826 r = isl_tab_allocate_con(tab);
1827 if (r < 0)
1828 return -1;
1830 r_row = tab->mat->row[tab->con[r].index];
1831 isl_int_set(r_row[0], tab->mat->row[row][0]);
1832 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1833 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1834 isl_int_neg(r_row[1], r_row[1]);
1835 if (tab->M)
1836 isl_int_set_si(r_row[2], 0);
1837 for (i = 0; i < tab->n_col; ++i)
1838 isl_int_fdiv_r(r_row[off + i],
1839 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1841 tab->con[r].is_nonneg = 1;
1842 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1843 return -1;
1844 if (tab->row_sign)
1845 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1847 return tab->con[r].index;
1850 #define CUT_ALL 1
1851 #define CUT_ONE 0
1853 /* Given a non-parametric tableau, add cuts until an integer
1854 * sample point is obtained or until the tableau is determined
1855 * to be integer infeasible.
1856 * As long as there is any non-integer value in the sample point,
1857 * we add appropriate cuts, if possible, for each of these
1858 * non-integer values and then resolve the violated
1859 * cut constraints using restore_lexmin.
1860 * If one of the corresponding rows is equal to an integral
1861 * combination of variables/constraints plus a non-integral constant,
1862 * then there is no way to obtain an integer point and we return
1863 * a tableau that is marked empty.
1864 * The parameter cutting_strategy controls the strategy used when adding cuts
1865 * to remove non-integer points. CUT_ALL adds all possible cuts
1866 * before continuing the search. CUT_ONE adds only one cut at a time.
1868 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab,
1869 int cutting_strategy)
1871 int var;
1872 int row;
1873 int flags;
1875 if (!tab)
1876 return NULL;
1877 if (tab->empty)
1878 return tab;
1880 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1881 do {
1882 if (ISL_FL_ISSET(flags, I_VAR)) {
1883 if (isl_tab_mark_empty(tab) < 0)
1884 goto error;
1885 return tab;
1887 row = tab->var[var].index;
1888 row = add_cut(tab, row);
1889 if (row < 0)
1890 goto error;
1891 if (cutting_strategy == CUT_ONE)
1892 break;
1893 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1894 if (restore_lexmin(tab) < 0)
1895 goto error;
1896 if (tab->empty)
1897 break;
1899 return tab;
1900 error:
1901 isl_tab_free(tab);
1902 return NULL;
1905 /* Check whether all the currently active samples also satisfy the inequality
1906 * "ineq" (treated as an equality if eq is set).
1907 * Remove those samples that do not.
1909 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1911 int i;
1912 isl_int v;
1914 if (!tab)
1915 return NULL;
1917 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1918 isl_assert(tab->mat->ctx, tab->samples, goto error);
1919 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1921 isl_int_init(v);
1922 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1923 int sgn;
1924 isl_seq_inner_product(ineq, tab->samples->row[i],
1925 1 + tab->n_var, &v);
1926 sgn = isl_int_sgn(v);
1927 if (eq ? (sgn == 0) : (sgn >= 0))
1928 continue;
1929 tab = isl_tab_drop_sample(tab, i);
1930 if (!tab)
1931 break;
1933 isl_int_clear(v);
1935 return tab;
1936 error:
1937 isl_tab_free(tab);
1938 return NULL;
1941 /* Check whether the sample value of the tableau is finite,
1942 * i.e., either the tableau does not use a big parameter, or
1943 * all values of the variables are equal to the big parameter plus
1944 * some constant. This constant is the actual sample value.
1946 static int sample_is_finite(struct isl_tab *tab)
1948 int i;
1950 if (!tab->M)
1951 return 1;
1953 for (i = 0; i < tab->n_var; ++i) {
1954 int row;
1955 if (!tab->var[i].is_row)
1956 return 0;
1957 row = tab->var[i].index;
1958 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1959 return 0;
1961 return 1;
1964 /* Check if the context tableau of sol has any integer points.
1965 * Leave tab in empty state if no integer point can be found.
1966 * If an integer point can be found and if moreover it is finite,
1967 * then it is added to the list of sample values.
1969 * This function is only called when none of the currently active sample
1970 * values satisfies the most recently added constraint.
1972 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1974 struct isl_tab_undo *snap;
1976 if (!tab)
1977 return NULL;
1979 snap = isl_tab_snap(tab);
1980 if (isl_tab_push_basis(tab) < 0)
1981 goto error;
1983 tab = cut_to_integer_lexmin(tab, CUT_ALL);
1984 if (!tab)
1985 goto error;
1987 if (!tab->empty && sample_is_finite(tab)) {
1988 struct isl_vec *sample;
1990 sample = isl_tab_get_sample_value(tab);
1992 if (isl_tab_add_sample(tab, sample) < 0)
1993 goto error;
1996 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1997 goto error;
1999 return tab;
2000 error:
2001 isl_tab_free(tab);
2002 return NULL;
2005 /* Check if any of the currently active sample values satisfies
2006 * the inequality "ineq" (an equality if eq is set).
2008 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
2010 int i;
2011 isl_int v;
2013 if (!tab)
2014 return -1;
2016 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2017 isl_assert(tab->mat->ctx, tab->samples, return -1);
2018 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
2020 isl_int_init(v);
2021 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2022 int sgn;
2023 isl_seq_inner_product(ineq, tab->samples->row[i],
2024 1 + tab->n_var, &v);
2025 sgn = isl_int_sgn(v);
2026 if (eq ? (sgn == 0) : (sgn >= 0))
2027 break;
2029 isl_int_clear(v);
2031 return i < tab->n_sample;
2034 /* Insert a div specified by "div" to the tableau "tab" at position "pos" and
2035 * return isl_bool_true if the div is obviously non-negative.
2037 static isl_bool context_tab_insert_div(struct isl_tab *tab, int pos,
2038 __isl_keep isl_vec *div,
2039 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2041 int i;
2042 int r;
2043 struct isl_mat *samples;
2044 int nonneg;
2046 r = isl_tab_insert_div(tab, pos, div, add_ineq, user);
2047 if (r < 0)
2048 return isl_bool_error;
2049 nonneg = tab->var[r].is_nonneg;
2050 tab->var[r].frozen = 1;
2052 samples = isl_mat_extend(tab->samples,
2053 tab->n_sample, 1 + tab->n_var);
2054 tab->samples = samples;
2055 if (!samples)
2056 return isl_bool_error;
2057 for (i = tab->n_outside; i < samples->n_row; ++i) {
2058 isl_seq_inner_product(div->el + 1, samples->row[i],
2059 div->size - 1, &samples->row[i][samples->n_col - 1]);
2060 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
2061 samples->row[i][samples->n_col - 1], div->el[0]);
2063 tab->samples = isl_mat_move_cols(tab->samples, 1 + pos,
2064 1 + tab->n_var - 1, 1);
2065 if (!tab->samples)
2066 return isl_bool_error;
2068 return nonneg;
2071 /* Add a div specified by "div" to both the main tableau and
2072 * the context tableau. In case of the main tableau, we only
2073 * need to add an extra div. In the context tableau, we also
2074 * need to express the meaning of the div.
2075 * Return the index of the div or -1 if anything went wrong.
2077 * The new integer division is added before any unknown integer
2078 * divisions in the context to ensure that it does not get
2079 * equated to some linear combination involving unknown integer
2080 * divisions.
2082 static int add_div(struct isl_tab *tab, struct isl_context *context,
2083 __isl_keep isl_vec *div)
2085 int r;
2086 int pos;
2087 isl_bool nonneg;
2088 struct isl_tab *context_tab = context->op->peek_tab(context);
2090 if (!tab || !context_tab)
2091 goto error;
2093 pos = context_tab->n_var - context->n_unknown;
2094 if ((nonneg = context->op->insert_div(context, pos, div)) < 0)
2095 goto error;
2097 if (!context->op->is_ok(context))
2098 goto error;
2100 pos = tab->n_var - context->n_unknown;
2101 if (isl_tab_extend_vars(tab, 1) < 0)
2102 goto error;
2103 r = isl_tab_insert_var(tab, pos);
2104 if (r < 0)
2105 goto error;
2106 if (nonneg)
2107 tab->var[r].is_nonneg = 1;
2108 tab->var[r].frozen = 1;
2109 tab->n_div++;
2111 return tab->n_div - 1 - context->n_unknown;
2112 error:
2113 context->op->invalidate(context);
2114 return -1;
2117 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
2119 int i;
2120 unsigned total = isl_basic_map_total_dim(tab->bmap);
2122 for (i = 0; i < tab->bmap->n_div; ++i) {
2123 if (isl_int_ne(tab->bmap->div[i][0], denom))
2124 continue;
2125 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
2126 continue;
2127 return i;
2129 return -1;
2132 /* Return the index of a div that corresponds to "div".
2133 * We first check if we already have such a div and if not, we create one.
2135 static int get_div(struct isl_tab *tab, struct isl_context *context,
2136 struct isl_vec *div)
2138 int d;
2139 struct isl_tab *context_tab = context->op->peek_tab(context);
2141 if (!context_tab)
2142 return -1;
2144 d = find_div(context_tab, div->el + 1, div->el[0]);
2145 if (d != -1)
2146 return d;
2148 return add_div(tab, context, div);
2151 /* Add a parametric cut to cut away the non-integral sample value
2152 * of the give row.
2153 * Let a_i be the coefficients of the constant term and the parameters
2154 * and let b_i be the coefficients of the variables or constraints
2155 * in basis of the tableau.
2156 * Let q be the div q = floor(\sum_i {-a_i} y_i).
2158 * The cut is expressed as
2160 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
2162 * If q did not already exist in the context tableau, then it is added first.
2163 * If q is in a column of the main tableau then the "+ q" can be accomplished
2164 * by setting the corresponding entry to the denominator of the constraint.
2165 * If q happens to be in a row of the main tableau, then the corresponding
2166 * row needs to be added instead (taking care of the denominators).
2167 * Note that this is very unlikely, but perhaps not entirely impossible.
2169 * The current value of the cut is known to be negative (or at least
2170 * non-positive), so row_sign is set accordingly.
2172 * Return the row of the cut or -1.
2174 static int add_parametric_cut(struct isl_tab *tab, int row,
2175 struct isl_context *context)
2177 struct isl_vec *div;
2178 int d;
2179 int i;
2180 int r;
2181 isl_int *r_row;
2182 int col;
2183 int n;
2184 unsigned off = 2 + tab->M;
2186 if (!context)
2187 return -1;
2189 div = get_row_parameter_div(tab, row);
2190 if (!div)
2191 return -1;
2193 n = tab->n_div - context->n_unknown;
2194 d = context->op->get_div(context, tab, div);
2195 isl_vec_free(div);
2196 if (d < 0)
2197 return -1;
2199 if (isl_tab_extend_cons(tab, 1) < 0)
2200 return -1;
2201 r = isl_tab_allocate_con(tab);
2202 if (r < 0)
2203 return -1;
2205 r_row = tab->mat->row[tab->con[r].index];
2206 isl_int_set(r_row[0], tab->mat->row[row][0]);
2207 isl_int_neg(r_row[1], tab->mat->row[row][1]);
2208 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
2209 isl_int_neg(r_row[1], r_row[1]);
2210 if (tab->M)
2211 isl_int_set_si(r_row[2], 0);
2212 for (i = 0; i < tab->n_param; ++i) {
2213 if (tab->var[i].is_row)
2214 continue;
2215 col = tab->var[i].index;
2216 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
2217 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
2218 tab->mat->row[row][0]);
2219 isl_int_neg(r_row[off + col], r_row[off + col]);
2221 for (i = 0; i < tab->n_div; ++i) {
2222 if (tab->var[tab->n_var - tab->n_div + i].is_row)
2223 continue;
2224 col = tab->var[tab->n_var - tab->n_div + i].index;
2225 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
2226 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
2227 tab->mat->row[row][0]);
2228 isl_int_neg(r_row[off + col], r_row[off + col]);
2230 for (i = 0; i < tab->n_col; ++i) {
2231 if (tab->col_var[i] >= 0 &&
2232 (tab->col_var[i] < tab->n_param ||
2233 tab->col_var[i] >= tab->n_var - tab->n_div))
2234 continue;
2235 isl_int_fdiv_r(r_row[off + i],
2236 tab->mat->row[row][off + i], tab->mat->row[row][0]);
2238 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
2239 isl_int gcd;
2240 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
2241 isl_int_init(gcd);
2242 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
2243 isl_int_divexact(r_row[0], r_row[0], gcd);
2244 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
2245 isl_seq_combine(r_row + 1, gcd, r_row + 1,
2246 r_row[0], tab->mat->row[d_row] + 1,
2247 off - 1 + tab->n_col);
2248 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
2249 isl_int_clear(gcd);
2250 } else {
2251 col = tab->var[tab->n_var - tab->n_div + d].index;
2252 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
2255 tab->con[r].is_nonneg = 1;
2256 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2257 return -1;
2258 if (tab->row_sign)
2259 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
2261 row = tab->con[r].index;
2263 if (d >= n && context->op->detect_equalities(context, tab) < 0)
2264 return -1;
2266 return row;
2269 /* Construct a tableau for bmap that can be used for computing
2270 * the lexicographic minimum (or maximum) of bmap.
2271 * If not NULL, then dom is the domain where the minimum
2272 * should be computed. In this case, we set up a parametric
2273 * tableau with row signs (initialized to "unknown").
2274 * If M is set, then the tableau will use a big parameter.
2275 * If max is set, then a maximum should be computed instead of a minimum.
2276 * This means that for each variable x, the tableau will contain the variable
2277 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2278 * of the variables in all constraints are negated prior to adding them
2279 * to the tableau.
2281 static __isl_give struct isl_tab *tab_for_lexmin(__isl_keep isl_basic_map *bmap,
2282 __isl_keep isl_basic_set *dom, unsigned M, int max)
2284 int i;
2285 struct isl_tab *tab;
2286 unsigned n_var;
2287 unsigned o_var;
2289 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2290 isl_basic_map_total_dim(bmap), M);
2291 if (!tab)
2292 return NULL;
2294 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2295 if (dom) {
2296 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2297 tab->n_div = dom->n_div;
2298 tab->row_sign = isl_calloc_array(bmap->ctx,
2299 enum isl_tab_row_sign, tab->mat->n_row);
2300 if (tab->mat->n_row && !tab->row_sign)
2301 goto error;
2303 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2304 if (isl_tab_mark_empty(tab) < 0)
2305 goto error;
2306 return tab;
2309 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2310 tab->var[i].is_nonneg = 1;
2311 tab->var[i].frozen = 1;
2313 o_var = 1 + tab->n_param;
2314 n_var = tab->n_var - tab->n_param - tab->n_div;
2315 for (i = 0; i < bmap->n_eq; ++i) {
2316 if (max)
2317 isl_seq_neg(bmap->eq[i] + o_var,
2318 bmap->eq[i] + o_var, n_var);
2319 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2320 if (max)
2321 isl_seq_neg(bmap->eq[i] + o_var,
2322 bmap->eq[i] + o_var, n_var);
2323 if (!tab || tab->empty)
2324 return tab;
2326 if (bmap->n_eq && restore_lexmin(tab) < 0)
2327 goto error;
2328 for (i = 0; i < bmap->n_ineq; ++i) {
2329 if (max)
2330 isl_seq_neg(bmap->ineq[i] + o_var,
2331 bmap->ineq[i] + o_var, n_var);
2332 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2333 if (max)
2334 isl_seq_neg(bmap->ineq[i] + o_var,
2335 bmap->ineq[i] + o_var, n_var);
2336 if (!tab || tab->empty)
2337 return tab;
2339 return tab;
2340 error:
2341 isl_tab_free(tab);
2342 return NULL;
2345 /* Given a main tableau where more than one row requires a split,
2346 * determine and return the "best" row to split on.
