doc: clean up isl_val documentation
[isl.git] / isl_schedule.c
blobe65a7f8525c66865e5f84bd7d11a39028f6d9b61
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
32 #include <isl_morph.h>
35 * The scheduling algorithm implemented in this file was inspired by
36 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
37 * Parallelization and Locality Optimization in the Polyhedral Model".
40 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
41 __isl_keep isl_schedule_constraints *sc)
43 isl_ctx *ctx;
44 isl_schedule_constraints *sc_copy;
45 enum isl_edge_type i;
47 ctx = isl_union_set_get_ctx(sc->domain);
48 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
49 if (!sc_copy)
50 return NULL;
52 sc_copy->domain = isl_union_set_copy(sc->domain);
53 if (!sc_copy->domain)
54 return isl_schedule_constraints_free(sc_copy);
56 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
57 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
58 if (!sc_copy->constraint[i])
59 return isl_schedule_constraints_free(sc_copy);
62 return sc_copy;
66 /* Construct an isl_schedule_constraints object for computing a schedule
67 * on "domain". The initial object does not impose any constraints.
69 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
70 __isl_take isl_union_set *domain)
72 isl_ctx *ctx;
73 isl_space *space;
74 isl_schedule_constraints *sc;
75 isl_union_map *empty;
76 enum isl_edge_type i;
78 if (!domain)
79 return NULL;
81 ctx = isl_union_set_get_ctx(domain);
82 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
83 if (!sc)
84 goto error;
86 space = isl_union_set_get_space(domain);
87 sc->domain = domain;
88 empty = isl_union_map_empty(space);
89 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
90 sc->constraint[i] = isl_union_map_copy(empty);
91 if (!sc->constraint[i])
92 sc->domain = isl_union_set_free(sc->domain);
94 isl_union_map_free(empty);
96 if (!sc->domain)
97 return isl_schedule_constraints_free(sc);
99 return sc;
100 error:
101 isl_union_set_free(domain);
102 return NULL;
105 /* Replace the validity constraints of "sc" by "validity".
107 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
108 __isl_take isl_schedule_constraints *sc,
109 __isl_take isl_union_map *validity)
111 if (!sc || !validity)
112 goto error;
114 isl_union_map_free(sc->constraint[isl_edge_validity]);
115 sc->constraint[isl_edge_validity] = validity;
117 return sc;
118 error:
119 isl_schedule_constraints_free(sc);
120 isl_union_map_free(validity);
121 return NULL;
124 /* Replace the coincidence constraints of "sc" by "coincidence".
126 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
127 __isl_take isl_schedule_constraints *sc,
128 __isl_take isl_union_map *coincidence)
130 if (!sc || !coincidence)
131 goto error;
133 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
134 sc->constraint[isl_edge_coincidence] = coincidence;
136 return sc;
137 error:
138 isl_schedule_constraints_free(sc);
139 isl_union_map_free(coincidence);
140 return NULL;
143 /* Replace the proximity constraints of "sc" by "proximity".
145 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
146 __isl_take isl_schedule_constraints *sc,
147 __isl_take isl_union_map *proximity)
149 if (!sc || !proximity)
150 goto error;
152 isl_union_map_free(sc->constraint[isl_edge_proximity]);
153 sc->constraint[isl_edge_proximity] = proximity;
155 return sc;
156 error:
157 isl_schedule_constraints_free(sc);
158 isl_union_map_free(proximity);
159 return NULL;
162 /* Replace the conditional validity constraints of "sc" by "condition"
163 * and "validity".
165 __isl_give isl_schedule_constraints *
166 isl_schedule_constraints_set_conditional_validity(
167 __isl_take isl_schedule_constraints *sc,
168 __isl_take isl_union_map *condition,
169 __isl_take isl_union_map *validity)
171 if (!sc || !condition || !validity)
172 goto error;
174 isl_union_map_free(sc->constraint[isl_edge_condition]);
175 sc->constraint[isl_edge_condition] = condition;
176 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
177 sc->constraint[isl_edge_conditional_validity] = validity;
179 return sc;
180 error:
181 isl_schedule_constraints_free(sc);
182 isl_union_map_free(condition);
183 isl_union_map_free(validity);
184 return NULL;
187 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
188 __isl_take isl_schedule_constraints *sc)
190 enum isl_edge_type i;
192 if (!sc)
193 return NULL;
195 isl_union_set_free(sc->domain);
196 for (i = isl_edge_first; i <= isl_edge_last; ++i)
197 isl_union_map_free(sc->constraint[i]);
199 free(sc);
201 return NULL;
204 isl_ctx *isl_schedule_constraints_get_ctx(
205 __isl_keep isl_schedule_constraints *sc)
207 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
210 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
212 if (!sc)
213 return;
215 fprintf(stderr, "domain: ");
216 isl_union_set_dump(sc->domain);
217 fprintf(stderr, "validity: ");
218 isl_union_map_dump(sc->constraint[isl_edge_validity]);
219 fprintf(stderr, "proximity: ");
220 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
221 fprintf(stderr, "coincidence: ");
222 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
223 fprintf(stderr, "condition: ");
224 isl_union_map_dump(sc->constraint[isl_edge_condition]);
225 fprintf(stderr, "conditional_validity: ");
226 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
229 /* Align the parameters of the fields of "sc".
231 static __isl_give isl_schedule_constraints *
232 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
234 isl_space *space;
235 enum isl_edge_type i;
237 if (!sc)
238 return NULL;
240 space = isl_union_set_get_space(sc->domain);
241 for (i = isl_edge_first; i <= isl_edge_last; ++i)
242 space = isl_space_align_params(space,
243 isl_union_map_get_space(sc->constraint[i]));
245 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
246 sc->constraint[i] = isl_union_map_align_params(
247 sc->constraint[i], isl_space_copy(space));
248 if (!sc->constraint[i])
249 space = isl_space_free(space);
251 sc->domain = isl_union_set_align_params(sc->domain, space);
252 if (!sc->domain)
253 return isl_schedule_constraints_free(sc);
255 return sc;
258 /* Return the total number of isl_maps in the constraints of "sc".
260 static __isl_give int isl_schedule_constraints_n_map(
261 __isl_keep isl_schedule_constraints *sc)
263 enum isl_edge_type i;
264 int n = 0;
266 for (i = isl_edge_first; i <= isl_edge_last; ++i)
267 n += isl_union_map_n_map(sc->constraint[i]);
269 return n;
272 /* Internal information about a node that is used during the construction
273 * of a schedule.
274 * space represents the space in which the domain lives
275 * sched is a matrix representation of the schedule being constructed
276 * for this node; if compressed is set, then this schedule is
277 * defined over the compressed domain space
278 * sched_map is an isl_map representation of the same (partial) schedule
279 * sched_map may be NULL; if compressed is set, then this map
280 * is defined over the uncompressed domain space
281 * rank is the number of linearly independent rows in the linear part
282 * of sched
283 * the columns of cmap represent a change of basis for the schedule
284 * coefficients; the first rank columns span the linear part of
285 * the schedule rows
286 * cinv is the inverse of cmap.
287 * start is the first variable in the LP problem in the sequences that
288 * represents the schedule coefficients of this node
289 * nvar is the dimension of the domain
290 * nparam is the number of parameters or 0 if we are not constructing
291 * a parametric schedule
293 * If compressed is set, then hull represents the constraints
294 * that were used to derive the compression, while compress and
295 * decompress map the original space to the compressed space and
296 * vice versa.
298 * scc is the index of SCC (or WCC) this node belongs to
300 * band contains the band index for each of the rows of the schedule.
301 * band_id is used to differentiate between separate bands at the same
302 * level within the same parent band, i.e., bands that are separated
303 * by the parent band or bands that are independent of each other.
304 * coincident contains a boolean for each of the rows of the schedule,
305 * indicating whether the corresponding scheduling dimension satisfies
306 * the coincidence constraints in the sense that the corresponding
307 * dependence distances are zero.
309 struct isl_sched_node {
310 isl_space *space;
311 int compressed;
312 isl_set *hull;
313 isl_multi_aff *compress;
314 isl_multi_aff *decompress;
315 isl_mat *sched;
316 isl_map *sched_map;
317 int rank;
318 isl_mat *cmap;
319 isl_mat *cinv;
320 int start;
321 int nvar;
322 int nparam;
324 int scc;
326 int *band;
327 int *band_id;
328 int *coincident;
331 static int node_has_space(const void *entry, const void *val)
333 struct isl_sched_node *node = (struct isl_sched_node *)entry;
334 isl_space *dim = (isl_space *)val;
336 return isl_space_is_equal(node->space, dim);
339 /* An edge in the dependence graph. An edge may be used to
340 * ensure validity of the generated schedule, to minimize the dependence
341 * distance or both
343 * map is the dependence relation, with i -> j in the map if j depends on i
344 * tagged_condition and tagged_validity contain the union of all tagged
345 * condition or conditional validity dependence relations that
346 * specialize the dependence relation "map"; that is,
347 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
348 * or "tagged_validity", then i -> j is an element of "map".
349 * If these fields are NULL, then they represent the empty relation.
350 * src is the source node
351 * dst is the sink node
352 * validity is set if the edge is used to ensure correctness
353 * coincidence is used to enforce zero dependence distances
354 * proximity is set if the edge is used to minimize dependence distances
355 * condition is set if the edge represents a condition
356 * for a conditional validity schedule constraint
357 * local can only be set for condition edges and indicates that
358 * the dependence distance over the edge should be zero
359 * conditional_validity is set if the edge is used to conditionally
360 * ensure correctness
362 * For validity edges, start and end mark the sequence of inequality
363 * constraints in the LP problem that encode the validity constraint
364 * corresponding to this edge.
366 struct isl_sched_edge {
367 isl_map *map;
368 isl_union_map *tagged_condition;
369 isl_union_map *tagged_validity;
371 struct isl_sched_node *src;
372 struct isl_sched_node *dst;
374 unsigned validity : 1;
375 unsigned coincidence : 1;
376 unsigned proximity : 1;
377 unsigned local : 1;
378 unsigned condition : 1;
379 unsigned conditional_validity : 1;
381 int start;
382 int end;
385 /* Internal information about the dependence graph used during
386 * the construction of the schedule.
388 * intra_hmap is a cache, mapping dependence relations to their dual,
389 * for dependences from a node to itself
390 * inter_hmap is a cache, mapping dependence relations to their dual,
391 * for dependences between distinct nodes
392 * if compression is involved then the key for these maps
393 * it the original, uncompressed dependence relation, while
394 * the value is the dual of the compressed dependence relation.
396 * n is the number of nodes
397 * node is the list of nodes
398 * maxvar is the maximal number of variables over all nodes
399 * max_row is the allocated number of rows in the schedule
400 * n_row is the current (maximal) number of linearly independent
401 * rows in the node schedules
402 * n_total_row is the current number of rows in the node schedules
403 * n_band is the current number of completed bands
404 * band_start is the starting row in the node schedules of the current band
405 * root is set if this graph is the original dependence graph,
406 * without any splitting
408 * sorted contains a list of node indices sorted according to the
409 * SCC to which a node belongs
411 * n_edge is the number of edges
412 * edge is the list of edges
413 * max_edge contains the maximal number of edges of each type;
414 * in particular, it contains the number of edges in the inital graph.
415 * edge_table contains pointers into the edge array, hashed on the source
416 * and sink spaces; there is one such table for each type;
417 * a given edge may be referenced from more than one table
418 * if the corresponding relation appears in more than of the
419 * sets of dependences
421 * node_table contains pointers into the node array, hashed on the space
423 * region contains a list of variable sequences that should be non-trivial
425 * lp contains the (I)LP problem used to obtain new schedule rows
427 * src_scc and dst_scc are the source and sink SCCs of an edge with
428 * conflicting constraints
430 * scc represents the number of components
432 struct isl_sched_graph {
433 isl_map_to_basic_set *intra_hmap;
434 isl_map_to_basic_set *inter_hmap;
436 struct isl_sched_node *node;
437 int n;
438 int maxvar;
439 int max_row;
440 int n_row;
442 int *sorted;
444 int n_band;
445 int n_total_row;
446 int band_start;
448 int root;
450 struct isl_sched_edge *edge;
451 int n_edge;
452 int max_edge[isl_edge_last + 1];
453 struct isl_hash_table *edge_table[isl_edge_last + 1];
455 struct isl_hash_table *node_table;
456 struct isl_region *region;
458 isl_basic_set *lp;
460 int src_scc;
461 int dst_scc;
463 int scc;
466 /* Initialize node_table based on the list of nodes.
468 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
470 int i;
472 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
473 if (!graph->node_table)
474 return -1;
476 for (i = 0; i < graph->n; ++i) {
477 struct isl_hash_table_entry *entry;
478 uint32_t hash;
480 hash = isl_space_get_hash(graph->node[i].space);
481 entry = isl_hash_table_find(ctx, graph->node_table, hash,
482 &node_has_space,
483 graph->node[i].space, 1);
484 if (!entry)
485 return -1;
486 entry->data = &graph->node[i];
489 return 0;
492 /* Return a pointer to the node that lives within the given space,
493 * or NULL if there is no such node.
495 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
496 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
498 struct isl_hash_table_entry *entry;
499 uint32_t hash;
501 hash = isl_space_get_hash(dim);
502 entry = isl_hash_table_find(ctx, graph->node_table, hash,
503 &node_has_space, dim, 0);
505 return entry ? entry->data : NULL;
508 static int edge_has_src_and_dst(const void *entry, const void *val)
510 const struct isl_sched_edge *edge = entry;
511 const struct isl_sched_edge *temp = val;
513 return edge->src == temp->src && edge->dst == temp->dst;
516 /* Add the given edge to graph->edge_table[type].
518 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
519 enum isl_edge_type type, struct isl_sched_edge *edge)
521 struct isl_hash_table_entry *entry;
522 uint32_t hash;
524 hash = isl_hash_init();
525 hash = isl_hash_builtin(hash, edge->src);
526 hash = isl_hash_builtin(hash, edge->dst);
527 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
528 &edge_has_src_and_dst, edge, 1);
529 if (!entry)
530 return -1;
531 entry->data = edge;
533 return 0;
536 /* Allocate the edge_tables based on the maximal number of edges of
537 * each type.
539 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
541 int i;
543 for (i = 0; i <= isl_edge_last; ++i) {
544 graph->edge_table[i] = isl_hash_table_alloc(ctx,
545 graph->max_edge[i]);
546 if (!graph->edge_table[i])
547 return -1;
550 return 0;
553 /* If graph->edge_table[type] contains an edge from the given source
554 * to the given destination, then return the hash table entry of this edge.
555 * Otherwise, return NULL.
557 static struct isl_hash_table_entry *graph_find_edge_entry(
558 struct isl_sched_graph *graph,
559 enum isl_edge_type type,
560 struct isl_sched_node *src, struct isl_sched_node *dst)
562 isl_ctx *ctx = isl_space_get_ctx(src->space);
563 uint32_t hash;
564 struct isl_sched_edge temp = { .src = src, .dst = dst };
566 hash = isl_hash_init();
567 hash = isl_hash_builtin(hash, temp.src);
568 hash = isl_hash_builtin(hash, temp.dst);
569 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
570 &edge_has_src_and_dst, &temp, 0);
574 /* If graph->edge_table[type] contains an edge from the given source
575 * to the given destination, then return this edge.
576 * Otherwise, return NULL.
578 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
579 enum isl_edge_type type,
580 struct isl_sched_node *src, struct isl_sched_node *dst)
582 struct isl_hash_table_entry *entry;
584 entry = graph_find_edge_entry(graph, type, src, dst);
585 if (!entry)
586 return NULL;
588 return entry->data;
591 /* Check whether the dependence graph has an edge of the given type
592 * between the given two nodes.
594 static int graph_has_edge(struct isl_sched_graph *graph,
595 enum isl_edge_type type,
596 struct isl_sched_node *src, struct isl_sched_node *dst)
598 struct isl_sched_edge *edge;
599 int empty;
601 edge = graph_find_edge(graph, type, src, dst);
602 if (!edge)
603 return 0;
605 empty = isl_map_plain_is_empty(edge->map);
606 if (empty < 0)
607 return -1;
609 return !empty;
612 /* Look for any edge with the same src, dst and map fields as "model".
614 * Return the matching edge if one can be found.
615 * Return "model" if no matching edge is found.
616 * Return NULL on error.
618 static struct isl_sched_edge *graph_find_matching_edge(
619 struct isl_sched_graph *graph, struct isl_sched_edge *model)
621 enum isl_edge_type i;
622 struct isl_sched_edge *edge;
624 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
625 int is_equal;
627 edge = graph_find_edge(graph, i, model->src, model->dst);
628 if (!edge)
629 continue;
630 is_equal = isl_map_plain_is_equal(model->map, edge->map);
631 if (is_equal < 0)
632 return NULL;
633 if (is_equal)
634 return edge;
637 return model;
640 /* Remove the given edge from all the edge_tables that refer to it.
