include/isl/deprecated/*int.h: allow inclusion from C++
[isl.git] / isl_schedule.c
blobf607e0dc8d3c3c6c717f49e7c420997ef601a0a1
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
40 __isl_keep isl_schedule_constraints *sc)
42 isl_ctx *ctx;
43 isl_schedule_constraints *sc_copy;
44 enum isl_edge_type i;
46 ctx = isl_union_set_get_ctx(sc->domain);
47 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
48 if (!sc_copy)
49 return NULL;
51 sc_copy->domain = isl_union_set_copy(sc->domain);
52 if (!sc_copy->domain)
53 return isl_schedule_constraints_free(sc_copy);
55 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
56 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
57 if (!sc_copy->constraint[i])
58 return isl_schedule_constraints_free(sc_copy);
61 return sc_copy;
65 /* Construct an isl_schedule_constraints object for computing a schedule
66 * on "domain". The initial object does not impose any constraints.
68 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
69 __isl_take isl_union_set *domain)
71 isl_ctx *ctx;
72 isl_space *space;
73 isl_schedule_constraints *sc;
74 isl_union_map *empty;
75 enum isl_edge_type i;
77 if (!domain)
78 return NULL;
80 ctx = isl_union_set_get_ctx(domain);
81 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
82 if (!sc)
83 goto error;
85 space = isl_union_set_get_space(domain);
86 sc->domain = domain;
87 empty = isl_union_map_empty(space);
88 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
89 sc->constraint[i] = isl_union_map_copy(empty);
90 if (!sc->constraint[i])
91 sc->domain = isl_union_set_free(sc->domain);
93 isl_union_map_free(empty);
95 if (!sc->domain)
96 return isl_schedule_constraints_free(sc);
98 return sc;
99 error:
100 isl_union_set_free(domain);
101 return NULL;
104 /* Replace the validity constraints of "sc" by "validity".
106 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
107 __isl_take isl_schedule_constraints *sc,
108 __isl_take isl_union_map *validity)
110 if (!sc || !validity)
111 goto error;
113 isl_union_map_free(sc->constraint[isl_edge_validity]);
114 sc->constraint[isl_edge_validity] = validity;
116 return sc;
117 error:
118 isl_schedule_constraints_free(sc);
119 isl_union_map_free(validity);
120 return NULL;
123 /* Replace the coincidence constraints of "sc" by "coincidence".
125 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
126 __isl_take isl_schedule_constraints *sc,
127 __isl_take isl_union_map *coincidence)
129 if (!sc || !coincidence)
130 goto error;
132 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
133 sc->constraint[isl_edge_coincidence] = coincidence;
135 return sc;
136 error:
137 isl_schedule_constraints_free(sc);
138 isl_union_map_free(coincidence);
139 return NULL;
142 /* Replace the proximity constraints of "sc" by "proximity".
144 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
145 __isl_take isl_schedule_constraints *sc,
146 __isl_take isl_union_map *proximity)
148 if (!sc || !proximity)
149 goto error;
151 isl_union_map_free(sc->constraint[isl_edge_proximity]);
152 sc->constraint[isl_edge_proximity] = proximity;
154 return sc;
155 error:
156 isl_schedule_constraints_free(sc);
157 isl_union_map_free(proximity);
158 return NULL;
161 /* Replace the conditional validity constraints of "sc" by "condition"
162 * and "validity".
164 __isl_give isl_schedule_constraints *
165 isl_schedule_constraints_set_conditional_validity(
166 __isl_take isl_schedule_constraints *sc,
167 __isl_take isl_union_map *condition,
168 __isl_take isl_union_map *validity)
170 if (!sc || !condition || !validity)
171 goto error;
173 isl_union_map_free(sc->constraint[isl_edge_condition]);
174 sc->constraint[isl_edge_condition] = condition;
175 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
176 sc->constraint[isl_edge_conditional_validity] = validity;
178 return sc;
179 error:
180 isl_schedule_constraints_free(sc);
181 isl_union_map_free(condition);
182 isl_union_map_free(validity);
183 return NULL;
186 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
187 __isl_take isl_schedule_constraints *sc)
189 enum isl_edge_type i;
191 if (!sc)
192 return NULL;
194 isl_union_set_free(sc->domain);
195 for (i = isl_edge_first; i <= isl_edge_last; ++i)
196 isl_union_map_free(sc->constraint[i]);
198 free(sc);
200 return NULL;
203 isl_ctx *isl_schedule_constraints_get_ctx(
204 __isl_keep isl_schedule_constraints *sc)
206 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
209 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
211 if (!sc)
212 return;
214 fprintf(stderr, "domain: ");
215 isl_union_set_dump(sc->domain);
216 fprintf(stderr, "validity: ");
217 isl_union_map_dump(sc->constraint[isl_edge_validity]);
218 fprintf(stderr, "proximity: ");
219 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
220 fprintf(stderr, "coincidence: ");
221 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
222 fprintf(stderr, "condition: ");
223 isl_union_map_dump(sc->constraint[isl_edge_condition]);
224 fprintf(stderr, "conditional_validity: ");
225 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
228 /* Align the parameters of the fields of "sc".
230 static __isl_give isl_schedule_constraints *
231 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
233 isl_space *space;
234 enum isl_edge_type i;
236 if (!sc)
237 return NULL;
239 space = isl_union_set_get_space(sc->domain);
240 for (i = isl_edge_first; i <= isl_edge_last; ++i)
241 space = isl_space_align_params(space,
242 isl_union_map_get_space(sc->constraint[i]));
244 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
245 sc->constraint[i] = isl_union_map_align_params(
246 sc->constraint[i], isl_space_copy(space));
247 if (!sc->constraint[i])
248 space = isl_space_free(space);
250 sc->domain = isl_union_set_align_params(sc->domain, space);
251 if (!sc->domain)
252 return isl_schedule_constraints_free(sc);
254 return sc;
257 /* Return the total number of isl_maps in the constraints of "sc".