2348 * If any of the rows requiring a split only involves
2349 * variables that also appear in the context tableau,
2350 * then the negative part is guaranteed not to have a solution.
2351 * It is therefore best to split on any of these rows first.
2353 * Otherwise,
2354 * given two rows in the main tableau, if the inequality corresponding
2355 * to the first row is redundant with respect to that of the second row
2356 * in the current tableau, then it is better to split on the second row,
2357 * since in the positive part, both rows will be positive.
2358 * (In the negative part a pivot will have to be performed and just about
2359 * anything can happen to the sign of the other row.)
2361 * As a simple heuristic, we therefore select the row that makes the most
2362 * of the other rows redundant.
2364 * Perhaps it would also be useful to look at the number of constraints
2365 * that conflict with any given constraint.
2367 * best is the best row so far (-1 when we have not found any row yet).
2368 * best_r is the number of other rows made redundant by row best.
2369 * When best is still -1, bset_r is meaningless, but it is initialized
2370 * to some arbitrary value (0) anyway. Without this redundant initialization
2371 * valgrind may warn about uninitialized memory accesses when isl
2372 * is compiled with some versions of gcc.
2374 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2376 struct isl_tab_undo *snap;
2377 int split;
2378 int row;
2379 int best = -1;
2380 int best_r = 0;
2382 if (isl_tab_extend_cons(context_tab, 2) < 0)
2383 return -1;
2385 snap = isl_tab_snap(context_tab);
2387 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2388 struct isl_tab_undo *snap2;
2389 struct isl_vec *ineq = NULL;
2390 int r = 0;
2391 int ok;
2393 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2394 continue;
2395 if (tab->row_sign[split] != isl_tab_row_any)
2396 continue;
2398 if (is_parametric_constant(tab, split))
2399 return split;
2401 ineq = get_row_parameter_ineq(tab, split);
2402 if (!ineq)
2403 return -1;
2404 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2405 isl_vec_free(ineq);
2406 if (!ok)
2407 return -1;
2409 snap2 = isl_tab_snap(context_tab);
2411 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2412 struct isl_tab_var *var;
2414 if (row == split)
2415 continue;
2416 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2417 continue;
2418 if (tab->row_sign[row] != isl_tab_row_any)
2419 continue;
2421 ineq = get_row_parameter_ineq(tab, row);
2422 if (!ineq)
2423 return -1;
2424 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2425 isl_vec_free(ineq);
2426 if (!ok)
2427 return -1;
2428 var = &context_tab->con[context_tab->n_con - 1];
2429 if (!context_tab->empty &&
2430 !isl_tab_min_at_most_neg_one(context_tab, var))
2431 r++;
2432 if (isl_tab_rollback(context_tab, snap2) < 0)
2433 return -1;
2435 if (best == -1 || r > best_r) {
2436 best = split;
2437 best_r = r;
2439 if (isl_tab_rollback(context_tab, snap) < 0)
2440 return -1;
2443 return best;
2446 static struct isl_basic_set *context_lex_peek_basic_set(
2447 struct isl_context *context)
2449 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2450 if (!clex->tab)
2451 return NULL;
2452 return isl_tab_peek_bset(clex->tab);
2455 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2457 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2458 return clex->tab;
2461 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2462 int check, int update)
2464 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2465 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2466 goto error;
2467 if (add_lexmin_eq(clex->tab, eq) < 0)
2468 goto error;
2469 if (check) {
2470 int v = tab_has_valid_sample(clex->tab, eq, 1);
2471 if (v < 0)
2472 goto error;
2473 if (!v)
2474 clex->tab = check_integer_feasible(clex->tab);
2476 if (update)
2477 clex->tab = check_samples(clex->tab, eq, 1);
2478 return;
2479 error:
2480 isl_tab_free(clex->tab);
2481 clex->tab = NULL;
2484 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2485 int check, int update)
2487 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2488 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2489 goto error;
2490 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2491 if (check) {
2492 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2493 if (v < 0)
2494 goto error;
2495 if (!v)
2496 clex->tab = check_integer_feasible(clex->tab);
2498 if (update)
2499 clex->tab = check_samples(clex->tab, ineq, 0);
2500 return;
2501 error:
2502 isl_tab_free(clex->tab);
2503 clex->tab = NULL;
2506 static isl_stat context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2508 struct isl_context *context = (struct isl_context *)user;
2509 context_lex_add_ineq(context, ineq, 0, 0);
2510 return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error;
2513 /* Check which signs can be obtained by "ineq" on all the currently
2514 * active sample values. See row_sign for more information.
2516 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2517 int strict)
2519 int i;
2520 int sgn;
2521 isl_int tmp;
2522 enum isl_tab_row_sign res = isl_tab_row_unknown;
2524 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2525 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2526 return isl_tab_row_unknown);
2528 isl_int_init(tmp);
2529 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2530 isl_seq_inner_product(tab->samples->row[i], ineq,
2531 1 + tab->n_var, &tmp);
2532 sgn = isl_int_sgn(tmp);
2533 if (sgn > 0 || (sgn == 0 && strict)) {
2534 if (res == isl_tab_row_unknown)
2535 res = isl_tab_row_pos;
2536 if (res == isl_tab_row_neg)
2537 res = isl_tab_row_any;
2539 if (sgn < 0) {
2540 if (res == isl_tab_row_unknown)
2541 res = isl_tab_row_neg;
2542 if (res == isl_tab_row_pos)
2543 res = isl_tab_row_any;
2545 if (res == isl_tab_row_any)
2546 break;
2548 isl_int_clear(tmp);
2550 return res;
2553 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2554 isl_int *ineq, int strict)
2556 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2557 return tab_ineq_sign(clex->tab, ineq, strict);
2560 /* Check whether "ineq" can be added to the tableau without rendering
2561 * it infeasible.
2563 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2565 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2566 struct isl_tab_undo *snap;
2567 int feasible;
2569 if (!clex->tab)
2570 return -1;
2572 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2573 return -1;
2575 snap = isl_tab_snap(clex->tab);
2576 if (isl_tab_push_basis(clex->tab) < 0)
2577 return -1;
2578 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2579 clex->tab = check_integer_feasible(clex->tab);
2580 if (!clex->tab)
2581 return -1;
2582 feasible = !clex->tab->empty;
2583 if (isl_tab_rollback(clex->tab, snap) < 0)
2584 return -1;
2586 return feasible;
2589 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2590 struct isl_vec *div)
2592 return get_div(tab, context, div);
2595 /* Insert a div specified by "div" to the context tableau at position "pos" and
2596 * return isl_bool_true if the div is obviously non-negative.
2597 * context_tab_add_div will always return isl_bool_true, because all variables
2598 * in a isl_context_lex tableau are non-negative.
2599 * However, if we are using a big parameter in the context, then this only
2600 * reflects the non-negativity of the variable used to _encode_ the
2601 * div, i.e., div' = M + div, so we can't draw any conclusions.
2603 static isl_bool context_lex_insert_div(struct isl_context *context, int pos,
2604 __isl_keep isl_vec *div)
2606 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2607 isl_bool nonneg;
2608 nonneg = context_tab_insert_div(clex->tab, pos, div,
2609 context_lex_add_ineq_wrap, context);
2610 if (nonneg < 0)
2611 return isl_bool_error;
2612 if (clex->tab->M)
2613 return isl_bool_false;
2614 return nonneg;
2617 static int context_lex_detect_equalities(struct isl_context *context,
2618 struct isl_tab *tab)
2620 return 0;
2623 static int context_lex_best_split(struct isl_context *context,
2624 struct isl_tab *tab)
2626 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2627 struct isl_tab_undo *snap;
2628 int r;
2630 snap = isl_tab_snap(clex->tab);
2631 if (isl_tab_push_basis(clex->tab) < 0)
2632 return -1;
2633 r = best_split(tab, clex->tab);
2635 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2636 return -1;
2638 return r;
2641 static int context_lex_is_empty(struct isl_context *context)
2643 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2644 if (!clex->tab)
2645 return -1;
2646 return clex->tab->empty;
2649 static void *context_lex_save(struct isl_context *context)
2651 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2652 struct isl_tab_undo *snap;
2654 snap = isl_tab_snap(clex->tab);
2655 if (isl_tab_push_basis(clex->tab) < 0)
2656 return NULL;
2657 if (isl_tab_save_samples(clex->tab) < 0)
2658 return NULL;
2660 return snap;
2663 static void context_lex_restore(struct isl_context *context, void *save)
2665 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2666 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2667 isl_tab_free(clex->tab);
2668 clex->tab = NULL;
2672 static void context_lex_discard(void *save)
2676 static int context_lex_is_ok(struct isl_context *context)
2678 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2679 return !!clex->tab;
2682 /* For each variable in the context tableau, check if the variable can
2683 * only attain non-negative values. If so, mark the parameter as non-negative
2684 * in the main tableau. This allows for a more direct identification of some
2685 * cases of violated constraints.
2687 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2688 struct isl_tab *context_tab)
2690 int i;
2691 struct isl_tab_undo *snap;
2692 struct isl_vec *ineq = NULL;
2693 struct isl_tab_var *var;
2694 int n;
2696 if (context_tab->n_var == 0)
2697 return tab;
2699 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2700 if (!ineq)
2701 goto error;
2703 if (isl_tab_extend_cons(context_tab, 1) < 0)
2704 goto error;
2706 snap = isl_tab_snap(context_tab);
2708 n = 0;
2709 isl_seq_clr(ineq->el, ineq->size);
2710 for (i = 0; i < context_tab->n_var; ++i) {
2711 isl_int_set_si(ineq->el[1 + i], 1);
2712 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2713 goto error;
2714 var = &context_tab->con[context_tab->n_con - 1];
2715 if (!context_tab->empty &&
2716 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2717 int j = i;
2718 if (i >= tab->n_param)
2719 j = i - tab->n_param + tab->n_var - tab->n_div;
2720 tab->var[j].is_nonneg = 1;
2721 n++;
2723 isl_int_set_si(ineq->el[1 + i], 0);
2724 if (isl_tab_rollback(context_tab, snap) < 0)
2725 goto error;
2728 if (context_tab->M && n == context_tab->n_var) {
2729 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2730 context_tab->M = 0;
2733 isl_vec_free(ineq);
2734 return tab;
2735 error:
2736 isl_vec_free(ineq);
2737 isl_tab_free(tab);
2738 return NULL;
2741 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2742 struct isl_context *context, struct isl_tab *tab)
2744 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2745 struct isl_tab_undo *snap;
2747 if (!tab)
2748 return NULL;
2750 snap = isl_tab_snap(clex->tab);
2751 if (isl_tab_push_basis(clex->tab) < 0)
2752 goto error;
2754 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2756 if (isl_tab_rollback(clex->tab, snap) < 0)
2757 goto error;
2759 return tab;
2760 error:
2761 isl_tab_free(tab);
2762 return NULL;
2765 static void context_lex_invalidate(struct isl_context *context)
2767 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2768 isl_tab_free(clex->tab);
2769 clex->tab = NULL;
2772 static __isl_null struct isl_context *context_lex_free(
2773 struct isl_context *context)
2775 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2776 isl_tab_free(clex->tab);
2777 free(clex);
2779 return NULL;
2782 struct isl_context_op isl_context_lex_op = {
2783 context_lex_detect_nonnegative_parameters,
2784 context_lex_peek_basic_set,
2785 context_lex_peek_tab,
2786 context_lex_add_eq,
2787 context_lex_add_ineq,
2788 context_lex_ineq_sign,
2789 context_lex_test_ineq,
2790 context_lex_get_div,
2791 context_lex_insert_div,
2792 context_lex_detect_equalities,
2793 context_lex_best_split,
2794 context_lex_is_empty,
2795 context_lex_is_ok,
2796 context_lex_save,
2797 context_lex_restore,
2798 context_lex_discard,
2799 context_lex_invalidate,
2800 context_lex_free,
2803 static struct isl_tab *context_tab_for_lexmin(__isl_take isl_basic_set *bset)
2805 struct isl_tab *tab;
2807 if (!bset)
2808 return NULL;
2809 tab = tab_for_lexmin(bset_to_bmap(bset), NULL, 1, 0);
2810 if (isl_tab_track_bset(tab, bset) < 0)
2811 goto error;
2812 tab = isl_tab_init_samples(tab);
2813 return tab;
2814 error:
2815 isl_tab_free(tab);
2816 return NULL;
2819 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2821 struct isl_context_lex *clex;
2823 if (!dom)
2824 return NULL;
2826 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2827 if (!clex)
2828 return NULL;
2830 clex->context.op = &isl_context_lex_op;
2832 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2833 if (restore_lexmin(clex->tab) < 0)
2834 goto error;
2835 clex->tab = check_integer_feasible(clex->tab);
2836 if (!clex->tab)
2837 goto error;
2839 return &clex->context;
2840 error:
2841 clex->context.op->free(&clex->context);
2842 return NULL;
2845 /* Representation of the context when using generalized basis reduction.
2847 * "shifted" contains the offsets of the unit hypercubes that lie inside the
2848 * context. Any rational point in "shifted" can therefore be rounded
2849 * up to an integer point in the context.
2850 * If the context is constrained by any equality, then "shifted" is not used
2851 * as it would be empty.
2853 struct isl_context_gbr {
2854 struct isl_context context;
2855 struct isl_tab *tab;
2856 struct isl_tab *shifted;
2857 struct isl_tab *cone;
2860 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2861 struct isl_context *context, struct isl_tab *tab)
2863 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2864 if (!tab)
2865 return NULL;
2866 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2869 static struct isl_basic_set *context_gbr_peek_basic_set(
2870 struct isl_context *context)
2872 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2873 if (!cgbr->tab)
2874 return NULL;
2875 return isl_tab_peek_bset(cgbr->tab);
2878 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2880 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2881 return cgbr->tab;
2884 /* Initialize the "shifted" tableau of the context, which
2885 * contains the constraints of the original tableau shifted
2886 * by the sum of all negative coefficients. This ensures
2887 * that any rational point in the shifted tableau can
2888 * be rounded up to yield an integer point in the original tableau.
2890 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2892 int i, j;
2893 struct isl_vec *cst;
2894 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2895 unsigned dim = isl_basic_set_total_dim(bset);
2897 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2898 if (!cst)
2899 return;
2901 for (i = 0; i < bset->n_ineq; ++i) {
2902 isl_int_set(cst->el[i], bset->ineq[i][0]);
2903 for (j = 0; j < dim; ++j) {
2904 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2905 continue;
2906 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2907 bset->ineq[i][1 + j]);
2911 cgbr->shifted = isl_tab_from_basic_set(bset, 0);
2913 for (i = 0; i < bset->n_ineq; ++i)
2914 isl_int_set(bset->ineq[i][0], cst->el[i]);
2916 isl_vec_free(cst);
2919 /* Check if the shifted tableau is non-empty, and if so
2920 * use the sample point to construct an integer point
2921 * of the context tableau.