642 static void graph_remove_edge(struct isl_sched_graph *graph,
643 struct isl_sched_edge *edge)
645 isl_ctx *ctx = isl_map_get_ctx(edge->map);
646 enum isl_edge_type i;
648 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
649 struct isl_hash_table_entry *entry;
651 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
652 if (!entry)
653 continue;
654 if (entry->data != edge)
655 continue;
656 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
660 /* Check whether the dependence graph has any edge
661 * between the given two nodes.
663 static int graph_has_any_edge(struct isl_sched_graph *graph,
664 struct isl_sched_node *src, struct isl_sched_node *dst)
666 enum isl_edge_type i;
667 int r;
669 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
670 r = graph_has_edge(graph, i, src, dst);
671 if (r < 0 || r)
672 return r;
675 return r;
678 /* Check whether the dependence graph has a validity edge
679 * between the given two nodes.
681 * Conditional validity edges are essentially validity edges that
682 * can be ignored if the corresponding condition edges are iteration private.
683 * Here, we are only checking for the presence of validity
684 * edges, so we need to consider the conditional validity edges too.
685 * In particular, this function is used during the detection
686 * of strongly connected components and we cannot ignore
687 * conditional validity edges during this detection.
689 static int graph_has_validity_edge(struct isl_sched_graph *graph,
690 struct isl_sched_node *src, struct isl_sched_node *dst)
692 int r;
694 r = graph_has_edge(graph, isl_edge_validity, src, dst);
695 if (r < 0 || r)
696 return r;
698 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
701 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
702 int n_node, int n_edge)
704 int i;
706 graph->n = n_node;
707 graph->n_edge = n_edge;
708 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
709 graph->sorted = isl_calloc_array(ctx, int, graph->n);
710 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
711 graph->edge = isl_calloc_array(ctx,
712 struct isl_sched_edge, graph->n_edge);
714 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
715 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
717 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
718 !graph->sorted)
719 return -1;
721 for(i = 0; i < graph->n; ++i)
722 graph->sorted[i] = i;
724 return 0;
727 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
729 int i;
731 isl_map_to_basic_set_free(graph->intra_hmap);
732 isl_map_to_basic_set_free(graph->inter_hmap);
734 if (graph->node)
735 for (i = 0; i < graph->n; ++i) {
736 isl_space_free(graph->node[i].space);
737 isl_set_free(graph->node[i].hull);
738 isl_multi_aff_free(graph->node[i].compress);
739 isl_multi_aff_free(graph->node[i].decompress);
740 isl_mat_free(graph->node[i].sched);
741 isl_map_free(graph->node[i].sched_map);
742 isl_mat_free(graph->node[i].cmap);
743 isl_mat_free(graph->node[i].cinv);
744 if (graph->root) {
745 free(graph->node[i].band);
746 free(graph->node[i].band_id);
747 free(graph->node[i].coincident);
750 free(graph->node);
751 free(graph->sorted);
752 if (graph->edge)
753 for (i = 0; i < graph->n_edge; ++i) {
754 isl_map_free(graph->edge[i].map);
755 isl_union_map_free(graph->edge[i].tagged_condition);
756 isl_union_map_free(graph->edge[i].tagged_validity);
758 free(graph->edge);
759 free(graph->region);
760 for (i = 0; i <= isl_edge_last; ++i)
761 isl_hash_table_free(ctx, graph->edge_table[i]);
762 isl_hash_table_free(ctx, graph->node_table);
763 isl_basic_set_free(graph->lp);
766 /* For each "set" on which this function is called, increment
767 * graph->n by one and update graph->maxvar.
769 static int init_n_maxvar(__isl_take isl_set *set, void *user)
771 struct isl_sched_graph *graph = user;
772 int nvar = isl_set_dim(set, isl_dim_set);
774 graph->n++;
775 if (nvar > graph->maxvar)
776 graph->maxvar = nvar;
778 isl_set_free(set);
780 return 0;
783 /* Compute the number of rows that should be allocated for the schedule.
784 * The graph can be split at most "n - 1" times, there can be at most
785 * two rows for each dimension in the iteration domains (in particular,
786 * we usually have one row, but it may be split by split_scaled),
787 * and there can be one extra row for ordering the statements.
788 * Note that if we have actually split "n - 1" times, then no ordering
789 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
791 static int compute_max_row(struct isl_sched_graph *graph,
792 __isl_keep isl_union_set *domain)
794 graph->n = 0;
795 graph->maxvar = 0;
796 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
797 return -1;
798 graph->max_row = graph->n + 2 * graph->maxvar;
800 return 0;
803 /* Does "bset" have any defining equalities for its set variables?
805 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
807 int i, n;
809 if (!bset)
810 return -1;
812 n = isl_basic_set_dim(bset, isl_dim_set);
813 for (i = 0; i < n; ++i) {
814 int has;
816 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
817 NULL);
818 if (has < 0 || has)
819 return has;
822 return 0;
825 /* Add a new node to the graph representing the given space.
826 * "nvar" is the (possibly compressed) number of variables and
827 * may be smaller than then number of set variables in "space"
828 * if "compressed" is set.
829 * If "compressed" is set, then "hull" represents the constraints
830 * that were used to derive the compression, while "compress" and
831 * "decompress" map the original space to the compressed space and
832 * vice versa.
833 * If "compressed" is not set, then "hull", "compress" and "decompress"
834 * should be NULL.
836 static int add_node(struct isl_sched_graph *graph, __isl_take isl_space *space,
837 int nvar, int compressed, __isl_take isl_set *hull,
838 __isl_take isl_multi_aff *compress,
839 __isl_take isl_multi_aff *decompress)
841 int nparam;
842 isl_ctx *ctx;
843 isl_mat *sched;
844 int *band, *band_id, *coincident;
846 if (!space)
847 return -1;
849 ctx = isl_space_get_ctx(space);
850 nparam = isl_space_dim(space, isl_dim_param);
851 if (!ctx->opt->schedule_parametric)
852 nparam = 0;
853 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
854 graph->node[graph->n].space = space;
855 graph->node[graph->n].nvar = nvar;
856 graph->node[graph->n].nparam = nparam;
857 graph->node[graph->n].sched = sched;
858 graph->node[graph->n].sched_map = NULL;
859 band = isl_alloc_array(ctx, int, graph->max_row);
860 graph->node[graph->n].band = band;
861 band_id = isl_calloc_array(ctx, int, graph->max_row);
862 graph->node[graph->n].band_id = band_id;
863 coincident = isl_calloc_array(ctx, int, graph->max_row);
864 graph->node[graph->n].coincident = coincident;
865 graph->node[graph->n].compressed = compressed;
866 graph->node[graph->n].hull = hull;
867 graph->node[graph->n].compress = compress;
868 graph->node[graph->n].decompress = decompress;
869 graph->n++;
871 if (!space || !sched ||
872 (graph->max_row && (!band || !band_id || !coincident)))
873 return -1;
874 if (compressed && (!hull || !compress || !decompress))
875 return -1;
877 return 0;
880 /* Add a new node to the graph representing the given set.
882 * If any of the set variables is defined by an equality, then
883 * we perform variable compression such that we can perform
884 * the scheduling on the compressed domain.
886 static int extract_node(__isl_take isl_set *set, void *user)
888 int nvar;
889 int has_equality;
890 isl_space *space;
891 isl_basic_set *hull;
892 isl_set *hull_set;
893 isl_morph *morph;
894 isl_multi_aff *compress, *decompress;
895 struct isl_sched_graph *graph = user;
897 space = isl_set_get_space(set);
898 hull = isl_set_affine_hull(set);
899 hull = isl_basic_set_remove_divs(hull);
900 nvar = isl_space_dim(space, isl_dim_set);
901 has_equality = has_any_defining_equality(hull);
903 if (has_equality < 0)
904 goto error;
905 if (!has_equality) {
906 isl_basic_set_free(hull);
907 return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
910 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
911 nvar = isl_morph_ran_dim(morph, isl_dim_set);
912 compress = isl_morph_get_var_multi_aff(morph);
913 morph = isl_morph_inverse(morph);
914 decompress = isl_morph_get_var_multi_aff(morph);
915 isl_morph_free(morph);
917 hull_set = isl_set_from_basic_set(hull);
918 return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
919 error:
920 isl_basic_set_free(hull);
921 isl_space_free(space);
922 return -1;
925 struct isl_extract_edge_data {
926 enum isl_edge_type type;
927 struct isl_sched_graph *graph;
930 /* Merge edge2 into edge1, freeing the contents of edge2.
931 * "type" is the type of the schedule constraint from which edge2 was
932 * extracted.
933 * Return 0 on success and -1 on failure.
935 * edge1 and edge2 are assumed to have the same value for the map field.
937 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
938 struct isl_sched_edge *edge2)
940 edge1->validity |= edge2->validity;
941 edge1->coincidence |= edge2->coincidence;
942 edge1->proximity |= edge2->proximity;
943 edge1->condition |= edge2->condition;
944 edge1->conditional_validity |= edge2->conditional_validity;
945 isl_map_free(edge2->map);
947 if (type == isl_edge_condition) {
948 if (!edge1->tagged_condition)
949 edge1->tagged_condition = edge2->tagged_condition;
950 else
951 edge1->tagged_condition =
952 isl_union_map_union(edge1->tagged_condition,
953 edge2->tagged_condition);
956 if (type == isl_edge_conditional_validity) {
957 if (!edge1->tagged_validity)
958 edge1->tagged_validity = edge2->tagged_validity;
959 else
960 edge1->tagged_validity =
961 isl_union_map_union(edge1->tagged_validity,
962 edge2->tagged_validity);
965 if (type == isl_edge_condition && !edge1->tagged_condition)
966 return -1;
967 if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
968 return -1;
970 return 0;
973 /* Insert dummy tags in domain and range of "map".
975 * In particular, if "map" is of the form
977 * A -> B
979 * then return
981 * [A -> dummy_tag] -> [B -> dummy_tag]
983 * where the dummy_tags are identical and equal to any dummy tags
984 * introduced by any other call to this function.
986 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
988 static char dummy;
989 isl_ctx *ctx;
990 isl_id *id;
991 isl_space *space;
992 isl_set *domain, *range;
994 ctx = isl_map_get_ctx(map);
996 id = isl_id_alloc(ctx, NULL, &dummy);
997 space = isl_space_params(isl_map_get_space(map));
998 space = isl_space_set_from_params(space);
999 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1000 space = isl_space_map_from_set(space);
1002 domain = isl_map_wrap(map);
1003 range = isl_map_wrap(isl_map_universe(space));
1004 map = isl_map_from_domain_and_range(domain, range);
1005 map = isl_map_zip(map);
1007 return map;
1010 /* Given that at least one of "src" or "dst" is compressed, return
1011 * a map between the spaces of these nodes restricted to the affine
1012 * hull that was used in the compression.
1014 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1015 struct isl_sched_node *dst)
1017 isl_set *dom, *ran;
1019 if (src->compressed)
1020 dom = isl_set_copy(src->hull);
1021 else
1022 dom = isl_set_universe(isl_space_copy(src->space));
1023 if (dst->compressed)
1024 ran = isl_set_copy(dst->hull);
1025 else
1026 ran = isl_set_universe(isl_space_copy(dst->space));
1028 return isl_map_from_domain_and_range(dom, ran);
1031 /* Intersect the domains of the nested relations in domain and range
1032 * of "tagged" with "map".
1034 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1035 __isl_keep isl_map *map)
1037 isl_set *set;
1039 tagged = isl_map_zip(tagged);
1040 set = isl_map_wrap(isl_map_copy(map));
1041 tagged = isl_map_intersect_domain(tagged, set);
1042 tagged = isl_map_zip(tagged);
1043 return tagged;
1046 /* Add a new edge to the graph based on the given map
1047 * and add it to data->graph->edge_table[data->type].
1048 * If a dependence relation of a given type happens to be identical
1049 * to one of the dependence relations of a type that was added before,
1050 * then we don't create a new edge, but instead mark the original edge
1051 * as also representing a dependence of the current type.
1053 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1054 * may be specified as "tagged" dependence relations. That is, "map"
1055 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1056 * the dependence on iterations and a and b are tags.
1057 * edge->map is set to the relation containing the elements i -> j,
1058 * while edge->tagged_condition and edge->tagged_validity contain
1059 * the union of all the "map" relations
1060 * for which extract_edge is called that result in the same edge->map.
1062 * If the source or the destination node is compressed, then
1063 * intersect both "map" and "tagged" with the constraints that
1064 * were used to construct the compression.
1065 * This ensures that there are no schedule constraints defined
1066 * outside of these domains, while the scheduler no longer has
1067 * any control over those outside parts.
1069 static int extract_edge(__isl_take isl_map *map, void *user)
1071 isl_ctx *ctx = isl_map_get_ctx(map);
1072 struct isl_extract_edge_data *data = user;
1073 struct isl_sched_graph *graph = data->graph;
1074 struct isl_sched_node *src, *dst;
1075 isl_space *dim;
1076 struct isl_sched_edge *edge;
1077 isl_map *tagged = NULL;
1079 if (data->type == isl_edge_condition ||
1080 data->type == isl_edge_conditional_validity) {
1081 if (isl_map_can_zip(map)) {
1082 tagged = isl_map_copy(map);
1083 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1084 } else {
1085 tagged = insert_dummy_tags(isl_map_copy(map));
1089 dim = isl_space_domain(isl_map_get_space(map));
1090 src = graph_find_node(ctx, graph, dim);
1091 isl_space_free(dim);
1092 dim = isl_space_range(isl_map_get_space(map));
1093 dst = graph_find_node(ctx, graph, dim);
1094 isl_space_free(dim);
1096 if (!src || !dst) {
1097 isl_map_free(map);
1098 isl_map_free(tagged);
1099 return 0;
1102 if (src->compressed || dst->compressed) {
1103 isl_map *hull;
1104 hull = extract_hull(src, dst);
1105 if (tagged)
1106 tagged = map_intersect_domains(tagged, hull);
1107 map = isl_map_intersect(map, hull);
1110 graph->edge[graph->n_edge].src = src;
1111 graph->edge[graph->n_edge].dst = dst;
1112 graph->edge[graph->n_edge].map = map;
1113 graph->edge[graph->n_edge].validity = 0;
1114 graph->edge[graph->n_edge].coincidence = 0;
1115 graph->edge[graph->n_edge].proximity = 0;
1116 graph->edge[graph->n_edge].condition = 0;
1117 graph->edge[graph->n_edge].local = 0;
1118 graph->edge[graph->n_edge].conditional_validity = 0;
1119 graph->edge[graph->n_edge].tagged_condition = NULL;
1120 graph->edge[graph->n_edge].tagged_validity = NULL;
1121 if (data->type == isl_edge_validity)
1122 graph->edge[graph->n_edge].validity = 1;
1123 if (data->type == isl_edge_coincidence)
1124 graph->edge[graph->n_edge].coincidence = 1;
1125 if (data->type == isl_edge_proximity)
1126 graph->edge[graph->n_edge].proximity = 1;
1127 if (data->type == isl_edge_condition) {
1128 graph->edge[graph->n_edge].condition = 1;
1129 graph->edge[graph->n_edge].tagged_condition =
1130 isl_union_map_from_map(tagged);
1132 if (data->type == isl_edge_conditional_validity) {
1133 graph->edge[graph->n_edge].conditional_validity = 1;
1134 graph->edge[graph->n_edge].tagged_validity =
1135 isl_union_map_from_map(tagged);
1138 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1139 if (!edge) {
1140 graph->n_edge++;
1141 return -1;
1143 if (edge == &graph->edge[graph->n_edge])
1144 return graph_edge_table_add(ctx, graph, data->type,
1145 &graph->edge[graph->n_edge++]);
1147 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
1148 return -1;
1150 return graph_edge_table_add(ctx, graph, data->type, edge);
1153 /* Check whether there is any dependence from node[j] to node[i]
1154 * or from node[i] to node[j].
1156 static int node_follows_weak(int i, int j, void *user)
1158 int f;
1159 struct isl_sched_graph *graph = user;
1161 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1162 if (f < 0 || f)
1163 return f;
1164 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1167 /* Check whether there is a (conditional) validity dependence from node[j]
1168 * to node[i], forcing node[i] to follow node[j].
1170 static int node_follows_strong(int i, int j, void *user)
1172 struct isl_sched_graph *graph = user;
1174 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1177 /* Use Tarjan's algorithm for computing the strongly connected components
1178 * in the dependence graph (only validity edges).
1179 * If weak is set, we consider the graph to be undirected and
1180 * we effectively compute the (weakly) connected components.
1181 * Additionally, we also consider other edges when weak is set.
1183 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
1185 int i, n;
1186 struct isl_tarjan_graph *g = NULL;
1188 g = isl_tarjan_graph_init(ctx, graph->n,
1189 weak ? &node_follows_weak : &node_follows_strong, graph);
1190 if (!g)
1191 return -1;
1193 graph->scc = 0;
1194 i = 0;
1195 n = graph->n;
1196 while (n) {
1197 while (g->order[i] != -1) {
1198 graph->node[g->order[i]].scc = graph->scc;
1199 --n;
1200 ++i;
1202 ++i;
1203 graph->scc++;
1206 isl_tarjan_graph_free(g);
1208 return 0;
1211 /* Apply Tarjan's algorithm to detect the strongly connected components
1212 * in the dependence graph.