259 static __isl_give int isl_schedule_constraints_n_map(
260 __isl_keep isl_schedule_constraints *sc)
262 enum isl_edge_type i;
263 int n = 0;
265 for (i = isl_edge_first; i <= isl_edge_last; ++i)
266 n += isl_union_map_n_map(sc->constraint[i]);
268 return n;
271 /* Internal information about a node that is used during the construction
272 * of a schedule.
273 * dim represents the space in which the domain lives
274 * sched is a matrix representation of the schedule being constructed
275 * for this node
276 * sched_map is an isl_map representation of the same (partial) schedule
277 * sched_map may be NULL
278 * rank is the number of linearly independent rows in the linear part
279 * of sched
280 * the columns of cmap represent a change of basis for the schedule
281 * coefficients; the first rank columns span the linear part of
282 * the schedule rows
283 * cinv is the inverse of cmap.
284 * start is the first variable in the LP problem in the sequences that
285 * represents the schedule coefficients of this node
286 * nvar is the dimension of the domain
287 * nparam is the number of parameters or 0 if we are not constructing
288 * a parametric schedule
290 * scc is the index of SCC (or WCC) this node belongs to
292 * band contains the band index for each of the rows of the schedule.
293 * band_id is used to differentiate between separate bands at the same
294 * level within the same parent band, i.e., bands that are separated
295 * by the parent band or bands that are independent of each other.
296 * coincident contains a boolean for each of the rows of the schedule,
297 * indicating whether the corresponding scheduling dimension satisfies
298 * the coincidence constraints in the sense that the corresponding
299 * dependence distances are zero.
301 struct isl_sched_node {
302 isl_space *dim;
303 isl_mat *sched;
304 isl_map *sched_map;
305 int rank;
306 isl_mat *cmap;
307 isl_mat *cinv;
308 int start;
309 int nvar;
310 int nparam;
312 int scc;
314 int *band;
315 int *band_id;
316 int *coincident;
319 static int node_has_dim(const void *entry, const void *val)
321 struct isl_sched_node *node = (struct isl_sched_node *)entry;
322 isl_space *dim = (isl_space *)val;
324 return isl_space_is_equal(node->dim, dim);
327 /* An edge in the dependence graph. An edge may be used to
328 * ensure validity of the generated schedule, to minimize the dependence
329 * distance or both
331 * map is the dependence relation, with i -> j in the map if j depends on i
332 * tagged_condition and tagged_validity contain the union of all tagged
333 * condition or conditional validity dependence relations that
334 * specialize the dependence relation "map"; that is,
335 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
336 * or "tagged_validity", then i -> j is an element of "map".
337 * If these fields are NULL, then they represent the empty relation.
338 * src is the source node
339 * dst is the sink node
340 * validity is set if the edge is used to ensure correctness
341 * coincidence is used to enforce zero dependence distances
342 * proximity is set if the edge is used to minimize dependence distances
343 * condition is set if the edge represents a condition
344 * for a conditional validity schedule constraint
345 * local can only be set for condition edges and indicates that
346 * the dependence distance over the edge should be zero
347 * conditional_validity is set if the edge is used to conditionally
348 * ensure correctness
350 * For validity edges, start and end mark the sequence of inequality
351 * constraints in the LP problem that encode the validity constraint
352 * corresponding to this edge.
354 struct isl_sched_edge {
355 isl_map *map;
356 isl_union_map *tagged_condition;
357 isl_union_map *tagged_validity;
359 struct isl_sched_node *src;
360 struct isl_sched_node *dst;
362 unsigned validity : 1;
363 unsigned coincidence : 1;
364 unsigned proximity : 1;
365 unsigned local : 1;
366 unsigned condition : 1;
367 unsigned conditional_validity : 1;
369 int start;
370 int end;
373 /* Internal information about the dependence graph used during
374 * the construction of the schedule.
376 * intra_hmap is a cache, mapping dependence relations to their dual,
377 * for dependences from a node to itself
378 * inter_hmap is a cache, mapping dependence relations to their dual,
379 * for dependences between distinct nodes
381 * n is the number of nodes
382 * node is the list of nodes
383 * maxvar is the maximal number of variables over all nodes
384 * max_row is the allocated number of rows in the schedule
385 * n_row is the current (maximal) number of linearly independent
386 * rows in the node schedules
387 * n_total_row is the current number of rows in the node schedules
388 * n_band is the current number of completed bands
389 * band_start is the starting row in the node schedules of the current band
390 * root is set if this graph is the original dependence graph,
391 * without any splitting
393 * sorted contains a list of node indices sorted according to the
394 * SCC to which a node belongs
396 * n_edge is the number of edges
397 * edge is the list of edges
398 * max_edge contains the maximal number of edges of each type;
399 * in particular, it contains the number of edges in the inital graph.
400 * edge_table contains pointers into the edge array, hashed on the source
401 * and sink spaces; there is one such table for each type;
402 * a given edge may be referenced from more than one table
403 * if the corresponding relation appears in more than of the
404 * sets of dependences
406 * node_table contains pointers into the node array, hashed on the space
408 * region contains a list of variable sequences that should be non-trivial
410 * lp contains the (I)LP problem used to obtain new schedule rows
412 * src_scc and dst_scc are the source and sink SCCs of an edge with
413 * conflicting constraints
415 * scc represents the number of components
417 struct isl_sched_graph {
418 isl_map_to_basic_set *intra_hmap;
419 isl_map_to_basic_set *inter_hmap;
421 struct isl_sched_node *node;
422 int n;
423 int maxvar;
424 int max_row;
425 int n_row;
427 int *sorted;
429 int n_band;
430 int n_total_row;
431 int band_start;
433 int root;
435 struct isl_sched_edge *edge;
436 int n_edge;
437 int max_edge[isl_edge_last + 1];
438 struct isl_hash_table *edge_table[isl_edge_last + 1];
440 struct isl_hash_table *node_table;
441 struct isl_region *region;
443 isl_basic_set *lp;
445 int src_scc;
446 int dst_scc;
448 int scc;
451 /* Initialize node_table based on the list of nodes.