2923 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2925 struct isl_vec *sample;
2927 if (!cgbr->shifted)
2928 gbr_init_shifted(cgbr);
2929 if (!cgbr->shifted)
2930 return NULL;
2931 if (cgbr->shifted->empty)
2932 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2934 sample = isl_tab_get_sample_value(cgbr->shifted);
2935 sample = isl_vec_ceil(sample);
2937 return sample;
2940 static __isl_give isl_basic_set *drop_constant_terms(
2941 __isl_take isl_basic_set *bset)
2943 int i;
2945 if (!bset)
2946 return NULL;
2948 for (i = 0; i < bset->n_eq; ++i)
2949 isl_int_set_si(bset->eq[i][0], 0);
2951 for (i = 0; i < bset->n_ineq; ++i)
2952 isl_int_set_si(bset->ineq[i][0], 0);
2954 return bset;
2957 static int use_shifted(struct isl_context_gbr *cgbr)
2959 if (!cgbr->tab)
2960 return 0;
2961 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2964 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2966 struct isl_basic_set *bset;
2967 struct isl_basic_set *cone;
2969 if (isl_tab_sample_is_integer(cgbr->tab))
2970 return isl_tab_get_sample_value(cgbr->tab);
2972 if (use_shifted(cgbr)) {
2973 struct isl_vec *sample;
2975 sample = gbr_get_shifted_sample(cgbr);
2976 if (!sample || sample->size > 0)
2977 return sample;
2979 isl_vec_free(sample);
2982 if (!cgbr->cone) {
2983 bset = isl_tab_peek_bset(cgbr->tab);
2984 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2985 if (!cgbr->cone)
2986 return NULL;
2987 if (isl_tab_track_bset(cgbr->cone,
2988 isl_basic_set_copy(bset)) < 0)
2989 return NULL;
2991 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2992 return NULL;
2994 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2995 struct isl_vec *sample;
2996 struct isl_tab_undo *snap;
2998 if (cgbr->tab->basis) {
2999 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
3000 isl_mat_free(cgbr->tab->basis);
3001 cgbr->tab->basis = NULL;
3003 cgbr->tab->n_zero = 0;
3004 cgbr->tab->n_unbounded = 0;
3007 snap = isl_tab_snap(cgbr->tab);
3009 sample = isl_tab_sample(cgbr->tab);
3011 if (!sample || isl_tab_rollback(cgbr->tab, snap) < 0) {
3012 isl_vec_free(sample);
3013 return NULL;
3016 return sample;
3019 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
3020 cone = drop_constant_terms(cone);
3021 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
3022 cone = isl_basic_set_underlying_set(cone);
3023 cone = isl_basic_set_gauss(cone, NULL);
3025 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
3026 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
3027 bset = isl_basic_set_underlying_set(bset);
3028 bset = isl_basic_set_gauss(bset, NULL);
3030 return isl_basic_set_sample_with_cone(bset, cone);
3033 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
3035 struct isl_vec *sample;
3037 if (!cgbr->tab)
3038 return;
3040 if (cgbr->tab->empty)
3041 return;
3043 sample = gbr_get_sample(cgbr);
3044 if (!sample)
3045 goto error;
3047 if (sample->size == 0) {
3048 isl_vec_free(sample);
3049 if (isl_tab_mark_empty(cgbr->tab) < 0)
3050 goto error;
3051 return;
3054 if (isl_tab_add_sample(cgbr->tab, sample) < 0)
3055 goto error;
3057 return;
3058 error:
3059 isl_tab_free(cgbr->tab);
3060 cgbr->tab = NULL;
3063 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
3065 if (!tab)
3066 return NULL;
3068 if (isl_tab_extend_cons(tab, 2) < 0)
3069 goto error;
3071 if (isl_tab_add_eq(tab, eq) < 0)
3072 goto error;
3074 return tab;
3075 error:
3076 isl_tab_free(tab);
3077 return NULL;
3080 /* Add the equality described by "eq" to the context.
3081 * If "check" is set, then we check if the context is empty after
3082 * adding the equality.
3083 * If "update" is set, then we check if the samples are still valid.
3085 * We do not explicitly add shifted copies of the equality to
3086 * cgbr->shifted since they would conflict with each other.
3087 * Instead, we directly mark cgbr->shifted empty.
3089 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
3090 int check, int update)
3092 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3094 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
3096 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
3097 if (isl_tab_mark_empty(cgbr->shifted) < 0)
3098 goto error;
3101 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
3102 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
3103 goto error;
3104 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
3105 goto error;
3108 if (check) {
3109 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
3110 if (v < 0)
3111 goto error;
3112 if (!v)
3113 check_gbr_integer_feasible(cgbr);
3115 if (update)
3116 cgbr->tab = check_samples(cgbr->tab, eq, 1);
3117 return;
3118 error:
3119 isl_tab_free(cgbr->tab);
3120 cgbr->tab = NULL;
3123 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
3125 if (!cgbr->tab)
3126 return;
3128 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
3129 goto error;
3131 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
3132 goto error;
3134 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
3135 int i;
3136 unsigned dim;
3137 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
3139 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
3140 goto error;
3142 for (i = 0; i < dim; ++i) {
3143 if (!isl_int_is_neg(ineq[1 + i]))
3144 continue;
3145 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
3148 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
3149 goto error;
3151 for (i = 0; i < dim; ++i) {
3152 if (!isl_int_is_neg(ineq[1 + i]))
3153 continue;
3154 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
3158 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
3159 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
3160 goto error;
3161 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
3162 goto error;
3165 return;
3166 error:
3167 isl_tab_free(cgbr->tab);
3168 cgbr->tab = NULL;
3171 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
3172 int check, int update)
3174 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3176 add_gbr_ineq(cgbr, ineq);
3177 if (!cgbr->tab)
3178 return;
3180 if (check) {
3181 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
3182 if (v < 0)
3183 goto error;
3184 if (!v)
3185 check_gbr_integer_feasible(cgbr);
3187 if (update)
3188 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
3189 return;
3190 error:
3191 isl_tab_free(cgbr->tab);
3192 cgbr->tab = NULL;
3195 static isl_stat context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
3197 struct isl_context *context = (struct isl_context *)user;
3198 context_gbr_add_ineq(context, ineq, 0, 0);
3199 return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error;
3202 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
3203 isl_int *ineq, int strict)
3205 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3206 return tab_ineq_sign(cgbr->tab, ineq, strict);
3209 /* Check whether "ineq" can be added to the tableau without rendering
3210 * it infeasible.
3212 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
3214 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3215 struct isl_tab_undo *snap;
3216 struct isl_tab_undo *shifted_snap = NULL;
3217 struct isl_tab_undo *cone_snap = NULL;
3218 int feasible;
3220 if (!cgbr->tab)
3221 return -1;
3223 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
3224 return -1;
3226 snap = isl_tab_snap(cgbr->tab);
3227 if (cgbr->shifted)
3228 shifted_snap = isl_tab_snap(cgbr->shifted);
3229 if (cgbr->cone)
3230 cone_snap = isl_tab_snap(cgbr->cone);
3231 add_gbr_ineq(cgbr, ineq);
3232 check_gbr_integer_feasible(cgbr);
3233 if (!cgbr->tab)
3234 return -1;
3235 feasible = !cgbr->tab->empty;
3236 if (isl_tab_rollback(cgbr->tab, snap) < 0)
3237 return -1;
3238 if (shifted_snap) {
3239 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
3240 return -1;
3241 } else if (cgbr->shifted) {
3242 isl_tab_free(cgbr->shifted);
3243 cgbr->shifted = NULL;
3245 if (cone_snap) {
3246 if (isl_tab_rollback(cgbr->cone, cone_snap))
3247 return -1;
3248 } else if (cgbr->cone) {
3249 isl_tab_free(cgbr->cone);
3250 cgbr->cone = NULL;
3253 return feasible;
3256 /* Return the column of the last of the variables associated to
3257 * a column that has a non-zero coefficient.
3258 * This function is called in a context where only coefficients
3259 * of parameters or divs can be non-zero.
3261 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
3263 int i;
3264 int col;
3266 if (tab->n_var == 0)
3267 return -1;
3269 for (i = tab->n_var - 1; i >= 0; --i) {
3270 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
3271 continue;
3272 if (tab->var[i].is_row)
3273 continue;
3274 col = tab->var[i].index;
3275 if (!isl_int_is_zero(p[col]))
3276 return col;
3279 return -1;
3282 /* Look through all the recently added equalities in the context
3283 * to see if we can propagate any of them to the main tableau.
3285 * The newly added equalities in the context are encoded as pairs
3286 * of inequalities starting at inequality "first".
3288 * We tentatively add each of these equalities to the main tableau
3289 * and if this happens to result in a row with a final coefficient
3290 * that is one or negative one, we use it to kill a column
3291 * in the main tableau. Otherwise, we discard the tentatively
3292 * added row.
3293 * This tentative addition of equality constraints turns
3294 * on the undo facility of the tableau. Turn it off again
3295 * at the end, assuming it was turned off to begin with.
3297 * Return 0 on success and -1 on failure.
3299 static int propagate_equalities(struct isl_context_gbr *cgbr,
3300 struct isl_tab *tab, unsigned first)
3302 int i;
3303 struct isl_vec *eq = NULL;
3304 isl_bool needs_undo;
3306 needs_undo = isl_tab_need_undo(tab);
3307 if (needs_undo < 0)
3308 goto error;
3309 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
3310 if (!eq)
3311 goto error;
3313 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
3314 goto error;
3316 isl_seq_clr(eq->el + 1 + tab->n_param,
3317 tab->n_var - tab->n_param - tab->n_div);
3318 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
3319 int j;
3320 int r;
3321 struct isl_tab_undo *snap;
3322 snap = isl_tab_snap(tab);
3324 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3325 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3326 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3327 tab->n_div);
3329 r = isl_tab_add_row(tab, eq->el);
3330 if (r < 0)
3331 goto error;
3332 r = tab->con[r].index;
3333 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3334 if (j < 0 || j < tab->n_dead ||
3335 !isl_int_is_one(tab->mat->row[r][0]) ||
3336 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3337 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3338 if (isl_tab_rollback(tab, snap) < 0)
3339 goto error;
3340 continue;
3342 if (isl_tab_pivot(tab, r, j) < 0)
3343 goto error;
3344 if (isl_tab_kill_col(tab, j) < 0)
3345 goto error;
3347 if (restore_lexmin(tab) < 0)
3348 goto error;
3351 if (!needs_undo)
3352 isl_tab_clear_undo(tab);
3353 isl_vec_free(eq);
3355 return 0;
3356 error:
3357 isl_vec_free(eq);
3358 isl_tab_free(cgbr->tab);
3359 cgbr->tab = NULL;
3360 return -1;
3363 static int context_gbr_detect_equalities(struct isl_context *context,
3364 struct isl_tab *tab)
3366 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3367 unsigned n_ineq;
3369 if (!cgbr->cone) {
3370 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3371 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3372 if (!cgbr->cone)
3373 goto error;
3374 if (isl_tab_track_bset(cgbr->cone,
3375 isl_basic_set_copy(bset)) < 0)
3376 goto error;
3378 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3379 goto error;
3381 n_ineq = cgbr->tab->bmap->n_ineq;
3382 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3383 if (!cgbr->tab)
3384 return -1;
3385 if (cgbr->tab->bmap->n_ineq > n_ineq &&
3386 propagate_equalities(cgbr, tab, n_ineq) < 0)
3387 return -1;
3389 return 0;
3390 error:
3391 isl_tab_free(cgbr->tab);
3392 cgbr->tab = NULL;
3393 return -1;
3396 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3397 struct isl_vec *div)
3399 return get_div(tab, context, div);
3402 static isl_bool context_gbr_insert_div(struct isl_context *context, int pos,
3403 __isl_keep isl_vec *div)
3405 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3406 if (cgbr->cone) {
3407 int r, n_div, o_div;
3409 n_div = isl_basic_map_dim(cgbr->cone->bmap, isl_dim_div);
3410 o_div = cgbr->cone->n_var - n_div;
3412 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3413 return isl_bool_error;
3414 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3415 return isl_bool_error;
3416 if ((r = isl_tab_insert_var(cgbr->cone, pos)) <0)
3417 return isl_bool_error;
3419 cgbr->cone->bmap = isl_basic_map_insert_div(cgbr->cone->bmap,
3420 r - o_div, div);
3421 if (!cgbr->cone->bmap)
3422 return isl_bool_error;
3423 if (isl_tab_push_var(cgbr->cone, isl_tab_undo_bmap_div,
3424 &cgbr->cone->var[r]) < 0)
3425 return isl_bool_error;
3427 return context_tab_insert_div(cgbr->tab, pos, div,
3428 context_gbr_add_ineq_wrap, context);
3431 static int context_gbr_best_split(struct isl_context *context,
3432 struct isl_tab *tab)
3434 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3435 struct isl_tab_undo *snap;
3436 int r;
3438 snap = isl_tab_snap(cgbr->tab);
3439 r = best_split(tab, cgbr->tab);
3441 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3442 return -1;
3444 return r;
3447 static int context_gbr_is_empty(struct isl_context *context)
3449 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3450 if (!cgbr->tab)
3451 return -1;
3452 return cgbr->tab->empty;
3455 struct isl_gbr_tab_undo {
3456 struct isl_tab_undo *tab_snap;
3457 struct isl_tab_undo *shifted_snap;
3458 struct isl_tab_undo *cone_snap;
3461 static void *context_gbr_save(struct isl_context *context)
3463 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3464 struct isl_gbr_tab_undo *snap;
3466 if (!cgbr->tab)
3467 return NULL;
3469 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3470 if (!snap)
3471 return NULL;
3473 snap->tab_snap = isl_tab_snap(cgbr->tab);
3474 if (isl_tab_save_samples(cgbr->tab) < 0)
3475 goto error;
3477 if (cgbr->shifted)
3478 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3479 else
3480 snap->shifted_snap = NULL;
3482 if (cgbr->cone)
3483 snap->cone_snap = isl_tab_snap(cgbr->cone);
3484 else
3485 snap->cone_snap = NULL;
3487 return snap;
3488 error:
3489 free(snap);
3490 return NULL;
3493 static void context_gbr_restore(struct isl_context *context, void *save)
3495 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3496 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3497 if (!snap)
3498 goto error;
3499 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0)
3500 goto error;
3502 if (snap->shifted_snap) {
3503 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3504 goto error;
3505 } else if (cgbr->shifted) {
3506 isl_tab_free(cgbr->shifted);
3507 cgbr->shifted = NULL;
3510 if (snap->cone_snap) {
3511 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3512 goto error;
3513 } else if (cgbr->cone) {
3514 isl_tab_free(cgbr->cone);
3515 cgbr->cone = NULL;
3518 free(snap);
3520 return;
3521 error:
3522 free(snap);
3523 isl_tab_free(cgbr->tab);
3524 cgbr->tab = NULL;
3527 static void context_gbr_discard(void *save)
3529 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3530 free(snap);
3533 static int context_gbr_is_ok(struct isl_context *context)
3535 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3536 return !!cgbr->tab;
3539 static void context_gbr_invalidate(struct isl_context *context)
3541 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3542 isl_tab_free(cgbr->tab);
3543 cgbr->tab = NULL;
3546 static __isl_null struct isl_context *context_gbr_free(
3547 struct isl_context *context)
3549 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3550 isl_tab_free(cgbr->tab);
3551 isl_tab_free(cgbr->shifted);
3552 isl_tab_free(cgbr->cone);
3553 free(cgbr);
3555 return NULL;
3558 struct isl_context_op isl_context_gbr_op = {
3559 context_gbr_detect_nonnegative_parameters,
3560 context_gbr_peek_basic_set,
3561 context_gbr_peek_tab,
3562 context_gbr_add_eq,
3563 context_gbr_add_ineq,
3564 context_gbr_ineq_sign,
3565 context_gbr_test_ineq,
3566 context_gbr_get_div,
3567 context_gbr_insert_div,
3568 context_gbr_detect_equalities,
3569 context_gbr_best_split,
3570 context_gbr_is_empty,
3571 context_gbr_is_ok,
3572 context_gbr_save,
3573 context_gbr_restore,
3574 context_gbr_discard,
3575 context_gbr_invalidate,
3576 context_gbr_free,
3579 static struct isl_context *isl_context_gbr_alloc(__isl_keep isl_basic_set *dom)
3581 struct isl_context_gbr *cgbr;
3583 if (!dom)
3584 return NULL;
3586 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3587 if (!cgbr)
3588 return NULL;
3590 cgbr->context.op = &isl_context_gbr_op;
3592 cgbr->shifted = NULL;
3593 cgbr->cone = NULL;
3594 cgbr->tab = isl_tab_from_basic_set(dom, 1);
3595 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3596 if (!cgbr->tab)
3597 goto error;
3598 check_gbr_integer_feasible(cgbr);
3600 return &cgbr->context;
3601 error:
3602 cgbr->context.op->free(&cgbr->context);
3603 return NULL;
3606 /* Allocate a context corresponding to "dom".