1214 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1216 return detect_ccs(ctx, graph, 0);
1219 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1220 * in the dependence graph.
1222 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1224 return detect_ccs(ctx, graph, 1);
1227 static int cmp_scc(const void *a, const void *b, void *data)
1229 struct isl_sched_graph *graph = data;
1230 const int *i1 = a;
1231 const int *i2 = b;
1233 return graph->node[*i1].scc - graph->node[*i2].scc;
1236 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1238 static int sort_sccs(struct isl_sched_graph *graph)
1240 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1243 /* Given a dependence relation R from "node" to itself,
1244 * construct the set of coefficients of valid constraints for elements
1245 * in that dependence relation.
1246 * In particular, the result contains tuples of coefficients
1247 * c_0, c_n, c_x such that
1249 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1251 * or, equivalently,
1253 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1255 * We choose here to compute the dual of delta R.
1256 * Alternatively, we could have computed the dual of R, resulting
1257 * in a set of tuples c_0, c_n, c_x, c_y, and then
1258 * plugged in (c_0, c_n, c_x, -c_x).
1260 * If "node" has been compressed, then the dependence relation
1261 * is also compressed before the set of coefficients is computed.
1263 static __isl_give isl_basic_set *intra_coefficients(
1264 struct isl_sched_graph *graph, struct isl_sched_node *node,
1265 __isl_take isl_map *map)
1267 isl_set *delta;
1268 isl_map *key;
1269 isl_basic_set *coef;
1271 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
1272 return isl_map_to_basic_set_get(graph->intra_hmap, map);
1274 key = isl_map_copy(map);
1275 if (node->compressed) {
1276 map = isl_map_preimage_domain_multi_aff(map,
1277 isl_multi_aff_copy(node->decompress));
1278 map = isl_map_preimage_range_multi_aff(map,
1279 isl_multi_aff_copy(node->decompress));
1281 delta = isl_set_remove_divs(isl_map_deltas(map));
1282 coef = isl_set_coefficients(delta);
1283 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1284 isl_basic_set_copy(coef));
1286 return coef;
1289 /* Given a dependence relation R, construct the set of coefficients
1290 * of valid constraints for elements in that dependence relation.
1291 * In particular, the result contains tuples of coefficients
1292 * c_0, c_n, c_x, c_y such that
1294 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1296 * If the source or destination nodes of "edge" have been compressed,
1297 * then the dependence relation is also compressed before
1298 * the set of coefficients is computed.
1300 static __isl_give isl_basic_set *inter_coefficients(
1301 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1302 __isl_take isl_map *map)
1304 isl_set *set;
1305 isl_map *key;
1306 isl_basic_set *coef;
1308 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
1309 return isl_map_to_basic_set_get(graph->inter_hmap, map);
1311 key = isl_map_copy(map);
1312 if (edge->src->compressed)
1313 map = isl_map_preimage_domain_multi_aff(map,
1314 isl_multi_aff_copy(edge->src->decompress));
1315 if (edge->dst->compressed)
1316 map = isl_map_preimage_range_multi_aff(map,
1317 isl_multi_aff_copy(edge->dst->decompress));
1318 set = isl_map_wrap(isl_map_remove_divs(map));
1319 coef = isl_set_coefficients(set);
1320 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1321 isl_basic_set_copy(coef));
1323 return coef;
1326 /* Add constraints to graph->lp that force validity for the given
1327 * dependence from a node i to itself.
1328 * That is, add constraints that enforce
1330 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1331 * = c_i_x (y - x) >= 0
1333 * for each (x,y) in R.
1334 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1335 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1336 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1337 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1339 * Actually, we do not construct constraints for the c_i_x themselves,
1340 * but for the coefficients of c_i_x written as a linear combination
1341 * of the columns in node->cmap.
1343 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1344 struct isl_sched_edge *edge)
1346 unsigned total;
1347 isl_map *map = isl_map_copy(edge->map);
1348 isl_ctx *ctx = isl_map_get_ctx(map);
1349 isl_space *dim;
1350 isl_dim_map *dim_map;
1351 isl_basic_set *coef;
1352 struct isl_sched_node *node = edge->src;
1354 coef = intra_coefficients(graph, node, map);
1356 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1358 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1359 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1360 if (!coef)
1361 goto error;
1363 total = isl_basic_set_total_dim(graph->lp);
1364 dim_map = isl_dim_map_alloc(ctx, total);
1365 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1366 isl_space_dim(dim, isl_dim_set), 1,
1367 node->nvar, -1);
1368 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1369 isl_space_dim(dim, isl_dim_set), 1,
1370 node->nvar, 1);
1371 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1372 coef->n_eq, coef->n_ineq);
1373 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1374 coef, dim_map);
1375 isl_space_free(dim);
1377 return 0;
1378 error:
1379 isl_space_free(dim);
1380 return -1;
1383 /* Add constraints to graph->lp that force validity for the given
1384 * dependence from node i to node j.
1385 * That is, add constraints that enforce
1387 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1389 * for each (x,y) in R.
1390 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1391 * of valid constraints for R and then plug in
1392 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1393 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1394 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1395 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1397 * Actually, we do not construct constraints for the c_*_x themselves,
1398 * but for the coefficients of c_*_x written as a linear combination
1399 * of the columns in node->cmap.
1401 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1402 struct isl_sched_edge *edge)
1404 unsigned total;
1405 isl_map *map = isl_map_copy(edge->map);
1406 isl_ctx *ctx = isl_map_get_ctx(map);
1407 isl_space *dim;
1408 isl_dim_map *dim_map;
1409 isl_basic_set *coef;
1410 struct isl_sched_node *src = edge->src;
1411 struct isl_sched_node *dst = edge->dst;
1413 coef = inter_coefficients(graph, edge, map);
1415 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1417 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1418 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1419 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1420 isl_space_dim(dim, isl_dim_set) + src->nvar,
1421 isl_mat_copy(dst->cmap));
1422 if (!coef)
1423 goto error;
1425 total = isl_basic_set_total_dim(graph->lp);
1426 dim_map = isl_dim_map_alloc(ctx, total);
1428 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1429 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1430 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1431 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1432 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1433 dst->nvar, -1);
1434 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1435 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1436 dst->nvar, 1);
1438 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1439 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1440 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1441 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1442 isl_space_dim(dim, isl_dim_set), 1,
1443 src->nvar, 1);
1444 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1445 isl_space_dim(dim, isl_dim_set), 1,
1446 src->nvar, -1);
1448 edge->start = graph->lp->n_ineq;
1449 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1450 coef->n_eq, coef->n_ineq);
1451 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1452 coef, dim_map);
1453 if (!graph->lp)
1454 goto error;
1455 isl_space_free(dim);
1456 edge->end = graph->lp->n_ineq;
1458 return 0;
1459 error:
1460 isl_space_free(dim);
1461 return -1;
1464 /* Add constraints to graph->lp that bound the dependence distance for the given
1465 * dependence from a node i to itself.
1466 * If s = 1, we add the constraint
1468 * c_i_x (y - x) <= m_0 + m_n n
1470 * or
1472 * -c_i_x (y - x) + m_0 + m_n n >= 0
1474 * for each (x,y) in R.
1475 * If s = -1, we add the constraint
1477 * -c_i_x (y - x) <= m_0 + m_n n
1479 * or
1481 * c_i_x (y - x) + m_0 + m_n n >= 0
1483 * for each (x,y) in R.
1484 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1485 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1486 * with each coefficient (except m_0) represented as a pair of non-negative
1487 * coefficients.
1489 * Actually, we do not construct constraints for the c_i_x themselves,
1490 * but for the coefficients of c_i_x written as a linear combination
1491 * of the columns in node->cmap.
1494 * If "local" is set, then we add constraints
1496 * c_i_x (y - x) <= 0
1498 * or
1500 * -c_i_x (y - x) <= 0
1502 * instead, forcing the dependence distance to be (less than or) equal to 0.
1503 * That is, we plug in (0, 0, -s * c_i_x),
1504 * Note that dependences marked local are treated as validity constraints
1505 * by add_all_validity_constraints and therefore also have
1506 * their distances bounded by 0 from below.
1508 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1509 struct isl_sched_edge *edge, int s, int local)
1511 unsigned total;
1512 unsigned nparam;
1513 isl_map *map = isl_map_copy(edge->map);
1514 isl_ctx *ctx = isl_map_get_ctx(map);
1515 isl_space *dim;
1516 isl_dim_map *dim_map;
1517 isl_basic_set *coef;
1518 struct isl_sched_node *node = edge->src;
1520 coef = intra_coefficients(graph, node, map);
1522 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1524 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1525 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1526 if (!coef)
1527 goto error;
1529 nparam = isl_space_dim(node->space, isl_dim_param);
1530 total = isl_basic_set_total_dim(graph->lp);
1531 dim_map = isl_dim_map_alloc(ctx, total);
1533 if (!local) {
1534 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1535 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1536 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1538 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1539 isl_space_dim(dim, isl_dim_set), 1,
1540 node->nvar, s);
1541 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1542 isl_space_dim(dim, isl_dim_set), 1,
1543 node->nvar, -s);
1544 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1545 coef->n_eq, coef->n_ineq);
1546 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1547 coef, dim_map);
1548 isl_space_free(dim);
1550 return 0;
1551 error:
1552 isl_space_free(dim);
1553 return -1;
1556 /* Add constraints to graph->lp that bound the dependence distance for the given
1557 * dependence from node i to node j.
1558 * If s = 1, we add the constraint
1560 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1561 * <= m_0 + m_n n
1563 * or
1565 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1566 * m_0 + m_n n >= 0
1568 * for each (x,y) in R.
1569 * If s = -1, we add the constraint
1571 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1572 * <= m_0 + m_n n
1574 * or
1576 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1577 * m_0 + m_n n >= 0
1579 * for each (x,y) in R.
1580 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1581 * of valid constraints for R and then plug in
1582 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1583 * -s*c_j_x+s*c_i_x)
1584 * with each coefficient (except m_0, c_j_0 and c_i_0)
1585 * represented as a pair of non-negative coefficients.
1587 * Actually, we do not construct constraints for the c_*_x themselves,
1588 * but for the coefficients of c_*_x written as a linear combination
1589 * of the columns in node->cmap.
1592 * If "local" is set, then we add constraints
1594 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1596 * or
1598 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1600 * instead, forcing the dependence distance to be (less than or) equal to 0.
1601 * That is, we plug in
1602 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1603 * Note that dependences marked local are treated as validity constraints
1604 * by add_all_validity_constraints and therefore also have
1605 * their distances bounded by 0 from below.
1607 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1608 struct isl_sched_edge *edge, int s, int local)
1610 unsigned total;
1611 unsigned nparam;
1612 isl_map *map = isl_map_copy(edge->map);
1613 isl_ctx *ctx = isl_map_get_ctx(map);
1614 isl_space *dim;
1615 isl_dim_map *dim_map;
1616 isl_basic_set *coef;
1617 struct isl_sched_node *src = edge->src;
1618 struct isl_sched_node *dst = edge->dst;
1620 coef = inter_coefficients(graph, edge, map);
1622 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1624 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1625 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1626 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1627 isl_space_dim(dim, isl_dim_set) + src->nvar,
1628 isl_mat_copy(dst->cmap));
1629 if (!coef)
1630 goto error;
1632 nparam = isl_space_dim(src->space, isl_dim_param);
1633 total = isl_basic_set_total_dim(graph->lp);
1634 dim_map = isl_dim_map_alloc(ctx, total);
1636 if (!local) {
1637 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1638 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1639 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1642 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1643 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1644 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1645 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1646 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1647 dst->nvar, s);
1648 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1649 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1650 dst->nvar, -s);
1652 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1653 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1654 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1655 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1656 isl_space_dim(dim, isl_dim_set), 1,
1657 src->nvar, -s);
1658 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1659 isl_space_dim(dim, isl_dim_set), 1,
1660 src->nvar, s);
1662 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1663 coef->n_eq, coef->n_ineq);
1664 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1665 coef, dim_map);
1666 isl_space_free(dim);
1668 return 0;
1669 error:
1670 isl_space_free(dim);
1671 return -1;
1674 /* Add all validity constraints to graph->lp.
1676 * An edge that is forced to be local needs to have its dependence
1677 * distances equal to zero. We take care of bounding them by 0 from below
1678 * here. add_all_proximity_constraints takes care of bounding them by 0
1679 * from above.
1681 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1682 * Otherwise, we ignore them.
1684 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1685 int use_coincidence)
1687 int i;
1689 for (i = 0; i < graph->n_edge; ++i) {
1690 struct isl_sched_edge *edge= &graph->edge[i];
1691 int local;
1693 local = edge->local || (edge->coincidence && use_coincidence);
1694 if (!edge->validity && !local)
1695 continue;
1696 if (edge->src != edge->dst)
1697 continue;
1698 if (add_intra_validity_constraints(graph, edge) < 0)
1699 return -1;
1702 for (i = 0; i < graph->n_edge; ++i) {
1703 struct isl_sched_edge *edge = &graph->edge[i];
1704 int local;
1706 local = edge->local || (edge->coincidence && use_coincidence);
1707 if (!edge->validity && !local)
1708 continue;
1709 if (edge->src == edge->dst)
1710 continue;
1711 if (add_inter_validity_constraints(graph, edge) < 0)
1712 return -1;
1715 return 0;
1718 /* Add constraints to graph->lp that bound the dependence distance
1719 * for all dependence relations.
1720 * If a given proximity dependence is identical to a validity
1721 * dependence, then the dependence distance is already bounded
1722 * from below (by zero), so we only need to bound the distance
1723 * from above. (This includes the case of "local" dependences
1724 * which are treated as validity dependence by add_all_validity_constraints.)
1725 * Otherwise, we need to bound the distance both from above and from below.
1727 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1728 * Otherwise, we ignore them.
1730 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1731 int use_coincidence)
1733 int i;
1735 for (i = 0; i < graph->n_edge; ++i) {
1736 struct isl_sched_edge *edge= &graph->edge[i];
1737 int local;
1739 local = edge->local || (edge->coincidence && use_coincidence);
1740 if (!edge->proximity && !local)
1741 continue;
1742 if (edge->src == edge->dst &&
1743 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1744 return -1;
1745 if (edge->src != edge->dst &&
1746 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1747 return -1;
1748 if (edge->validity || local)
1749 continue;
1750 if (edge->src == edge->dst &&
1751 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1752 return -1;
1753 if (edge->src != edge->dst &&
1754 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1755 return -1;
1758 return 0;
1761 /* Compute a basis for the rows in the linear part of the schedule
1762 * and extend this basis to a full basis. The remaining rows
1763 * can then be used to force linear independence from the rows
1764 * in the schedule.
1766 * In particular, given the schedule rows S, we compute
1768 * S = H Q
1769 * S U = H
1771 * with H the Hermite normal form of S. That is, all but the
1772 * first rank columns of H are zero and so each row in S is
1773 * a linear combination of the first rank rows of Q.
1774 * The matrix Q is then transposed because we will write the
1775 * coefficients of the next schedule row as a column vector s
1776 * and express this s as a linear combination s = Q c of the
1777 * computed basis.
1778 * Similarly, the matrix U is transposed such that we can
1779 * compute the coefficients c = U s from a schedule row s.
1781 static int node_update_cmap(struct isl_sched_node *node)
1783 isl_mat *H, *U, *Q;
1784 int n_row = isl_mat_rows(node->sched);
1786 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1787 1 + node->nparam, node->nvar);
1789 H = isl_mat_left_hermite(H, 0, &U, &Q);
1790 isl_mat_free(node->cmap);
1791 isl_mat_free(node->cinv);
1792 node->cmap = isl_mat_transpose(Q);
1793 node->cinv = isl_mat_transpose(U);
1794 node->rank = isl_mat_initial_non_zero_cols(H);
1795 isl_mat_free(H);
1797 if (!node->cmap || !node->cinv || node->rank < 0)
1798 return -1;
1799 return 0;
1802 /* How many times should we count the constraints in "edge"?
1804 * If carry is set, then we are counting the number of
1805 * (validity or conditional validity) constraints that will be added
1806 * in setup_carry_lp and we count each edge exactly once.
1808 * Otherwise, we count as follows
1809 * validity -> 1 (>= 0)
1810 * validity+proximity -> 2 (>= 0 and upper bound)
1811 * proximity -> 2 (lower and upper bound)
1812 * local(+any) -> 2 (>= 0 and <= 0)
1814 * If an edge is only marked conditional_validity then it counts
1815 * as zero since it is only checked afterwards.
1817 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1818 * Otherwise, we ignore them.
