isl_mat: keep track of isl_ctx
[isl.git] / isl_convex_hull.c
blob8e594da1ba42744b0449cf60f469571f69dab6ca
1 #include "isl_lp.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_mat.h"
5 #include "isl_set.h"
6 #include "isl_seq.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
14 isl_int *t;
16 if (i != j) {
17 t = bmap->ineq[i];
18 bmap->ineq[i] = bmap->ineq[j];
19 bmap->ineq[j] = t;
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
32 unsigned total;
33 int i, j;
35 if (!bmap)
36 return -1;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
40 int sign;
41 if (isl_int_is_zero(c[1+i]))
42 continue;
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
46 break;
47 if (j == (*bmap)->n_ineq)
48 break;
50 if (i < total)
51 return 0;
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
82 struct isl_tab *tab;
84 if (!bmap)
85 return NULL;
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
89 return bmap;
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
91 return bmap;
92 if (bmap->n_ineq <= 1)
93 return bmap;
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(bmap->ctx, tab);
97 tab = isl_tab_detect_redundant(bmap->ctx, tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(bmap->ctx, tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
102 return bmap;
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
117 int first;
118 int j;
119 isl_int opt;
120 isl_int opt_denom;
122 isl_int_init(opt);
123 isl_int_init(opt_denom);
124 first = 1;
125 for (j = 0; j < set->n; ++j) {
126 enum isl_lp_result res;
128 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
129 continue;
131 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
132 0, c, set->ctx->one, &opt, &opt_denom);
133 if (res == isl_lp_unbounded)
134 break;
135 if (res == isl_lp_error)
136 goto error;
137 if (res == isl_lp_empty) {
138 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
139 if (!set->p[j])
140 goto error;
141 continue;
143 if (!isl_int_is_one(opt_denom))
144 isl_seq_scale(c, c, opt_denom, len);
145 if (first || isl_int_is_neg(opt))
146 isl_int_sub(c[0], c[0], opt);
147 first = 0;
149 isl_int_clear(opt);
150 isl_int_clear(opt_denom);
151 return j >= set->n;
152 error:
153 isl_int_clear(opt);
154 isl_int_clear(opt_denom);
155 return -1;
158 /* Check if "c" is a direction that is independent of the previously found "n"
159 * bounds in "dirs".
160 * If so, add it to the list, with the negative of the lower bound
161 * in the constant position, i.e., such that c corresponds to a bounding
162 * hyperplane (but not necessarily a facet).
163 * Assumes set "set" is bounded.
165 static int is_independent_bound(struct isl_set *set, isl_int *c,
166 struct isl_mat *dirs, int n)
168 int is_bound;
169 int i = 0;
171 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
172 if (n != 0) {
173 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
174 if (pos < 0)
175 return 0;
176 for (i = 0; i < n; ++i) {
177 int pos_i;
178 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
179 if (pos_i < pos)
180 continue;
181 if (pos_i > pos)
182 break;
183 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
184 dirs->n_col-1, NULL);
185 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
186 if (pos < 0)
187 return 0;
191 is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col);
192 if (is_bound != 1)
193 return is_bound;
194 if (i < n) {
195 int k;
196 isl_int *t = dirs->row[n];
197 for (k = n; k > i; --k)
198 dirs->row[k] = dirs->row[k-1];
199 dirs->row[i] = t;
201 return 1;
204 /* Compute and return a maximal set of linearly independent bounds
205 * on the set "set", based on the constraints of the basic sets
206 * in "set".
208 static struct isl_mat *independent_bounds(struct isl_set *set)
210 int i, j, n;
211 struct isl_mat *dirs = NULL;
212 unsigned dim = isl_set_n_dim(set);
214 dirs = isl_mat_alloc(set->ctx, dim, 1+dim);
215 if (!dirs)
216 goto error;
218 n = 0;
219 for (i = 0; n < dim && i < set->n; ++i) {
220 int f;
221 struct isl_basic_set *bset = set->p[i];
223 for (j = 0; n < dim && j < bset->n_eq; ++j) {
224 f = is_independent_bound(set, bset->eq[j], dirs, n);
225 if (f < 0)
226 goto error;
227 if (f)
228 ++n;
230 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
231 f = is_independent_bound(set, bset->ineq[j], dirs, n);
232 if (f < 0)
233 goto error;
234 if (f)
235 ++n;
238 dirs->n_row = n;
239 return dirs;
240 error:
241 isl_mat_free(dirs);
242 return NULL;
245 static struct isl_basic_set *isl_basic_set_set_rational(
246 struct isl_basic_set *bset)
248 if (!bset)
249 return NULL;
251 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
252 return bset;
254 bset = isl_basic_set_cow(bset);
255 if (!bset)
256 return NULL;
258 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
260 return isl_basic_set_finalize(bset);
263 static struct isl_set *isl_set_set_rational(struct isl_set *set)
265 int i;
267 set = isl_set_cow(set);
268 if (!set)
269 return NULL;
270 for (i = 0; i < set->n; ++i) {
271 set->p[i] = isl_basic_set_set_rational(set->p[i]);
272 if (!set->p[i])
273 goto error;
275 return set;
276 error:
277 isl_set_free(set);
278 return NULL;
281 static struct isl_basic_set *isl_basic_set_add_equality(
282 struct isl_basic_set *bset, isl_int *c)
284 int i;
285 unsigned total;
286 unsigned dim;
288 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
289 return bset;
291 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
292 isl_assert(ctx, bset->n_div == 0, goto error);
293 dim = isl_basic_set_n_dim(bset);
294 bset = isl_basic_set_cow(bset);
295 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
296 i = isl_basic_set_alloc_equality(bset);
297 if (i < 0)
298 goto error;
299 isl_seq_cpy(bset->eq[i], c, 1 + dim);
300 return bset;
301 error:
302 isl_basic_set_free(bset);
303 return NULL;
306 static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c)
308 int i;
310 set = isl_set_cow(set);
311 if (!set)
312 return NULL;
313 for (i = 0; i < set->n; ++i) {
314 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
315 if (!set->p[i])
316 goto error;
318 return set;
319 error:
320 isl_set_free(set);
321 return NULL;
324 /* Given a union of basic sets, construct the constraints for wrapping
325 * a facet around one of its ridges.
326 * In particular, if each of n the d-dimensional basic sets i in "set"
327 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
328 * and is defined by the constraints
329 * [ 1 ]
330 * A_i [ x ] >= 0
332 * then the resulting set is of dimension n*(1+d) and has as constraints
334 * [ a_i ]
335 * A_i [ x_i ] >= 0
337 * a_i >= 0
339 * \sum_i x_{i,1} = 1
341 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
343 struct isl_basic_set *lp;
344 unsigned n_eq;
345 unsigned n_ineq;
346 int i, j, k;
347 unsigned dim, lp_dim;
349 if (!set)
350 return NULL;
352 dim = 1 + isl_set_n_dim(set);
353 n_eq = 1;
354 n_ineq = set->n;
355 for (i = 0; i < set->n; ++i) {
356 n_eq += set->p[i]->n_eq;
357 n_ineq += set->p[i]->n_ineq;
359 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
360 if (!lp)
361 return NULL;
362 lp_dim = isl_basic_set_n_dim(lp);
363 k = isl_basic_set_alloc_equality(lp);
364 isl_int_set_si(lp->eq[k][0], -1);
365 for (i = 0; i < set->n; ++i) {
366 isl_int_set_si(lp->eq[k][1+dim*i], 0);
367 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
368 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
370 for (i = 0; i < set->n; ++i) {
371 k = isl_basic_set_alloc_inequality(lp);
372 isl_seq_clr(lp->ineq[k], 1+lp_dim);
373 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
375 for (j = 0; j < set->p[i]->n_eq; ++j) {
376 k = isl_basic_set_alloc_equality(lp);
377 isl_seq_clr(lp->eq[k], 1+dim*i);
378 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
379 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
382 for (j = 0; j < set->p[i]->n_ineq; ++j) {
383 k = isl_basic_set_alloc_inequality(lp);
384 isl_seq_clr(lp->ineq[k], 1+dim*i);
385 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
386 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
389 return lp;
392 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
393 * of that facet, compute the other facet of the convex hull that contains
394 * the ridge.