3607 * The representation specific fields are initialized by
3608 * isl_context_lex_alloc or isl_context_gbr_alloc.
3609 * The shared "n_unknown" field is initialized to the number
3610 * of final unknown integer divisions in "dom".
3612 static struct isl_context *isl_context_alloc(__isl_keep isl_basic_set *dom)
3614 struct isl_context *context;
3615 int first;
3617 if (!dom)
3618 return NULL;
3620 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3621 context = isl_context_lex_alloc(dom);
3622 else
3623 context = isl_context_gbr_alloc(dom);
3625 if (!context)
3626 return NULL;
3628 first = isl_basic_set_first_unknown_div(dom);
3629 if (first < 0)
3630 return context->op->free(context);
3631 context->n_unknown = isl_basic_set_dim(dom, isl_dim_div) - first;
3633 return context;
3636 /* Initialize some common fields of "sol", which keeps track
3637 * of the solution of an optimization problem on "bmap" over
3638 * the domain "dom".
3639 * If "max" is set, then a maximization problem is being solved, rather than
3640 * a minimization problem, which means that the variables in the
3641 * tableau have value "M - x" rather than "M + x".
3643 static isl_stat sol_init(struct isl_sol *sol, __isl_keep isl_basic_map *bmap,
3644 __isl_keep isl_basic_set *dom, int max)
3646 sol->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3647 sol->dec_level.callback.run = &sol_dec_level_wrap;
3648 sol->dec_level.sol = sol;
3649 sol->max = max;
3650 sol->n_out = isl_basic_map_dim(bmap, isl_dim_out);
3651 sol->space = isl_basic_map_get_space(bmap);
3653 sol->context = isl_context_alloc(dom);
3654 if (!sol->space || !sol->context)
3655 return isl_stat_error;
3657 return isl_stat_ok;
3660 /* Construct an isl_sol_map structure for accumulating the solution.
3661 * If track_empty is set, then we also keep track of the parts
3662 * of the context where there is no solution.
3663 * If max is set, then we are solving a maximization, rather than
3664 * a minimization problem, which means that the variables in the
3665 * tableau have value "M - x" rather than "M + x".
3667 static struct isl_sol *sol_map_init(__isl_keep isl_basic_map *bmap,
3668 __isl_take isl_basic_set *dom, int track_empty, int max)
3670 struct isl_sol_map *sol_map = NULL;
3671 isl_space *space;
3673 if (!bmap)
3674 goto error;
3676 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3677 if (!sol_map)
3678 goto error;
3680 sol_map->sol.free = &sol_map_free;
3681 if (sol_init(&sol_map->sol, bmap, dom, max) < 0)
3682 goto error;
3683 sol_map->sol.add = &sol_map_add_wrap;
3684 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3685 space = isl_space_copy(sol_map->sol.space);
3686 sol_map->map = isl_map_alloc_space(space, 1, ISL_MAP_DISJOINT);
3687 if (!sol_map->map)
3688 goto error;
3690 if (track_empty) {
3691 sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3692 1, ISL_SET_DISJOINT);
3693 if (!sol_map->empty)
3694 goto error;
3697 isl_basic_set_free(dom);
3698 return &sol_map->sol;
3699 error:
3700 isl_basic_set_free(dom);
3701 sol_free(&sol_map->sol);
3702 return NULL;
3705 /* Check whether all coefficients of (non-parameter) variables
3706 * are non-positive, meaning that no pivots can be performed on the row.
3708 static int is_critical(struct isl_tab *tab, int row)
3710 int j;
3711 unsigned off = 2 + tab->M;
3713 for (j = tab->n_dead; j < tab->n_col; ++j) {
3714 if (col_is_parameter_var(tab, j))
3715 continue;
3717 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3718 return 0;
3721 return 1;
3724 /* Check whether the inequality represented by vec is strict over the integers,
3725 * i.e., there are no integer values satisfying the constraint with
3726 * equality. This happens if the gcd of the coefficients is not a divisor
3727 * of the constant term. If so, scale the constraint down by the gcd
3728 * of the coefficients.
3730 static int is_strict(struct isl_vec *vec)
3732 isl_int gcd;
3733 int strict = 0;
3735 isl_int_init(gcd);
3736 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3737 if (!isl_int_is_one(gcd)) {
3738 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3739 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3740 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3742 isl_int_clear(gcd);
3744 return strict;
3747 /* Determine the sign of the given row of the main tableau.
3748 * The result is one of
3749 * isl_tab_row_pos: always non-negative; no pivot needed
3750 * isl_tab_row_neg: always non-positive; pivot
3751 * isl_tab_row_any: can be both positive and negative; split
3753 * We first handle some simple cases
3754 * - the row sign may be known already
3755 * - the row may be obviously non-negative
3756 * - the parametric constant may be equal to that of another row
3757 * for which we know the sign. This sign will be either "pos" or
3758 * "any". If it had been "neg" then we would have pivoted before.
3760 * If none of these cases hold, we check the value of the row for each
3761 * of the currently active samples. Based on the signs of these values
3762 * we make an initial determination of the sign of the row.
3764 * all zero -> unk(nown)
3765 * all non-negative -> pos
3766 * all non-positive -> neg
3767 * both negative and positive -> all
3769 * If we end up with "all", we are done.
3770 * Otherwise, we perform a check for positive and/or negative
3771 * values as follows.
3773 * samples neg unk pos
3774 * <0 ? Y N Y N
3775 * pos any pos
3776 * >0 ? Y N Y N
3777 * any neg any neg
3779 * There is no special sign for "zero", because we can usually treat zero
3780 * as either non-negative or non-positive, whatever works out best.
3781 * However, if the row is "critical", meaning that pivoting is impossible
3782 * then we don't want to limp zero with the non-positive case, because
3783 * then we we would lose the solution for those values of the parameters
3784 * where the value of the row is zero. Instead, we treat 0 as non-negative
3785 * ensuring a split if the row can attain both zero and negative values.
3786 * The same happens when the original constraint was one that could not
3787 * be satisfied with equality by any integer values of the parameters.
3788 * In this case, we normalize the constraint, but then a value of zero
3789 * for the normalized constraint is actually a positive value for the
3790 * original constraint, so again we need to treat zero as non-negative.
3791 * In both these cases, we have the following decision tree instead:
3793 * all non-negative -> pos
3794 * all negative -> neg
3795 * both negative and non-negative -> all
3797 * samples neg pos
3798 * <0 ? Y N
3799 * any pos
3800 * >=0 ? Y N
3801 * any neg
3803 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3804 struct isl_sol *sol, int row)
3806 struct isl_vec *ineq = NULL;
3807 enum isl_tab_row_sign res = isl_tab_row_unknown;
3808 int critical;
3809 int strict;
3810 int row2;
3812 if (tab->row_sign[row] != isl_tab_row_unknown)
3813 return tab->row_sign[row];
3814 if (is_obviously_nonneg(tab, row))
3815 return isl_tab_row_pos;
3816 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3817 if (tab->row_sign[row2] == isl_tab_row_unknown)
3818 continue;
3819 if (identical_parameter_line(tab, row, row2))
3820 return tab->row_sign[row2];
3823 critical = is_critical(tab, row);
3825 ineq = get_row_parameter_ineq(tab, row);
3826 if (!ineq)
3827 goto error;
3829 strict = is_strict(ineq);
3831 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3832 critical || strict);
3834 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3835 /* test for negative values */
3836 int feasible;
3837 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3838 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3840 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3841 if (feasible < 0)
3842 goto error;
3843 if (!feasible)
3844 res = isl_tab_row_pos;
3845 else
3846 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3847 : isl_tab_row_any;
3848 if (res == isl_tab_row_neg) {
3849 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3850 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3854 if (res == isl_tab_row_neg) {
3855 /* test for positive values */
3856 int feasible;
3857 if (!critical && !strict)
3858 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3860 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3861 if (feasible < 0)
3862 goto error;
3863 if (feasible)
3864 res = isl_tab_row_any;
3867 isl_vec_free(ineq);
3868 return res;
3869 error:
3870 isl_vec_free(ineq);
3871 return isl_tab_row_unknown;
3874 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3876 /* Find solutions for values of the parameters that satisfy the given
3877 * inequality.
3879 * We currently take a snapshot of the context tableau that is reset
3880 * when we return from this function, while we make a copy of the main
3881 * tableau, leaving the original main tableau untouched.
3882 * These are fairly arbitrary choices. Making a copy also of the context
3883 * tableau would obviate the need to undo any changes made to it later,
3884 * while taking a snapshot of the main tableau could reduce memory usage.
3885 * If we were to switch to taking a snapshot of the main tableau,
3886 * we would have to keep in mind that we need to save the row signs
3887 * and that we need to do this before saving the current basis
3888 * such that the basis has been restore before we restore the row signs.
3890 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3892 void *saved;
3894 if (!sol->context)
3895 goto error;
3896 saved = sol->context->op->save(sol->context);
3898 tab = isl_tab_dup(tab);
3899 if (!tab)
3900 goto error;
3902 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3904 find_solutions(sol, tab);
3906 if (!sol->error)
3907 sol->context->op->restore(sol->context, saved);
3908 else
3909 sol->context->op->discard(saved);
3910 return;
3911 error:
3912 sol->error = 1;
3915 /* Record the absence of solutions for those values of the parameters
3916 * that do not satisfy the given inequality with equality.
3918 static void no_sol_in_strict(struct isl_sol *sol,
3919 struct isl_tab *tab, struct isl_vec *ineq)
3921 int empty;
3922 void *saved;
3924 if (!sol->context || sol->error)
3925 goto error;
3926 saved = sol->context->op->save(sol->context);
3928 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3930 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3931 if (!sol->context)
3932 goto error;
3934 empty = tab->empty;
3935 tab->empty = 1;
3936 sol_add(sol, tab);
3937 tab->empty = empty;
3939 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3941 sol->context->op->restore(sol->context, saved);
3942 return;
3943 error:
3944 sol->error = 1;
3947 /* Reset all row variables that are marked to have a sign that may
3948 * be both positive and negative to have an unknown sign.
3950 static void reset_any_to_unknown(struct isl_tab *tab)
3952 int row;
3954 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3955 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3956 continue;
3957 if (tab->row_sign[row] == isl_tab_row_any)
3958 tab->row_sign[row] = isl_tab_row_unknown;
3962 /* Compute the lexicographic minimum of the set represented by the main
3963 * tableau "tab" within the context "sol->context_tab".
3964 * On entry the sample value of the main tableau is lexicographically
3965 * less than or equal to this lexicographic minimum.
3966 * Pivots are performed until a feasible point is found, which is then
3967 * necessarily equal to the minimum, or until the tableau is found to
3968 * be infeasible. Some pivots may need to be performed for only some
3969 * feasible values of the context tableau. If so, the context tableau
3970 * is split into a part where the pivot is needed and a part where it is not.
3972 * Whenever we enter the main loop, the main tableau is such that no
3973 * "obvious" pivots need to be performed on it, where "obvious" means
3974 * that the given row can be seen to be negative without looking at
3975 * the context tableau. In particular, for non-parametric problems,
3976 * no pivots need to be performed on the main tableau.
3977 * The caller of find_solutions is responsible for making this property
3978 * hold prior to the first iteration of the loop, while restore_lexmin
3979 * is called before every other iteration.
3981 * Inside the main loop, we first examine the signs of the rows of
3982 * the main tableau within the context of the context tableau.
3983 * If we find a row that is always non-positive for all values of
3984 * the parameters satisfying the context tableau and negative for at
3985 * least one value of the parameters, we perform the appropriate pivot
3986 * and start over. An exception is the case where no pivot can be
3987 * performed on the row. In this case, we require that the sign of
3988 * the row is negative for all values of the parameters (rather than just
3989 * non-positive). This special case is handled inside row_sign, which
3990 * will say that the row can have any sign if it determines that it can
3991 * attain both negative and zero values.
3993 * If we can't find a row that always requires a pivot, but we can find
3994 * one or more rows that require a pivot for some values of the parameters
3995 * (i.e., the row can attain both positive and negative signs), then we split
3996 * the context tableau into two parts, one where we force the sign to be
3997 * non-negative and one where we force is to be negative.
3998 * The non-negative part is handled by a recursive call (through find_in_pos).
3999 * Upon returning from this call, we continue with the negative part and
4000 * perform the required pivot.
4002 * If no such rows can be found, all rows are non-negative and we have
4003 * found a (rational) feasible point. If we only wanted a rational point
4004 * then we are done.
4005 * Otherwise, we check if all values of the sample point of the tableau
4006 * are integral for the variables. If so, we have found the minimal
4007 * integral point and we are done.
4008 * If the sample point is not integral, then we need to make a distinction
4009 * based on whether the constant term is non-integral or the coefficients
4010 * of the parameters. Furthermore, in order to decide how to handle
4011 * the non-integrality, we also need to know whether the coefficients
4012 * of the other columns in the tableau are integral. This leads
4013 * to the following table. The first two rows do not correspond
4014 * to a non-integral sample point and are only mentioned for completeness.
4016 * constant parameters other
4018 * int int int |
4019 * int int rat | -> no problem
4021 * rat int int -> fail
4023 * rat int rat -> cut
4025 * int rat rat |
4026 * rat rat rat | -> parametric cut
4028 * int rat int |
4029 * rat rat int | -> split context
4031 * If the parametric constant is completely integral, then there is nothing
4032 * to be done. If the constant term is non-integral, but all the other
4033 * coefficient are integral, then there is nothing that can be done
4034 * and the tableau has no integral solution.
4035 * If, on the other hand, one or more of the other columns have rational
4036 * coefficients, but the parameter coefficients are all integral, then
4037 * we can perform a regular (non-parametric) cut.
4038 * Finally, if there is any parameter coefficient that is non-integral,
4039 * then we need to involve the context tableau. There are two cases here.
4040 * If at least one other column has a rational coefficient, then we
4041 * can perform a parametric cut in the main tableau by adding a new
4042 * integer division in the context tableau.
4043 * If all other columns have integral coefficients, then we need to
4044 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
4045 * is always integral. We do this by introducing an integer division
4046 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
4047 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
4048 * Since q is expressed in the tableau as
4049 * c + \sum a_i y_i - m q >= 0
4050 * -c - \sum a_i y_i + m q + m - 1 >= 0
4051 * it is sufficient to add the inequality
4052 * -c - \sum a_i y_i + m q >= 0
4053 * In the part of the context where this inequality does not hold, the
4054 * main tableau is marked as being empty.