1820 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
1821 int use_coincidence)
1823 if (carry && !edge->validity && !edge->conditional_validity)
1824 return 0;
1825 if (carry)
1826 return 1;
1827 if (edge->proximity || edge->local)
1828 return 2;
1829 if (use_coincidence && edge->coincidence)
1830 return 2;
1831 if (edge->validity)
1832 return 1;
1833 return 0;
1836 /* Count the number of equality and inequality constraints
1837 * that will be added for the given map.
1839 * "use_coincidence" is set if we should take into account coincidence edges.
1841 static int count_map_constraints(struct isl_sched_graph *graph,
1842 struct isl_sched_edge *edge, __isl_take isl_map *map,
1843 int *n_eq, int *n_ineq, int carry, int use_coincidence)
1845 isl_basic_set *coef;
1846 int f = edge_multiplicity(edge, carry, use_coincidence);
1848 if (f == 0) {
1849 isl_map_free(map);
1850 return 0;
1853 if (edge->src == edge->dst)
1854 coef = intra_coefficients(graph, edge->src, map);
1855 else
1856 coef = inter_coefficients(graph, edge, map);
1857 if (!coef)
1858 return -1;
1859 *n_eq += f * coef->n_eq;
1860 *n_ineq += f * coef->n_ineq;
1861 isl_basic_set_free(coef);
1863 return 0;
1866 /* Count the number of equality and inequality constraints
1867 * that will be added to the main lp problem.
1868 * We count as follows
1869 * validity -> 1 (>= 0)
1870 * validity+proximity -> 2 (>= 0 and upper bound)
1871 * proximity -> 2 (lower and upper bound)
1872 * local(+any) -> 2 (>= 0 and <= 0)
1874 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1875 * Otherwise, we ignore them.
1877 static int count_constraints(struct isl_sched_graph *graph,
1878 int *n_eq, int *n_ineq, int use_coincidence)
1880 int i;
1882 *n_eq = *n_ineq = 0;
1883 for (i = 0; i < graph->n_edge; ++i) {
1884 struct isl_sched_edge *edge= &graph->edge[i];
1885 isl_map *map = isl_map_copy(edge->map);
1887 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
1888 0, use_coincidence) < 0)
1889 return -1;
1892 return 0;
1895 /* Count the number of constraints that will be added by
1896 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1897 * accordingly.
1899 * In practice, add_bound_coefficient_constraints only adds inequalities.
1901 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1902 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1904 int i;
1906 if (ctx->opt->schedule_max_coefficient == -1)
1907 return 0;
1909 for (i = 0; i < graph->n; ++i)
1910 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1912 return 0;
1915 /* Add constraints that bound the values of the variable and parameter
1916 * coefficients of the schedule.
1918 * The maximal value of the coefficients is defined by the option
1919 * 'schedule_max_coefficient'.
1921 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1922 struct isl_sched_graph *graph)
1924 int i, j, k;
1925 int max_coefficient;
1926 int total;
1928 max_coefficient = ctx->opt->schedule_max_coefficient;
1930 if (max_coefficient == -1)
1931 return 0;
1933 total = isl_basic_set_total_dim(graph->lp);
1935 for (i = 0; i < graph->n; ++i) {
1936 struct isl_sched_node *node = &graph->node[i];
1937 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1938 int dim;
1939 k = isl_basic_set_alloc_inequality(graph->lp);
1940 if (k < 0)
1941 return -1;
1942 dim = 1 + node->start + 1 + j;
1943 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1944 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1945 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1949 return 0;
1952 /* Construct an ILP problem for finding schedule coefficients
1953 * that result in non-negative, but small dependence distances
1954 * over all dependences.
1955 * In particular, the dependence distances over proximity edges
1956 * are bounded by m_0 + m_n n and we compute schedule coefficients
1957 * with small values (preferably zero) of m_n and m_0.
1959 * All variables of the ILP are non-negative. The actual coefficients
1960 * may be negative, so each coefficient is represented as the difference
1961 * of two non-negative variables. The negative part always appears
1962 * immediately before the positive part.
1963 * Other than that, the variables have the following order
1965 * - sum of positive and negative parts of m_n coefficients
1966 * - m_0
1967 * - sum of positive and negative parts of all c_n coefficients
1968 * (unconstrained when computing non-parametric schedules)
1969 * - sum of positive and negative parts of all c_x coefficients
1970 * - positive and negative parts of m_n coefficients
1971 * - for each node
1972 * - c_i_0
1973 * - positive and negative parts of c_i_n (if parametric)
1974 * - positive and negative parts of c_i_x
1976 * The c_i_x are not represented directly, but through the columns of
1977 * node->cmap. That is, the computed values are for variable t_i_x
1978 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1980 * The constraints are those from the edges plus two or three equalities
1981 * to express the sums.
1983 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1984 * Otherwise, we ignore them.
1986 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1987 int use_coincidence)
1989 int i, j;
1990 int k;
1991 unsigned nparam;
1992 unsigned total;
1993 isl_space *dim;
1994 int parametric;
1995 int param_pos;
1996 int n_eq, n_ineq;
1997 int max_constant_term;
1999 max_constant_term = ctx->opt->schedule_max_constant_term;
2001 parametric = ctx->opt->schedule_parametric;
2002 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2003 param_pos = 4;
2004 total = param_pos + 2 * nparam;
2005 for (i = 0; i < graph->n; ++i) {
2006 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2007 if (node_update_cmap(node) < 0)
2008 return -1;
2009 node->start = total;
2010 total += 1 + 2 * (node->nparam + node->nvar);
2013 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2014 return -1;
2015 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2016 return -1;
2018 dim = isl_space_set_alloc(ctx, 0, total);
2019 isl_basic_set_free(graph->lp);
2020 n_eq += 2 + parametric;
2021 if (max_constant_term != -1)
2022 n_ineq += graph->n;
2024 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2026 k = isl_basic_set_alloc_equality(graph->lp);
2027 if (k < 0)
2028 return -1;
2029 isl_seq_clr(graph->lp->eq[k], 1 + total);
2030 isl_int_set_si(graph->lp->eq[k][1], -1);
2031 for (i = 0; i < 2 * nparam; ++i)
2032 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
2034 if (parametric) {
2035 k = isl_basic_set_alloc_equality(graph->lp);
2036 if (k < 0)
2037 return -1;
2038 isl_seq_clr(graph->lp->eq[k], 1 + total);
2039 isl_int_set_si(graph->lp->eq[k][3], -1);
2040 for (i = 0; i < graph->n; ++i) {
2041 int pos = 1 + graph->node[i].start + 1;
2043 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2044 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2048 k = isl_basic_set_alloc_equality(graph->lp);
2049 if (k < 0)
2050 return -1;
2051 isl_seq_clr(graph->lp->eq[k], 1 + total);
2052 isl_int_set_si(graph->lp->eq[k][4], -1);
2053 for (i = 0; i < graph->n; ++i) {
2054 struct isl_sched_node *node = &graph->node[i];
2055 int pos = 1 + node->start + 1 + 2 * node->nparam;
2057 for (j = 0; j < 2 * node->nvar; ++j)
2058 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2061 if (max_constant_term != -1)
2062 for (i = 0; i < graph->n; ++i) {
2063 struct isl_sched_node *node = &graph->node[i];
2064 k = isl_basic_set_alloc_inequality(graph->lp);
2065 if (k < 0)
2066 return -1;
2067 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2068 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2069 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
2072 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2073 return -1;
2074 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2075 return -1;
2076 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2077 return -1;
2079 return 0;
2082 /* Analyze the conflicting constraint found by
2083 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2084 * constraint of one of the edges between distinct nodes, living, moreover
2085 * in distinct SCCs, then record the source and sink SCC as this may
2086 * be a good place to cut between SCCs.
2088 static int check_conflict(int con, void *user)
2090 int i;
2091 struct isl_sched_graph *graph = user;
2093 if (graph->src_scc >= 0)
2094 return 0;
2096 con -= graph->lp->n_eq;
2098 if (con >= graph->lp->n_ineq)
2099 return 0;
2101 for (i = 0; i < graph->n_edge; ++i) {
2102 if (!graph->edge[i].validity)
2103 continue;
2104 if (graph->edge[i].src == graph->edge[i].dst)
2105 continue;
2106 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2107 continue;
2108 if (graph->edge[i].start > con)
2109 continue;
2110 if (graph->edge[i].end <= con)
2111 continue;
2112 graph->src_scc = graph->edge[i].src->scc;
2113 graph->dst_scc = graph->edge[i].dst->scc;
2116 return 0;
2119 /* Check whether the next schedule row of the given node needs to be
2120 * non-trivial. Lower-dimensional domains may have some trivial rows,
2121 * but as soon as the number of remaining required non-trivial rows
2122 * is as large as the number or remaining rows to be computed,
2123 * all remaining rows need to be non-trivial.
2125 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2127 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2130 /* Solve the ILP problem constructed in setup_lp.
2131 * For each node such that all the remaining rows of its schedule
2132 * need to be non-trivial, we construct a non-triviality region.
2133 * This region imposes that the next row is independent of previous rows.
2134 * In particular the coefficients c_i_x are represented by t_i_x
2135 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2136 * its first columns span the rows of the previously computed part
2137 * of the schedule. The non-triviality region enforces that at least
2138 * one of the remaining components of t_i_x is non-zero, i.e.,
2139 * that the new schedule row depends on at least one of the remaining
2140 * columns of Q.
2142 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2144 int i;
2145 isl_vec *sol;
2146 isl_basic_set *lp;
2148 for (i = 0; i < graph->n; ++i) {
2149 struct isl_sched_node *node = &graph->node[i];
2150 int skip = node->rank;
2151 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
2152 if (needs_row(graph, node))
2153 graph->region[i].len = 2 * (node->nvar - skip);
2154 else
2155 graph->region[i].len = 0;
2157 lp = isl_basic_set_copy(graph->lp);
2158 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2159 graph->region, &check_conflict, graph);
2160 return sol;
2163 /* Update the schedules of all nodes based on the given solution
2164 * of the LP problem.
2165 * The new row is added to the current band.
2166 * All possibly negative coefficients are encoded as a difference
2167 * of two non-negative variables, so we need to perform the subtraction
2168 * here. Moreover, if use_cmap is set, then the solution does
2169 * not refer to the actual coefficients c_i_x, but instead to variables
2170 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2171 * In this case, we then also need to perform this multiplication
2172 * to obtain the values of c_i_x.
2174 * If coincident is set, then the caller guarantees that the new
2175 * row satisfies the coincidence constraints.
2177 static int update_schedule(struct isl_sched_graph *graph,
2178 __isl_take isl_vec *sol, int use_cmap, int coincident)
2180 int i, j;
2181 isl_vec *csol = NULL;
2183 if (!sol)
2184 goto error;
2185 if (sol->size == 0)
2186 isl_die(sol->ctx, isl_error_internal,
2187 "no solution found", goto error);
2188 if (graph->n_total_row >= graph->max_row)
2189 isl_die(sol->ctx, isl_error_internal,
2190 "too many schedule rows", goto error);
2192 for (i = 0; i < graph->n; ++i) {
2193 struct isl_sched_node *node = &graph->node[i];
2194 int pos = node->start;
2195 int row = isl_mat_rows(node->sched);
2197 isl_vec_free(csol);
2198 csol = isl_vec_alloc(sol->ctx, node->nvar);
2199 if (!csol)
2200 goto error;
2202 isl_map_free(node->sched_map);
2203 node->sched_map = NULL;
2204 node->sched = isl_mat_add_rows(node->sched, 1);
2205 if (!node->sched)
2206 goto error;
2207 node->sched = isl_mat_set_element(node->sched, row, 0,
2208 sol->el[1 + pos]);
2209 for (j = 0; j < node->nparam + node->nvar; ++j)
2210 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2211 sol->el[1 + pos + 1 + 2 * j + 1],
2212 sol->el[1 + pos + 1 + 2 * j]);
2213 for (j = 0; j < node->nparam; ++j)
2214 node->sched = isl_mat_set_element(node->sched,
2215 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2216 for (j = 0; j < node->nvar; ++j)
2217 isl_int_set(csol->el[j],
2218 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2219 if (use_cmap)
2220 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2221 csol);
2222 if (!csol)
2223 goto error;
2224 for (j = 0; j < node->nvar; ++j)
2225 node->sched = isl_mat_set_element(node->sched,
2226 row, 1 + node->nparam + j, csol->el[j]);
2227 node->band[graph->n_total_row] = graph->n_band;
2228 node->coincident[graph->n_total_row] = coincident;
2230 isl_vec_free(sol);
2231 isl_vec_free(csol);
2233 graph->n_row++;
2234 graph->n_total_row++;
2236 return 0;
2237 error:
2238 isl_vec_free(sol);
2239 isl_vec_free(csol);
2240 return -1;
2243 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2244 * and return this isl_aff.
2246 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2247 struct isl_sched_node *node, int row)
2249 int j;
2250 isl_int v;
2251 isl_aff *aff;
2253 isl_int_init(v);
2255 aff = isl_aff_zero_on_domain(ls);
2256 isl_mat_get_element(node->sched, row, 0, &v);
2257 aff = isl_aff_set_constant(aff, v);
2258 for (j = 0; j < node->nparam; ++j) {
2259 isl_mat_get_element(node->sched, row, 1 + j, &v);
2260 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2262 for (j = 0; j < node->nvar; ++j) {
2263 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2264 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2267 isl_int_clear(v);
2269 return aff;
2272 /* Convert node->sched into a multi_aff and return this multi_aff.
2274 * The result is defined over the uncompressed node domain.
2276 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2277 struct isl_sched_node *node)
2279 int i;
2280 isl_space *space;
2281 isl_local_space *ls;
2282 isl_aff *aff;
2283 isl_multi_aff *ma;
2284 int nrow, ncol;
2286 nrow = isl_mat_rows(node->sched);
2287 ncol = isl_mat_cols(node->sched) - 1;
2288 if (node->compressed)
2289 space = isl_multi_aff_get_domain_space(node->decompress);
2290 else
2291 space = isl_space_copy(node->space);
2292 ls = isl_local_space_from_space(isl_space_copy(space));
2293 space = isl_space_from_domain(space);
2294 space = isl_space_add_dims(space, isl_dim_out, nrow);
2295 ma = isl_multi_aff_zero(space);
2297 for (i = 0; i < nrow; ++i) {
2298 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2299 ma = isl_multi_aff_set_aff(ma, i, aff);
2302 isl_local_space_free(ls);
2304 if (node->compressed)
2305 ma = isl_multi_aff_pullback_multi_aff(ma,
2306 isl_multi_aff_copy(node->compress));
2308 return ma;
2311 /* Convert node->sched into a map and return this map.
2313 * The result is cached in node->sched_map, which needs to be released
2314 * whenever node->sched is updated.
2315 * It is defined over the uncompressed node domain.
2317 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2319 if (!node->sched_map) {
2320 isl_multi_aff *ma;
2322 ma = node_extract_schedule_multi_aff(node);
2323 node->sched_map = isl_map_from_multi_aff(ma);
2326 return isl_map_copy(node->sched_map);
2329 /* Construct a map that can be used to update a dependence relation
2330 * based on the current schedule.
2331 * That is, construct a map expressing that source and sink
2332 * are executed within the same iteration of the current schedule.
2333 * This map can then be intersected with the dependence relation.
2334 * This is not the most efficient way, but this shouldn't be a critical
2335 * operation.
2337 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2338 struct isl_sched_node *dst)
2340 isl_map *src_sched, *dst_sched;
2342 src_sched = node_extract_schedule(src);
2343 dst_sched = node_extract_schedule(dst);
2344 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2347 /* Intersect the domains of the nested relations in domain and range
2348 * of "umap" with "map".
2350 static __isl_give isl_union_map *intersect_domains(
2351 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2353 isl_union_set *uset;
2355 umap = isl_union_map_zip(umap);
2356 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2357 umap = isl_union_map_intersect_domain(umap, uset);
2358 umap = isl_union_map_zip(umap);
2359 return umap;
2362 /* Update the dependence relation of the given edge based
2363 * on the current schedule.
2364 * If the dependence is carried completely by the current schedule, then
2365 * it is removed from the edge_tables. It is kept in the list of edges
2366 * as otherwise all edge_tables would have to be recomputed.
2368 static int update_edge(struct isl_sched_graph *graph,
2369 struct isl_sched_edge *edge)
2371 isl_map *id;
2373 id = specializer(edge->src, edge->dst);
2374 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2375 if (!edge->map)
2376 goto error;
2378 if (edge->tagged_condition) {
2379 edge->tagged_condition =
2380 intersect_domains(edge->tagged_condition, id);
2381 if (!edge->tagged_condition)
2382 goto error;
2384 if (edge->tagged_validity) {
2385 edge->tagged_validity =
2386 intersect_domains(edge->tagged_validity, id);
2387 if (!edge->tagged_validity)
2388 goto error;
2391 isl_map_free(id);
2392 if (isl_map_plain_is_empty(edge->map))
2393 graph_remove_edge(graph, edge);
2395 return 0;
2396 error:
2397 isl_map_free(id);
2398 return -1;
2401 /* Update the dependence relations of all edges based on the current schedule.