396 * We first transform the set such that the facet constraint becomes
398 * x_1 >= 0
400 * I.e., the facet lies in
402 * x_1 = 0
404 * and on that facet, the constraint that defines the ridge is
406 * x_2 >= 0
408 * (This transformation is not strictly needed, all that is needed is
409 * that the ridge contains the origin.)
411 * Since the ridge contains the origin, the cone of the convex hull
412 * will be of the form
414 * x_1 >= 0
415 * x_2 >= a x_1
417 * with this second constraint defining the new facet.
418 * The constant a is obtained by settting x_1 in the cone of the
419 * convex hull to 1 and minimizing x_2.
420 * Now, each element in the cone of the convex hull is the sum
421 * of elements in the cones of the basic sets.
422 * If a_i is the dilation factor of basic set i, then the problem
423 * we need to solve is
425 * min \sum_i x_{i,2}
426 * st
427 * \sum_i x_{i,1} = 1
428 * a_i >= 0
429 * [ a_i ]
430 * A [ x_i ] >= 0
432 * with
433 * [ 1 ]
434 * A_i [ x_i ] >= 0
436 * the constraints of each (transformed) basic set.
437 * If a = n/d, then the constraint defining the new facet (in the transformed
438 * space) is
440 * -n x_1 + d x_2 >= 0
442 * In the original space, we need to take the same combination of the
443 * corresponding constraints "facet" and "ridge".
445 * Note that a is always finite, since we only apply the wrapping
446 * technique to a union of polytopes.
448 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
450 int i;
451 struct isl_mat *T = NULL;
452 struct isl_basic_set *lp = NULL;
453 struct isl_vec *obj;
454 enum isl_lp_result res;
455 isl_int num, den;
456 unsigned dim;
458 set = isl_set_copy(set);
460 dim = 1 + isl_set_n_dim(set);
461 T = isl_mat_alloc(set->ctx, 3, dim);
462 if (!T)
463 goto error;
464 isl_int_set_si(T->row[0][0], 1);
465 isl_seq_clr(T->row[0]+1, dim - 1);
466 isl_seq_cpy(T->row[1], facet, dim);
467 isl_seq_cpy(T->row[2], ridge, dim);
468 T = isl_mat_right_inverse(T);
469 set = isl_set_preimage(set, T);
470 T = NULL;
471 if (!set)
472 goto error;
473 lp = wrap_constraints(set);
474 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
475 if (!obj)
476 goto error;
477 isl_int_set_si(obj->block.data[0], 0);
478 for (i = 0; i < set->n; ++i) {
479 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
480 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
481 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
483 isl_int_init(num);
484 isl_int_init(den);
485 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
486 obj->block.data, set->ctx->one, &num, &den);
487 if (res == isl_lp_ok) {
488 isl_int_neg(num, num);
489 isl_seq_combine(facet, num, facet, den, ridge, dim);
491 isl_int_clear(num);
492 isl_int_clear(den);
493 isl_vec_free(obj);
494 isl_basic_set_free(lp);
495 isl_set_free(set);
496 isl_assert(set->ctx, res == isl_lp_ok, return NULL);
497 return facet;
498 error:
499 isl_basic_set_free(lp);
500 isl_mat_free(T);
501 isl_set_free(set);
502 return NULL;
505 /* Given a set of d linearly independent bounding constraints of the
506 * convex hull of "set", compute the constraint of a facet of "set".
508 * We first compute the intersection with the first bounding hyperplane
509 * and remove the component corresponding to this hyperplane from
510 * other bounds (in homogeneous space).
511 * We then wrap around one of the remaining bounding constraints
512 * and continue the process until all bounding constraints have been
513 * taken into account.
514 * The resulting linear combination of the bounding constraints will
515 * correspond to a facet of the convex hull.
517 static struct isl_mat *initial_facet_constraint(struct isl_set *set,
518 struct isl_mat *bounds)
520 struct isl_set *slice = NULL;
521 struct isl_basic_set *face = NULL;
522 struct isl_mat *m, *U, *Q;
523 int i;
524 unsigned dim = isl_set_n_dim(set);
526 isl_assert(ctx, set->n > 0, goto error);
527 isl_assert(ctx, bounds->n_row == dim, goto error);
529 while (bounds->n_row > 1) {
530 slice = isl_set_copy(set);
531 slice = isl_set_add_equality(slice, bounds->row[0]);
532 face = isl_set_affine_hull(slice);
533 if (!face)
534 goto error;
535 if (face->n_eq == 1) {
536 isl_basic_set_free(face);
537 break;
539 m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim);
540 if (!m)
541 goto error;
542 isl_int_set_si(m->row[0][0], 1);
543 isl_seq_clr(m->row[0]+1, dim);
544 for (i = 0; i < face->n_eq; ++i)
545 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
546 U = isl_mat_right_inverse(m);
547 Q = isl_mat_right_inverse(isl_mat_copy(U));
548 U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq);
549 Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq);
550 U = isl_mat_drop_cols(U, 0, 1);
551 Q = isl_mat_drop_rows(Q, 0, 1);
552 bounds = isl_mat_product(bounds, U);
553 bounds = isl_mat_product(bounds, Q);
554 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
555 bounds->n_col) == -1) {
556 bounds->n_row--;
557 isl_assert(ctx, bounds->n_row > 1, goto error);
559 if (!wrap_facet(set, bounds->row[0],
560 bounds->row[bounds->n_row-1]))
561 goto error;
562 isl_basic_set_free(face);
563 bounds->n_row--;
565 return bounds;
566 error:
567 isl_basic_set_free(face);
568 isl_mat_free(bounds);
569 return NULL;
572 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
573 * compute a hyperplane description of the facet, i.e., compute the facets
574 * of the facet.
576 * We compute an affine transformation that transforms the constraint
578 * [ 1 ]
579 * c [ x ] = 0
581 * to the constraint
583 * z_1 = 0
585 * by computing the right inverse U of a matrix that starts with the rows
587 * [ 1 0 ]
588 * [ c ]
590 * Then
591 * [ 1 ] [ 1 ]
592 * [ x ] = U [ z ]
593 * and
594 * [ 1 ] [ 1 ]
595 * [ z ] = Q [ x ]
597 * with Q = U^{-1}
598 * Since z_1 is zero, we can drop this variable as well as the corresponding
599 * column of U to obtain
601 * [ 1 ] [ 1 ]
602 * [ x ] = U' [ z' ]
603 * and
604 * [ 1 ] [ 1 ]
605 * [ z' ] = Q' [ x ]
607 * with Q' equal to Q, but without the corresponding row.
608 * After computing the facets of the facet in the z' space,
609 * we convert them back to the x space through Q.
611 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
613 struct isl_mat *m, *U, *Q;
614 struct isl_basic_set *facet = NULL;
615 struct isl_ctx *ctx;
616 unsigned dim;
618 ctx = set->ctx;
619 set = isl_set_copy(set);
620 dim = isl_set_n_dim(set);
621 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
622 if (!m)
623 goto error;
624 isl_int_set_si(m->row[0][0], 1);
625 isl_seq_clr(m->row[0]+1, dim);
626 isl_seq_cpy(m->row[1], c, 1+dim);
627 U = isl_mat_right_inverse(m);
628 Q = isl_mat_right_inverse(isl_mat_copy(U));
629 U = isl_mat_drop_cols(U, 1, 1);
630 Q = isl_mat_drop_rows(Q, 1, 1);
631 set = isl_set_preimage(set, U);
632 facet = uset_convex_hull_wrap_bounded(set);
633 facet = isl_basic_set_preimage(facet, Q);
634 isl_assert(ctx, facet->n_eq == 0, goto error);
635 return facet;
636 error:
637 isl_basic_set_free(facet);
638 isl_set_free(set);
639 return NULL;
642 /* Given an initial facet constraint, compute the remaining facets.
643 * We do this by running through all facets found so far and computing
644 * the adjacent facets through wrapping, adding those facets that we
645 * hadn't already found before.
647 * For each facet we have found so far, we first compute its facets
648 * in the resulting convex hull. That is, we compute the ridges
649 * of the resulting convex hull contained in the facet.
650 * We also compute the corresponding facet in the current approximation
651 * of the convex hull. There is no need to wrap around the ridges
652 * in this facet since that would result in a facet that is already
653 * present in the current approximation.