453 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
455 int i;
457 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
458 if (!graph->node_table)
459 return -1;
461 for (i = 0; i < graph->n; ++i) {
462 struct isl_hash_table_entry *entry;
463 uint32_t hash;
465 hash = isl_space_get_hash(graph->node[i].dim);
466 entry = isl_hash_table_find(ctx, graph->node_table, hash,
467 &node_has_dim,
468 graph->node[i].dim, 1);
469 if (!entry)
470 return -1;
471 entry->data = &graph->node[i];
474 return 0;
477 /* Return a pointer to the node that lives within the given space,
478 * or NULL if there is no such node.
480 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
481 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
483 struct isl_hash_table_entry *entry;
484 uint32_t hash;
486 hash = isl_space_get_hash(dim);
487 entry = isl_hash_table_find(ctx, graph->node_table, hash,
488 &node_has_dim, dim, 0);
490 return entry ? entry->data : NULL;
493 static int edge_has_src_and_dst(const void *entry, const void *val)
495 const struct isl_sched_edge *edge = entry;
496 const struct isl_sched_edge *temp = val;
498 return edge->src == temp->src && edge->dst == temp->dst;
501 /* Add the given edge to graph->edge_table[type].
503 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
504 enum isl_edge_type type, struct isl_sched_edge *edge)
506 struct isl_hash_table_entry *entry;
507 uint32_t hash;
509 hash = isl_hash_init();
510 hash = isl_hash_builtin(hash, edge->src);
511 hash = isl_hash_builtin(hash, edge->dst);
512 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
513 &edge_has_src_and_dst, edge, 1);
514 if (!entry)
515 return -1;
516 entry->data = edge;
518 return 0;
521 /* Allocate the edge_tables based on the maximal number of edges of
522 * each type.
524 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
526 int i;
528 for (i = 0; i <= isl_edge_last; ++i) {
529 graph->edge_table[i] = isl_hash_table_alloc(ctx,
530 graph->max_edge[i]);
531 if (!graph->edge_table[i])
532 return -1;
535 return 0;
538 /* If graph->edge_table[type] contains an edge from the given source
539 * to the given destination, then return the hash table entry of this edge.
540 * Otherwise, return NULL.
542 static struct isl_hash_table_entry *graph_find_edge_entry(
543 struct isl_sched_graph *graph,
544 enum isl_edge_type type,
545 struct isl_sched_node *src, struct isl_sched_node *dst)
547 isl_ctx *ctx = isl_space_get_ctx(src->dim);
548 uint32_t hash;
549 struct isl_sched_edge temp = { .src = src, .dst = dst };
551 hash = isl_hash_init();
552 hash = isl_hash_builtin(hash, temp.src);
553 hash = isl_hash_builtin(hash, temp.dst);
554 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
555 &edge_has_src_and_dst, &temp, 0);
559 /* If graph->edge_table[type] contains an edge from the given source
560 * to the given destination, then return this edge.
561 * Otherwise, return NULL.
563 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
564 enum isl_edge_type type,
565 struct isl_sched_node *src, struct isl_sched_node *dst)
567 struct isl_hash_table_entry *entry;
569 entry = graph_find_edge_entry(graph, type, src, dst);
570 if (!entry)
571 return NULL;
573 return entry->data;
576 /* Check whether the dependence graph has an edge of the given type
577 * between the given two nodes.
579 static int graph_has_edge(struct isl_sched_graph *graph,
580 enum isl_edge_type type,
581 struct isl_sched_node *src, struct isl_sched_node *dst)
583 struct isl_sched_edge *edge;
584 int empty;
586 edge = graph_find_edge(graph, type, src, dst);
587 if (!edge)
588 return 0;
590 empty = isl_map_plain_is_empty(edge->map);
591 if (empty < 0)
592 return -1;
594 return !empty;
597 /* Look for any edge with the same src, dst and map fields as "model".
599 * Return the matching edge if one can be found.
600 * Return "model" if no matching edge is found.
601 * Return NULL on error.
603 static struct isl_sched_edge *graph_find_matching_edge(
604 struct isl_sched_graph *graph, struct isl_sched_edge *model)
606 enum isl_edge_type i;
607 struct isl_sched_edge *edge;
609 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
610 int is_equal;
612 edge = graph_find_edge(graph, i, model->src, model->dst);
613 if (!edge)
614 continue;
615 is_equal = isl_map_plain_is_equal(model->map, edge->map);
616 if (is_equal < 0)
617 return NULL;
618 if (is_equal)
619 return edge;
622 return model;
625 /* Remove the given edge from all the edge_tables that refer to it.
627 static void graph_remove_edge(struct isl_sched_graph *graph,
628 struct isl_sched_edge *edge)
630 isl_ctx *ctx = isl_map_get_ctx(edge->map);
631 enum isl_edge_type i;
633 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
634 struct isl_hash_table_entry *entry;
636 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
637 if (!entry)
638 continue;
639 if (entry->data != edge)
640 continue;
641 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
645 /* Check whether the dependence graph has any edge
646 * between the given two nodes.
648 static int graph_has_any_edge(struct isl_sched_graph *graph,
649 struct isl_sched_node *src, struct isl_sched_node *dst)
651 enum isl_edge_type i;
652 int r;
654 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
655 r = graph_has_edge(graph, i, src, dst);
656 if (r < 0 || r)
657 return r;
660 return r;
663 /* Check whether the dependence graph has a validity edge
664 * between the given two nodes.
666 * Conditional validity edges are essentially validity edges that
667 * can be ignored if the corresponding condition edges are iteration private.
668 * Here, we are only checking for the presence of validity
669 * edges, so we need to consider the conditional validity edges too.
670 * In particular, this function is used during the detection
671 * of strongly connected components and we cannot ignore
672 * conditional validity edges during this detection.