2403 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2405 int i;
2407 for (i = graph->n_edge - 1; i >= 0; --i) {
2408 if (update_edge(graph, &graph->edge[i]) < 0)
2409 return -1;
2412 return 0;
2415 static void next_band(struct isl_sched_graph *graph)
2417 graph->band_start = graph->n_total_row;
2418 graph->n_band++;
2421 /* Topologically sort statements mapped to the same schedule iteration
2422 * and add a row to the schedule corresponding to this order.
2424 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
2426 int i, j;
2428 if (graph->n <= 1)
2429 return 0;
2431 if (update_edges(ctx, graph) < 0)
2432 return -1;
2434 if (graph->n_edge == 0)
2435 return 0;
2437 if (detect_sccs(ctx, graph) < 0)
2438 return -1;
2440 if (graph->n_total_row >= graph->max_row)
2441 isl_die(ctx, isl_error_internal,
2442 "too many schedule rows", return -1);
2444 for (i = 0; i < graph->n; ++i) {
2445 struct isl_sched_node *node = &graph->node[i];
2446 int row = isl_mat_rows(node->sched);
2447 int cols = isl_mat_cols(node->sched);
2449 isl_map_free(node->sched_map);
2450 node->sched_map = NULL;
2451 node->sched = isl_mat_add_rows(node->sched, 1);
2452 if (!node->sched)
2453 return -1;
2454 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2455 node->scc);
2456 for (j = 1; j < cols; ++j)
2457 node->sched = isl_mat_set_element_si(node->sched,
2458 row, j, 0);
2459 node->band[graph->n_total_row] = graph->n_band;
2462 graph->n_total_row++;
2463 next_band(graph);
2465 return 0;
2468 /* Construct an isl_schedule based on the computed schedule stored
2469 * in graph and with parameters specified by dim.
2471 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
2472 __isl_take isl_space *dim)
2474 int i;
2475 isl_ctx *ctx;
2476 isl_schedule *sched = NULL;
2478 if (!dim)
2479 return NULL;
2481 ctx = isl_space_get_ctx(dim);
2482 sched = isl_calloc(ctx, struct isl_schedule,
2483 sizeof(struct isl_schedule) +
2484 (graph->n - 1) * sizeof(struct isl_schedule_node));
2485 if (!sched)
2486 goto error;
2488 sched->ref = 1;
2489 sched->n = graph->n;
2490 sched->n_band = graph->n_band;
2491 sched->n_total_row = graph->n_total_row;
2493 for (i = 0; i < sched->n; ++i) {
2494 int r, b;
2495 int *band_end, *band_id, *coincident;
2497 sched->node[i].sched =
2498 node_extract_schedule_multi_aff(&graph->node[i]);
2499 if (!sched->node[i].sched)
2500 goto error;
2502 sched->node[i].n_band = graph->n_band;
2503 if (graph->n_band == 0)
2504 continue;
2506 band_end = isl_alloc_array(ctx, int, graph->n_band);
2507 band_id = isl_alloc_array(ctx, int, graph->n_band);
2508 coincident = isl_alloc_array(ctx, int, graph->n_total_row);
2509 sched->node[i].band_end = band_end;
2510 sched->node[i].band_id = band_id;
2511 sched->node[i].coincident = coincident;
2512 if (!band_end || !band_id || !coincident)
2513 goto error;
2515 for (r = 0; r < graph->n_total_row; ++r)
2516 coincident[r] = graph->node[i].coincident[r];
2517 for (r = b = 0; r < graph->n_total_row; ++r) {
2518 if (graph->node[i].band[r] == b)
2519 continue;
2520 band_end[b++] = r;
2521 if (graph->node[i].band[r] == -1)
2522 break;
2524 if (r == graph->n_total_row)
2525 band_end[b++] = r;
2526 sched->node[i].n_band = b;
2527 for (--b; b >= 0; --b)
2528 band_id[b] = graph->node[i].band_id[b];
2531 sched->dim = dim;
2533 return sched;
2534 error:
2535 isl_space_free(dim);
2536 isl_schedule_free(sched);
2537 return NULL;
2540 /* Copy nodes that satisfy node_pred from the src dependence graph
2541 * to the dst dependence graph.
2543 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2544 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2546 int i;
2548 dst->n = 0;
2549 for (i = 0; i < src->n; ++i) {
2550 int j;
2552 if (!node_pred(&src->node[i], data))
2553 continue;
2555 j = dst->n;
2556 dst->node[j].space = isl_space_copy(src->node[i].space);
2557 dst->node[j].compressed = src->node[i].compressed;
2558 dst->node[j].hull = isl_set_copy(src->node[i].hull);
2559 dst->node[j].compress =
2560 isl_multi_aff_copy(src->node[i].compress);
2561 dst->node[j].decompress =
2562 isl_multi_aff_copy(src->node[i].decompress);
2563 dst->node[j].nvar = src->node[i].nvar;
2564 dst->node[j].nparam = src->node[i].nparam;
2565 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
2566 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
2567 dst->node[j].band = src->node[i].band;
2568 dst->node[j].band_id = src->node[i].band_id;
2569 dst->node[j].coincident = src->node[i].coincident;
2570 dst->n++;
2572 if (!dst->node[j].space || !dst->node[j].sched)
2573 return -1;
2574 if (dst->node[j].compressed &&
2575 (!dst->node[j].hull || !dst->node[j].compress ||
2576 !dst->node[j].decompress))
2577 return -1;
2580 return 0;
2583 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2584 * to the dst dependence graph.
2585 * If the source or destination node of the edge is not in the destination
2586 * graph, then it must be a backward proximity edge and it should simply
2587 * be ignored.
2589 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2590 struct isl_sched_graph *src,
2591 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2593 int i;
2594 enum isl_edge_type t;
2596 dst->n_edge = 0;
2597 for (i = 0; i < src->n_edge; ++i) {
2598 struct isl_sched_edge *edge = &src->edge[i];
2599 isl_map *map;
2600 isl_union_map *tagged_condition;
2601 isl_union_map *tagged_validity;
2602 struct isl_sched_node *dst_src, *dst_dst;
2604 if (!edge_pred(edge, data))
2605 continue;
2607 if (isl_map_plain_is_empty(edge->map))
2608 continue;
2610 dst_src = graph_find_node(ctx, dst, edge->src->space);
2611 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
2612 if (!dst_src || !dst_dst) {
2613 if (edge->validity || edge->conditional_validity)
2614 isl_die(ctx, isl_error_internal,
2615 "backward (conditional) validity edge",
2616 return -1);
2617 continue;
2620 map = isl_map_copy(edge->map);
2621 tagged_condition = isl_union_map_copy(edge->tagged_condition);
2622 tagged_validity = isl_union_map_copy(edge->tagged_validity);
2624 dst->edge[dst->n_edge].src = dst_src;
2625 dst->edge[dst->n_edge].dst = dst_dst;
2626 dst->edge[dst->n_edge].map = map;
2627 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
2628 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
2629 dst->edge[dst->n_edge].validity = edge->validity;
2630 dst->edge[dst->n_edge].proximity = edge->proximity;
2631 dst->edge[dst->n_edge].coincidence = edge->coincidence;
2632 dst->edge[dst->n_edge].condition = edge->condition;
2633 dst->edge[dst->n_edge].conditional_validity =
2634 edge->conditional_validity;
2635 dst->n_edge++;
2637 if (edge->tagged_condition && !tagged_condition)
2638 return -1;
2639 if (edge->tagged_validity && !tagged_validity)
2640 return -1;
2642 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2643 if (edge !=
2644 graph_find_edge(src, t, edge->src, edge->dst))
2645 continue;
2646 if (graph_edge_table_add(ctx, dst, t,
2647 &dst->edge[dst->n_edge - 1]) < 0)
2648 return -1;
2652 return 0;
2655 /* Given a "src" dependence graph that contains the nodes from "dst"
2656 * that satisfy node_pred, copy the schedule computed in "src"
2657 * for those nodes back to "dst".
2659 static int copy_schedule(struct isl_sched_graph *dst,
2660 struct isl_sched_graph *src,
2661 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2663 int i;
2665 src->n = 0;
2666 for (i = 0; i < dst->n; ++i) {
2667 if (!node_pred(&dst->node[i], data))
2668 continue;
2669 isl_mat_free(dst->node[i].sched);
2670 isl_map_free(dst->node[i].sched_map);
2671 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2672 dst->node[i].sched_map =
2673 isl_map_copy(src->node[src->n].sched_map);
2674 src->n++;
2677 dst->max_row = src->max_row;
2678 dst->n_total_row = src->n_total_row;
2679 dst->n_band = src->n_band;
2681 return 0;
2684 /* Compute the maximal number of variables over all nodes.
2685 * This is the maximal number of linearly independent schedule
2686 * rows that we need to compute.
2687 * Just in case we end up in a part of the dependence graph
2688 * with only lower-dimensional domains, we make sure we will
2689 * compute the required amount of extra linearly independent rows.
2691 static int compute_maxvar(struct isl_sched_graph *graph)
2693 int i;
2695 graph->maxvar = 0;
2696 for (i = 0; i < graph->n; ++i) {
2697 struct isl_sched_node *node = &graph->node[i];
2698 int nvar;
2700 if (node_update_cmap(node) < 0)
2701 return -1;
2702 nvar = node->nvar + graph->n_row - node->rank;
2703 if (nvar > graph->maxvar)
2704 graph->maxvar = nvar;
2707 return 0;
2710 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2711 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2713 /* Compute a schedule for a subgraph of "graph". In particular, for
2714 * the graph composed of nodes that satisfy node_pred and edges that
2715 * that satisfy edge_pred. The caller should precompute the number
2716 * of nodes and edges that satisfy these predicates and pass them along
2717 * as "n" and "n_edge".
2718 * If the subgraph is known to consist of a single component, then wcc should
2719 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2720 * Otherwise, we call compute_schedule, which will check whether the subgraph
2721 * is connected.
2723 static int compute_sub_schedule(isl_ctx *ctx,
2724 struct isl_sched_graph *graph, int n, int n_edge,
2725 int (*node_pred)(struct isl_sched_node *node, int data),
2726 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2727 int data, int wcc)
2729 struct isl_sched_graph split = { 0 };
2730 int t;
2732 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2733 goto error;
2734 if (copy_nodes(&split, graph, node_pred, data) < 0)
2735 goto error;
2736 if (graph_init_table(ctx, &split) < 0)
2737 goto error;
2738 for (t = 0; t <= isl_edge_last; ++t)
2739 split.max_edge[t] = graph->max_edge[t];
2740 if (graph_init_edge_tables(ctx, &split) < 0)
2741 goto error;
2742 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2743 goto error;
2744 split.n_row = graph->n_row;
2745 split.max_row = graph->max_row;
2746 split.n_total_row = graph->n_total_row;
2747 split.n_band = graph->n_band;
2748 split.band_start = graph->band_start;
2750 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2751 goto error;
2752 if (!wcc && compute_schedule(ctx, &split) < 0)
2753 goto error;
2755 copy_schedule(graph, &split, node_pred, data);
2757 graph_free(ctx, &split);
2758 return 0;
2759 error:
2760 graph_free(ctx, &split);
2761 return -1;
2764 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2766 return node->scc == scc;
2769 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2771 return node->scc <= scc;
2774 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2776 return node->scc >= scc;
2779 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2781 return edge->src->scc == scc && edge->dst->scc == scc;
2784 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2786 return edge->dst->scc <= scc;
2789 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2791 return edge->src->scc >= scc;
2794 /* Pad the schedules of all nodes with zero rows such that in the end
2795 * they all have graph->n_total_row rows.
2796 * The extra rows don't belong to any band, so they get assigned band number -1.
2798 static int pad_schedule(struct isl_sched_graph *graph)
2800 int i, j;
2802 for (i = 0; i < graph->n; ++i) {
2803 struct isl_sched_node *node = &graph->node[i];
2804 int row = isl_mat_rows(node->sched);
2805 if (graph->n_total_row > row) {
2806 isl_map_free(node->sched_map);
2807 node->sched_map = NULL;
2809 node->sched = isl_mat_add_zero_rows(node->sched,
2810 graph->n_total_row - row);
2811 if (!node->sched)
2812 return -1;
2813 for (j = row; j < graph->n_total_row; ++j)
2814 node->band[j] = -1;
2817 return 0;
2820 /* Reset the current band by dropping all its schedule rows.
2822 static int reset_band(struct isl_sched_graph *graph)
2824 int i;
2825 int drop;
2827 drop = graph->n_total_row - graph->band_start;
2828 graph->n_total_row -= drop;
2829 graph->n_row -= drop;
2831 for (i = 0; i < graph->n; ++i) {
2832 struct isl_sched_node *node = &graph->node[i];
2834 isl_map_free(node->sched_map);
2835 node->sched_map = NULL;
2837 node->sched = isl_mat_drop_rows(node->sched,
2838 graph->band_start, drop);
2840 if (!node->sched)
2841 return -1;
2844 return 0;
2847 /* Split the current graph into two parts and compute a schedule for each
2848 * part individually. In particular, one part consists of all SCCs up
2849 * to and including graph->src_scc, while the other part contains the other
2850 * SCCS.
2852 * The split is enforced in the schedule by constant rows with two different
2853 * values (0 and 1). These constant rows replace the previously computed rows
2854 * in the current band.
2855 * It would be possible to reuse them as the first rows in the next
2856 * band, but recomputing them may result in better rows as we are looking
2857 * at a smaller part of the dependence graph.
2859 * Since we do not enforce coincidence, we conservatively mark the
2860 * splitting row as not coincident.
2862 * The band_id of the second group is set to n, where n is the number
2863 * of nodes in the first group. This ensures that the band_ids over
2864 * the two groups remain disjoint, even if either or both of the two
2865 * groups contain independent components.
2867 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2869 int i, j, n, e1, e2;
2870 int n_total_row, orig_total_row;
2871 int n_band, orig_band;
2873 if (graph->n_total_row >= graph->max_row)
2874 isl_die(ctx, isl_error_internal,
2875 "too many schedule rows", return -1);
2877 if (reset_band(graph) < 0)
2878 return -1;
2880 n = 0;
2881 for (i = 0; i < graph->n; ++i) {
2882 struct isl_sched_node *node = &graph->node[i];
2883 int row = isl_mat_rows(node->sched);
2884 int cols = isl_mat_cols(node->sched);
2885 int before = node->scc <= graph->src_scc;
2887 if (before)
2888 n++;
2890 isl_map_free(node->sched_map);
2891 node->sched_map = NULL;
2892 node->sched = isl_mat_add_rows(node->sched, 1);
2893 if (!node->sched)
2894 return -1;
2895 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2896 !before);
2897 for (j = 1; j < cols; ++j)
2898 node->sched = isl_mat_set_element_si(node->sched,
2899 row, j, 0);
2900 node->band[graph->n_total_row] = graph->n_band;
2901 node->coincident[graph->n_total_row] = 0;
2904 e1 = e2 = 0;
2905 for (i = 0; i < graph->n_edge; ++i) {
2906 if (graph->edge[i].dst->scc <= graph->src_scc)
2907 e1++;
2908 if (graph->edge[i].src->scc > graph->src_scc)
2909 e2++;
2912 graph->n_total_row++;
2913 next_band(graph);
2915 for (i = 0; i < graph->n; ++i) {
2916 struct isl_sched_node *node = &graph->node[i];
2917 if (node->scc > graph->src_scc)
2918 node->band_id[graph->n_band] = n;
2921 orig_total_row = graph->n_total_row;
2922 orig_band = graph->n_band;
2923 if (compute_sub_schedule(ctx, graph, n, e1,
2924 &node_scc_at_most, &edge_dst_scc_at_most,
2925 graph->src_scc, 0) < 0)
2926 return -1;
2927 n_total_row = graph->n_total_row;
2928 graph->n_total_row = orig_total_row;
2929 n_band = graph->n_band;
2930 graph->n_band = orig_band;
2931 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2932 &node_scc_at_least, &edge_src_scc_at_least,
2933 graph->src_scc + 1, 0) < 0)
2934 return -1;
2935 if (n_total_row > graph->n_total_row)
2936 graph->n_total_row = n_total_row;
2937 if (n_band > graph->n_band)
2938 graph->n_band = n_band;
2940 return pad_schedule(graph);
2943 /* Compute the next band of the schedule after updating the dependence
2944 * relations based on the the current schedule.
2946 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2948 if (update_edges(ctx, graph) < 0)
2949 return -1;
2950 next_band(graph);
2952 return compute_schedule(ctx, graph);
2955 /* Add constraints to graph->lp that force the dependence "map" (which
2956 * is part of the dependence relation of "edge")
2957 * to be respected and attempt to carry it, where the edge is one from
2958 * a node j to itself. "pos" is the sequence number of the given map.
2959 * That is, add constraints that enforce
2961 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2962 * = c_j_x (y - x) >= e_i
2964 * for each (x,y) in R.