655 * This function can still be significantly optimized by checking which of
656 * the facets of the basic sets are also facets of the convex hull and
657 * using all the facets so far to help in constructing the facets of the
658 * facets
659 * and/or
660 * using the technique in section "3.1 Ridge Generation" of
661 * "Extended Convex Hull" by Fukuda et al.
663 static struct isl_basic_set *extend(struct isl_basic_set *hull,
664 struct isl_set *set)
666 int i, j, f;
667 int k;
668 struct isl_basic_set *facet = NULL;
669 struct isl_basic_set *hull_facet = NULL;
670 unsigned total;
671 unsigned dim;
673 isl_assert(set->ctx, set->n > 0, goto error);
675 dim = isl_set_n_dim(set);
677 for (i = 0; i < hull->n_ineq; ++i) {
678 facet = compute_facet(set, hull->ineq[i]);
679 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
680 facet = isl_basic_set_gauss(facet, NULL);
681 facet = isl_basic_set_normalize_constraints(facet);
682 hull_facet = isl_basic_set_copy(hull);
683 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
684 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
685 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
686 if (!facet)
687 goto error;
688 hull = isl_basic_set_cow(hull);
689 hull = isl_basic_set_extend_dim(hull,
690 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
691 for (j = 0; j < facet->n_ineq; ++j) {
692 for (f = 0; f < hull_facet->n_ineq; ++f)
693 if (isl_seq_eq(facet->ineq[j],
694 hull_facet->ineq[f], 1 + dim))
695 break;
696 if (f < hull_facet->n_ineq)
697 continue;
698 k = isl_basic_set_alloc_inequality(hull);
699 if (k < 0)
700 goto error;
701 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
702 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
703 goto error;
705 isl_basic_set_free(hull_facet);
706 isl_basic_set_free(facet);
708 hull = isl_basic_set_simplify(hull);
709 hull = isl_basic_set_finalize(hull);
710 return hull;
711 error:
712 isl_basic_set_free(hull_facet);
713 isl_basic_set_free(facet);
714 isl_basic_set_free(hull);
715 return NULL;
718 /* Special case for computing the convex hull of a one dimensional set.
719 * We simply collect the lower and upper bounds of each basic set
720 * and the biggest of those.
722 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
724 struct isl_mat *c = NULL;
725 isl_int *lower = NULL;
726 isl_int *upper = NULL;
727 int i, j, k;
728 isl_int a, b;
729 struct isl_basic_set *hull;
731 for (i = 0; i < set->n; ++i) {
732 set->p[i] = isl_basic_set_simplify(set->p[i]);
733 if (!set->p[i])
734 goto error;
736 set = isl_set_remove_empty_parts(set);
737 if (!set)
738 goto error;
739 isl_assert(set->ctx, set->n > 0, goto error);
740 c = isl_mat_alloc(set->ctx, 2, 2);
741 if (!c)
742 goto error;
744 if (set->p[0]->n_eq > 0) {
745 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
746 lower = c->row[0];
747 upper = c->row[1];
748 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
749 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
750 isl_seq_neg(upper, set->p[0]->eq[0], 2);
751 } else {
752 isl_seq_neg(lower, set->p[0]->eq[0], 2);
753 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
755 } else {
756 for (j = 0; j < set->p[0]->n_ineq; ++j) {
757 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
758 lower = c->row[0];
759 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
760 } else {
761 upper = c->row[1];
762 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
767 isl_int_init(a);
768 isl_int_init(b);
769 for (i = 0; i < set->n; ++i) {
770 struct isl_basic_set *bset = set->p[i];
771 int has_lower = 0;
772 int has_upper = 0;
774 for (j = 0; j < bset->n_eq; ++j) {
775 has_lower = 1;
776 has_upper = 1;
777 if (lower) {
778 isl_int_mul(a, lower[0], bset->eq[j][1]);
779 isl_int_mul(b, lower[1], bset->eq[j][0]);
780 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
781 isl_seq_cpy(lower, bset->eq[j], 2);
782 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
783 isl_seq_neg(lower, bset->eq[j], 2);
785 if (upper) {
786 isl_int_mul(a, upper[0], bset->eq[j][1]);
787 isl_int_mul(b, upper[1], bset->eq[j][0]);
788 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
789 isl_seq_neg(upper, bset->eq[j], 2);
790 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
791 isl_seq_cpy(upper, bset->eq[j], 2);
794 for (j = 0; j < bset->n_ineq; ++j) {
795 if (isl_int_is_pos(bset->ineq[j][1]))
796 has_lower = 1;
797 if (isl_int_is_neg(bset->ineq[j][1]))
798 has_upper = 1;
799 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
800 isl_int_mul(a, lower[0], bset->ineq[j][1]);
801 isl_int_mul(b, lower[1], bset->ineq[j][0]);
802 if (isl_int_lt(a, b))
803 isl_seq_cpy(lower, bset->ineq[j], 2);
805 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
806 isl_int_mul(a, upper[0], bset->ineq[j][1]);
807 isl_int_mul(b, upper[1], bset->ineq[j][0]);
808 if (isl_int_gt(a, b))
809 isl_seq_cpy(upper, bset->ineq[j], 2);
812 if (!has_lower)
813 lower = NULL;
814 if (!has_upper)
815 upper = NULL;
817 isl_int_clear(a);
818 isl_int_clear(b);
820 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
821 hull = isl_basic_set_set_rational(hull);
822 if (!hull)
823 goto error;
824 if (lower) {
825 k = isl_basic_set_alloc_inequality(hull);
826 isl_seq_cpy(hull->ineq[k], lower, 2);
828 if (upper) {
829 k = isl_basic_set_alloc_inequality(hull);
830 isl_seq_cpy(hull->ineq[k], upper, 2);
832 hull = isl_basic_set_finalize(hull);
833 isl_set_free(set);
834 isl_mat_free(c);
835 return hull;
836 error:
837 isl_set_free(set);
838 isl_mat_free(c);
839 return NULL;
842 /* Project out final n dimensions using Fourier-Motzkin */
843 static struct isl_set *set_project_out(struct isl_ctx *ctx,
844 struct isl_set *set, unsigned n)
846 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
849 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
851 struct isl_basic_set *convex_hull;
853 if (!set)
854 return NULL;
856 if (isl_set_is_empty(set))
857 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
858 else
859 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
860 isl_set_free(set);
861 return convex_hull;
864 /* Compute the convex hull of a pair of basic sets without any parameters or
865 * integer divisions using Fourier-Motzkin elimination.
866 * The convex hull is the set of all points that can be written as
867 * the sum of points from both basic sets (in homogeneous coordinates).
868 * We set up the constraints in a space with dimensions for each of
869 * the three sets and then project out the dimensions corresponding
870 * to the two original basic sets, retaining only those corresponding
871 * to the convex hull.
873 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
874 struct isl_basic_set *bset2)
876 int i, j, k;
877 struct isl_basic_set *bset[2];
878 struct isl_basic_set *hull = NULL;
879 unsigned dim;
881 if (!bset1 || !bset2)
882 goto error;
884 dim = isl_basic_set_n_dim(bset1);
885 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
886 1 + dim + bset1->n_eq + bset2->n_eq,
887 2 + bset1->n_ineq + bset2->n_ineq);
888 bset[0] = bset1;
889 bset[1] = bset2;
890 for (i = 0; i < 2; ++i) {
891 for (j = 0; j < bset[i]->n_eq; ++j) {
892 k = isl_basic_set_alloc_equality(hull);
893 if (k < 0)
894 goto error;
895 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
896 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
897 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
898 1+dim);
900 for (j = 0; j < bset[i]->n_ineq; ++j) {
901 k = isl_basic_set_alloc_inequality(hull);
902 if (k < 0)
903 goto error;
904 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
905 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
906 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
907 bset[i]->ineq[j], 1+dim);
909 k = isl_basic_set_alloc_inequality(hull);
910 if (k < 0)
911 goto error;
912 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
913 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
915 for (j = 0; j < 1+dim; ++j) {
916 k = isl_basic_set_alloc_equality(hull);
917 if (k < 0)
918 goto error;
919 isl_seq_clr(hull->eq[k], 1+2+3*dim);
920 isl_int_set_si(hull->eq[k][j], -1);
921 isl_int_set_si(hull->eq[k][1+dim+j], 1);
922 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
924 hull = isl_basic_set_set_rational(hull);
925 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
926 hull = isl_basic_set_convex_hull(hull);
927 isl_basic_set_free(bset1);
928 isl_basic_set_free(bset2);
929 return hull;
930 error:
931 isl_basic_set_free(bset1);
932 isl_basic_set_free(bset2);
933 isl_basic_set_free(hull);
934 return NULL;
937 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
939 struct isl_tab *tab;
940 int bounded;
942 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
943 bounded = isl_tab_cone_is_bounded(bset->ctx, tab);
944 isl_tab_free(bset->ctx, tab);
945 return bounded;
948 static int isl_set_is_bounded(struct isl_set *set)
950 int i;
952 for (i = 0; i < set->n; ++i) {
953 int bounded = isl_basic_set_is_bounded(set->p[i]);
954 if (!bounded || bounded < 0)
955 return bounded;
957 return 1;
960 /* Compute the lineality space of the convex hull of bset1 and bset2.