674 static int graph_has_validity_edge(struct isl_sched_graph *graph,
675 struct isl_sched_node *src, struct isl_sched_node *dst)
677 int r;
679 r = graph_has_edge(graph, isl_edge_validity, src, dst);
680 if (r < 0 || r)
681 return r;
683 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
686 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
687 int n_node, int n_edge)
689 int i;
691 graph->n = n_node;
692 graph->n_edge = n_edge;
693 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
694 graph->sorted = isl_calloc_array(ctx, int, graph->n);
695 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
696 graph->edge = isl_calloc_array(ctx,
697 struct isl_sched_edge, graph->n_edge);
699 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
700 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
702 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
703 !graph->sorted)
704 return -1;
706 for(i = 0; i < graph->n; ++i)
707 graph->sorted[i] = i;
709 return 0;
712 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
714 int i;
716 isl_map_to_basic_set_free(graph->intra_hmap);
717 isl_map_to_basic_set_free(graph->inter_hmap);
719 for (i = 0; i < graph->n; ++i) {
720 isl_space_free(graph->node[i].dim);
721 isl_mat_free(graph->node[i].sched);
722 isl_map_free(graph->node[i].sched_map);
723 isl_mat_free(graph->node[i].cmap);
724 isl_mat_free(graph->node[i].cinv);
725 if (graph->root) {
726 free(graph->node[i].band);
727 free(graph->node[i].band_id);
728 free(graph->node[i].coincident);
731 free(graph->node);
732 free(graph->sorted);
733 for (i = 0; i < graph->n_edge; ++i) {
734 isl_map_free(graph->edge[i].map);
735 isl_union_map_free(graph->edge[i].tagged_condition);
736 isl_union_map_free(graph->edge[i].tagged_validity);
738 free(graph->edge);
739 free(graph->region);
740 for (i = 0; i <= isl_edge_last; ++i)
741 isl_hash_table_free(ctx, graph->edge_table[i]);
742 isl_hash_table_free(ctx, graph->node_table);
743 isl_basic_set_free(graph->lp);
746 /* For each "set" on which this function is called, increment
747 * graph->n by one and update graph->maxvar.
749 static int init_n_maxvar(__isl_take isl_set *set, void *user)
751 struct isl_sched_graph *graph = user;
752 int nvar = isl_set_dim(set, isl_dim_set);
754 graph->n++;
755 if (nvar > graph->maxvar)
756 graph->maxvar = nvar;
758 isl_set_free(set);
760 return 0;
763 /* Compute the number of rows that should be allocated for the schedule.
764 * The graph can be split at most "n - 1" times, there can be at most
765 * two rows for each dimension in the iteration domains (in particular,
766 * we usually have one row, but it may be split by split_scaled),
767 * and there can be one extra row for ordering the statements.
768 * Note that if we have actually split "n - 1" times, then no ordering
769 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
771 static int compute_max_row(struct isl_sched_graph *graph,
772 __isl_keep isl_union_set *domain)
774 graph->n = 0;
775 graph->maxvar = 0;
776 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
777 return -1;
778 graph->max_row = graph->n + 2 * graph->maxvar;
780 return 0;
783 /* Add a new node to the graph representing the given set.
785 static int extract_node(__isl_take isl_set *set, void *user)
787 int nvar, nparam;
788 isl_ctx *ctx;
789 isl_space *dim;
790 isl_mat *sched;
791 struct isl_sched_graph *graph = user;
792 int *band, *band_id, *coincident;
794 ctx = isl_set_get_ctx(set);
795 dim = isl_set_get_space(set);
796 isl_set_free(set);
797 nvar = isl_space_dim(dim, isl_dim_set);
798 nparam = isl_space_dim(dim, isl_dim_param);
799 if (!ctx->opt->schedule_parametric)
800 nparam = 0;
801 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
802 graph->node[graph->n].dim = dim;
803 graph->node[graph->n].nvar = nvar;
804 graph->node[graph->n].nparam = nparam;
805 graph->node[graph->n].sched = sched;
806 graph->node[graph->n].sched_map = NULL;
807 band = isl_alloc_array(ctx, int, graph->max_row);
808 graph->node[graph->n].band = band;
809 band_id = isl_calloc_array(ctx, int, graph->max_row);
810 graph->node[graph->n].band_id = band_id;
811 coincident = isl_calloc_array(ctx, int, graph->max_row);
812 graph->node[graph->n].coincident = coincident;
813 graph->n++;
815 if (!sched || (graph->max_row && (!band || !band_id || !coincident)))
816 return -1;
818 return 0;
821 struct isl_extract_edge_data {
822 enum isl_edge_type type;
823 struct isl_sched_graph *graph;
826 /* Merge edge2 into edge1, freeing the contents of edge2.
827 * "type" is the type of the schedule constraint from which edge2 was
828 * extracted.
829 * Return 0 on success and -1 on failure.
831 * edge1 and edge2 are assumed to have the same value for the map field.
833 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
834 struct isl_sched_edge *edge2)
836 edge1->validity |= edge2->validity;
837 edge1->coincidence |= edge2->coincidence;
838 edge1->proximity |= edge2->proximity;
839 edge1->condition |= edge2->condition;
840 edge1->conditional_validity |= edge2->conditional_validity;
841 isl_map_free(edge2->map);
843 if (type == isl_edge_condition) {
844 if (!edge1->tagged_condition)
845 edge1->tagged_condition = edge2->tagged_condition;
846 else
847 edge1->tagged_condition =
848 isl_union_map_union(edge1->tagged_condition,
849 edge2->tagged_condition);
852 if (type == isl_edge_conditional_validity) {
853 if (!edge1->tagged_validity)
854 edge1->tagged_validity = edge2->tagged_validity;
855 else
856 edge1->tagged_validity =
857 isl_union_map_union(edge1->tagged_validity,
858 edge2->tagged_validity);
861 if (type == isl_edge_condition && !edge1->tagged_condition)
862 return -1;
863 if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
864 return -1;
866 return 0;
869 /* Insert dummy tags in domain and range of "map".
871 * In particular, if "map" is of the form
873 * A -> B
875 * then return
877 * [A -> dummy_tag] -> [B -> dummy_tag]
879 * where the dummy_tags are identical and equal to any dummy tags
880 * introduced by any other call to this function.
882 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
884 static char dummy;
885 isl_ctx *ctx;
886 isl_id *id;
887 isl_space *space;
888 isl_set *domain, *range;
890 ctx = isl_map_get_ctx(map);
892 id = isl_id_alloc(ctx, NULL, &dummy);
893 space = isl_space_params(isl_map_get_space(map));
894 space = isl_space_set_from_params(space);
895 space = isl_space_set_tuple_id(space, isl_dim_set, id);
896 space = isl_space_map_from_set(space);
898 domain = isl_map_wrap(map);
899 range = isl_map_wrap(isl_map_universe(space));
900 map = isl_map_from_domain_and_range(domain, range);
901 map = isl_map_zip(map);
903 return map;
906 /* Add a new edge to the graph based on the given map
907 * and add it to data->graph->edge_table[data->type].