2965 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2966 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2967 * with each coefficient in c_j_x represented as a pair of non-negative
2968 * coefficients.
2970 static int add_intra_constraints(struct isl_sched_graph *graph,
2971 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2973 unsigned total;
2974 isl_ctx *ctx = isl_map_get_ctx(map);
2975 isl_space *dim;
2976 isl_dim_map *dim_map;
2977 isl_basic_set *coef;
2978 struct isl_sched_node *node = edge->src;
2980 coef = intra_coefficients(graph, node, map);
2981 if (!coef)
2982 return -1;
2984 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2986 total = isl_basic_set_total_dim(graph->lp);
2987 dim_map = isl_dim_map_alloc(ctx, total);
2988 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2989 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2990 isl_space_dim(dim, isl_dim_set), 1,
2991 node->nvar, -1);
2992 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2993 isl_space_dim(dim, isl_dim_set), 1,
2994 node->nvar, 1);
2995 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2996 coef->n_eq, coef->n_ineq);
2997 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2998 coef, dim_map);
2999 isl_space_free(dim);
3001 return 0;
3004 /* Add constraints to graph->lp that force the dependence "map" (which
3005 * is part of the dependence relation of "edge")
3006 * to be respected and attempt to carry it, where the edge is one from
3007 * node j to node k. "pos" is the sequence number of the given map.
3008 * That is, add constraints that enforce
3010 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3012 * for each (x,y) in R.
3013 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3014 * of valid constraints for R and then plug in
3015 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3016 * with each coefficient (except e_i, c_k_0 and c_j_0)
3017 * represented as a pair of non-negative coefficients.
3019 static int add_inter_constraints(struct isl_sched_graph *graph,
3020 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3022 unsigned total;
3023 isl_ctx *ctx = isl_map_get_ctx(map);
3024 isl_space *dim;
3025 isl_dim_map *dim_map;
3026 isl_basic_set *coef;
3027 struct isl_sched_node *src = edge->src;
3028 struct isl_sched_node *dst = edge->dst;
3030 coef = inter_coefficients(graph, edge, map);
3031 if (!coef)
3032 return -1;
3034 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3036 total = isl_basic_set_total_dim(graph->lp);
3037 dim_map = isl_dim_map_alloc(ctx, total);
3039 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3041 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
3042 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
3043 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
3044 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
3045 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3046 dst->nvar, -1);
3047 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
3048 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3049 dst->nvar, 1);
3051 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
3052 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
3053 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
3054 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
3055 isl_space_dim(dim, isl_dim_set), 1,
3056 src->nvar, 1);
3057 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
3058 isl_space_dim(dim, isl_dim_set), 1,
3059 src->nvar, -1);
3061 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3062 coef->n_eq, coef->n_ineq);
3063 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3064 coef, dim_map);
3065 isl_space_free(dim);
3067 return 0;
3070 /* Add constraints to graph->lp that force all (conditional) validity
3071 * dependences to be respected and attempt to carry them.
3073 static int add_all_constraints(struct isl_sched_graph *graph)
3075 int i, j;
3076 int pos;
3078 pos = 0;
3079 for (i = 0; i < graph->n_edge; ++i) {
3080 struct isl_sched_edge *edge= &graph->edge[i];
3082 if (!edge->validity && !edge->conditional_validity)
3083 continue;
3085 for (j = 0; j < edge->map->n; ++j) {
3086 isl_basic_map *bmap;
3087 isl_map *map;
3089 bmap = isl_basic_map_copy(edge->map->p[j]);
3090 map = isl_map_from_basic_map(bmap);
3092 if (edge->src == edge->dst &&
3093 add_intra_constraints(graph, edge, map, pos) < 0)
3094 return -1;
3095 if (edge->src != edge->dst &&
3096 add_inter_constraints(graph, edge, map, pos) < 0)
3097 return -1;
3098 ++pos;
3102 return 0;
3105 /* Count the number of equality and inequality constraints
3106 * that will be added to the carry_lp problem.
3107 * We count each edge exactly once.
3109 static int count_all_constraints(struct isl_sched_graph *graph,
3110 int *n_eq, int *n_ineq)
3112 int i, j;
3114 *n_eq = *n_ineq = 0;
3115 for (i = 0; i < graph->n_edge; ++i) {
3116 struct isl_sched_edge *edge= &graph->edge[i];
3117 for (j = 0; j < edge->map->n; ++j) {
3118 isl_basic_map *bmap;
3119 isl_map *map;
3121 bmap = isl_basic_map_copy(edge->map->p[j]);
3122 map = isl_map_from_basic_map(bmap);
3124 if (count_map_constraints(graph, edge, map,
3125 n_eq, n_ineq, 1, 0) < 0)
3126 return -1;
3130 return 0;
3133 /* Construct an LP problem for finding schedule coefficients
3134 * such that the schedule carries as many dependences as possible.
3135 * In particular, for each dependence i, we bound the dependence distance
3136 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3137 * of all e_i's. Dependence with e_i = 0 in the solution are simply
3138 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3139 * Note that if the dependence relation is a union of basic maps,
3140 * then we have to consider each basic map individually as it may only
3141 * be possible to carry the dependences expressed by some of those
3142 * basic maps and not all off them.
3143 * Below, we consider each of those basic maps as a separate "edge".
3145 * All variables of the LP are non-negative. The actual coefficients
3146 * may be negative, so each coefficient is represented as the difference
3147 * of two non-negative variables. The negative part always appears
3148 * immediately before the positive part.
3149 * Other than that, the variables have the following order
3151 * - sum of (1 - e_i) over all edges
3152 * - sum of positive and negative parts of all c_n coefficients
3153 * (unconstrained when computing non-parametric schedules)
3154 * - sum of positive and negative parts of all c_x coefficients
3155 * - for each edge
3156 * - e_i
3157 * - for each node
3158 * - c_i_0
3159 * - positive and negative parts of c_i_n (if parametric)
3160 * - positive and negative parts of c_i_x
3162 * The constraints are those from the (validity) edges plus three equalities
3163 * to express the sums and n_edge inequalities to express e_i <= 1.
3165 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
3167 int i, j;
3168 int k;
3169 isl_space *dim;
3170 unsigned total;
3171 int n_eq, n_ineq;
3172 int n_edge;
3174 n_edge = 0;
3175 for (i = 0; i < graph->n_edge; ++i)
3176 n_edge += graph->edge[i].map->n;
3178 total = 3 + n_edge;
3179 for (i = 0; i < graph->n; ++i) {
3180 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3181 node->start = total;
3182 total += 1 + 2 * (node->nparam + node->nvar);
3185 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3186 return -1;
3187 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
3188 return -1;
3190 dim = isl_space_set_alloc(ctx, 0, total);
3191 isl_basic_set_free(graph->lp);
3192 n_eq += 3;
3193 n_ineq += n_edge;
3194 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3195 graph->lp = isl_basic_set_set_rational(graph->lp);
3197 k = isl_basic_set_alloc_equality(graph->lp);
3198 if (k < 0)
3199 return -1;
3200 isl_seq_clr(graph->lp->eq[k], 1 + total);
3201 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3202 isl_int_set_si(graph->lp->eq[k][1], 1);
3203 for (i = 0; i < n_edge; ++i)
3204 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3206 k = isl_basic_set_alloc_equality(graph->lp);
3207 if (k < 0)
3208 return -1;
3209 isl_seq_clr(graph->lp->eq[k], 1 + total);
3210 isl_int_set_si(graph->lp->eq[k][2], -1);
3211 for (i = 0; i < graph->n; ++i) {
3212 int pos = 1 + graph->node[i].start + 1;
3214 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3215 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3218 k = isl_basic_set_alloc_equality(graph->lp);
3219 if (k < 0)
3220 return -1;
3221 isl_seq_clr(graph->lp->eq[k], 1 + total);
3222 isl_int_set_si(graph->lp->eq[k][3], -1);
3223 for (i = 0; i < graph->n; ++i) {
3224 struct isl_sched_node *node = &graph->node[i];
3225 int pos = 1 + node->start + 1 + 2 * node->nparam;
3227 for (j = 0; j < 2 * node->nvar; ++j)
3228 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3231 for (i = 0; i < n_edge; ++i) {
3232 k = isl_basic_set_alloc_inequality(graph->lp);
3233 if (k < 0)
3234 return -1;
3235 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3236 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3237 isl_int_set_si(graph->lp->ineq[k][0], 1);
3240 if (add_bound_coefficient_constraints(ctx, graph) < 0)
3241 return -1;
3242 if (add_all_constraints(graph) < 0)
3243 return -1;
3245 return 0;
3248 /* If the schedule_split_scaled option is set and if the linear
3249 * parts of the scheduling rows for all nodes in the graphs have
3250 * non-trivial common divisor, then split off the constant term
3251 * from the linear part.
3252 * The constant term is then placed in a separate band and
3253 * the linear part is reduced.
3255 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
3257 int i;
3258 int row;
3259 isl_int gcd, gcd_i;
3261 if (!ctx->opt->schedule_split_scaled)
3262 return 0;
3263 if (graph->n <= 1)
3264 return 0;
3266 if (graph->n_total_row >= graph->max_row)
3267 isl_die(ctx, isl_error_internal,
3268 "too many schedule rows", return -1);
3270 isl_int_init(gcd);
3271 isl_int_init(gcd_i);
3273 isl_int_set_si(gcd, 0);
3275 row = isl_mat_rows(graph->node[0].sched) - 1;
3277 for (i = 0; i < graph->n; ++i) {
3278 struct isl_sched_node *node = &graph->node[i];
3279 int cols = isl_mat_cols(node->sched);
3281 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3282 isl_int_gcd(gcd, gcd, gcd_i);
3285 isl_int_clear(gcd_i);
3287 if (isl_int_cmp_si(gcd, 1) <= 0) {
3288 isl_int_clear(gcd);
3289 return 0;
3292 next_band(graph);
3294 for (i = 0; i < graph->n; ++i) {
3295 struct isl_sched_node *node = &graph->node[i];
3297 isl_map_free(node->sched_map);
3298 node->sched_map = NULL;
3299 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3300 if (!node->sched)
3301 goto error;
3302 isl_int_fdiv_r(node->sched->row[row + 1][0],
3303 node->sched->row[row][0], gcd);
3304 isl_int_fdiv_q(node->sched->row[row][0],
3305 node->sched->row[row][0], gcd);
3306 isl_int_mul(node->sched->row[row][0],
3307 node->sched->row[row][0], gcd);
3308 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3309 if (!node->sched)
3310 goto error;
3311 node->band[graph->n_total_row] = graph->n_band;
3314 graph->n_total_row++;
3316 isl_int_clear(gcd);
3317 return 0;
3318 error:
3319 isl_int_clear(gcd);
3320 return -1;
3323 static int compute_component_schedule(isl_ctx *ctx,
3324 struct isl_sched_graph *graph);
3326 /* Is the schedule row "sol" trivial on node "node"?
3327 * That is, is the solution zero on the dimensions orthogonal to
3328 * the previously found solutions?
3329 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3331 * Each coefficient is represented as the difference between
3332 * two non-negative values in "sol". "sol" has been computed
3333 * in terms of the original iterators (i.e., without use of cmap).
3334 * We construct the schedule row s and write it as a linear
3335 * combination of (linear combinations of) previously computed schedule rows.
3336 * s = Q c or c = U s.
3337 * If the final entries of c are all zero, then the solution is trivial.
3339 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3341 int i;
3342 int pos;
3343 int trivial;
3344 isl_ctx *ctx;
3345 isl_vec *node_sol;
3347 if (!sol)
3348 return -1;
3349 if (node->nvar == node->rank)
3350 return 0;
3352 ctx = isl_vec_get_ctx(sol);
3353 node_sol = isl_vec_alloc(ctx, node->nvar);
3354 if (!node_sol)
3355 return -1;
3357 pos = 1 + node->start + 1 + 2 * node->nparam;
3359 for (i = 0; i < node->nvar; ++i)
3360 isl_int_sub(node_sol->el[i],
3361 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3363 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3365 if (!node_sol)
3366 return -1;
3368 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3369 node->nvar - node->rank) == -1;
3371 isl_vec_free(node_sol);
3373 return trivial;
3376 /* Is the schedule row "sol" trivial on any node where it should
3377 * not be trivial?
3378 * "sol" has been computed in terms of the original iterators
3379 * (i.e., without use of cmap).
3380 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3382 static int is_any_trivial(struct isl_sched_graph *graph,
3383 __isl_keep isl_vec *sol)
3385 int i;
3387 for (i = 0; i < graph->n; ++i) {
3388 struct isl_sched_node *node = &graph->node[i];
3389 int trivial;
3391 if (!needs_row(graph, node))
3392 continue;
3393 trivial = is_trivial(node, sol);
3394 if (trivial < 0 || trivial)
3395 return trivial;
3398 return 0;
3401 /* Construct a schedule row for each node such that as many dependences
3402 * as possible are carried and then continue with the next band.
3404 * If the computed schedule row turns out to be trivial on one or
3405 * more nodes where it should not be trivial, then we throw it away
3406 * and try again on each component separately.
3408 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
3410 int i;
3411 int n_edge;
3412 int trivial;
3413 isl_vec *sol;
3414 isl_basic_set *lp;
3416 n_edge = 0;
3417 for (i = 0; i < graph->n_edge; ++i)
3418 n_edge += graph->edge[i].map->n;
3420 if (setup_carry_lp(ctx, graph) < 0)
3421 return -1;
3423 lp = isl_basic_set_copy(graph->lp);
3424 sol = isl_tab_basic_set_non_neg_lexmin(lp);
3425 if (!sol)
3426 return -1;
3428 if (sol->size == 0) {
3429 isl_vec_free(sol);
3430 isl_die(ctx, isl_error_internal,
3431 "error in schedule construction", return -1);
3434 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
3435 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
3436 isl_vec_free(sol);
3437 isl_die(ctx, isl_error_unknown,
3438 "unable to carry dependences", return -1);
3441 trivial = is_any_trivial(graph, sol);
3442 if (trivial < 0) {
3443 sol = isl_vec_free(sol);
3444 } else if (trivial) {
3445 isl_vec_free(sol);
3446 if (graph->scc > 1)
3447 return compute_component_schedule(ctx, graph);
3448 isl_die(ctx, isl_error_unknown,
3449 "unable to construct non-trivial solution", return -1);
3452 if (update_schedule(graph, sol, 0, 0) < 0)
3453 return -1;
3455 if (split_scaled(ctx, graph) < 0)
3456 return -1;
3458 return compute_next_band(ctx, graph);
3461 /* Are there any (non-empty) (conditional) validity edges in the graph?
3463 static int has_validity_edges(struct isl_sched_graph *graph)
3465 int i;
3467 for (i = 0; i < graph->n_edge; ++i) {
3468 int empty;
3470 empty = isl_map_plain_is_empty(graph->edge[i].map);
3471 if (empty < 0)
3472 return -1;
3473 if (empty)
3474 continue;
3475 if (graph->edge[i].validity ||
3476 graph->edge[i].conditional_validity)
3477 return 1;
3480 return 0;
3483 /* Should we apply a Feautrier step?
3484 * That is, did the user request the Feautrier algorithm and are
3485 * there any validity dependences (left)?
3487 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
3489 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
3490 return 0;
3492 return has_validity_edges(graph);
3495 /* Compute a schedule for a connected dependence graph using Feautrier's
3496 * multi-dimensional scheduling algorithm.
3497 * The original algorithm is described in [1].
3498 * The main idea is to minimize the number of scheduling dimensions, by
3499 * trying to satisfy as many dependences as possible per scheduling dimension.
3501 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3502 * Problem, Part II: Multi-Dimensional Time.
3503 * In Intl. Journal of Parallel Programming, 1992.
3505 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
3506 struct isl_sched_graph *graph)
3508 return carry_dependences(ctx, graph);
3511 /* Turn off the "local" bit on all (condition) edges.
3513 static void clear_local_edges(struct isl_sched_graph *graph)
3515 int i;
3517 for (i = 0; i < graph->n_edge; ++i)
3518 if (graph->edge[i].condition)
3519 graph->edge[i].local = 0;
3522 /* Does "graph" have both condition and conditional validity edges?
3524 static int need_condition_check(struct isl_sched_graph *graph)
3526 int i;
3527 int any_condition = 0;
3528 int any_conditional_validity = 0;
3530 for (i = 0; i < graph->n_edge; ++i) {
3531 if (graph->edge[i].condition)
3532 any_condition = 1;
3533 if (graph->edge[i].conditional_validity)
3534 any_conditional_validity = 1;
3537 return any_condition && any_conditional_validity;
3540 /* Does "graph" contain any coincidence edge?
3542 static int has_any_coincidence(struct isl_sched_graph *graph)
3544 int i;
3546 for (i = 0; i < graph->n_edge; ++i)
3547 if (graph->edge[i].coincidence)
3548 return 1;
3550 return 0;
3553 /* Extract the final schedule row as a map with the iteration domain
3554 * of "node" as domain.