962 * We first compute the intersection of the recession cone of bset1
963 * with the negative of the recession cone of bset2 and then compute
964 * the linear hull of the resulting cone.
966 static struct isl_basic_set *induced_lineality_space(
967 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
969 int i, k;
970 struct isl_basic_set *lin = NULL;
971 unsigned dim;
973 if (!bset1 || !bset2)
974 goto error;
976 dim = isl_basic_set_total_dim(bset1);
977 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
978 bset1->n_eq + bset2->n_eq,
979 bset1->n_ineq + bset2->n_ineq);
980 lin = isl_basic_set_set_rational(lin);
981 if (!lin)
982 goto error;
983 for (i = 0; i < bset1->n_eq; ++i) {
984 k = isl_basic_set_alloc_equality(lin);
985 if (k < 0)
986 goto error;
987 isl_int_set_si(lin->eq[k][0], 0);
988 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
990 for (i = 0; i < bset1->n_ineq; ++i) {
991 k = isl_basic_set_alloc_inequality(lin);
992 if (k < 0)
993 goto error;
994 isl_int_set_si(lin->ineq[k][0], 0);
995 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
997 for (i = 0; i < bset2->n_eq; ++i) {
998 k = isl_basic_set_alloc_equality(lin);
999 if (k < 0)
1000 goto error;
1001 isl_int_set_si(lin->eq[k][0], 0);
1002 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
1004 for (i = 0; i < bset2->n_ineq; ++i) {
1005 k = isl_basic_set_alloc_inequality(lin);
1006 if (k < 0)
1007 goto error;
1008 isl_int_set_si(lin->ineq[k][0], 0);
1009 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
1012 isl_basic_set_free(bset1);
1013 isl_basic_set_free(bset2);
1014 return isl_basic_set_affine_hull(lin);
1015 error:
1016 isl_basic_set_free(lin);
1017 isl_basic_set_free(bset1);
1018 isl_basic_set_free(bset2);
1019 return NULL;
1022 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1024 /* Given a set and a linear space "lin" of dimension n > 0,
1025 * project the linear space from the set, compute the convex hull
1026 * and then map the set back to the original space.
1028 * Let
1030 * M x = 0
1032 * describe the linear space. We first compute the Hermite normal
1033 * form H = M U of M = H Q, to obtain
1035 * H Q x = 0
1037 * The last n rows of H will be zero, so the last n variables of x' = Q x
1038 * are the one we want to project out. We do this by transforming each
1039 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1040 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1041 * we transform the hull back to the original space as A' Q_1 x >= b',
1042 * with Q_1 all but the last n rows of Q.
1044 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1045 struct isl_basic_set *lin)
1047 unsigned total = isl_basic_set_total_dim(lin);
1048 unsigned lin_dim;
1049 struct isl_basic_set *hull;
1050 struct isl_mat *M, *U, *Q;
1052 if (!set || !lin)
1053 goto error;
1054 lin_dim = total - lin->n_eq;
1055 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1056 M = isl_mat_left_hermite(M, 0, &U, &Q);
1057 if (!M)
1058 goto error;
1059 isl_mat_free(M);
1060 isl_basic_set_free(lin);
1062 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1064 U = isl_mat_lin_to_aff(U);
1065 Q = isl_mat_lin_to_aff(Q);
1067 set = isl_set_preimage(set, U);
1068 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1069 hull = uset_convex_hull(set);
1070 hull = isl_basic_set_preimage(hull, Q);
1072 return hull;
1073 error:
1074 isl_basic_set_free(lin);
1075 isl_set_free(set);
1076 return NULL;
1079 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1080 * set up an LP for solving
1082 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1084 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1085 * The next \alpha{ij} correspond to the equalities and come in pairs.
1086 * The final \alpha{ij} correspond to the inequalities.
1088 static struct isl_basic_set *valid_direction_lp(
1089 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1091 struct isl_dim *dim;
1092 struct isl_basic_set *lp;
1093 unsigned d;
1094 int n;
1095 int i, j, k;
1097 if (!bset1 || !bset2)
1098 goto error;
1099 d = 1 + isl_basic_set_total_dim(bset1);
1100 n = 2 +
1101 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1102 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1103 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1104 if (!lp)
1105 goto error;
1106 for (i = 0; i < n; ++i) {
1107 k = isl_basic_set_alloc_inequality(lp);
1108 if (k < 0)
1109 goto error;
1110 isl_seq_clr(lp->ineq[k] + 1, n);
1111 isl_int_set_si(lp->ineq[k][0], -1);
1112 isl_int_set_si(lp->ineq[k][1 + i], 1);
1114 for (i = 0; i < d; ++i) {
1115 k = isl_basic_set_alloc_equality(lp);
1116 if (k < 0)
1117 goto error;
1118 n = 0;
1119 isl_int_set_si(lp->eq[k][n++], 0);
1120 /* positivity constraint 1 >= 0 */
1121 isl_int_set_si(lp->eq[k][n++], i == 0);
1122 for (j = 0; j < bset1->n_eq; ++j) {
1123 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1124 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1126 for (j = 0; j < bset1->n_ineq; ++j)
1127 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1128 /* positivity constraint 1 >= 0 */
1129 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1130 for (j = 0; j < bset2->n_eq; ++j) {
1131 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1132 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1134 for (j = 0; j < bset2->n_ineq; ++j)
1135 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1137 lp = isl_basic_set_gauss(lp, NULL);
1138 isl_basic_set_free(bset1);
1139 isl_basic_set_free(bset2);
1140 return lp;
1141 error:
1142 isl_basic_set_free(bset1);
1143 isl_basic_set_free(bset2);
1144 return NULL;
1147 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1148 * for all rays in the homogeneous space of the two cones that correspond
1149 * to the input polyhedra bset1 and bset2.
1151 * We compute s as a vector that satisfies
1153 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1155 * with h_{ij} the normals of the facets of polyhedron i
1156 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1157 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1158 * We first set up an LP with as variables the \alpha{ij}.
1159 * In this formulateion, for each polyhedron i,
1160 * the first constraint is the positivity constraint, followed by pairs
1161 * of variables for the equalities, followed by variables for the inequalities.
1162 * We then simply pick a feasible solution and compute s using (*).
1164 * Note that we simply pick any valid direction and make no attempt
1165 * to pick a "good" or even the "best" valid direction.
1167 static struct isl_vec *valid_direction(
1168 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1170 struct isl_ctx *ctx = NULL;
1171 struct isl_basic_set *lp;
1172 struct isl_tab *tab;
1173 struct isl_vec *sample = NULL;
1174 struct isl_vec *dir;
1175 unsigned d;
1176 int i;
1177 int n;
1179 if (!bset1 || !bset2)
1180 goto error;
1181 ctx = bset1->ctx;
1182 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1183 isl_basic_set_copy(bset2));
1184 tab = isl_tab_from_basic_set(lp);
1185 sample = isl_tab_get_sample_value(ctx, tab);
1186 isl_tab_free(ctx, tab);
1187 isl_basic_set_free(lp);
1188 if (!sample)
1189 goto error;
1190 d = isl_basic_set_total_dim(bset1);
1191 dir = isl_vec_alloc(ctx, 1 + d);
1192 if (!dir)
1193 goto error;
1194 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1195 n = 1;
1196 /* positivity constraint 1 >= 0 */
1197 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1198 for (i = 0; i < bset1->n_eq; ++i) {
1199 isl_int_sub(sample->block.data[n],
1200 sample->block.data[n], sample->block.data[n+1]);
1201 isl_seq_combine(dir->block.data,
1202 bset1->ctx->one, dir->block.data,
1203 sample->block.data[n], bset1->eq[i], 1 + d);
1205 n += 2;
1207 for (i = 0; i < bset1->n_ineq; ++i)
1208 isl_seq_combine(dir->block.data,
1209 bset1->ctx->one, dir->block.data,
1210 sample->block.data[n++], bset1->ineq[i], 1 + d);
1211 isl_vec_free(sample);
1212 isl_basic_set_free(bset1);
1213 isl_basic_set_free(bset2);
1214 isl_seq_normalize(dir->block.data + 1, dir->size - 1);
1215 return dir;
1216 error:
1217 isl_vec_free(sample);
1218 isl_basic_set_free(bset1);
1219 isl_basic_set_free(bset2);
1220 return NULL;
1223 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1224 * compute b_i' + A_i' x' >= 0, with
1226 * [ b_i A_i ] [ y' ] [ y' ]
1227 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1229 * In particular, add the "positivity constraint" and then perform
1230 * the mapping.