4056 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
4058 struct isl_context *context;
4059 int r;
4061 if (!tab || sol->error)
4062 goto error;
4064 context = sol->context;
4066 if (tab->empty)
4067 goto done;
4068 if (context->op->is_empty(context))
4069 goto done;
4071 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
4072 int flags;
4073 int row;
4074 enum isl_tab_row_sign sgn;
4075 int split = -1;
4076 int n_split = 0;
4078 for (row = tab->n_redundant; row < tab->n_row; ++row) {
4079 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
4080 continue;
4081 sgn = row_sign(tab, sol, row);
4082 if (!sgn)
4083 goto error;
4084 tab->row_sign[row] = sgn;
4085 if (sgn == isl_tab_row_any)
4086 n_split++;
4087 if (sgn == isl_tab_row_any && split == -1)
4088 split = row;
4089 if (sgn == isl_tab_row_neg)
4090 break;
4092 if (row < tab->n_row)
4093 continue;
4094 if (split != -1) {
4095 struct isl_vec *ineq;
4096 if (n_split != 1)
4097 split = context->op->best_split(context, tab);
4098 if (split < 0)
4099 goto error;
4100 ineq = get_row_parameter_ineq(tab, split);
4101 if (!ineq)
4102 goto error;
4103 is_strict(ineq);
4104 reset_any_to_unknown(tab);
4105 tab->row_sign[split] = isl_tab_row_pos;
4106 sol_inc_level(sol);
4107 find_in_pos(sol, tab, ineq->el);
4108 tab->row_sign[split] = isl_tab_row_neg;
4109 isl_seq_neg(ineq->el, ineq->el, ineq->size);
4110 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
4111 if (!sol->error)
4112 context->op->add_ineq(context, ineq->el, 0, 1);
4113 isl_vec_free(ineq);
4114 if (sol->error)
4115 goto error;
4116 continue;
4118 if (tab->rational)
4119 break;
4120 row = first_non_integer_row(tab, &flags);
4121 if (row < 0)
4122 break;
4123 if (ISL_FL_ISSET(flags, I_PAR)) {
4124 if (ISL_FL_ISSET(flags, I_VAR)) {
4125 if (isl_tab_mark_empty(tab) < 0)
4126 goto error;
4127 break;
4129 row = add_cut(tab, row);
4130 } else if (ISL_FL_ISSET(flags, I_VAR)) {
4131 struct isl_vec *div;
4132 struct isl_vec *ineq;
4133 int d;
4134 div = get_row_split_div(tab, row);
4135 if (!div)
4136 goto error;
4137 d = context->op->get_div(context, tab, div);
4138 isl_vec_free(div);
4139 if (d < 0)
4140 goto error;
4141 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
4142 if (!ineq)
4143 goto error;
4144 sol_inc_level(sol);
4145 no_sol_in_strict(sol, tab, ineq);
4146 isl_seq_neg(ineq->el, ineq->el, ineq->size);
4147 context->op->add_ineq(context, ineq->el, 1, 1);
4148 isl_vec_free(ineq);
4149 if (sol->error || !context->op->is_ok(context))
4150 goto error;
4151 tab = set_row_cst_to_div(tab, row, d);
4152 if (context->op->is_empty(context))
4153 break;
4154 } else
4155 row = add_parametric_cut(tab, row, context);
4156 if (row < 0)
4157 goto error;
4159 if (r < 0)
4160 goto error;
4161 done:
4162 sol_add(sol, tab);
4163 isl_tab_free(tab);
4164 return;
4165 error:
4166 isl_tab_free(tab);
4167 sol->error = 1;
4170 /* Does "sol" contain a pair of partial solutions that could potentially
4171 * be merged?
4173 * We currently only check that "sol" is not in an error state
4174 * and that there are at least two partial solutions of which the final two
4175 * are defined at the same level.
4177 static int sol_has_mergeable_solutions(struct isl_sol *sol)
4179 if (sol->error)
4180 return 0;
4181 if (!sol->partial)
4182 return 0;
4183 if (!sol->partial->next)
4184 return 0;
4185 return sol->partial->level == sol->partial->next->level;
4188 /* Compute the lexicographic minimum of the set represented by the main
4189 * tableau "tab" within the context "sol->context_tab".
4191 * As a preprocessing step, we first transfer all the purely parametric
4192 * equalities from the main tableau to the context tableau, i.e.,
4193 * parameters that have been pivoted to a row.
4194 * These equalities are ignored by the main algorithm, because the
4195 * corresponding rows may not be marked as being non-negative.
4196 * In parts of the context where the added equality does not hold,
4197 * the main tableau is marked as being empty.
4199 * Before we embark on the actual computation, we save a copy
4200 * of the context. When we return, we check if there are any
4201 * partial solutions that can potentially be merged. If so,
4202 * we perform a rollback to the initial state of the context.
4203 * The merging of partial solutions happens inside calls to
4204 * sol_dec_level that are pushed onto the undo stack of the context.
4205 * If there are no partial solutions that can potentially be merged
4206 * then the rollback is skipped as it would just be wasted effort.
4208 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
4210 int row;
4211 void *saved;
4213 if (!tab)
4214 goto error;
4216 sol->level = 0;
4218 for (row = tab->n_redundant; row < tab->n_row; ++row) {
4219 int p;
4220 struct isl_vec *eq;
4222 if (!row_is_parameter_var(tab, row))
4223 continue;
4224 if (tab->row_var[row] < tab->n_param)
4225 p = tab->row_var[row];
4226 else
4227 p = tab->row_var[row]
4228 + tab->n_param - (tab->n_var - tab->n_div);
4230 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
4231 if (!eq)
4232 goto error;
4233 get_row_parameter_line(tab, row, eq->el);
4234 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
4235 eq = isl_vec_normalize(eq);
4237 sol_inc_level(sol);
4238 no_sol_in_strict(sol, tab, eq);
4240 isl_seq_neg(eq->el, eq->el, eq->size);
4241 sol_inc_level(sol);
4242 no_sol_in_strict(sol, tab, eq);
4243 isl_seq_neg(eq->el, eq->el, eq->size);
4245 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
4247 isl_vec_free(eq);
4249 if (isl_tab_mark_redundant(tab, row) < 0)
4250 goto error;
4252 if (sol->context->op->is_empty(sol->context))
4253 break;
4255 row = tab->n_redundant - 1;
4258 saved = sol->context->op->save(sol->context);
4260 find_solutions(sol, tab);
4262 if (sol_has_mergeable_solutions(sol))
4263 sol->context->op->restore(sol->context, saved);
4264 else
4265 sol->context->op->discard(saved);
4267 sol->level = 0;
4268 sol_pop(sol);
4270 return;
4271 error:
4272 isl_tab_free(tab);
4273 sol->error = 1;
4276 /* Check if integer division "div" of "dom" also occurs in "bmap".
4277 * If so, return its position within the divs.
4278 * If not, return -1.
4280 static int find_context_div(struct isl_basic_map *bmap,
4281 struct isl_basic_set *dom, unsigned div)
4283 int i;
4284 unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all);
4285 unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all);
4287 if (isl_int_is_zero(dom->div[div][0]))
4288 return -1;
4289 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
4290 return -1;
4292 for (i = 0; i < bmap->n_div; ++i) {
4293 if (isl_int_is_zero(bmap->div[i][0]))
4294 continue;
4295 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
4296 (b_dim - d_dim) + bmap->n_div) != -1)
4297 continue;
4298 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
4299 return i;
4301 return -1;
4304 /* The correspondence between the variables in the main tableau,
4305 * the context tableau, and the input map and domain is as follows.
4306 * The first n_param and the last n_div variables of the main tableau
4307 * form the variables of the context tableau.
4308 * In the basic map, these n_param variables correspond to the
4309 * parameters and the input dimensions. In the domain, they correspond
4310 * to the parameters and the set dimensions.
4311 * The n_div variables correspond to the integer divisions in the domain.
4312 * To ensure that everything lines up, we may need to copy some of the
4313 * integer divisions of the domain to the map. These have to be placed
4314 * in the same order as those in the context and they have to be placed
4315 * after any other integer divisions that the map may have.
4316 * This function performs the required reordering.
4318 static __isl_give isl_basic_map *align_context_divs(
4319 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_set *dom)
4321 int i;
4322 int common = 0;
4323 int other;
4325 for (i = 0; i < dom->n_div; ++i)
4326 if (find_context_div(bmap, dom, i) != -1)
4327 common++;
4328 other = bmap->n_div - common;
4329 if (dom->n_div - common > 0) {
4330 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
4331 dom->n_div - common, 0, 0);
4332 if (!bmap)
4333 return NULL;
4335 for (i = 0; i < dom->n_div; ++i) {
4336 int pos = find_context_div(bmap, dom, i);
4337 if (pos < 0) {
4338 pos = isl_basic_map_alloc_div(bmap);
4339 if (pos < 0)
4340 goto error;
4341 isl_int_set_si(bmap->div[pos][0], 0);
4343 if (pos != other + i)
4344 isl_basic_map_swap_div(bmap, pos, other + i);
4346 return bmap;
4347 error:
4348 isl_basic_map_free(bmap);
4349 return NULL;
4352 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4353 * some obvious symmetries.
4355 * We make sure the divs in the domain are properly ordered,
4356 * because they will be added one by one in the given order
4357 * during the construction of the solution map.
4358 * Furthermore, make sure that the known integer divisions
4359 * appear before any unknown integer division because the solution
4360 * may depend on the known integer divisions, while anything that
4361 * depends on any variable starting from the first unknown integer
4362 * division is ignored in sol_pma_add.
4364 static struct isl_sol *basic_map_partial_lexopt_base_sol(
4365 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4366 __isl_give isl_set **empty, int max,
4367 struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
4368 __isl_take isl_basic_set *dom, int track_empty, int max))
4370 struct isl_tab *tab;
4371 struct isl_sol *sol = NULL;
4372 struct isl_context *context;
4374 if (dom->n_div) {
4375 dom = isl_basic_set_sort_divs(dom);
4376 bmap = align_context_divs(bmap, dom);
4378 sol = init(bmap, dom, !!empty, max);
4379 if (!sol)
4380 goto error;
4382 context = sol->context;
4383 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
4384 /* nothing */;
4385 else if (isl_basic_map_plain_is_empty(bmap)) {
4386 if (sol->add_empty)
4387 sol->add_empty(sol,
4388 isl_basic_set_copy(context->op->peek_basic_set(context)));
4389 } else {
4390 tab = tab_for_lexmin(bmap,
4391 context->op->peek_basic_set(context), 1, max);
4392 tab = context->op->detect_nonnegative_parameters(context, tab);
4393 find_solutions_main(sol, tab);
4395 if (sol->error)
4396 goto error;
4398 isl_basic_map_free(bmap);
4399 return sol;
4400 error:
4401 sol_free(sol);
4402 isl_basic_map_free(bmap);
4403 return NULL;
4406 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4407 * some obvious symmetries.
4409 * We call basic_map_partial_lexopt_base_sol and extract the results.
4411 static __isl_give isl_map *basic_map_partial_lexopt_base(
4412 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4413 __isl_give isl_set **empty, int max)
4415 isl_map *result = NULL;
4416 struct isl_sol *sol;
4417 struct isl_sol_map *sol_map;
4419 sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max,
4420 &sol_map_init);
4421 if (!sol)
4422 return NULL;
4423 sol_map = (struct isl_sol_map *) sol;
4425 result = isl_map_copy(sol_map->map);
4426 if (empty)
4427 *empty = isl_set_copy(sol_map->empty);
4428 sol_free(&sol_map->sol);
4429 return result;
4432 /* Return a count of the number of occurrences of the "n" first
4433 * variables in the inequality constraints of "bmap".
4435 static __isl_give int *count_occurrences(__isl_keep isl_basic_map *bmap,
4436 int n)
4438 int i, j;
4439 isl_ctx *ctx;
4440 int *occurrences;
4442 if (!bmap)
4443 return NULL;
4444 ctx = isl_basic_map_get_ctx(bmap);
4445 occurrences = isl_calloc_array(ctx, int, n);
4446 if (!occurrences)
4447 return NULL;
4449 for (i = 0; i < bmap->n_ineq; ++i) {
4450 for (j = 0; j < n; ++j) {
4451 if (!isl_int_is_zero(bmap->ineq[i][1 + j]))
4452 occurrences[j]++;
4456 return occurrences;
4459 /* Do all of the "n" variables with non-zero coefficients in "c"
4460 * occur in exactly a single constraint.
4461 * "occurrences" is an array of length "n" containing the number
4462 * of occurrences of each of the variables in the inequality constraints.
4464 static int single_occurrence(int n, isl_int *c, int *occurrences)
4466 int i;
4468 for (i = 0; i < n; ++i) {
4469 if (isl_int_is_zero(c[i]))
4470 continue;
4471 if (occurrences[i] != 1)
4472 return 0;
4475 return 1;
4478 /* Do all of the "n" initial variables that occur in inequality constraint
4479 * "ineq" of "bmap" only occur in that constraint?
4481 static int all_single_occurrence(__isl_keep isl_basic_map *bmap, int ineq,
4482 int n)
4484 int i, j;
4486 for (i = 0; i < n; ++i) {
4487 if (isl_int_is_zero(bmap->ineq[ineq][1 + i]))
4488 continue;
4489 for (j = 0; j < bmap->n_ineq; ++j) {
4490 if (j == ineq)
4491 continue;
4492 if (!isl_int_is_zero(bmap->ineq[j][1 + i]))
4493 return 0;
4497 return 1;
4500 /* Structure used during detection of parallel constraints.
4501 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4502 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4503 * val: the coefficients of the output variables
4505 struct isl_constraint_equal_info {
4506 unsigned n_in;
4507 unsigned n_out;
4508 isl_int *val;
4511 /* Check whether the coefficients of the output variables
4512 * of the constraint in "entry" are equal to info->val.
4514 static int constraint_equal(const void *entry, const void *val)
4516 isl_int **row = (isl_int **)entry;
4517 const struct isl_constraint_equal_info *info = val;
4519 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4522 /* Check whether "bmap" has a pair of constraints that have
4523 * the same coefficients for the output variables.
4524 * Note that the coefficients of the existentially quantified
4525 * variables need to be zero since the existentially quantified
4526 * of the result are usually not the same as those of the input.
4527 * Furthermore, check that each of the input variables that occur
4528 * in those constraints does not occur in any other constraint.
4529 * If so, return true and return the row indices of the two constraints
4530 * in *first and *second.
4532 static isl_bool parallel_constraints(__isl_keep isl_basic_map *bmap,
4533 int *first, int *second)
4535 int i;
4536 isl_ctx *ctx;
4537 int *occurrences = NULL;
4538 struct isl_hash_table *table = NULL;
4539 struct isl_hash_table_entry *entry;
4540 struct isl_constraint_equal_info info;
4541 unsigned n_out;
4542 unsigned n_div;
4544 ctx = isl_basic_map_get_ctx(bmap);
4545 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4546 if (!table)
4547 goto error;
4549 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4550 isl_basic_map_dim(bmap, isl_dim_in);
4551 occurrences = count_occurrences(bmap, info.n_in);
4552 if (info.n_in && !occurrences)
4553 goto error;
4554 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4555 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4556 info.n_out = n_out + n_div;
4557 for (i = 0; i < bmap->n_ineq; ++i) {
4558 uint32_t hash;
4560 info.val = bmap->ineq[i] + 1 + info.n_in;
4561 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4562 continue;
4563 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4564 continue;
4565 if (!single_occurrence(info.n_in, bmap->ineq[i] + 1,
4566 occurrences))
4567 continue;
4568 hash = isl_seq_get_hash(info.val, info.n_out);
4569 entry = isl_hash_table_find(ctx, table, hash,
4570 constraint_equal, &info, 1);
4571 if (!entry)
4572 goto error;
4573 if (entry->data)
4574 break;
4575 entry->data = &bmap->ineq[i];
4578 if (i < bmap->n_ineq) {
4579 *first = ((isl_int **)entry->data) - bmap->ineq;
4580 *second = i;
4583 isl_hash_table_free(ctx, table);
4584 free(occurrences);
4586 return i < bmap->n_ineq;
4587 error:
4588 isl_hash_table_free(ctx, table);
4589 free(occurrences);
4590 return isl_bool_error;
4593 /* Given a set of upper bounds in "var", add constraints to "bset"
4594 * that make the i-th bound smallest.