908 * If a dependence relation of a given type happens to be identical
909 * to one of the dependence relations of a type that was added before,
910 * then we don't create a new edge, but instead mark the original edge
911 * as also representing a dependence of the current type.
913 * Edges of type isl_edge_condition or isl_edge_conditional_validity
914 * may be specified as "tagged" dependence relations. That is, "map"
915 * may contain elements * (i -> a) -> (j -> b), where i -> j denotes
916 * the dependence on iterations and a and b are tags.
917 * edge->map is set to the relation containing the elements i -> j,
918 * while edge->tagged_condition and edge->tagged_validity contain
919 * the union of all the "map" relations
920 * for which extract_edge is called that result in the same edge->map.
922 static int extract_edge(__isl_take isl_map *map, void *user)
924 isl_ctx *ctx = isl_map_get_ctx(map);
925 struct isl_extract_edge_data *data = user;
926 struct isl_sched_graph *graph = data->graph;
927 struct isl_sched_node *src, *dst;
928 isl_space *dim;
929 struct isl_sched_edge *edge;
930 isl_map *tagged = NULL;
932 if (data->type == isl_edge_condition ||
933 data->type == isl_edge_conditional_validity) {
934 if (isl_map_can_zip(map)) {
935 tagged = isl_map_copy(map);
936 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
937 } else {
938 tagged = insert_dummy_tags(isl_map_copy(map));
942 dim = isl_space_domain(isl_map_get_space(map));
943 src = graph_find_node(ctx, graph, dim);
944 isl_space_free(dim);
945 dim = isl_space_range(isl_map_get_space(map));
946 dst = graph_find_node(ctx, graph, dim);
947 isl_space_free(dim);
949 if (!src || !dst) {
950 isl_map_free(map);
951 isl_map_free(tagged);
952 return 0;
955 graph->edge[graph->n_edge].src = src;
956 graph->edge[graph->n_edge].dst = dst;
957 graph->edge[graph->n_edge].map = map;
958 graph->edge[graph->n_edge].validity = 0;
959 graph->edge[graph->n_edge].coincidence = 0;
960 graph->edge[graph->n_edge].proximity = 0;
961 graph->edge[graph->n_edge].condition = 0;
962 graph->edge[graph->n_edge].local = 0;
963 graph->edge[graph->n_edge].conditional_validity = 0;
964 graph->edge[graph->n_edge].tagged_condition = NULL;
965 graph->edge[graph->n_edge].tagged_validity = NULL;
966 if (data->type == isl_edge_validity)
967 graph->edge[graph->n_edge].validity = 1;
968 if (data->type == isl_edge_coincidence)
969 graph->edge[graph->n_edge].coincidence = 1;
970 if (data->type == isl_edge_proximity)
971 graph->edge[graph->n_edge].proximity = 1;
972 if (data->type == isl_edge_condition) {
973 graph->edge[graph->n_edge].condition = 1;
974 graph->edge[graph->n_edge].tagged_condition =
975 isl_union_map_from_map(tagged);
977 if (data->type == isl_edge_conditional_validity) {
978 graph->edge[graph->n_edge].conditional_validity = 1;
979 graph->edge[graph->n_edge].tagged_validity =
980 isl_union_map_from_map(tagged);
983 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
984 if (edge == &graph->edge[graph->n_edge])
985 return graph_edge_table_add(ctx, graph, data->type,
986 &graph->edge[graph->n_edge++]);
988 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
989 return -1;
991 return graph_edge_table_add(ctx, graph, data->type, edge);
994 /* Check whether there is any dependence from node[j] to node[i]
995 * or from node[i] to node[j].
997 static int node_follows_weak(int i, int j, void *user)
999 int f;
1000 struct isl_sched_graph *graph = user;
1002 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1003 if (f < 0 || f)
1004 return f;
1005 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1008 /* Check whether there is a (conditional) validity dependence from node[j]
1009 * to node[i], forcing node[i] to follow node[j].
1011 static int node_follows_strong(int i, int j, void *user)
1013 struct isl_sched_graph *graph = user;
1015 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1018 /* Use Tarjan's algorithm for computing the strongly connected components
1019 * in the dependence graph (only validity edges).
1020 * If weak is set, we consider the graph to be undirected and
1021 * we effectively compute the (weakly) connected components.
1022 * Additionally, we also consider other edges when weak is set.
1024 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
1026 int i, n;
1027 struct isl_tarjan_graph *g = NULL;
1029 g = isl_tarjan_graph_init(ctx, graph->n,
1030 weak ? &node_follows_weak : &node_follows_strong, graph);
1031 if (!g)
1032 return -1;
1034 graph->scc = 0;
1035 i = 0;
1036 n = graph->n;
1037 while (n) {
1038 while (g->order[i] != -1) {
1039 graph->node[g->order[i]].scc = graph->scc;
1040 --n;
1041 ++i;
1043 ++i;
1044 graph->scc++;
1047 isl_tarjan_graph_free(g);
1049 return 0;
1052 /* Apply Tarjan's algorithm to detect the strongly connected components
1053 * in the dependence graph.
1055 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1057 return detect_ccs(ctx, graph, 0);
1060 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1061 * in the dependence graph.
1063 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1065 return detect_ccs(ctx, graph, 1);
1068 static int cmp_scc(const void *a, const void *b, void *data)
1070 struct isl_sched_graph *graph = data;
1071 const int *i1 = a;
1072 const int *i2 = b;
1074 return graph->node[*i1].scc - graph->node[*i2].scc;
1077 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1079 static int sort_sccs(struct isl_sched_graph *graph)
1081 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1084 /* Given a dependence relation R from a node to itself,
1085 * construct the set of coefficients of valid constraints for elements
1086 * in that dependence relation.