3556 static __isl_give isl_map *final_row(struct isl_sched_node *node)
3558 isl_local_space *ls;
3559 isl_aff *aff;
3560 int row;
3562 row = isl_mat_rows(node->sched) - 1;
3563 ls = isl_local_space_from_space(isl_space_copy(node->space));
3564 aff = extract_schedule_row(ls, node, row);
3565 return isl_map_from_aff(aff);
3568 /* Is the conditional validity dependence in the edge with index "edge_index"
3569 * violated by the latest (i.e., final) row of the schedule?
3570 * That is, is i scheduled after j
3571 * for any conditional validity dependence i -> j?
3573 static int is_violated(struct isl_sched_graph *graph, int edge_index)
3575 isl_map *src_sched, *dst_sched, *map;
3576 struct isl_sched_edge *edge = &graph->edge[edge_index];
3577 int empty;
3579 src_sched = final_row(edge->src);
3580 dst_sched = final_row(edge->dst);
3581 map = isl_map_copy(edge->map);
3582 map = isl_map_apply_domain(map, src_sched);
3583 map = isl_map_apply_range(map, dst_sched);
3584 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
3585 empty = isl_map_is_empty(map);
3586 isl_map_free(map);
3588 if (empty < 0)
3589 return -1;
3591 return !empty;
3594 /* Does the domain of "umap" intersect "uset"?
3596 static int domain_intersects(__isl_keep isl_union_map *umap,
3597 __isl_keep isl_union_set *uset)
3599 int empty;
3601 umap = isl_union_map_copy(umap);
3602 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3603 empty = isl_union_map_is_empty(umap);
3604 isl_union_map_free(umap);
3606 return empty < 0 ? -1 : !empty;
3609 /* Does the range of "umap" intersect "uset"?
3611 static int range_intersects(__isl_keep isl_union_map *umap,
3612 __isl_keep isl_union_set *uset)
3614 int empty;
3616 umap = isl_union_map_copy(umap);
3617 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3618 empty = isl_union_map_is_empty(umap);
3619 isl_union_map_free(umap);
3621 return empty < 0 ? -1 : !empty;
3624 /* Are the condition dependences of "edge" local with respect to
3625 * the current schedule?
3627 * That is, are domain and range of the condition dependences mapped
3628 * to the same point?
3630 * In other words, is the condition false?
3632 static int is_condition_false(struct isl_sched_edge *edge)
3634 isl_union_map *umap;
3635 isl_map *map, *sched, *test;
3636 int local;
3638 umap = isl_union_map_copy(edge->tagged_condition);
3639 umap = isl_union_map_zip(umap);
3640 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3641 map = isl_map_from_union_map(umap);
3643 sched = node_extract_schedule(edge->src);
3644 map = isl_map_apply_domain(map, sched);
3645 sched = node_extract_schedule(edge->dst);
3646 map = isl_map_apply_range(map, sched);
3648 test = isl_map_identity(isl_map_get_space(map));
3649 local = isl_map_is_subset(map, test);
3650 isl_map_free(map);
3651 isl_map_free(test);
3653 return local;
3656 /* Does "graph" have any satisfied condition edges that
3657 * are adjacent to the conditional validity constraint with
3658 * domain "conditional_source" and range "conditional_sink"?
3660 * A satisfied condition is one that is not local.
3661 * If a condition was forced to be local already (i.e., marked as local)
3662 * then there is no need to check if it is in fact local.
3664 * Additionally, mark all adjacent condition edges found as local.
3666 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
3667 __isl_keep isl_union_set *conditional_source,
3668 __isl_keep isl_union_set *conditional_sink)
3670 int i;
3671 int any = 0;
3673 for (i = 0; i < graph->n_edge; ++i) {
3674 int adjacent, local;
3675 isl_union_map *condition;
3677 if (!graph->edge[i].condition)
3678 continue;
3679 if (graph->edge[i].local)
3680 continue;
3682 condition = graph->edge[i].tagged_condition;
3683 adjacent = domain_intersects(condition, conditional_sink);
3684 if (adjacent >= 0 && !adjacent)
3685 adjacent = range_intersects(condition,
3686 conditional_source);
3687 if (adjacent < 0)
3688 return -1;
3689 if (!adjacent)
3690 continue;
3692 graph->edge[i].local = 1;
3694 local = is_condition_false(&graph->edge[i]);
3695 if (local < 0)
3696 return -1;
3697 if (!local)
3698 any = 1;
3701 return any;
3704 /* Are there any violated conditional validity dependences with
3705 * adjacent condition dependences that are not local with respect
3706 * to the current schedule?
3707 * That is, is the conditional validity constraint violated?
3709 * Additionally, mark all those adjacent condition dependences as local.
3710 * We also mark those adjacent condition dependences that were not marked
3711 * as local before, but just happened to be local already. This ensures
3712 * that they remain local if the schedule is recomputed.
3714 * We first collect domain and range of all violated conditional validity
3715 * dependences and then check if there are any adjacent non-local
3716 * condition dependences.
3718 static int has_violated_conditional_constraint(isl_ctx *ctx,
3719 struct isl_sched_graph *graph)
3721 int i;
3722 int any = 0;
3723 isl_union_set *source, *sink;
3725 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3726 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3727 for (i = 0; i < graph->n_edge; ++i) {
3728 isl_union_set *uset;
3729 isl_union_map *umap;
3730 int violated;
3732 if (!graph->edge[i].conditional_validity)
3733 continue;
3735 violated = is_violated(graph, i);
3736 if (violated < 0)
3737 goto error;
3738 if (!violated)
3739 continue;
3741 any = 1;
3743 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3744 uset = isl_union_map_domain(umap);
3745 source = isl_union_set_union(source, uset);
3746 source = isl_union_set_coalesce(source);
3748 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3749 uset = isl_union_map_range(umap);
3750 sink = isl_union_set_union(sink, uset);
3751 sink = isl_union_set_coalesce(sink);
3754 if (any)
3755 any = has_adjacent_true_conditions(graph, source, sink);
3757 isl_union_set_free(source);
3758 isl_union_set_free(sink);
3759 return any;
3760 error:
3761 isl_union_set_free(source);
3762 isl_union_set_free(sink);
3763 return -1;
3766 /* Compute a schedule for a connected dependence graph.
3767 * We try to find a sequence of as many schedule rows as possible that result
3768 * in non-negative dependence distances (independent of the previous rows
3769 * in the sequence, i.e., such that the sequence is tilable), with as
3770 * many of the initial rows as possible satisfying the coincidence constraints.
3771 * If we can't find any more rows we either
3772 * - split between SCCs and start over (assuming we found an interesting
3773 * pair of SCCs between which to split)
3774 * - continue with the next band (assuming the current band has at least
3775 * one row)
3776 * - try to carry as many dependences as possible and continue with the next
3777 * band
3779 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3780 * as many validity dependences as possible. When all validity dependences
3781 * are satisfied we extend the schedule to a full-dimensional schedule.
3783 * If we manage to complete the schedule, we finish off by topologically
3784 * sorting the statements based on the remaining dependences.
3786 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3787 * outermost dimension to satisfy the coincidence constraints. If this
3788 * turns out to be impossible, we fall back on the general scheme above
3789 * and try to carry as many dependences as possible.
3791 * If "graph" contains both condition and conditional validity dependences,
3792 * then we need to check that that the conditional schedule constraint
3793 * is satisfied, i.e., there are no violated conditional validity dependences
3794 * that are adjacent to any non-local condition dependences.
3795 * If there are, then we mark all those adjacent condition dependences
3796 * as local and recompute the current band. Those dependences that
3797 * are marked local will then be forced to be local.
3798 * The initial computation is performed with no dependences marked as local.
3799 * If we are lucky, then there will be no violated conditional validity
3800 * dependences adjacent to any non-local condition dependences.
3801 * Otherwise, we mark some additional condition dependences as local and
3802 * recompute. We continue this process until there are no violations left or
3803 * until we are no longer able to compute a schedule.
3804 * Since there are only a finite number of dependences,
3805 * there will only be a finite number of iterations.
3807 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
3809 int has_coincidence;
3810 int use_coincidence;
3811 int force_coincidence = 0;
3812 int check_conditional;
3814 if (detect_sccs(ctx, graph) < 0)
3815 return -1;
3816 if (sort_sccs(graph) < 0)
3817 return -1;
3819 if (compute_maxvar(graph) < 0)
3820 return -1;
3822 if (need_feautrier_step(ctx, graph))
3823 return compute_schedule_wcc_feautrier(ctx, graph);
3825 clear_local_edges(graph);
3826 check_conditional = need_condition_check(graph);
3827 has_coincidence = has_any_coincidence(graph);
3829 if (ctx->opt->schedule_outer_coincidence)
3830 force_coincidence = 1;
3832 use_coincidence = has_coincidence;
3833 while (graph->n_row < graph->maxvar) {
3834 isl_vec *sol;
3835 int violated;
3836 int coincident;
3838 graph->src_scc = -1;
3839 graph->dst_scc = -1;
3841 if (setup_lp(ctx, graph, use_coincidence) < 0)
3842 return -1;
3843 sol = solve_lp(graph);
3844 if (!sol)
3845 return -1;
3846 if (sol->size == 0) {
3847 int empty = graph->n_total_row == graph->band_start;
3849 isl_vec_free(sol);
3850 if (use_coincidence && (!force_coincidence || !empty)) {
3851 use_coincidence = 0;
3852 continue;
3854 if (!ctx->opt->schedule_maximize_band_depth && !empty)
3855 return compute_next_band(ctx, graph);
3856 if (graph->src_scc >= 0)
3857 return compute_split_schedule(ctx, graph);
3858 if (!empty)
3859 return compute_next_band(ctx, graph);
3860 return carry_dependences(ctx, graph);
3862 coincident = !has_coincidence || use_coincidence;
3863 if (update_schedule(graph, sol, 1, coincident) < 0)
3864 return -1;
3866 if (!check_conditional)
3867 continue;
3868 violated = has_violated_conditional_constraint(ctx, graph);
3869 if (violated < 0)
3870 return -1;
3871 if (!violated)
3872 continue;
3873 if (reset_band(graph) < 0)
3874 return -1;
3875 use_coincidence = has_coincidence;
3878 if (graph->n_total_row > graph->band_start)
3879 next_band(graph);
3880 return sort_statements(ctx, graph);
3883 /* Add a row to the schedules that separates the SCCs and move
3884 * to the next band.
3886 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
3888 int i;
3890 if (graph->n_total_row >= graph->max_row)
3891 isl_die(ctx, isl_error_internal,
3892 "too many schedule rows", return -1);
3894 for (i = 0; i < graph->n; ++i) {
3895 struct isl_sched_node *node = &graph->node[i];
3896 int row = isl_mat_rows(node->sched);
3898 isl_map_free(node->sched_map);
3899 node->sched_map = NULL;
3900 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3901 node->sched = isl_mat_set_element_si(node->sched, row, 0,
3902 node->scc);
3903 if (!node->sched)
3904 return -1;
3905 node->band[graph->n_total_row] = graph->n_band;
3908 graph->n_total_row++;
3909 next_band(graph);
3911 return 0;
3914 /* Compute a schedule for each component (identified by node->scc)
3915 * of the dependence graph separately and then combine the results.
3916 * Depending on the setting of schedule_fuse, a component may be
3917 * either weakly or strongly connected.
3919 * The band_id is adjusted such that each component has a separate id.
3920 * Note that the band_id may have already been set to a value different
3921 * from zero by compute_split_schedule.
3923 static int compute_component_schedule(isl_ctx *ctx,
3924 struct isl_sched_graph *graph)
3926 int wcc, i;
3927 int n, n_edge;
3928 int n_total_row, orig_total_row;
3929 int n_band, orig_band;
3931 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3932 ctx->opt->schedule_separate_components)
3933 if (split_on_scc(ctx, graph) < 0)
3934 return -1;
3936 n_total_row = 0;
3937 orig_total_row = graph->n_total_row;
3938 n_band = 0;
3939 orig_band = graph->n_band;
3940 for (i = 0; i < graph->n; ++i)
3941 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3942 for (wcc = 0; wcc < graph->scc; ++wcc) {
3943 n = 0;
3944 for (i = 0; i < graph->n; ++i)
3945 if (graph->node[i].scc == wcc)
3946 n++;
3947 n_edge = 0;
3948 for (i = 0; i < graph->n_edge; ++i)
3949 if (graph->edge[i].src->scc == wcc &&
3950 graph->edge[i].dst->scc == wcc)
3951 n_edge++;
3953 if (compute_sub_schedule(ctx, graph, n, n_edge,
3954 &node_scc_exactly,
3955 &edge_scc_exactly, wcc, 1) < 0)
3956 return -1;
3957 if (graph->n_total_row > n_total_row)
3958 n_total_row = graph->n_total_row;
3959 graph->n_total_row = orig_total_row;
3960 if (graph->n_band > n_band)
3961 n_band = graph->n_band;
3962 graph->n_band = orig_band;
3965 graph->n_total_row = n_total_row;
3966 graph->n_band = n_band;
3968 return pad_schedule(graph);
3971 /* Compute a schedule for the given dependence graph.
3972 * We first check if the graph is connected (through validity and conditional
3973 * validity dependences) and, if not, compute a schedule
3974 * for each component separately.
3975 * If schedule_fuse is set to minimal fusion, then we check for strongly
3976 * connected components instead and compute a separate schedule for
3977 * each such strongly connected component.
3979 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3981 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3982 if (detect_sccs(ctx, graph) < 0)
3983 return -1;
3984 } else {
3985 if (detect_wccs(ctx, graph) < 0)
3986 return -1;
3989 if (graph->scc > 1)
3990 return compute_component_schedule(ctx, graph);
3992 return compute_schedule_wcc(ctx, graph);
3995 /* Compute a schedule on sc->domain that respects the given schedule
3996 * constraints.
3998 * In particular, the schedule respects all the validity dependences.
3999 * If the default isl scheduling algorithm is used, it tries to minimize
4000 * the dependence distances over the proximity dependences.
4001 * If Feautrier's scheduling algorithm is used, the proximity dependence
4002 * distances are only minimized during the extension to a full-dimensional
4003 * schedule.
4005 * If there are any condition and conditional validity dependences,
4006 * then the conditional validity dependences may be violated inside
4007 * a tilable band, provided they have no adjacent non-local
4008 * condition dependences.
4010 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
4011 __isl_take isl_schedule_constraints *sc)
4013 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
4014 struct isl_sched_graph graph = { 0 };
4015 isl_schedule *sched;
4016 struct isl_extract_edge_data data;
4017 enum isl_edge_type i;
4019 sc = isl_schedule_constraints_align_params(sc);
4020 if (!sc)
4021 return NULL;
4023 graph.n = isl_union_set_n_set(sc->domain);
4024 if (graph.n == 0)
4025 goto empty;
4026 if (graph_alloc(ctx, &graph, graph.n,
4027 isl_schedule_constraints_n_map(sc)) < 0)
4028 goto error;
4029 if (compute_max_row(&graph, sc->domain) < 0)
4030 goto error;
4031 graph.root = 1;
4032 graph.n = 0;
4033 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
4034 goto error;
4035 if (graph_init_table(ctx, &graph) < 0)
4036 goto error;
4037 for (i = isl_edge_first; i <= isl_edge_last; ++i)
4038 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
4039 if (graph_init_edge_tables(ctx, &graph) < 0)
4040 goto error;
4041 graph.n_edge = 0;
4042 data.graph = &graph;
4043 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
4044 data.type = i;
4045 if (isl_union_map_foreach_map(sc->constraint[i],
4046 &extract_edge, &data) < 0)
4047 goto error;
4050 if (compute_schedule(ctx, &graph) < 0)
4051 goto error;
4053 empty:
4054 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
4056 graph_free(ctx, &graph);
4057 isl_schedule_constraints_free(sc);
4059 return sched;
4060 error:
4061 graph_free(ctx, &graph);
4062 isl_schedule_constraints_free(sc);
4063 return NULL;
4066 /* Compute a schedule for the given union of domains that respects
4067 * all the validity dependences and minimizes
4068 * the dependence distances over the proximity dependences.
4070 * This function is kept for backward compatibility.
4072 __isl_give isl_schedule *isl_union_set_compute_schedule(
4073 __isl_take isl_union_set *domain,
4074 __isl_take isl_union_map *validity,
4075 __isl_take isl_union_map *proximity)
4077 isl_schedule_constraints *sc;
4079 sc = isl_schedule_constraints_on_domain(domain);
4080 sc = isl_schedule_constraints_set_validity(sc, validity);
4081 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4083 return isl_schedule_constraints_compute_schedule(sc);
4086 __isl_null isl_schedule *isl_schedule_free(__isl_take isl_schedule *sched)
4088 int i;
4089 if (!sched)
4090 return NULL;
4092 if (--sched->ref > 0)
4093 return NULL;
4095 for (i = 0; i < sched->n; ++i) {
4096 isl_multi_aff_free(sched->node[i].sched);
4097 free(sched->node[i].band_end);
4098 free(sched->node[i].band_id);
4099 free(sched->node[i].coincident);
4101 isl_space_free(sched->dim);
4102 isl_band_list_free(sched->band_forest);
4103 free(sched);
4104 return NULL;
4107 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
4109 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
4112 /* Set max_out to the maximal number of output dimensions over
4113 * all maps.