4596 * In particular, if there are n bounds b_i, then add the constraints
4598 * b_i <= b_j for j > i
4599 * b_i < b_j for j < i
4601 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4602 __isl_keep isl_mat *var, int i)
4604 isl_ctx *ctx;
4605 int j, k;
4607 ctx = isl_mat_get_ctx(var);
4609 for (j = 0; j < var->n_row; ++j) {
4610 if (j == i)
4611 continue;
4612 k = isl_basic_set_alloc_inequality(bset);
4613 if (k < 0)
4614 goto error;
4615 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4616 ctx->negone, var->row[i], var->n_col);
4617 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4618 if (j < i)
4619 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4622 bset = isl_basic_set_finalize(bset);
4624 return bset;
4625 error:
4626 isl_basic_set_free(bset);
4627 return NULL;
4630 /* Given a set of upper bounds on the last "input" variable m,
4631 * construct a set that assigns the minimal upper bound to m, i.e.,
4632 * construct a set that divides the space into cells where one
4633 * of the upper bounds is smaller than all the others and assign
4634 * this upper bound to m.
4636 * In particular, if there are n bounds b_i, then the result
4637 * consists of n basic sets, each one of the form
4639 * m = b_i
4640 * b_i <= b_j for j > i
4641 * b_i < b_j for j < i
4643 static __isl_give isl_set *set_minimum(__isl_take isl_space *dim,
4644 __isl_take isl_mat *var)
4646 int i, k;
4647 isl_basic_set *bset = NULL;
4648 isl_set *set = NULL;
4650 if (!dim || !var)
4651 goto error;
4653 set = isl_set_alloc_space(isl_space_copy(dim),
4654 var->n_row, ISL_SET_DISJOINT);
4656 for (i = 0; i < var->n_row; ++i) {
4657 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0,
4658 1, var->n_row - 1);
4659 k = isl_basic_set_alloc_equality(bset);
4660 if (k < 0)
4661 goto error;
4662 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4663 isl_int_set_si(bset->eq[k][var->n_col], -1);
4664 bset = select_minimum(bset, var, i);
4665 set = isl_set_add_basic_set(set, bset);
4668 isl_space_free(dim);
4669 isl_mat_free(var);
4670 return set;
4671 error:
4672 isl_basic_set_free(bset);
4673 isl_set_free(set);
4674 isl_space_free(dim);
4675 isl_mat_free(var);
4676 return NULL;
4679 /* Given that the last input variable of "bmap" represents the minimum
4680 * of the bounds in "cst", check whether we need to split the domain
4681 * based on which bound attains the minimum.
4683 * A split is needed when the minimum appears in an integer division
4684 * or in an equality. Otherwise, it is only needed if it appears in
4685 * an upper bound that is different from the upper bounds on which it
4686 * is defined.
4688 static isl_bool need_split_basic_map(__isl_keep isl_basic_map *bmap,
4689 __isl_keep isl_mat *cst)
4691 int i, j;
4692 unsigned total;
4693 unsigned pos;
4695 pos = cst->n_col - 1;
4696 total = isl_basic_map_dim(bmap, isl_dim_all);
4698 for (i = 0; i < bmap->n_div; ++i)
4699 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4700 return isl_bool_true;
4702 for (i = 0; i < bmap->n_eq; ++i)
4703 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4704 return isl_bool_true;
4706 for (i = 0; i < bmap->n_ineq; ++i) {
4707 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4708 continue;
4709 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4710 return isl_bool_true;
4711 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4712 total - pos - 1) >= 0)
4713 return isl_bool_true;
4715 for (j = 0; j < cst->n_row; ++j)
4716 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4717 break;
4718 if (j >= cst->n_row)
4719 return isl_bool_true;
4722 return isl_bool_false;
4725 /* Given that the last set variable of "bset" represents the minimum
4726 * of the bounds in "cst", check whether we need to split the domain
4727 * based on which bound attains the minimum.
4729 * We simply call need_split_basic_map here. This is safe because
4730 * the position of the minimum is computed from "cst" and not
4731 * from "bmap".
4733 static isl_bool need_split_basic_set(__isl_keep isl_basic_set *bset,
4734 __isl_keep isl_mat *cst)
4736 return need_split_basic_map(bset_to_bmap(bset), cst);
4739 /* Given that the last set variable of "set" represents the minimum
4740 * of the bounds in "cst", check whether we need to split the domain
4741 * based on which bound attains the minimum.
4743 static isl_bool need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4745 int i;
4747 for (i = 0; i < set->n; ++i) {
4748 isl_bool split;
4750 split = need_split_basic_set(set->p[i], cst);
4751 if (split < 0 || split)
4752 return split;
4755 return isl_bool_false;
4758 /* Given a set of which the last set variable is the minimum
4759 * of the bounds in "cst", split each basic set in the set
4760 * in pieces where one of the bounds is (strictly) smaller than the others.
4761 * This subdivision is given in "min_expr".
4762 * The variable is subsequently projected out.
4764 * We only do the split when it is needed.
4765 * For example if the last input variable m = min(a,b) and the only
4766 * constraints in the given basic set are lower bounds on m,
4767 * i.e., l <= m = min(a,b), then we can simply project out m
4768 * to obtain l <= a and l <= b, without having to split on whether
4769 * m is equal to a or b.
4771 static __isl_give isl_set *split(__isl_take isl_set *empty,
4772 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4774 int n_in;
4775 int i;
4776 isl_space *dim;
4777 isl_set *res;
4779 if (!empty || !min_expr || !cst)
4780 goto error;
4782 n_in = isl_set_dim(empty, isl_dim_set);
4783 dim = isl_set_get_space(empty);
4784 dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1);
4785 res = isl_set_empty(dim);
4787 for (i = 0; i < empty->n; ++i) {
4788 isl_bool split;
4789 isl_set *set;
4791 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4792 split = need_split_basic_set(empty->p[i], cst);
4793 if (split < 0)
4794 set = isl_set_free(set);
4795 else if (split)
4796 set = isl_set_intersect(set, isl_set_copy(min_expr));
4797 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4799 res = isl_set_union_disjoint(res, set);
4802 isl_set_free(empty);
4803 isl_set_free(min_expr);
4804 isl_mat_free(cst);
4805 return res;
4806 error:
4807 isl_set_free(empty);
4808 isl_set_free(min_expr);
4809 isl_mat_free(cst);
4810 return NULL;
4813 /* Given a map of which the last input variable is the minimum
4814 * of the bounds in "cst", split each basic set in the set
4815 * in pieces where one of the bounds is (strictly) smaller than the others.
4816 * This subdivision is given in "min_expr".
4817 * The variable is subsequently projected out.
4819 * The implementation is essentially the same as that of "split".
4821 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4822 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4824 int n_in;
4825 int i;
4826 isl_space *dim;
4827 isl_map *res;
4829 if (!opt || !min_expr || !cst)
4830 goto error;
4832 n_in = isl_map_dim(opt, isl_dim_in);
4833 dim = isl_map_get_space(opt);
4834 dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1);
4835 res = isl_map_empty(dim);
4837 for (i = 0; i < opt->n; ++i) {
4838 isl_map *map;
4839 isl_bool split;
4841 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4842 split = need_split_basic_map(opt->p[i], cst);
4843 if (split < 0)
4844 map = isl_map_free(map);
4845 else if (split)
4846 map = isl_map_intersect_domain(map,
4847 isl_set_copy(min_expr));
4848 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4850 res = isl_map_union_disjoint(res, map);
4853 isl_map_free(opt);
4854 isl_set_free(min_expr);
4855 isl_mat_free(cst);
4856 return res;
4857 error:
4858 isl_map_free(opt);
4859 isl_set_free(min_expr);
4860 isl_mat_free(cst);
4861 return NULL;
4864 static __isl_give isl_map *basic_map_partial_lexopt(
4865 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4866 __isl_give isl_set **empty, int max);
4868 /* This function is called from basic_map_partial_lexopt_symm.
4869 * The last variable of "bmap" and "dom" corresponds to the minimum
4870 * of the bounds in "cst". "map_space" is the space of the original
4871 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4872 * is the space of the original domain.
4874 * We recursively call basic_map_partial_lexopt and then plug in
4875 * the definition of the minimum in the result.
4877 static __isl_give isl_map *basic_map_partial_lexopt_symm_core(
4878 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4879 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4880 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
4882 isl_map *opt;
4883 isl_set *min_expr;
4885 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4887 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4889 if (empty) {
4890 *empty = split(*empty,
4891 isl_set_copy(min_expr), isl_mat_copy(cst));
4892 *empty = isl_set_reset_space(*empty, set_space);
4895 opt = split_domain(opt, min_expr, cst);
4896 opt = isl_map_reset_space(opt, map_space);
4898 return opt;
4901 /* Extract a domain from "bmap" for the purpose of computing
4902 * a lexicographic optimum.
4904 * This function is only called when the caller wants to compute a full
4905 * lexicographic optimum, i.e., without specifying a domain. In this case,
4906 * the caller is not interested in the part of the domain space where
4907 * there is no solution and the domain can be initialized to those constraints
4908 * of "bmap" that only involve the parameters and the input dimensions.
4909 * This relieves the parametric programming engine from detecting those
4910 * inequalities and transferring them to the context. More importantly,
4911 * it ensures that those inequalities are transferred first and not
4912 * intermixed with inequalities that actually split the domain.
4914 * If the caller does not require the absence of existentially quantified
4915 * variables in the result (i.e., if ISL_OPT_QE is not set in "flags"),
4916 * then the actual domain of "bmap" can be used. This ensures that
4917 * the domain does not need to be split at all just to separate out
4918 * pieces of the domain that do not have a solution from piece that do.
4919 * This domain cannot be used in general because it may involve
4920 * (unknown) existentially quantified variables which will then also
4921 * appear in the solution.
4923 static __isl_give isl_basic_set *extract_domain(__isl_keep isl_basic_map *bmap,
4924 unsigned flags)
4926 int n_div;
4927 int n_out;
4929 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4930 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4931 bmap = isl_basic_map_copy(bmap);
4932 if (ISL_FL_ISSET(flags, ISL_OPT_QE)) {
4933 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
4934 isl_dim_div, 0, n_div);
4935 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
4936 isl_dim_out, 0, n_out);
4938 return isl_basic_map_domain(bmap);
4941 #undef TYPE
4942 #define TYPE isl_map
4943 #undef SUFFIX
4944 #define SUFFIX
4945 #include "isl_tab_lexopt_templ.c"
4947 struct isl_sol_for {
4948 struct isl_sol sol;
4949 isl_stat (*fn)(__isl_take isl_basic_set *dom,
4950 __isl_take isl_aff_list *list, void *user);
4951 void *user;
4954 static void sol_for_free(struct isl_sol *sol)
4958 /* Add the solution identified by the tableau and the context tableau.
4959 * In particular, "dom" represents the context and "ma" expresses
4960 * the solution on that context.
4962 * See documentation of sol_add for more details.
4964 * Instead of constructing a basic map, this function calls a user
4965 * defined function with the current context as a basic set and
4966 * a list of affine expressions representing the relation between
4967 * the input and output. The space over which the affine expressions
4968 * are defined is the same as that of the domain. The number of
4969 * affine expressions in the list is equal to the number of output variables.
4971 static void sol_for_add(struct isl_sol_for *sol,
4972 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
4974 int i, n;
4975 isl_ctx *ctx;
4976 isl_aff *aff;
4977 isl_aff_list *list;
4979 if (sol->sol.error || !dom || !ma)
4980 goto error;
4982 ctx = isl_basic_set_get_ctx(dom);
4983 n = isl_multi_aff_dim(ma, isl_dim_out);
4984 list = isl_aff_list_alloc(ctx, n);
4985 for (i = 0; i < n; ++i) {
4986 aff = isl_multi_aff_get_aff(ma, i);
4987 list = isl_aff_list_add(list, aff);
4990 dom = isl_basic_set_finalize(dom);
4992 if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0)
4993 goto error;
4995 isl_basic_set_free(dom);
4996 isl_multi_aff_free(ma);
4997 return;
4998 error:
4999 isl_basic_set_free(dom);
5000 isl_multi_aff_free(ma);
5001 sol->sol.error = 1;
5004 static void sol_for_add_wrap(struct isl_sol *sol,
5005 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
5007 sol_for_add((struct isl_sol_for *)sol, dom, ma);
5010 static struct isl_sol_for *sol_for_init(__isl_keep isl_basic_map *bmap, int max,
5011 isl_stat (*fn)(__isl_take isl_basic_set *dom,
5012 __isl_take isl_aff_list *list, void *user),
5013 void *user)
5015 struct isl_sol_for *sol_for = NULL;
5016 isl_space *dom_dim;
5017 struct isl_basic_set *dom = NULL;
5019 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
5020 if (!sol_for)
5021 goto error;
5023 dom_dim = isl_space_domain(isl_space_copy(bmap->dim));
5024 dom = isl_basic_set_universe(dom_dim);
5026 sol_for->sol.free = &sol_for_free;
5027 if (sol_init(&sol_for->sol, bmap, dom, max) < 0)
5028 goto error;
5029 sol_for->fn = fn;
5030 sol_for->user = user;
5031 sol_for->sol.add = &sol_for_add_wrap;
5032 sol_for->sol.add_empty = NULL;
5034 isl_basic_set_free(dom);
5035 return sol_for;
5036 error:
5037 isl_basic_set_free(dom);
5038 sol_free(&sol_for->sol);
5039 return NULL;
5042 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
5043 struct isl_tab *tab)
5045 find_solutions_main(&sol_for->sol, tab);
5048 isl_stat isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
5049 isl_stat (*fn)(__isl_take isl_basic_set *dom,
5050 __isl_take isl_aff_list *list, void *user),
5051 void *user)
5053 struct isl_sol_for *sol_for = NULL;
5055 bmap = isl_basic_map_copy(bmap);
5056 bmap = isl_basic_map_detect_equalities(bmap);
5057 if (!bmap)
5058 return isl_stat_error;
5060 sol_for = sol_for_init(bmap, max, fn, user);
5061 if (!sol_for)
5062 goto error;
5064 if (isl_basic_map_plain_is_empty(bmap))
5065 /* nothing */;
5066 else {
5067 struct isl_tab *tab;
5068 struct isl_context *context = sol_for->sol.context;
5069 tab = tab_for_lexmin(bmap,
5070 context->op->peek_basic_set(context), 1, max);
5071 tab = context->op->detect_nonnegative_parameters(context, tab);
5072 sol_for_find_solutions(sol_for, tab);
5073 if (sol_for->sol.error)
5074 goto error;
5077 sol_free(&sol_for->sol);
5078 isl_basic_map_free(bmap);
5079 return isl_stat_ok;
5080 error:
5081 sol_free(&sol_for->sol);
5082 isl_basic_map_free(bmap);
5083 return isl_stat_error;
5086 /* Extract the subsequence of the sample value of "tab"
5087 * starting at "pos" and of length "len".