1087 * In particular, the result contains tuples of coefficients
1088 * c_0, c_n, c_x such that
1090 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1092 * or, equivalently,
1094 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1096 * We choose here to compute the dual of delta R.
1097 * Alternatively, we could have computed the dual of R, resulting
1098 * in a set of tuples c_0, c_n, c_x, c_y, and then
1099 * plugged in (c_0, c_n, c_x, -c_x).
1101 static __isl_give isl_basic_set *intra_coefficients(
1102 struct isl_sched_graph *graph, __isl_take isl_map *map)
1104 isl_set *delta;
1105 isl_basic_set *coef;
1107 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
1108 return isl_map_to_basic_set_get(graph->intra_hmap, map);
1110 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
1111 coef = isl_set_coefficients(delta);
1112 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, map,
1113 isl_basic_set_copy(coef));
1115 return coef;
1118 /* Given a dependence relation R, * construct the set of coefficients
1119 * of valid constraints for elements in that dependence relation.
1120 * In particular, the result contains tuples of coefficients
1121 * c_0, c_n, c_x, c_y such that
1123 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1126 static __isl_give isl_basic_set *inter_coefficients(
1127 struct isl_sched_graph *graph, __isl_take isl_map *map)
1129 isl_set *set;
1130 isl_basic_set *coef;
1132 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
1133 return isl_map_to_basic_set_get(graph->inter_hmap, map);
1135 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
1136 coef = isl_set_coefficients(set);
1137 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, map,
1138 isl_basic_set_copy(coef));
1140 return coef;
1143 /* Add constraints to graph->lp that force validity for the given
1144 * dependence from a node i to itself.
1145 * That is, add constraints that enforce
1147 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1148 * = c_i_x (y - x) >= 0
1150 * for each (x,y) in R.
1151 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1152 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1153 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1154 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1156 * Actually, we do not construct constraints for the c_i_x themselves,
1157 * but for the coefficients of c_i_x written as a linear combination
1158 * of the columns in node->cmap.
1160 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1161 struct isl_sched_edge *edge)
1163 unsigned total;
1164 isl_map *map = isl_map_copy(edge->map);
1165 isl_ctx *ctx = isl_map_get_ctx(map);
1166 isl_space *dim;
1167 isl_dim_map *dim_map;
1168 isl_basic_set *coef;
1169 struct isl_sched_node *node = edge->src;
1171 coef = intra_coefficients(graph, map);
1173 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1175 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1176 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1177 if (!coef)
1178 goto error;
1180 total = isl_basic_set_total_dim(graph->lp);
1181 dim_map = isl_dim_map_alloc(ctx, total);
1182 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1183 isl_space_dim(dim, isl_dim_set), 1,
1184 node->nvar, -1);
1185 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1186 isl_space_dim(dim, isl_dim_set), 1,
1187 node->nvar, 1);
1188 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1189 coef->n_eq, coef->n_ineq);
1190 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1191 coef, dim_map);
1192 isl_space_free(dim);
1194 return 0;
1195 error:
1196 isl_space_free(dim);
1197 return -1;
1200 /* Add constraints to graph->lp that force validity for the given
1201 * dependence from node i to node j.
1202 * That is, add constraints that enforce
1204 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1206 * for each (x,y) in R.
1207 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1208 * of valid constraints for R and then plug in
1209 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1210 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1211 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1212 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1214 * Actually, we do not construct constraints for the c_*_x themselves,
1215 * but for the coefficients of c_*_x written as a linear combination
1216 * of the columns in node->cmap.
1218 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1219 struct isl_sched_edge *edge)
1221 unsigned total;
1222 isl_map *map = isl_map_copy(edge->map);
1223 isl_ctx *ctx = isl_map_get_ctx(map);
1224 isl_space *dim;
1225 isl_dim_map *dim_map;
1226 isl_basic_set *coef;
1227 struct isl_sched_node *src = edge->src;
1228 struct isl_sched_node *dst = edge->dst;
1230 coef = inter_coefficients(graph, map);
1232 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1234 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1235 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1236 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1237 isl_space_dim(dim, isl_dim_set) + src->nvar,
1238 isl_mat_copy(dst->cmap));
1239 if (!coef)
1240 goto error;
1242 total = isl_basic_set_total_dim(graph->lp);
1243 dim_map = isl_dim_map_alloc(ctx, total);
1245 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1246 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1247 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1248 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1249 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1250 dst->nvar, -1);
1251 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1252 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1253 dst->nvar, 1);
1255 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1256 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1257 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1258 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1259 isl_space_dim(dim, isl_dim_set), 1,
1260 src->nvar, 1);
1261 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1262 isl_space_dim(dim, isl_dim_set), 1,
1263 src->nvar, -1);
1265 edge->start = graph->lp->n_ineq;
1266 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1267 coef->n_eq, coef->n_ineq);
1268 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1269 coef, dim_map);
1270 if (!graph->lp)
1271 goto error;
1272 isl_space_free(dim);
1273 edge->end = graph->lp->n_ineq;
1275 return 0;
1276 error:
1277 isl_space_free(dim);
1278 return -1;
1281 /* Add constraints to graph->lp that bound the dependence distance for the given
1282 * dependence from a node i to itself.
1283 * If s = 1, we add the constraint
1285 * c_i_x (y - x) <= m_0 + m_n n
1287 * or
1289 * -c_i_x (y - x) + m_0 + m_n n >= 0
1291 * for each (x,y) in R.
1292 * If s = -1, we add the constraint
1294 * -c_i_x (y - x) <= m_0 + m_n n
1296 * or
1298 * c_i_x (y - x) + m_0 + m_n n >= 0
1300 * for each (x,y) in R.
1301 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1302 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1303 * with each coefficient (except m_0) represented as a pair of non-negative
1304 * coefficients.
1306 * Actually, we do not construct constraints for the c_i_x themselves,
1307 * but for the coefficients of c_i_x written as a linear combination
1308 * of the columns in node->cmap.
1311 * If "local" is set, then we add constraints
1313 * c_i_x (y - x) <= 0
1315 * or
1317 * -c_i_x (y - x) <= 0
1319 * instead, forcing the dependence distance to be (less than or) equal to 0.