4115 static int update_max_out(__isl_take isl_map *map, void *user)
4117 int *max_out = user;
4118 int n_out = isl_map_dim(map, isl_dim_out);
4120 if (n_out > *max_out)
4121 *max_out = n_out;
4123 isl_map_free(map);
4124 return 0;
4127 /* Internal data structure for map_pad_range.
4129 * "max_out" is the maximal schedule dimension.
4130 * "res" collects the results.
4132 struct isl_pad_schedule_map_data {
4133 int max_out;
4134 isl_union_map *res;
4137 /* Pad the range of the given map with zeros to data->max_out and
4138 * then add the result to data->res.
4140 static int map_pad_range(__isl_take isl_map *map, void *user)
4142 struct isl_pad_schedule_map_data *data = user;
4143 int i;
4144 int n_out = isl_map_dim(map, isl_dim_out);
4146 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
4147 for (i = n_out; i < data->max_out; ++i)
4148 map = isl_map_fix_si(map, isl_dim_out, i, 0);
4150 data->res = isl_union_map_add_map(data->res, map);
4151 if (!data->res)
4152 return -1;
4154 return 0;
4157 /* Pad the ranges of the maps in the union map with zeros such they all have
4158 * the same dimension.
4160 static __isl_give isl_union_map *pad_schedule_map(
4161 __isl_take isl_union_map *umap)
4163 struct isl_pad_schedule_map_data data;
4165 if (!umap)
4166 return NULL;
4167 if (isl_union_map_n_map(umap) <= 1)
4168 return umap;
4170 data.max_out = 0;
4171 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
4172 return isl_union_map_free(umap);
4174 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
4175 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
4176 data.res = isl_union_map_free(data.res);
4178 isl_union_map_free(umap);
4179 return data.res;
4182 /* Return an isl_union_map of the schedule. If we have already constructed
4183 * a band forest, then this band forest may have been modified so we need
4184 * to extract the isl_union_map from the forest rather than from
4185 * the originally computed schedule. This reconstructed schedule map
4186 * then needs to be padded with zeros to unify the schedule space
4187 * since the result of isl_band_list_get_suffix_schedule may not have
4188 * a unified schedule space.
4190 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
4192 int i;
4193 isl_union_map *umap;
4195 if (!sched)
4196 return NULL;
4198 if (sched->band_forest) {
4199 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
4200 return pad_schedule_map(umap);
4203 umap = isl_union_map_empty(isl_space_copy(sched->dim));
4204 for (i = 0; i < sched->n; ++i) {
4205 isl_multi_aff *ma;
4207 ma = isl_multi_aff_copy(sched->node[i].sched);
4208 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
4211 return umap;
4214 static __isl_give isl_band_list *construct_band_list(
4215 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4216 int band_nr, int *parent_active, int n_active);
4218 /* Construct an isl_band structure for the band in the given schedule
4219 * with sequence number band_nr for the n_active nodes marked by active.
4220 * If the nodes don't have a band with the given sequence number,
4221 * then a band without members is created.
4223 * Because of the way the schedule is constructed, we know that
4224 * the position of the band inside the schedule of a node is the same
4225 * for all active nodes.
4227 * The partial schedule for the band is created before the children
4228 * are created to that construct_band_list can refer to the partial
4229 * schedule of the parent.
4231 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
4232 __isl_keep isl_band *parent,
4233 int band_nr, int *active, int n_active)
4235 int i, j;
4236 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4237 isl_band *band;
4238 unsigned start, end;
4240 band = isl_band_alloc(ctx);
4241 if (!band)
4242 return NULL;
4244 band->schedule = schedule;
4245 band->parent = parent;
4247 for (i = 0; i < schedule->n; ++i)
4248 if (active[i])
4249 break;
4251 if (i >= schedule->n)
4252 isl_die(ctx, isl_error_internal,
4253 "band without active statements", goto error);
4255 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
4256 end = band_nr < schedule->node[i].n_band ?
4257 schedule->node[i].band_end[band_nr] : start;
4258 band->n = end - start;
4260 band->coincident = isl_alloc_array(ctx, int, band->n);
4261 if (band->n && !band->coincident)
4262 goto error;
4264 for (j = 0; j < band->n; ++j)
4265 band->coincident[j] = schedule->node[i].coincident[start + j];
4267 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
4268 for (i = 0; i < schedule->n; ++i) {
4269 isl_multi_aff *ma;
4270 isl_pw_multi_aff *pma;
4271 unsigned n_out;
4273 if (!active[i])
4274 continue;
4276 ma = isl_multi_aff_copy(schedule->node[i].sched);
4277 n_out = isl_multi_aff_dim(ma, isl_dim_out);
4278 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
4279 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
4280 pma = isl_pw_multi_aff_from_multi_aff(ma);
4281 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
4282 pma);
4284 if (!band->pma)
4285 goto error;
4287 for (i = 0; i < schedule->n; ++i)
4288 if (active[i] && schedule->node[i].n_band > band_nr + 1)
4289 break;
4291 if (i < schedule->n) {
4292 band->children = construct_band_list(schedule, band,
4293 band_nr + 1, active, n_active);
4294 if (!band->children)
4295 goto error;
4298 return band;
4299 error:
4300 isl_band_free(band);
4301 return NULL;
4304 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
4306 * r is set to a negative value if anything goes wrong.
4308 * c1 stores the result of extract_int.
4309 * c2 is a temporary value used inside cmp_band_in_ancestor.
4310 * t is a temporary value used inside extract_int.
4312 * first and equal are used inside extract_int.
4313 * first is set if we are looking at the first isl_multi_aff inside
4314 * the isl_union_pw_multi_aff.
4315 * equal is set if all the isl_multi_affs have been equal so far.
4317 struct isl_cmp_band_data {
4318 int r;
4320 int first;
4321 int equal;
4323 isl_int t;
4324 isl_int c1;
4325 isl_int c2;
4328 /* Check if "ma" assigns a constant value.
4329 * Note that this function is only called on isl_multi_affs
4330 * with a single output dimension.
4332 * If "ma" assigns a constant value then we compare it to data->c1
4333 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
4334 * If "ma" does not assign a constant value or if it assigns a value
4335 * that is different from data->c1, then we set data->equal to zero
4336 * and terminate the check.
4338 static int multi_aff_extract_int(__isl_take isl_set *set,
4339 __isl_take isl_multi_aff *ma, void *user)
4341 isl_aff *aff;
4342 struct isl_cmp_band_data *data = user;
4344 aff = isl_multi_aff_get_aff(ma, 0);
4345 data->r = isl_aff_is_cst(aff);
4346 if (data->r >= 0 && data->r) {
4347 isl_aff_get_constant(aff, &data->t);
4348 if (data->first) {
4349 isl_int_set(data->c1, data->t);
4350 data->first = 0;
4351 } else if (!isl_int_eq(data->c1, data->t))
4352 data->equal = 0;
4353 } else if (data->r >= 0 && !data->r)
4354 data->equal = 0;
4356 isl_aff_free(aff);
4357 isl_set_free(set);
4358 isl_multi_aff_free(ma);
4360 if (data->r < 0)
4361 return -1;
4362 if (!data->equal)
4363 return -1;
4364 return 0;
4367 /* This function is called for each isl_pw_multi_aff in
4368 * the isl_union_pw_multi_aff checked by extract_int.
4369 * Check all the isl_multi_affs inside "pma".
4371 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
4372 void *user)
4374 int r;
4376 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
4377 isl_pw_multi_aff_free(pma);
4379 return r;
4382 /* Check if "upma" assigns a single constant value to its domain.
4383 * If so, return 1 and store the result in data->c1.
4384 * If not, return 0.
4386 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
4387 * means that either an error occurred or that we have broken off the check
4388 * because we already know the result is going to be negative.
4389 * In the latter case, data->equal is set to zero.
4391 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
4392 struct isl_cmp_band_data *data)
4394 data->first = 1;
4395 data->equal = 1;
4397 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
4398 &pw_multi_aff_extract_int, data) < 0) {
4399 if (!data->equal)
4400 return 0;
4401 return -1;
4404 return !data->first && data->equal;
4407 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
4408 * "ancestor".
4410 * If the parent of "ancestor" also has a single member, then we
4411 * first try to compare the two band based on the partial schedule
4412 * of this parent.
4414 * Otherwise, or if the result is inconclusive, we look at the partial schedule
4415 * of "ancestor" itself.
4416 * In particular, we specialize the parent schedule based
4417 * on the domains of the child schedules, check if both assign
4418 * a single constant value and, if so, compare the two constant values.
4419 * If the specialized parent schedules do not assign a constant value,
4420 * then they cannot be used to order the two bands and so in this case
4421 * we return 0.
4423 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
4424 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
4425 __isl_keep isl_band *ancestor)
4427 isl_union_pw_multi_aff *upma;
4428 isl_union_set *domain;
4429 int r;
4431 if (data->r < 0)
4432 return 0;
4434 if (ancestor->parent && ancestor->parent->n == 1) {
4435 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
4436 if (data->r < 0)
4437 return 0;
4438 if (r)
4439 return r;
4442 upma = isl_union_pw_multi_aff_copy(b1->pma);
4443 domain = isl_union_pw_multi_aff_domain(upma);
4444 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4445 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4446 r = extract_int(upma, data);
4447 isl_union_pw_multi_aff_free(upma);
4449 if (r < 0)
4450 data->r = -1;
4451 if (r < 0 || !r)
4452 return 0;
4454 isl_int_set(data->c2, data->c1);
4456 upma = isl_union_pw_multi_aff_copy(b2->pma);
4457 domain = isl_union_pw_multi_aff_domain(upma);
4458 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4459 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4460 r = extract_int(upma, data);
4461 isl_union_pw_multi_aff_free(upma);
4463 if (r < 0)
4464 data->r = -1;
4465 if (r < 0 || !r)
4466 return 0;
4468 return isl_int_cmp(data->c2, data->c1);
4471 /* Compare "a" and "b" based on the parent schedule of their parent.
4473 static int cmp_band(const void *a, const void *b, void *user)
4475 isl_band *b1 = *(isl_band * const *) a;
4476 isl_band *b2 = *(isl_band * const *) b;
4477 struct isl_cmp_band_data *data = user;
4479 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
4482 /* Sort the elements in "list" based on the partial schedules of its parent
4483 * (and ancestors). In particular if the parent assigns constant values
4484 * to the domains of the bands in "list", then the elements are sorted
4485 * according to that order.
4486 * This order should be a more "natural" order for the user, but otherwise
4487 * shouldn't have any effect.
4488 * If we would be constructing an isl_band forest directly in
4489 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
4490 * for a reordering, since the children would be added to the list
4491 * in their natural order automatically.
4493 * If there is only one element in the list, then there is no need to sort
4494 * anything.
4495 * If the partial schedule of the parent has more than one member
4496 * (or if there is no parent), then it's
4497 * defnitely not assigning constant values to the different children in
4498 * the list and so we wouldn't be able to use it to sort the list.
4500 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
4501 __isl_keep isl_band *parent)
4503 struct isl_cmp_band_data data;
4505 if (!list)
4506 return NULL;
4507 if (list->n <= 1)
4508 return list;
4509 if (!parent || parent->n != 1)
4510 return list;
4512 data.r = 0;
4513 isl_int_init(data.c1);
4514 isl_int_init(data.c2);
4515 isl_int_init(data.t);
4516 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
4517 if (data.r < 0)
4518 list = isl_band_list_free(list);
4519 isl_int_clear(data.c1);
4520 isl_int_clear(data.c2);
4521 isl_int_clear(data.t);
4523 return list;
4526 /* Construct a list of bands that start at the same position (with
4527 * sequence number band_nr) in the schedules of the nodes that
4528 * were active in the parent band.
4530 * A separate isl_band structure is created for each band_id
4531 * and for each node that does not have a band with sequence
4532 * number band_nr. In the latter case, a band without members
4533 * is created.
4534 * This ensures that if a band has any children, then each node
4535 * that was active in the band is active in exactly one of the children.
4537 static __isl_give isl_band_list *construct_band_list(
4538 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4539 int band_nr, int *parent_active, int n_active)
4541 int i, j;
4542 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4543 int *active;
4544 int n_band;
4545 isl_band_list *list;
4547 n_band = 0;
4548 for (i = 0; i < n_active; ++i) {
4549 for (j = 0; j < schedule->n; ++j) {
4550 if (!parent_active[j])
4551 continue;
4552 if (schedule->node[j].n_band <= band_nr)
4553 continue;
4554 if (schedule->node[j].band_id[band_nr] == i) {
4555 n_band++;
4556 break;
4560 for (j = 0; j < schedule->n; ++j)
4561 if (schedule->node[j].n_band <= band_nr)
4562 n_band++;
4564 if (n_band == 1) {
4565 isl_band *band;
4566 list = isl_band_list_alloc(ctx, n_band);
4567 band = construct_band(schedule, parent, band_nr,
4568 parent_active, n_active);
4569 return isl_band_list_add(list, band);
4572 active = isl_alloc_array(ctx, int, schedule->n);
4573 if (schedule->n && !active)
4574 return NULL;
4576 list = isl_band_list_alloc(ctx, n_band);
4578 for (i = 0; i < n_active; ++i) {
4579 int n = 0;
4580 isl_band *band;
4582 for (j = 0; j < schedule->n; ++j) {
4583 active[j] = parent_active[j] &&
4584 schedule->node[j].n_band > band_nr &&
4585 schedule->node[j].band_id[band_nr] == i;
4586 if (active[j])
4587 n++;
4589 if (n == 0)
4590 continue;
4592 band = construct_band(schedule, parent, band_nr, active, n);
4594 list = isl_band_list_add(list, band);
4596 for (i = 0; i < schedule->n; ++i) {
4597 isl_band *band;
4598 if (!parent_active[i])
4599 continue;
4600 if (schedule->node[i].n_band > band_nr)
4601 continue;
4602 for (j = 0; j < schedule->n; ++j)
4603 active[j] = j == i;
4604 band = construct_band(schedule, parent, band_nr, active, 1);
4605 list = isl_band_list_add(list, band);
4608 free(active);
4610 list = sort_band_list(list, parent);
4612 return list;
4615 /* Construct a band forest representation of the schedule and
4616 * return the list of roots.
4618 static __isl_give isl_band_list *construct_forest(
4619 __isl_keep isl_schedule *schedule)
4621 int i;
4622 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4623 isl_band_list *forest;
4624 int *active;
4626 active = isl_alloc_array(ctx, int, schedule->n);
4627 if (schedule->n && !active)
4628 return NULL;
4630 for (i = 0; i < schedule->n; ++i)
4631 active[i] = 1;
4633 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
4635 free(active);
4637 return forest;
4640 /* Return the roots of a band forest representation of the schedule.
4642 __isl_give isl_band_list *isl_schedule_get_band_forest(
4643 __isl_keep isl_schedule *schedule)
4645 if (!schedule)
4646 return NULL;
4647 if (!schedule->band_forest)
4648 schedule->band_forest = construct_forest(schedule);
4649 return isl_band_list_dup(schedule->band_forest);
4652 /* Call "fn" on each band in the schedule in depth-first post-order.
4654 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
4655 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
4657 int r;
4658 isl_band_list *forest;
4660 if (!sched)
4661 return -1;
4663 forest = isl_schedule_get_band_forest(sched);
4664 r = isl_band_list_foreach_band(forest, fn, user);
4665 isl_band_list_free(forest);
4667 return r;
4670 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4671 __isl_keep isl_band_list *list);
4673 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
4674 __isl_keep isl_band *band)
4676 isl_band_list *children;
4678 p = isl_printer_start_line(p);
4679 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
4680 p = isl_printer_end_line(p);
4682 if (!isl_band_has_children(band))
4683 return p;
4685 children = isl_band_get_children(band);
4687 p = isl_printer_indent(p, 4);
4688 p = print_band_list(p, children);
4689 p = isl_printer_indent(p, -4);
4691 isl_band_list_free(children);
4693 return p;
4696 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4697 __isl_keep isl_band_list *list)
4699 int i, n;
4701 n = isl_band_list_n_band(list);
4702 for (i = 0; i < n; ++i) {
4703 isl_band *band;
4704 band = isl_band_list_get_band(list, i);
4705 p = print_band(p, band);
4706 isl_band_free(band);
4709 return p;
4712 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
4713 __isl_keep isl_schedule *schedule)
4715 isl_band_list *forest;
4717 forest = isl_schedule_get_band_forest(schedule);
4719 p = print_band_list(p, forest);
4721 isl_band_list_free(forest);
4723 return p;
4726 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
4728 isl_printer *printer;
4730 if (!schedule)
4731 return;
4733 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
4734 printer = isl_printer_print_schedule(printer, schedule);
4736 isl_printer_free(printer);