5089 static __isl_give isl_vec *extract_sample_sequence(struct isl_tab *tab,
5090 int pos, int len)
5092 int i;
5093 isl_ctx *ctx;
5094 isl_vec *v;
5096 ctx = isl_tab_get_ctx(tab);
5097 v = isl_vec_alloc(ctx, len);
5098 if (!v)
5099 return NULL;
5100 for (i = 0; i < len; ++i) {
5101 if (!tab->var[pos + i].is_row) {
5102 isl_int_set_si(v->el[i], 0);
5103 } else {
5104 int row;
5106 row = tab->var[pos + i].index;
5107 isl_int_divexact(v->el[i], tab->mat->row[row][1],
5108 tab->mat->row[row][0]);
5112 return v;
5115 /* Check if the sequence of variables starting at "pos"
5116 * represents a trivial solution according to "trivial".
5117 * That is, is the result of applying "trivial" to this sequence
5118 * equal to the zero vector?
5120 static isl_bool region_is_trivial(struct isl_tab *tab, int pos,
5121 __isl_keep isl_mat *trivial)
5123 int n, len;
5124 isl_vec *v;
5125 isl_bool is_trivial;
5127 if (!trivial)
5128 return isl_bool_error;
5130 n = isl_mat_rows(trivial);
5131 if (n == 0)
5132 return isl_bool_false;
5134 len = isl_mat_cols(trivial);
5135 v = extract_sample_sequence(tab, pos, len);
5136 v = isl_mat_vec_product(isl_mat_copy(trivial), v);
5137 is_trivial = isl_vec_is_zero(v);
5138 isl_vec_free(v);
5140 return is_trivial;
5143 /* Global internal data for isl_tab_basic_set_non_trivial_lexmin.
5145 * "n_op" is the number of initial coordinates to optimize,
5146 * as passed to isl_tab_basic_set_non_trivial_lexmin.
5147 * "region" is the "n_region"-sized array of regions passed
5148 * to isl_tab_basic_set_non_trivial_lexmin.
5150 * "tab" is the tableau that corresponds to the ILP problem.
5151 * "local" is an array of local data structure, one for each
5152 * (potential) level of the backtracking procedure of
5153 * isl_tab_basic_set_non_trivial_lexmin.
5154 * "v" is a pre-allocated vector that can be used for adding
5155 * constraints to the tableau.
5157 * "sol" contains the best solution found so far.
5158 * It is initialized to a vector of size zero.
5160 struct isl_lexmin_data {
5161 int n_op;
5162 int n_region;
5163 struct isl_trivial_region *region;
5165 struct isl_tab *tab;
5166 struct isl_local_region *local;
5167 isl_vec *v;
5169 isl_vec *sol;
5172 /* Return the index of the first trivial region, "n_region" if all regions
5173 * are non-trivial or -1 in case of error.
5175 static int first_trivial_region(struct isl_lexmin_data *data)
5177 int i;
5179 for (i = 0; i < data->n_region; ++i) {
5180 isl_bool trivial;
5181 trivial = region_is_trivial(data->tab, data->region[i].pos,
5182 data->region[i].trivial);
5183 if (trivial < 0)
5184 return -1;
5185 if (trivial)
5186 return i;
5189 return data->n_region;
5192 /* Check if the solution is optimal, i.e., whether the first
5193 * n_op entries are zero.
5195 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
5197 int i;
5199 for (i = 0; i < n_op; ++i)
5200 if (!isl_int_is_zero(sol->el[1 + i]))
5201 return 0;
5202 return 1;
5205 /* Add constraints to "tab" that ensure that any solution is significantly
5206 * better than that represented by "sol". That is, find the first
5207 * relevant (within first n_op) non-zero coefficient and force it (along
5208 * with all previous coefficients) to be zero.
5209 * If the solution is already optimal (all relevant coefficients are zero),
5210 * then just mark the table as empty.
5211 * "n_zero" is the number of coefficients that have been forced zero
5212 * by previous calls to this function at the same level.
5213 * Return the updated number of forced zero coefficients or -1 on error.
5215 * This function assumes that at least 2 * (n_op - n_zero) more rows and
5216 * at least 2 * (n_op - n_zero) more elements in the constraint array
5217 * are available in the tableau.
5219 static int force_better_solution(struct isl_tab *tab,
5220 __isl_keep isl_vec *sol, int n_op, int n_zero)
5222 int i, n;
5223 isl_ctx *ctx;
5224 isl_vec *v = NULL;
5226 if (!sol)
5227 return -1;
5229 for (i = n_zero; i < n_op; ++i)
5230 if (!isl_int_is_zero(sol->el[1 + i]))
5231 break;
5233 if (i == n_op) {
5234 if (isl_tab_mark_empty(tab) < 0)
5235 return -1;
5236 return n_op;
5239 ctx = isl_vec_get_ctx(sol);
5240 v = isl_vec_alloc(ctx, 1 + tab->n_var);
5241 if (!v)
5242 return -1;
5244 n = i + 1;
5245 for (; i >= n_zero; --i) {
5246 v = isl_vec_clr(v);
5247 isl_int_set_si(v->el[1 + i], -1);
5248 if (add_lexmin_eq(tab, v->el) < 0)
5249 goto error;
5252 isl_vec_free(v);
5253 return n;
5254 error:
5255 isl_vec_free(v);
5256 return -1;
5259 /* Fix triviality direction "dir" of the given region to zero.
5261 * This function assumes that at least two more rows and at least
5262 * two more elements in the constraint array are available in the tableau.
5264 static isl_stat fix_zero(struct isl_tab *tab, struct isl_trivial_region *region,
5265 int dir, struct isl_lexmin_data *data)
5267 int len;
5269 data->v = isl_vec_clr(data->v);
5270 if (!data->v)
5271 return isl_stat_error;
5272 len = isl_mat_cols(region->trivial);
5273 isl_seq_cpy(data->v->el + 1 + region->pos, region->trivial->row[dir],
5274 len);
5275 if (add_lexmin_eq(tab, data->v->el) < 0)
5276 return isl_stat_error;
5278 return isl_stat_ok;
5281 /* This function selects case "side" for non-triviality region "region",
5282 * assuming all the equality constraints have been imposed already.
5283 * In particular, the triviality direction side/2 is made positive
5284 * if side is even and made negative if side is odd.
5286 * This function assumes that at least one more row and at least
5287 * one more element in the constraint array are available in the tableau.
5289 static struct isl_tab *pos_neg(struct isl_tab *tab,
5290 struct isl_trivial_region *region,
5291 int side, struct isl_lexmin_data *data)
5293 int len;
5295 data->v = isl_vec_clr(data->v);
5296 if (!data->v)
5297 goto error;
5298 isl_int_set_si(data->v->el[0], -1);
5299 len = isl_mat_cols(region->trivial);
5300 if (side % 2 == 0)
5301 isl_seq_cpy(data->v->el + 1 + region->pos,
5302 region->trivial->row[side / 2], len);
5303 else
5304 isl_seq_neg(data->v->el + 1 + region->pos,
5305 region->trivial->row[side / 2], len);
5306 return add_lexmin_ineq(tab, data->v->el);
5307 error:
5308 isl_tab_free(tab);
5309 return NULL;
5312 /* Local data at each level of the backtracking procedure of
5313 * isl_tab_basic_set_non_trivial_lexmin.
5315 * "update" is set if a solution has been found in the current case
5316 * of this level, such that a better solution needs to be enforced
5317 * in the next case.
5318 * "n_zero" is the number of initial coordinates that have already
5319 * been forced to be zero at this level.
5320 * "region" is the non-triviality region considered at this level.
5321 * "side" is the index of the current case at this level.
5322 * "n" is the number of triviality directions.
5323 * "snap" is a snapshot of the tableau holding a state that needs
5324 * to be satisfied by all subsequent cases.
5326 struct isl_local_region {
5327 int update;
5328 int n_zero;
5329 int region;
5330 int side;
5331 int n;
5332 struct isl_tab_undo *snap;
5335 /* Initialize the global data structure "data" used while solving
5336 * the ILP problem "bset".
5338 static isl_stat init_lexmin_data(struct isl_lexmin_data *data,
5339 __isl_keep isl_basic_set *bset)
5341 isl_ctx *ctx;
5343 ctx = isl_basic_set_get_ctx(bset);
5345 data->tab = tab_for_lexmin(bset, NULL, 0, 0);
5346 if (!data->tab)
5347 return isl_stat_error;
5349 data->v = isl_vec_alloc(ctx, 1 + data->tab->n_var);
5350 if (!data->v)
5351 return isl_stat_error;
5352 data->local = isl_calloc_array(ctx, struct isl_local_region,
5353 data->n_region);
5354 if (data->n_region && !data->local)
5355 return isl_stat_error;
5357 data->sol = isl_vec_alloc(ctx, 0);
5359 return isl_stat_ok;
5362 /* Mark all outer levels as requiring a better solution
5363 * in the next cases.
5365 static void update_outer_levels(struct isl_lexmin_data *data, int level)
5367 int i;
5369 for (i = 0; i < level; ++i)
5370 data->local[i].update = 1;
5373 /* Initialize "local" to refer to region "region" and
5374 * to initiate processing at this level.
5376 static void init_local_region(struct isl_local_region *local, int region,
5377 struct isl_lexmin_data *data)
5379 local->n = isl_mat_rows(data->region[region].trivial);
5380 local->region = region;
5381 local->side = 0;
5382 local->update = 0;
5383 local->n_zero = 0;
5386 /* What to do next after entering a level of the backtracking procedure.
5388 * error: some error has occurred; abort
5389 * done: an optimal solution has been found; stop search
5390 * backtrack: backtrack to the previous level
5391 * handle: add the constraints for the current level and
5392 * move to the next level
5394 enum isl_next {
5395 isl_next_error = -1,
5396 isl_next_done,
5397 isl_next_backtrack,
5398 isl_next_handle,
5401 /* Have all cases of the current region been considered?
5402 * If there are n directions, then there are 2n cases.
5404 * The constraints in the current tableau are imposed
5405 * in all subsequent cases. This means that if the current
5406 * tableau is empty, then none of those cases should be considered
5407 * anymore and all cases have effectively been considered.
5409 static int finished_all_cases(struct isl_local_region *local,
5410 struct isl_lexmin_data *data)
5412 if (data->tab->empty)
5413 return 1;
5414 return local->side >= 2 * local->n;
5417 /* Enter level "level" of the backtracking search and figure out
5418 * what to do next. "init" is set if the level was entered
5419 * from a higher level and needs to be initialized.
5420 * Otherwise, the level is entered as a result of backtracking and
5421 * the tableau needs to be restored to a position that can
5422 * be used for the next case at this level.
5423 * The snapshot is assumed to have been saved in the previous case,
5424 * before the constraints specific to that case were added.
5426 * In the initialization case, the local region is initialized
5427 * to point to the first violated region.
5428 * If the constraints of all regions are satisfied by the current
5429 * sample of the tableau, then tell the caller to continue looking
5430 * for a better solution or to stop searching if an optimal solution
5431 * has been found.
5433 * If the tableau is empty or if all cases at the current level
5434 * have been considered, then the caller needs to backtrack as well.
5436 static enum isl_next enter_level(int level, int init,
5437 struct isl_lexmin_data *data)
5439 struct isl_local_region *local = &data->local[level];
5441 if (init) {
5442 int r;
5444 data->tab = cut_to_integer_lexmin(data->tab, CUT_ONE);
5445 if (!data->tab)
5446 return isl_next_error;
5447 if (data->tab->empty)
5448 return isl_next_backtrack;
5449 r = first_trivial_region(data);
5450 if (r < 0)
5451 return isl_next_error;
5452 if (r == data->n_region) {
5453 update_outer_levels(data, level);
5454 isl_vec_free(data->sol);
5455 data->sol = isl_tab_get_sample_value(data->tab);
5456 if (!data->sol)
5457 return isl_next_error;
5458 if (is_optimal(data->sol, data->n_op))
5459 return isl_next_done;
5460 return isl_next_backtrack;
5462 if (level >= data->n_region)
5463 isl_die(isl_vec_get_ctx(data->v), isl_error_internal,
5464 "nesting level too deep",
5465 return isl_next_error);
5466 init_local_region(local, r, data);
5467 if (isl_tab_extend_cons(data->tab,
5468 2 * local->n + 2 * data->n_op) < 0)
5469 return isl_next_error;
5470 } else {
5471 if (isl_tab_rollback(data->tab, local->snap) < 0)
5472 return isl_next_error;
5475 if (finished_all_cases(local, data))
5476 return isl_next_backtrack;
5477 return isl_next_handle;
5480 /* If a solution has been found in the previous case at this level
5481 * (marked by local->update being set), then add constraints
5482 * that enforce a better solution in the present and all following cases.
5483 * The constraints only need to be imposed once because they are
5484 * included in the snapshot (taken in pick_side) that will be used in
5485 * subsequent cases.
5487 static isl_stat better_next_side(struct isl_local_region *local,
5488 struct isl_lexmin_data *data)
5490 if (!local->update)
5491 return isl_stat_ok;
5493 local->n_zero = force_better_solution(data->tab,
5494 data->sol, data->n_op, local->n_zero);
5495 if (local->n_zero < 0)
5496 return isl_stat_error;
5498 local->update = 0;
5500 return isl_stat_ok;
5503 /* Add constraints to data->tab that select the current case (local->side)
5504 * at the current level.
5506 * If the linear combinations v should not be zero, then the cases are
5507 * v_0 >= 1
5508 * v_0 <= -1
5509 * v_0 = 0 and v_1 >= 1
5510 * v_0 = 0 and v_1 <= -1
5511 * v_0 = 0 and v_1 = 0 and v_2 >= 1
5512 * v_0 = 0 and v_1 = 0 and v_2 <= -1
5513 * ...
5514 * in this order.
5516 * A snapshot is taken after the equality constraint (if any) has been added
5517 * such that the next case can start off from this position.
5518 * The rollback to this position is performed in enter_level.
5520 static isl_stat pick_side(struct isl_local_region *local,
5521 struct isl_lexmin_data *data)
5523 struct isl_trivial_region *region;
5524 int side, base;
5526 region = &data->region[local->region];
5527 side = local->side;
5528 base = 2 * (side/2);
5530 if (side == base && base >= 2 &&
5531 fix_zero(data->tab, region, base / 2 - 1, data) < 0)
5532 return isl_stat_error;
5534 local->snap = isl_tab_snap(data->tab);
5535 if (isl_tab_push_basis(data->tab) < 0)
5536 return isl_stat_error;
5538 data->tab = pos_neg(data->tab, region, side, data);
5539 if (!data->tab)
5540 return isl_stat_error;
5541 return isl_stat_ok;
5544 /* Free the memory associated to "data".
5546 static void clear_lexmin_data(struct isl_lexmin_data *data)
5548 free(data->local);
5549 isl_vec_free(data->v);
5550 isl_tab_free(data->tab);
5553 /* Return the lexicographically smallest non-trivial solution of the
5554 * given ILP problem.
5556 * All variables are assumed to be non-negative.
5558 * n_op is the number of initial coordinates to optimize.
5559 * That is, once a solution has been found, we will only continue looking
5560 * for solutions that result in significantly better values for those
5561 * initial coordinates. That is, we only continue looking for solutions
5562 * that increase the number of initial zeros in this sequence.
5564 * A solution is non-trivial, if it is non-trivial on each of the
5565 * specified regions. Each region represents a sequence of
5566 * triviality directions on a sequence of variables that starts
5567 * at a given position. A solution is non-trivial on such a region if
5568 * at least one of the triviality directions is non-zero
5569 * on that sequence of variables.
5571 * Whenever a conflict is encountered, all constraints involved are
5572 * reported to the caller through a call to "conflict".
5574 * We perform a simple branch-and-bound backtracking search.
5575 * Each level in the search represents an initially trivial region
5576 * that is forced to be non-trivial.
5577 * At each level we consider 2 * n cases, where n
5578 * is the number of triviality directions.