1320 * That is, we plug in (0, 0, -s * c_i_x),
1321 * Note that dependences marked local are treated as validity constraints
1322 * by add_all_validity_constraints and therefore also have
1323 * their distances bounded by 0 from below.
1325 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1326 struct isl_sched_edge *edge, int s, int local)
1328 unsigned total;
1329 unsigned nparam;
1330 isl_map *map = isl_map_copy(edge->map);
1331 isl_ctx *ctx = isl_map_get_ctx(map);
1332 isl_space *dim;
1333 isl_dim_map *dim_map;
1334 isl_basic_set *coef;
1335 struct isl_sched_node *node = edge->src;
1337 coef = intra_coefficients(graph, map);
1339 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1341 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1342 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1343 if (!coef)
1344 goto error;
1346 nparam = isl_space_dim(node->dim, isl_dim_param);
1347 total = isl_basic_set_total_dim(graph->lp);
1348 dim_map = isl_dim_map_alloc(ctx, total);
1350 if (!local) {
1351 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1352 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1353 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1355 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1356 isl_space_dim(dim, isl_dim_set), 1,
1357 node->nvar, s);
1358 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1359 isl_space_dim(dim, isl_dim_set), 1,
1360 node->nvar, -s);
1361 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1362 coef->n_eq, coef->n_ineq);
1363 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1364 coef, dim_map);
1365 isl_space_free(dim);
1367 return 0;
1368 error:
1369 isl_space_free(dim);
1370 return -1;
1373 /* Add constraints to graph->lp that bound the dependence distance for the given
1374 * dependence from node i to node j.
1375 * If s = 1, we add the constraint
1377 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1378 * <= m_0 + m_n n
1380 * or
1382 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1383 * m_0 + m_n n >= 0
1385 * for each (x,y) in R.
1386 * If s = -1, we add the constraint
1388 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1389 * <= m_0 + m_n n
1391 * or
1393 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1394 * m_0 + m_n n >= 0
1396 * for each (x,y) in R.
1397 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1398 * of valid constraints for R and then plug in
1399 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1400 * -s*c_j_x+s*c_i_x)
1401 * with each coefficient (except m_0, c_j_0 and c_i_0)
1402 * represented as a pair of non-negative coefficients.
1404 * Actually, we do not construct constraints for the c_*_x themselves,
1405 * but for the coefficients of c_*_x written as a linear combination
1406 * of the columns in node->cmap.
1409 * If "local" is set, then we add constraints
1411 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1413 * or
1415 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1417 * instead, forcing the dependence distance to be (less than or) equal to 0.
1418 * That is, we plug in
1419 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1420 * Note that dependences marked local are treated as validity constraints
1421 * by add_all_validity_constraints and therefore also have
1422 * their distances bounded by 0 from below.
1424 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1425 struct isl_sched_edge *edge, int s, int local)
1427 unsigned total;
1428 unsigned nparam;
1429 isl_map *map = isl_map_copy(edge->map);
1430 isl_ctx *ctx = isl_map_get_ctx(map);
1431 isl_space *dim;
1432 isl_dim_map *dim_map;
1433 isl_basic_set *coef;
1434 struct isl_sched_node *src = edge->src;
1435 struct isl_sched_node *dst = edge->dst;
1437 coef = inter_coefficients(graph, map);
1439 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1441 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1442 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1443 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1444 isl_space_dim(dim, isl_dim_set) + src->nvar,
1445 isl_mat_copy(dst->cmap));
1446 if (!coef)
1447 goto error;
1449 nparam = isl_space_dim(src->dim, isl_dim_param);
1450 total = isl_basic_set_total_dim(graph->lp);
1451 dim_map = isl_dim_map_alloc(ctx, total);
1453 if (!local) {
1454 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1455 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1456 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1459 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1460 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1461 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1462 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1463 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1464 dst->nvar, s);
1465 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1466 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1467 dst->nvar, -s);
1469 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1470 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1471 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1472 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1473 isl_space_dim(dim, isl_dim_set), 1,
1474 src->nvar, -s);
1475 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1476 isl_space_dim(dim, isl_dim_set), 1,
1477 src->nvar, s);
1479 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1480 coef->n_eq, coef->n_ineq);
1481 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1482 coef, dim_map);
1483 isl_space_free(dim);
1485 return 0;
1486 error:
1487 isl_space_free(dim);
1488 return -1;
1491 /* Add all validity constraints to graph->lp.
1493 * An edge that is forced to be local needs to have its dependence
1494 * distances equal to zero. We take care of bounding them by 0 from below
1495 * here. add_all_proximity_constraints takes care of bounding them by 0
1496 * from above.
1498 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1499 * Otherwise, we ignore them.
1501 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1502 int use_coincidence)
1504 int i;
1506 for (i = 0; i < graph->n_edge; ++i) {
1507 struct isl_sched_edge *edge= &graph->edge[i];
1508 int local;
1510 local = edge->local || (edge->coincidence && use_coincidence);
1511 if (!edge->validity && !local)
1512 continue;
1513 if (edge->src != edge->dst)
1514 continue;
1515 if (add_intra_validity_constraints(graph, edge) < 0)
1516 return -1;
1519 for (i = 0; i < graph->n_edge; ++i) {
1520 struct isl_sched_edge *edge = &graph->edge[i];
1521 int local;
1523 local = edge->local || (edge->coincidence && use_coincidence);
1524 if (!edge->validity && !local)
1525 continue;
1526 if (edge->src == edge->dst)
1527 continue;
1528 if (add_inter_validity_constraints(graph, edge) < 0)
1529 return -1;
1532 return 0;
1535 /* Add constraints to graph->lp that bound the dependence distance
1536 * for all dependence relations.
1537 * If a given proximity dependence is identical to a validity
1538 * dependence, then the dependence distance is already bounded
1539 * from below (by zero), so we only need to bound the distance
1540 * from above. (This includes the case of "local" dependences
1541 * which are treated as validity dependence by add_all_validity_constraints.)
1542 * Otherwise, we need to bound the distance both from above and from below.
1544 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1545 * Otherwise, we ignore them.