1232 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1233 struct isl_mat *T)
1235 int k;
1237 if (!bset)
1238 goto error;
1239 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1240 k = isl_basic_set_alloc_inequality(bset);
1241 if (k < 0)
1242 goto error;
1243 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1244 isl_int_set_si(bset->ineq[k][0], 1);
1245 bset = isl_basic_set_preimage(bset, T);
1246 return bset;
1247 error:
1248 isl_mat_free(T);
1249 isl_basic_set_free(bset);
1250 return NULL;
1253 /* Compute the convex hull of a pair of basic sets without any parameters or
1254 * integer divisions, where the convex hull is known to be pointed,
1255 * but the basic sets may be unbounded.
1257 * We turn this problem into the computation of a convex hull of a pair
1258 * _bounded_ polyhedra by "changing the direction of the homogeneous
1259 * dimension". This idea is due to Matthias Koeppe.
1261 * Consider the cones in homogeneous space that correspond to the
1262 * input polyhedra. The rays of these cones are also rays of the
1263 * polyhedra if the coordinate that corresponds to the homogeneous
1264 * dimension is zero. That is, if the inner product of the rays
1265 * with the homogeneous direction is zero.
1266 * The cones in the homogeneous space can also be considered to
1267 * correspond to other pairs of polyhedra by chosing a different
1268 * homogeneous direction. To ensure that both of these polyhedra
1269 * are bounded, we need to make sure that all rays of the cones
1270 * correspond to vertices and not to rays.
1271 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1272 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1273 * The vector s is computed in valid_direction.
1275 * Note that we need to consider _all_ rays of the cones and not just
1276 * the rays that correspond to rays in the polyhedra. If we were to
1277 * only consider those rays and turn them into vertices, then we
1278 * may inadvertently turn some vertices into rays.
1280 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1281 * We therefore transform the two polyhedra such that the selected
1282 * direction is mapped onto this standard direction and then proceed
1283 * with the normal computation.
1284 * Let S be a non-singular square matrix with s as its first row,
1285 * then we want to map the polyhedra to the space
1287 * [ y' ] [ y ] [ y ] [ y' ]
1288 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1290 * We take S to be the unimodular completion of s to limit the growth
1291 * of the coefficients in the following computations.
1293 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1294 * We first move to the homogeneous dimension
1296 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1297 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1299 * Then we change directoin
1301 * [ b_i A_i ] [ y' ] [ y' ]
1302 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1304 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1305 * resulting in b' + A' x' >= 0, which we then convert back
1307 * [ y ] [ y ]
1308 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1310 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1312 static struct isl_basic_set *convex_hull_pair_pointed(
1313 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1315 struct isl_ctx *ctx = NULL;
1316 struct isl_vec *dir = NULL;
1317 struct isl_mat *T = NULL;
1318 struct isl_mat *T2 = NULL;
1319 struct isl_basic_set *hull;
1320 struct isl_set *set;
1322 if (!bset1 || !bset2)
1323 goto error;
1324 ctx = bset1->ctx;
1325 dir = valid_direction(isl_basic_set_copy(bset1),
1326 isl_basic_set_copy(bset2));
1327 if (!dir)
1328 goto error;
1329 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1330 if (!T)
1331 goto error;
1332 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1333 T = isl_mat_unimodular_complete(T, 1);
1334 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1336 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1337 bset2 = homogeneous_map(bset2, T2);
1338 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1339 set = isl_set_add(set, bset1);
1340 set = isl_set_add(set, bset2);
1341 hull = uset_convex_hull(set);
1342 hull = isl_basic_set_preimage(hull, T);
1344 isl_vec_free(dir);
1346 return hull;
1347 error:
1348 isl_vec_free(dir);
1349 isl_basic_set_free(bset1);
1350 isl_basic_set_free(bset2);
1351 return NULL;
1354 /* Compute the convex hull of a pair of basic sets without any parameters or
1355 * integer divisions.
1357 * If the convex hull of the two basic sets would have a non-trivial
1358 * lineality space, we first project out this lineality space.
1360 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1361 struct isl_basic_set *bset2)
1363 struct isl_basic_set *lin;
1365 if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2))
1366 return convex_hull_pair_pointed(bset1, bset2);
1368 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1369 isl_basic_set_copy(bset2));
1370 if (!lin)
1371 goto error;
1372 if (isl_basic_set_is_universe(lin)) {
1373 isl_basic_set_free(bset1);
1374 isl_basic_set_free(bset2);
1375 return lin;
1377 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1378 struct isl_set *set;
1379 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1380 set = isl_set_add(set, bset1);
1381 set = isl_set_add(set, bset2);
1382 return modulo_lineality(set, lin);
1384 isl_basic_set_free(lin);
1386 return convex_hull_pair_pointed(bset1, bset2);
1387 error:
1388 isl_basic_set_free(bset1);
1389 isl_basic_set_free(bset2);
1390 return NULL;
1393 /* Compute the lineality space of a basic set.
1394 * We currently do not allow the basic set to have any divs.
1395 * We basically just drop the constants and turn every inequality
1396 * into an equality.
1398 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1400 int i, k;
1401 struct isl_basic_set *lin = NULL;
1402 unsigned dim;
1404 if (!bset)
1405 goto error;
1406 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1407 dim = isl_basic_set_total_dim(bset);
1409 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1410 if (!lin)
1411 goto error;
1412 for (i = 0; i < bset->n_eq; ++i) {
1413 k = isl_basic_set_alloc_equality(lin);
1414 if (k < 0)
1415 goto error;
1416 isl_int_set_si(lin->eq[k][0], 0);
1417 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1419 lin = isl_basic_set_gauss(lin, NULL);
1420 if (!lin)
1421 goto error;
1422 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1423 k = isl_basic_set_alloc_equality(lin);
1424 if (k < 0)
1425 goto error;
1426 isl_int_set_si(lin->eq[k][0], 0);
1427 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1428 lin = isl_basic_set_gauss(lin, NULL);
1429 if (!lin)
1430 goto error;
1432 isl_basic_set_free(bset);
1433 return lin;
1434 error:
1435 isl_basic_set_free(lin);
1436 isl_basic_set_free(bset);
1437 return NULL;
1440 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1441 * "underlying" set "set".
1443 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1445 int i;
1446 struct isl_set *lin = NULL;
1448 if (!set)
1449 return NULL;
1450 if (set->n == 0) {
1451 struct isl_dim *dim = isl_set_get_dim(set);
1452 isl_set_free(set);
1453 return isl_basic_set_empty(dim);
1456 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1457 for (i = 0; i < set->n; ++i)
1458 lin = isl_set_add(lin,
1459 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1460 isl_set_free(set);
1461 return isl_set_affine_hull(lin);
1464 /* Compute the convex hull of a set without any parameters or
1465 * integer divisions.
1466 * In each step, we combined two basic sets until only one
1467 * basic set is left.
1468 * The input basic sets are assumed not to have a non-trivial
1469 * lineality space. If any of the intermediate results has
1470 * a non-trivial lineality space, it is projected out.