5579 * In terms of those n directions v_i, we consider the cases
5580 * v_0 >= 1
5581 * v_0 <= -1
5582 * v_0 = 0 and v_1 >= 1
5583 * v_0 = 0 and v_1 <= -1
5584 * v_0 = 0 and v_1 = 0 and v_2 >= 1
5585 * v_0 = 0 and v_1 = 0 and v_2 <= -1
5586 * ...
5587 * in this order.
5589 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
5590 __isl_take isl_basic_set *bset, int n_op, int n_region,
5591 struct isl_trivial_region *region,
5592 int (*conflict)(int con, void *user), void *user)
5594 struct isl_lexmin_data data = { n_op, n_region, region };
5595 int level, init;
5597 if (!bset)
5598 return NULL;
5600 if (init_lexmin_data(&data, bset) < 0)
5601 goto error;
5602 data.tab->conflict = conflict;
5603 data.tab->conflict_user = user;
5605 level = 0;
5606 init = 1;
5608 while (level >= 0) {
5609 enum isl_next next;
5610 struct isl_local_region *local = &data.local[level];
5612 next = enter_level(level, init, &data);
5613 if (next < 0)
5614 goto error;
5615 if (next == isl_next_done)
5616 break;
5617 if (next == isl_next_backtrack) {
5618 level--;
5619 init = 0;
5620 continue;
5623 if (better_next_side(local, &data) < 0)
5624 goto error;
5625 if (pick_side(local, &data) < 0)
5626 goto error;
5628 local->side++;
5629 level++;
5630 init = 1;
5633 clear_lexmin_data(&data);
5634 isl_basic_set_free(bset);
5636 return data.sol;
5637 error:
5638 clear_lexmin_data(&data);
5639 isl_basic_set_free(bset);
5640 isl_vec_free(data.sol);
5641 return NULL;
5644 /* Wrapper for a tableau that is used for computing
5645 * the lexicographically smallest rational point of a non-negative set.
5646 * This point is represented by the sample value of "tab",
5647 * unless "tab" is empty.
5649 struct isl_tab_lexmin {
5650 isl_ctx *ctx;
5651 struct isl_tab *tab;
5654 /* Free "tl" and return NULL.
5656 __isl_null isl_tab_lexmin *isl_tab_lexmin_free(__isl_take isl_tab_lexmin *tl)
5658 if (!tl)
5659 return NULL;
5660 isl_ctx_deref(tl->ctx);
5661 isl_tab_free(tl->tab);
5662 free(tl);
5664 return NULL;
5667 /* Construct an isl_tab_lexmin for computing
5668 * the lexicographically smallest rational point in "bset",
5669 * assuming that all variables are non-negative.
5671 __isl_give isl_tab_lexmin *isl_tab_lexmin_from_basic_set(
5672 __isl_take isl_basic_set *bset)
5674 isl_ctx *ctx;
5675 isl_tab_lexmin *tl;
5677 if (!bset)
5678 return NULL;
5680 ctx = isl_basic_set_get_ctx(bset);
5681 tl = isl_calloc_type(ctx, struct isl_tab_lexmin);
5682 if (!tl)
5683 goto error;
5684 tl->ctx = ctx;
5685 isl_ctx_ref(ctx);
5686 tl->tab = tab_for_lexmin(bset, NULL, 0, 0);
5687 isl_basic_set_free(bset);
5688 if (!tl->tab)
5689 return isl_tab_lexmin_free(tl);
5690 return tl;
5691 error:
5692 isl_basic_set_free(bset);
5693 isl_tab_lexmin_free(tl);
5694 return NULL;
5697 /* Return the dimension of the set represented by "tl".
5699 int isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin *tl)
5701 return tl ? tl->tab->n_var : -1;
5704 /* Add the equality with coefficients "eq" to "tl", updating the optimal
5705 * solution if needed.
5706 * The equality is added as two opposite inequality constraints.
5708 __isl_give isl_tab_lexmin *isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin *tl,
5709 isl_int *eq)
5711 unsigned n_var;
5713 if (!tl || !eq)
5714 return isl_tab_lexmin_free(tl);
5716 if (isl_tab_extend_cons(tl->tab, 2) < 0)
5717 return isl_tab_lexmin_free(tl);
5718 n_var = tl->tab->n_var;
5719 isl_seq_neg(eq, eq, 1 + n_var);
5720 tl->tab = add_lexmin_ineq(tl->tab, eq);
5721 isl_seq_neg(eq, eq, 1 + n_var);
5722 tl->tab = add_lexmin_ineq(tl->tab, eq);
5724 if (!tl->tab)
5725 return isl_tab_lexmin_free(tl);
5727 return tl;
5730 /* Add cuts to "tl" until the sample value reaches an integer value or
5731 * until the result becomes empty.
5733 __isl_give isl_tab_lexmin *isl_tab_lexmin_cut_to_integer(
5734 __isl_take isl_tab_lexmin *tl)
5736 if (!tl)
5737 return NULL;
5738 tl->tab = cut_to_integer_lexmin(tl->tab, CUT_ONE);
5739 if (!tl->tab)
5740 return isl_tab_lexmin_free(tl);
5741 return tl;
5744 /* Return the lexicographically smallest rational point in the basic set
5745 * from which "tl" was constructed.
5746 * If the original input was empty, then return a zero-length vector.
5748 __isl_give isl_vec *isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin *tl)
5750 if (!tl)
5751 return NULL;
5752 if (tl->tab->empty)
5753 return isl_vec_alloc(tl->ctx, 0);
5754 else
5755 return isl_tab_get_sample_value(tl->tab);
5758 struct isl_sol_pma {
5759 struct isl_sol sol;
5760 isl_pw_multi_aff *pma;
5761 isl_set *empty;
5764 static void sol_pma_free(struct isl_sol *sol)
5766 struct isl_sol_pma *sol_pma = (struct isl_sol_pma *) sol;
5767 isl_pw_multi_aff_free(sol_pma->pma);
5768 isl_set_free(sol_pma->empty);
5771 /* This function is called for parts of the context where there is
5772 * no solution, with "bset" corresponding to the context tableau.
5773 * Simply add the basic set to the set "empty".
5775 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5776 __isl_take isl_basic_set *bset)
5778 if (!bset || !sol->empty)
5779 goto error;
5781 sol->empty = isl_set_grow(sol->empty, 1);
5782 bset = isl_basic_set_simplify(bset);
5783 bset = isl_basic_set_finalize(bset);
5784 sol->empty = isl_set_add_basic_set(sol->empty, bset);
5785 if (!sol->empty)
5786 sol->sol.error = 1;
5787 return;
5788 error:
5789 isl_basic_set_free(bset);
5790 sol->sol.error = 1;
5793 /* Given a basic set "dom" that represents the context and a tuple of
5794 * affine expressions "maff" defined over this domain, construct
5795 * an isl_pw_multi_aff with a single cell corresponding to "dom" and
5796 * the affine expressions in "maff".
5798 static void sol_pma_add(struct isl_sol_pma *sol,
5799 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *maff)
5801 isl_pw_multi_aff *pma;
5803 dom = isl_basic_set_simplify(dom);
5804 dom = isl_basic_set_finalize(dom);
5805 pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5806 sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5807 if (!sol->pma)
5808 sol->sol.error = 1;
5811 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5812 __isl_take isl_basic_set *bset)
5814 sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5817 static void sol_pma_add_wrap(struct isl_sol *sol,
5818 __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
5820 sol_pma_add((struct isl_sol_pma *)sol, dom, ma);
5823 /* Construct an isl_sol_pma structure for accumulating the solution.
5824 * If track_empty is set, then we also keep track of the parts
5825 * of the context where there is no solution.
5826 * If max is set, then we are solving a maximization, rather than
5827 * a minimization problem, which means that the variables in the
5828 * tableau have value "M - x" rather than "M + x".
5830 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5831 __isl_take isl_basic_set *dom, int track_empty, int max)
5833 struct isl_sol_pma *sol_pma = NULL;
5834 isl_space *space;
5836 if (!bmap)
5837 goto error;
5839 sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5840 if (!sol_pma)
5841 goto error;
5843 sol_pma->sol.free = &sol_pma_free;
5844 if (sol_init(&sol_pma->sol, bmap, dom, max) < 0)
5845 goto error;
5846 sol_pma->sol.add = &sol_pma_add_wrap;
5847 sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5848 space = isl_space_copy(sol_pma->sol.space);
5849 sol_pma->pma = isl_pw_multi_aff_empty(space);
5850 if (!sol_pma->pma)
5851 goto error;
5853 if (track_empty) {
5854 sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5855 1, ISL_SET_DISJOINT);
5856 if (!sol_pma->empty)
5857 goto error;
5860 isl_basic_set_free(dom);
5861 return &sol_pma->sol;
5862 error:
5863 isl_basic_set_free(dom);
5864 sol_free(&sol_pma->sol);
5865 return NULL;
5868 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5869 * some obvious symmetries.
5871 * We call basic_map_partial_lexopt_base_sol and extract the results.
5873 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pw_multi_aff(
5874 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5875 __isl_give isl_set **empty, int max)
5877 isl_pw_multi_aff *result = NULL;
5878 struct isl_sol *sol;
5879 struct isl_sol_pma *sol_pma;
5881 sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max,
5882 &sol_pma_init);
5883 if (!sol)
5884 return NULL;
5885 sol_pma = (struct isl_sol_pma *) sol;
5887 result = isl_pw_multi_aff_copy(sol_pma->pma);
5888 if (empty)
5889 *empty = isl_set_copy(sol_pma->empty);
5890 sol_free(&sol_pma->sol);
5891 return result;
5894 /* Given that the last input variable of "maff" represents the minimum
5895 * of some bounds, check whether we need to plug in the expression
5896 * of the minimum.
5898 * In particular, check if the last input variable appears in any
5899 * of the expressions in "maff".
5901 static int need_substitution(__isl_keep isl_multi_aff *maff)
5903 int i;
5904 unsigned pos;
5906 pos = isl_multi_aff_dim(maff, isl_dim_in) - 1;
5908 for (i = 0; i < maff->n; ++i)
5909 if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1))
5910 return 1;
5912 return 0;
5915 /* Given a set of upper bounds on the last "input" variable m,
5916 * construct a piecewise affine expression that selects
5917 * the minimal upper bound to m, i.e.,
5918 * divide the space into cells where one
5919 * of the upper bounds is smaller than all the others and select
5920 * this upper bound on that cell.
5922 * In particular, if there are n bounds b_i, then the result
5923 * consists of n cell, each one of the form
5925 * b_i <= b_j for j > i
5926 * b_i < b_j for j < i
5928 * The affine expression on this cell is
5930 * b_i
5932 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5933 __isl_take isl_mat *var)
5935 int i;
5936 isl_aff *aff = NULL;
5937 isl_basic_set *bset = NULL;
5938 isl_pw_aff *paff = NULL;
5939 isl_space *pw_space;
5940 isl_local_space *ls = NULL;
5942 if (!space || !var)
5943 goto error;
5945 ls = isl_local_space_from_space(isl_space_copy(space));
5946 pw_space = isl_space_copy(space);
5947 pw_space = isl_space_from_domain(pw_space);
5948 pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5949 paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5951 for (i = 0; i < var->n_row; ++i) {
5952 isl_pw_aff *paff_i;
5954 aff = isl_aff_alloc(isl_local_space_copy(ls));
5955 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5956 0, var->n_row - 1);
5957 if (!aff || !bset)
5958 goto error;
5959 isl_int_set_si(aff->v->el[0], 1);
5960 isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5961 isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5962 bset = select_minimum(bset, var, i);
5963 paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5964 paff = isl_pw_aff_add_disjoint(paff, paff_i);
5967 isl_local_space_free(ls);
5968 isl_space_free(space);
5969 isl_mat_free(var);
5970 return paff;
5971 error:
5972 isl_aff_free(aff);
5973 isl_basic_set_free(bset);
5974 isl_pw_aff_free(paff);
5975 isl_local_space_free(ls);
5976 isl_space_free(space);
5977 isl_mat_free(var);
5978 return NULL;
5981 /* Given a piecewise multi-affine expression of which the last input variable
5982 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5983 * This minimum expression is given in "min_expr_pa".
5984 * The set "min_expr" contains the same information, but in the form of a set.
5985 * The variable is subsequently projected out.
5987 * The implementation is similar to those of "split" and "split_domain".
5988 * If the variable appears in a given expression, then minimum expression
5989 * is plugged in. Otherwise, if the variable appears in the constraints
5990 * and a split is required, then the domain is split. Otherwise, no split
5991 * is performed.
5993 static __isl_give isl_pw_multi_aff *split_domain_pma(
5994 __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5995 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5997 int n_in;
5998 int i;
5999 isl_space *space;
6000 isl_pw_multi_aff *res;
6002 if (!opt || !min_expr || !cst)
6003 goto error;
6005 n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
6006 space = isl_pw_multi_aff_get_space(opt);
6007 space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
6008 res = isl_pw_multi_aff_empty(space);
6010 for (i = 0; i < opt->n; ++i) {
6011 isl_pw_multi_aff *pma;
6013 pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
6014 isl_multi_aff_copy(opt->p[i].maff));
6015 if (need_substitution(opt->p[i].maff))
6016 pma = isl_pw_multi_aff_substitute(pma,
6017 isl_dim_in, n_in - 1, min_expr_pa);
6018 else {
6019 isl_bool split;
6020 split = need_split_set(opt->p[i].set, cst);
6021 if (split < 0)
6022 pma = isl_pw_multi_aff_free(pma);
6023 else if (split)
6024 pma = isl_pw_multi_aff_intersect_domain(pma,
6025 isl_set_copy(min_expr));
6027 pma = isl_pw_multi_aff_project_out(pma,
6028 isl_dim_in, n_in - 1, 1);
6030 res = isl_pw_multi_aff_add_disjoint(res, pma);
6033 isl_pw_multi_aff_free(opt);
6034 isl_pw_aff_free(min_expr_pa);
6035 isl_set_free(min_expr);
6036 isl_mat_free(cst);
6037 return res;
6038 error:
6039 isl_pw_multi_aff_free(opt);
6040 isl_pw_aff_free(min_expr_pa);
6041 isl_set_free(min_expr);
6042 isl_mat_free(cst);
6043 return NULL;
6046 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pw_multi_aff(
6047 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
6048 __isl_give isl_set **empty, int max);
6050 /* This function is called from basic_map_partial_lexopt_symm.
6051 * The last variable of "bmap" and "dom" corresponds to the minimum
6052 * of the bounds in "cst". "map_space" is the space of the original
6053 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
6054 * is the space of the original domain.
6056 * We recursively call basic_map_partial_lexopt and then plug in
6057 * the definition of the minimum in the result.
6059 static __isl_give isl_pw_multi_aff *
6060 basic_map_partial_lexopt_symm_core_pw_multi_aff(
6061 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
6062 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
6063 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
6065 isl_pw_multi_aff *opt;
6066 isl_pw_aff *min_expr_pa;
6067 isl_set *min_expr;
6069 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
6070 min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
6071 isl_mat_copy(cst));
6073 opt = basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, max);
6075 if (empty) {
6076 *empty = split(*empty,
6077 isl_set_copy(min_expr), isl_mat_copy(cst));
6078 *empty = isl_set_reset_space(*empty, set_space);
6081 opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
6082 opt = isl_pw_multi_aff_reset_space(opt, map_space);
6084 return opt;
6087 #undef TYPE
6088 #define TYPE isl_pw_multi_aff
6089 #undef SUFFIX
6090 #define SUFFIX _pw_multi_aff
6091 #include "isl_tab_lexopt_templ.c"