1472 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1474 struct isl_basic_set *convex_hull = NULL;
1476 convex_hull = isl_set_copy_basic_set(set);
1477 set = isl_set_drop_basic_set(set, convex_hull);
1478 if (!set)
1479 goto error;
1480 while (set->n > 0) {
1481 struct isl_basic_set *t;
1482 t = isl_set_copy_basic_set(set);
1483 if (!t)
1484 goto error;
1485 set = isl_set_drop_basic_set(set, t);
1486 if (!set)
1487 goto error;
1488 convex_hull = convex_hull_pair(convex_hull, t);
1489 if (set->n == 0)
1490 break;
1491 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1492 if (!t)
1493 goto error;
1494 if (isl_basic_set_is_universe(t)) {
1495 isl_basic_set_free(convex_hull);
1496 convex_hull = t;
1497 break;
1499 if (t->n_eq < isl_basic_set_total_dim(t)) {
1500 set = isl_set_add(set, convex_hull);
1501 return modulo_lineality(set, t);
1503 isl_basic_set_free(t);
1505 isl_set_free(set);
1506 return convex_hull;
1507 error:
1508 isl_set_free(set);
1509 isl_basic_set_free(convex_hull);
1510 return NULL;
1513 /* Compute an initial hull for wrapping containing a single initial
1514 * facet by first computing bounds on the set and then using these
1515 * bounds to construct an initial facet.
1516 * This function is a remnant of an older implementation where the
1517 * bounds were also used to check whether the set was bounded.
1518 * Since this function will now only be called when we know the
1519 * set to be bounded, the initial facet should probably be constructed
1520 * by simply using the coordinate directions instead.
1522 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1523 struct isl_set *set)
1525 struct isl_mat *bounds = NULL;
1526 unsigned dim;
1527 int k;
1529 if (!hull)
1530 goto error;
1531 bounds = independent_bounds(set);
1532 if (!bounds)
1533 goto error;
1534 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1535 bounds = initial_facet_constraint(set, bounds);
1536 if (!bounds)
1537 goto error;
1538 k = isl_basic_set_alloc_inequality(hull);
1539 if (k < 0)
1540 goto error;
1541 dim = isl_set_n_dim(set);
1542 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1543 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1544 isl_mat_free(bounds);
1546 return hull;
1547 error:
1548 isl_basic_set_free(hull);
1549 isl_mat_free(bounds);
1550 return NULL;
1553 struct max_constraint {
1554 struct isl_mat *c;
1555 int count;
1556 int ineq;
1559 static int max_constraint_equal(const void *entry, const void *val)
1561 struct max_constraint *a = (struct max_constraint *)entry;
1562 isl_int *b = (isl_int *)val;
1564 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1567 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1568 isl_int *con, unsigned len, int n, int ineq)
1570 struct isl_hash_table_entry *entry;
1571 struct max_constraint *c;
1572 uint32_t c_hash;
1574 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1575 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1576 con + 1, 0);
1577 if (!entry)
1578 return;
1579 c = entry->data;
1580 if (c->count < n) {
1581 isl_hash_table_remove(ctx, table, entry);
1582 return;
1584 c->count++;
1585 if (isl_int_gt(c->c->row[0][0], con[0]))
1586 return;
1587 if (isl_int_eq(c->c->row[0][0], con[0])) {
1588 if (ineq)
1589 c->ineq = ineq;
1590 return;
1592 c->c = isl_mat_cow(c->c);
1593 isl_int_set(c->c->row[0][0], con[0]);
1594 c->ineq = ineq;
1597 /* Check whether the constraint hash table "table" constains the constraint
1598 * "con".
1600 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1601 isl_int *con, unsigned len, int n)
1603 struct isl_hash_table_entry *entry;
1604 struct max_constraint *c;
1605 uint32_t c_hash;
1607 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1608 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1609 con + 1, 0);
1610 if (!entry)
1611 return 0;
1612 c = entry->data;
1613 if (c->count < n)
1614 return 0;
1615 return isl_int_eq(c->c->row[0][0], con[0]);
1618 /* Check for inequality constraints of a basic set without equalities
1619 * such that the same or more stringent copies of the constraint appear
1620 * in all of the basic sets. Such constraints are necessarily facet
1621 * constraints of the convex hull.
1623 * If the resulting basic set is by chance identical to one of
1624 * the basic sets in "set", then we know that this basic set contains
1625 * all other basic sets and is therefore the convex hull of set.
1626 * In this case we set *is_hull to 1.
1628 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1629 struct isl_set *set, int *is_hull)
1631 int i, j, s, n;
1632 int min_constraints;
1633 int best;
1634 struct max_constraint *constraints = NULL;
1635 struct isl_hash_table *table = NULL;
1636 unsigned total;
1638 *is_hull = 0;
1640 for (i = 0; i < set->n; ++i)
1641 if (set->p[i]->n_eq == 0)
1642 break;
1643 if (i >= set->n)
1644 return hull;
1645 min_constraints = set->p[i]->n_ineq;
1646 best = i;
1647 for (i = best + 1; i < set->n; ++i) {
1648 if (set->p[i]->n_eq != 0)
1649 continue;
1650 if (set->p[i]->n_ineq >= min_constraints)
1651 continue;
1652 min_constraints = set->p[i]->n_ineq;
1653 best = i;
1655 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1656 min_constraints);
1657 if (!constraints)
1658 return hull;
1659 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1660 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1661 goto error;
1663 total = isl_dim_total(set->dim);
1664 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1665 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1666 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1667 if (!constraints[i].c)
1668 goto error;
1669 constraints[i].ineq = 1;
1671 for (i = 0; i < min_constraints; ++i) {
1672 struct isl_hash_table_entry *entry;
1673 uint32_t c_hash;
1674 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1675 isl_hash_init());
1676 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1677 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1678 if (!entry)
1679 goto error;
1680 isl_assert(hull->ctx, !entry->data, goto error);
1681 entry->data = &constraints[i];
1684 n = 0;
1685 for (s = 0; s < set->n; ++s) {
1686 if (s == best)
1687 continue;
1689 for (i = 0; i < set->p[s]->n_eq; ++i) {
1690 isl_int *eq = set->p[s]->eq[i];
1691 for (j = 0; j < 2; ++j) {
1692 isl_seq_neg(eq, eq, 1 + total);
1693 update_constraint(hull->ctx, table,
1694 eq, total, n, 0);
1697 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1698 isl_int *ineq = set->p[s]->ineq[i];
1699 update_constraint(hull->ctx, table, ineq, total, n,
1700 set->p[s]->n_eq == 0);
1702 ++n;
1705 for (i = 0; i < min_constraints; ++i) {
1706 if (constraints[i].count < n)
1707 continue;
1708 if (!constraints[i].ineq)
1709 continue;
1710 j = isl_basic_set_alloc_inequality(hull);
1711 if (j < 0)
1712 goto error;
1713 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1716 for (s = 0; s < set->n; ++s) {
1717 if (set->p[s]->n_eq)
1718 continue;
1719 if (set->p[s]->n_ineq != hull->n_ineq)
1720 continue;
1721 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1722 isl_int *ineq = set->p[s]->ineq[i];
1723 if (!has_constraint(hull->ctx, table, ineq, total, n))
1724 break;
1726 if (i == set->p[s]->n_ineq)
1727 *is_hull = 1;
1730 isl_hash_table_clear(table);
1731 for (i = 0; i < min_constraints; ++i)
1732 isl_mat_free(constraints[i].c);
1733 free(constraints);
1734 free(table);
1735 return hull;
1736 error:
1737 isl_hash_table_clear(table);
1738 free(table);
1739 if (constraints)
1740 for (i = 0; i < min_constraints; ++i)
1741 isl_mat_free(constraints[i].c);
1742 free(constraints);
1743 return hull;
1746 /* Create a template for the convex hull of "set" and fill it up
1747 * obvious facet constraints, if any. If the result happens to
1748 * be the convex hull of "set" then *is_hull is set to 1.
1750 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1752 struct isl_basic_set *hull;
1753 unsigned n_ineq;
1754 int i;
1756 n_ineq = 1;
1757 for (i = 0; i < set->n; ++i) {
1758 n_ineq += set->p[i]->n_eq;
1759 n_ineq += set->p[i]->n_ineq;
1761 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1762 hull = isl_basic_set_set_rational(hull);
1763 if (!hull)
1764 return NULL;
1765 return common_constraints(hull, set, is_hull);
1768 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1770 struct isl_basic_set *hull;
1771 int is_hull;
1773 hull = proto_hull(set, &is_hull);
1774 if (hull && !is_hull) {
1775 if (hull->n_ineq == 0)
1776 hull = initial_hull(hull, set);
1777 hull = extend(hull, set);
1779 isl_set_free(set);
1781 return hull;
1784 /* Compute the convex hull of a set without any parameters or
1785 * integer divisions. Depending on whether the set is bounded,
1786 * we pass control to the wrapping based convex hull or
1787 * the Fourier-Motzkin elimination based convex hull.
1788 * We also handle a few special cases before checking the boundedness.
1790 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1792 int i;
1793 struct isl_basic_set *convex_hull = NULL;
1794 struct isl_basic_set *lin;
1796 if (isl_set_n_dim(set) == 0)
1797 return convex_hull_0d(set);
1799 set = isl_set_coalesce(set);
1800 set = isl_set_set_rational(set);
1802 if (!set)
1803 goto error;
1804 if (!set)
1805 return NULL;
1806 if (set->n == 1) {
1807 convex_hull = isl_basic_set_copy(set->p[0]);
1808 isl_set_free(set);
1809 return convex_hull;
1811 if (isl_set_n_dim(set) == 1)
1812 return convex_hull_1d(set);
1814 if (isl_set_is_bounded(set))
1815 return uset_convex_hull_wrap(set);
1817 lin = uset_combined_lineality_space(isl_set_copy(set));
1818 if (!lin)
1819 goto error;
1820 if (isl_basic_set_is_universe(lin)) {
1821 isl_set_free(set);
1822 return lin;
1824 if (lin->n_eq < isl_basic_set_total_dim(lin))
1825 return modulo_lineality(set, lin);
1826 isl_basic_set_free(lin);
1828 return uset_convex_hull_unbounded(set);
1829 error:
1830 isl_set_free(set);
1831 isl_basic_set_free(convex_hull);
1832 return NULL;
1835 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1836 * without parameters or divs and where the convex hull of set is
1837 * known to be full-dimensional.
1839 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1841 int i;
1842 struct isl_basic_set *convex_hull = NULL;
1844 if (isl_set_n_dim(set) == 0) {
1845 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1846 isl_set_free(set);
1847 convex_hull = isl_basic_set_set_rational(convex_hull);
1848 return convex_hull;
1851 set = isl_set_set_rational(set);
1853 if (!set)
1854 goto error;
1855 set = isl_set_normalize(set);
1856 if (!set)
1857 goto error;
1858 if (set->n == 1) {
1859 convex_hull = isl_basic_set_copy(set->p[0]);
1860 isl_set_free(set);
1861 return convex_hull;
1863 if (isl_set_n_dim(set) == 1)
1864 return convex_hull_1d(set);
1866 return uset_convex_hull_wrap(set);
1867 error:
1868 isl_set_free(set);
1869 return NULL;
1872 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1873 * We first remove the equalities (transforming the set), compute the
1874 * convex hull of the transformed set and then add the equalities back
1875 * (after performing the inverse transformation.
1877 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1878 struct isl_set *set, struct isl_basic_set *affine_hull)
1880 struct isl_mat *T;
1881 struct isl_mat *T2;
1882 struct isl_basic_set *dummy;
1883 struct isl_basic_set *convex_hull;
1885 dummy = isl_basic_set_remove_equalities(
1886 isl_basic_set_copy(affine_hull), &T, &T2);
1887 if (!dummy)
1888 goto error;
1889 isl_basic_set_free(dummy);
1890 set = isl_set_preimage(set, T);
1891 convex_hull = uset_convex_hull(set);
1892 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1893 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1894 return convex_hull;
1895 error:
1896 isl_basic_set_free(affine_hull);
1897 isl_set_free(set);
1898 return NULL;
1901 /* Compute the convex hull of a map.
1903 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1904 * specifically, the wrapping of facets to obtain new facets.
1906 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1908 struct isl_basic_set *bset;
1909 struct isl_basic_map *model = NULL;
1910 struct isl_basic_set *affine_hull = NULL;
1911 struct isl_basic_map *convex_hull = NULL;
1912 struct isl_set *set = NULL;
1913 struct isl_ctx *ctx;
1915 if (!map)
1916 goto error;
1918 ctx = map->ctx;
1919 if (map->n == 0) {
1920 convex_hull = isl_basic_map_empty_like_map(map);
1921 isl_map_free(map);
1922 return convex_hull;
1925 map = isl_map_detect_equalities(map);
1926 map = isl_map_align_divs(map);
1927 model = isl_basic_map_copy(map->p[0]);
1928 set = isl_map_underlying_set(map);
1929 if (!set)
1930 goto error;
1932 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1933 if (!affine_hull)
1934 goto error;
1935 if (affine_hull->n_eq != 0)
1936 bset = modulo_affine_hull(ctx, set, affine_hull);
1937 else {
1938 isl_basic_set_free(affine_hull);
1939 bset = uset_convex_hull(set);
1942 convex_hull = isl_basic_map_overlying_set(bset, model);
1944 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1945 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1946 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1947 return convex_hull;
1948 error:
1949 isl_set_free(set);
1950 isl_basic_map_free(model);
1951 return NULL;
1954 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1956 return (struct isl_basic_set *)
1957 isl_map_convex_hull((struct isl_map *)set);
1960 struct sh_data_entry {
1961 struct isl_hash_table *table;
1962 struct isl_tab *tab;
1965 /* Holds the data needed during the simple hull computation.
1966 * In particular,
1967 * n the number of basic sets in the original set
1968 * hull_table a hash table of already computed constraints
1969 * in the simple hull
1970 * p for each basic set,
1971 * table a hash table of the constraints
1972 * tab the tableau corresponding to the basic set
1974 struct sh_data {
1975 struct isl_ctx *ctx;
1976 unsigned n;
1977 struct isl_hash_table *hull_table;
1978 struct sh_data_entry p[0];
1981 static void sh_data_free(struct sh_data *data)
1983 int i;
1985 if (!data)
1986 return;
1987 isl_hash_table_free(data->ctx, data->hull_table);
1988 for (i = 0; i < data->n; ++i) {
1989 isl_hash_table_free(data->ctx, data->p[i].table);
1990 isl_tab_free(data->ctx, data->p[i].tab);
1992 free(data);
1995 struct ineq_cmp_data {
1996 unsigned len;
1997 isl_int *p;
2000 static int has_ineq(const void *entry, const void *val)
2002 isl_int *row = (isl_int *)entry;
2003 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2005 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2006 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2009 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2010 isl_int *ineq, unsigned len)
2012 uint32_t c_hash;
2013 struct ineq_cmp_data v;
2014 struct isl_hash_table_entry *entry;
2016 v.len = len;
2017 v.p = ineq;
2018 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
2019 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2020 if (!entry)
2021 return - 1;
2022 entry->data = ineq;
2023 return 0;
2026 /* Fill hash table "table" with the constraints of "bset".
2027 * Equalities are added as two inequalities.
2028 * The value in the hash table is a pointer to the (in)equality of "bset".
2030 static int hash_basic_set(struct isl_hash_table *table,
2031 struct isl_basic_set *bset)
2033 int i, j;
2034 unsigned dim = isl_basic_set_total_dim(bset);
2036 for (i = 0; i < bset->n_eq; ++i) {
2037 for (j = 0; j < 2; ++j) {
2038 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2039 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2040 return -1;
2043 for (i = 0; i < bset->n_ineq; ++i) {
2044 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2045 return -1;
2047 return 0;
2050 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2052 struct sh_data *data;
2053 int i;
2055 data = isl_calloc(set->ctx, struct sh_data,
2056 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
2057 if (!data)
2058 return NULL;
2059 data->ctx = set->ctx;
2060 data->n = set->n;
2061 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2062 if (!data->hull_table)
2063 goto error;
2064 for (i = 0; i < set->n; ++i) {
2065 data->p[i].table = isl_hash_table_alloc(set->ctx,
2066 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2067 if (!data->p[i].table)
2068 goto error;
2069 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2070 goto error;
2072 return data;
2073 error:
2074 sh_data_free(data);
2075 return NULL;
2078 /* Check if inequality "ineq" is a bound for basic set "j" or if
2079 * it can be relaxed (by increasing the constant term) to become
2080 * a bound for that basic set. In the latter case, the constant
2081 * term is updated.
2082 * Return 1 if "ineq" is a bound
2083 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2084 * -1 if some error occurred
2086 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2087 isl_int *ineq)
2089 enum isl_lp_result res;
2090 isl_int opt;
2092 if (!data->p[j].tab) {
2093 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2094 if (!data->p[j].tab)
2095 return -1;
2098 isl_int_init(opt);
2100 res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one,
2101 &opt, NULL, 0);
2102 if (res == isl_lp_ok && isl_int_is_neg(opt))
2103 isl_int_sub(ineq[0], ineq[0], opt);
2105 isl_int_clear(opt);
2107 return res == isl_lp_ok ? 1 :
2108 res == isl_lp_unbounded ? 0 : -1;
2111 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2112 * become a bound on the whole set. If so, add the (relaxed) inequality
2113 * to "hull".
2115 * We first check if "hull" already contains a translate of the inequality.
2116 * If so, we are done.
2117 * Then, we check if any of the previous basic sets contains a translate
2118 * of the inequality. If so, then we have already considered this
2119 * inequality and we are done.
2120 * Otherwise, for each basic set other than "i", we check if the inequality
2121 * is a bound on the basic set.
2122 * For previous basic sets, we know that they do not contain a translate
2123 * of the inequality, so we directly call is_bound.
2124 * For following basic sets, we first check if a translate of the
2125 * inequality appears in its description and if so directly update
2126 * the inequality accordingly.
2128 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2129 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2131 uint32_t c_hash;
2132 struct ineq_cmp_data v;
2133 struct isl_hash_table_entry *entry;
2134 int j, k;
2136 if (!hull)
2137 return NULL;
2139 v.len = isl_basic_set_total_dim(hull);
2140 v.p = ineq;
2141 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
2143 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2144 has_ineq, &v, 0);
2145 if (entry)
2146 return hull;
2148 for (j = 0; j < i; ++j) {
2149 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2150 c_hash, has_ineq, &v, 0);
2151 if (entry)
2152 break;
2154 if (j < i)
2155 return hull;
2157 k = isl_basic_set_alloc_inequality(hull);
2158 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2159 if (k < 0)
2160 goto error;
2162 for (j = 0; j < i; ++j) {
2163 int bound;
2164 bound = is_bound(data, set, j, hull->ineq[k]);
2165 if (bound < 0)
2166 goto error;
2167 if (!bound)
2168 break;
2170 if (j < i) {
2171 isl_basic_set_free_inequality(hull, 1);
2172 return hull;
2175 for (j = i + 1; j < set->n; ++j) {
2176 int bound, neg;
2177 isl_int *ineq_j;
2178 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2179 c_hash, has_ineq, &v, 0);
2180 if (entry) {
2181 ineq_j = entry->data;
2182 neg = isl_seq_is_neg(ineq_j + 1,
2183 hull->ineq[k] + 1, v.len);
2184 if (neg)
2185 isl_int_neg(ineq_j[0], ineq_j[0]);
2186 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2187 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2188 if (neg)
2189 isl_int_neg(ineq_j[0], ineq_j[0]);
2190 continue;
2192 bound = is_bound(data, set, j, hull->ineq[k]);
2193 if (bound < 0)
2194 goto error;
2195 if (!bound)
2196 break;
2198 if (j < set->n) {
2199 isl_basic_set_free_inequality(hull, 1);
2200 return hull;
2203 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2204 has_ineq, &v, 1);
2205 if (!entry)
2206 goto error;
2207 entry->data = hull->ineq[k];
2209 return hull;
2210 error:
2211 isl_basic_set_free(hull);
2212 return NULL;
2215 /* Check if any inequality from basic set "i" can be relaxed to
2216 * become a bound on the whole set. If so, add the (relaxed) inequality
2217 * to "hull".
2219 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2220 struct sh_data *data, struct isl_set *set, int i)
2222 int j, k;
2223 unsigned dim = isl_basic_set_total_dim(bset);
2225 for (j = 0; j < set->p[i]->n_eq; ++j) {
2226 for (k = 0; k < 2; ++k) {
2227 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2228 add_bound(bset, data, set, i, set->p[i]->eq[j]);
2231 for (j = 0; j < set->p[i]->n_ineq; ++j)
2232 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2233 return bset;
2236 /* Compute a superset of the convex hull of set that is described
2237 * by only translates of the constraints in the constituents of set.
2239 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2241 struct sh_data *data = NULL;
2242 struct isl_basic_set *hull = NULL;
2243 unsigned n_ineq;
2244 int i, j;
2246 if (!set)
2247 return NULL;
2249 n_ineq = 0;
2250 for (i = 0; i < set->n; ++i) {
2251 if (!set->p[i])
2252 goto error;
2253 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2256 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2257 if (!hull)
2258 goto error;
2260 data = sh_data_alloc(set, n_ineq);
2261 if (!data)
2262 goto error;
2264 for (i = 0; i < set->n; ++i)
2265 hull = add_bounds(hull, data, set, i);
2267 sh_data_free(data);
2268 isl_set_free(set);
2270 return hull;
2271 error:
2272 sh_data_free(data);
2273 isl_basic_set_free(hull);
2274 isl_set_free(set);
2275 return NULL;
2278 /* Compute a superset of the convex hull of map that is described
2279 * by only translates of the constraints in the constituents of map.
2281 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2283 struct isl_set *set = NULL;
2284 struct isl_basic_map *model = NULL;
2285 struct isl_basic_map *hull;
2286 struct isl_basic_map *affine_hull;
2287 struct isl_basic_set *bset = NULL;
2289 if (!map)
2290 return NULL;
2291 if (map->n == 0) {
2292 hull = isl_basic_map_empty_like_map(map);
2293 isl_map_free(map);
2294 return hull;
2296 if (map->n == 1) {
2297 hull = isl_basic_map_copy(map->p[0]);
2298 isl_map_free(map);
2299 return hull;
2302 map = isl_map_detect_equalities(map);
2303 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2304 map = isl_map_align_divs(map);
2305 model = isl_basic_map_copy(map->p[0]);
2307 set = isl_map_underlying_set(map);
2309 bset = uset_simple_hull(set);
2311 hull = isl_basic_map_overlying_set(bset, model);
2313 hull = isl_basic_map_intersect(hull, affine_hull);
2314 hull = isl_basic_map_convex_hull(hull);
2315 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2316 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2318 return hull;
2321 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2323 return (struct isl_basic_set *)
2324 isl_map_simple_hull((struct isl_map *)set);
2327 /* Given a set "set", return parametric bounds on the dimension "dim".
2329 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2331 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2332 set = isl_set_copy(set);
2333 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2334 set = isl_set_eliminate_dims(set, 0, dim);
2335 return isl_set_convex_hull(set);
2338 /* Computes a "simple hull" and then check if each dimension in the
2339 * resulting hull is bounded by a symbolic constant. If not, the
2340 * hull is intersected with the corresponding bounds on the whole set.
2342 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2344 int i, j;
2345 struct isl_basic_set *hull;
2346 unsigned nparam, left;
2347 int removed_divs = 0;
2349 hull = isl_set_simple_hull(isl_set_copy(set));
2350 if (!hull)
2351 goto error;
2353 nparam = isl_basic_set_dim(hull, isl_dim_param);
2354 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2355 int lower = 0, upper = 0;
2356 struct isl_basic_set *bounds;
2358 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2359 for (j = 0; j < hull->n_eq; ++j) {
2360 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2361 continue;
2362 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2363 left) == -1)
2364 break;
2366 if (j < hull->n_eq)
2367 continue;
2369 for (j = 0; j < hull->n_ineq; ++j) {
2370 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2371 continue;
2372 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2373 left) != -1 ||
2374 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2375 i) != -1)
2376 continue;
2377 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2378 lower = 1;
2379 else
2380 upper = 1;
2381 if (lower && upper)
2382 break;
2385 if (lower && upper)
2386 continue;
2388 if (!removed_divs) {
2389 set = isl_set_remove_divs(set);
2390 if (!set)
2391 goto error;
2392 removed_divs = 1;
2394 bounds = set_bounds(set, i);
2395 hull = isl_basic_set_intersect(hull, bounds);
2396 if (!hull)
2397 goto error;
2400 isl_set_free(set);
2401 return hull;
2402 error:
2403 isl_set_free(set);
2404 return NULL;