1547 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1548 int use_coincidence)
1550 int i;
1552 for (i = 0; i < graph->n_edge; ++i) {
1553 struct isl_sched_edge *edge= &graph->edge[i];
1554 int local;
1556 local = edge->local || (edge->coincidence && use_coincidence);
1557 if (!edge->proximity && !local)
1558 continue;
1559 if (edge->src == edge->dst &&
1560 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1561 return -1;
1562 if (edge->src != edge->dst &&
1563 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1564 return -1;
1565 if (edge->validity || local)
1566 continue;
1567 if (edge->src == edge->dst &&
1568 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1569 return -1;
1570 if (edge->src != edge->dst &&
1571 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1572 return -1;
1575 return 0;
1578 /* Compute a basis for the rows in the linear part of the schedule
1579 * and extend this basis to a full basis. The remaining rows
1580 * can then be used to force linear independence from the rows
1581 * in the schedule.
1583 * In particular, given the schedule rows S, we compute
1585 * S = H Q
1586 * S U = H
1588 * with H the Hermite normal form of S. That is, all but the
1589 * first rank columns of H are zero and so each row in S is
1590 * a linear combination of the first rank rows of Q.
1591 * The matrix Q is then transposed because we will write the
1592 * coefficients of the next schedule row as a column vector s
1593 * and express this s as a linear combination s = Q c of the
1594 * computed basis.
1595 * Similarly, the matrix U is transposed such that we can
1596 * compute the coefficients c = U s from a schedule row s.
1598 static int node_update_cmap(struct isl_sched_node *node)
1600 isl_mat *H, *U, *Q;
1601 int n_row = isl_mat_rows(node->sched);
1603 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1604 1 + node->nparam, node->nvar);
1606 H = isl_mat_left_hermite(H, 0, &U, &Q);
1607 isl_mat_free(node->cmap);
1608 isl_mat_free(node->cinv);
1609 node->cmap = isl_mat_transpose(Q);
1610 node->cinv = isl_mat_transpose(U);
1611 node->rank = isl_mat_initial_non_zero_cols(H);
1612 isl_mat_free(H);
1614 if (!node->cmap || !node->cinv || node->rank < 0)
1615 return -1;
1616 return 0;
1619 /* How many times should we count the constraints in "edge"?
1621 * If carry is set, then we are counting the number of
1622 * (validity or conditional validity) constraints that will be added
1623 * in setup_carry_lp and we count each edge exactly once.
1625 * Otherwise, we count as follows
1626 * validity -> 1 (>= 0)
1627 * validity+proximity -> 2 (>= 0 and upper bound)
1628 * proximity -> 2 (lower and upper bound)
1629 * local(+any) -> 2 (>= 0 and <= 0)
1631 * If an edge is only marked conditional_validity then it counts
1632 * as zero since it is only checked afterwards.
1634 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1635 * Otherwise, we ignore them.
1637 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
1638 int use_coincidence)
1640 if (carry && !edge->validity && !edge->conditional_validity)
1641 return 0;
1642 if (carry)
1643 return 1;
1644 if (edge->proximity || edge->local)
1645 return 2;
1646 if (use_coincidence && edge->coincidence)
1647 return 2;
1648 if (edge->validity)
1649 return 1;
1650 return 0;
1653 /* Count the number of equality and inequality constraints
1654 * that will be added for the given map.
1656 * "use_coincidence" is set if we should take into account coincidence edges.
1658 static int count_map_constraints(struct isl_sched_graph *graph,
1659 struct isl_sched_edge *edge, __isl_take isl_map *map,
1660 int *n_eq, int *n_ineq, int carry, int use_coincidence)
1662 isl_basic_set *coef;
1663 int f = edge_multiplicity(edge, carry, use_coincidence);
1665 if (f == 0) {
1666 isl_map_free(map);
1667 return 0;
1670 if (edge->src == edge->dst)
1671 coef = intra_coefficients(graph, map);
1672 else
1673 coef = inter_coefficients(graph, map);
1674 if (!coef)
1675 return -1;
1676 *n_eq += f * coef->n_eq;
1677 *n_ineq += f * coef->n_ineq;
1678 isl_basic_set_free(coef);
1680 return 0;
1683 /* Count the number of equality and inequality constraints
1684 * that will be added to the main lp problem.
1685 * We count as follows
1686 * validity -> 1 (>= 0)
1687 * validity+proximity -> 2 (>= 0 and upper bound)
1688 * proximity -> 2 (lower and upper bound)
1689 * local(+any) -> 2 (>= 0 and <= 0)
1691 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1692 * Otherwise, we ignore them.
1694 static int count_constraints(struct isl_sched_graph *graph,
1695 int *n_eq, int *n_ineq, int use_coincidence)
1697 int i;
1699 *n_eq = *n_ineq = 0;
1700 for (i = 0; i < graph->n_edge; ++i) {
1701 struct isl_sched_edge *edge= &graph->edge[i];
1702 isl_map *map = isl_map_copy(edge->map);
1704 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
1705 0, use_coincidence) < 0)
1706 return -1;
1709 return 0;
1712 /* Count the number of constraints that will be added by
1713 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1714 * accordingly.
1716 * In practice, add_bound_coefficient_constraints only adds inequalities.
1718 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1719 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1721 int i;
1723 if (ctx->opt->schedule_max_coefficient == -1)
1724 return 0;
1726 for (i = 0; i < graph->n; ++i)
1727 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1729 return 0;
1732 /* Add constraints that bound the values of the variable and parameter
1733 * coefficients of the schedule.
1735 * The maximal value of the coefficients is defined by the option
1736 * 'schedule_max_coefficient'.
1738 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1739 struct isl_sched_graph *graph)
1741 int i, j, k;
1742 int max_coefficient;
1743 int total;
1745 max_coefficient = ctx->opt->schedule_max_coefficient;
1747 if (max_coefficient == -1)
1748 return 0;
1750 total = isl_basic_set_total_dim(graph->lp);
1752 for (i = 0; i < graph->n; ++i) {
1753 struct isl_sched_node *node = &graph->node[i];
1754 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1755 int dim;
1756 k = isl_basic_set_alloc_inequality(graph->lp);
1757 if (k < 0)
1758 return -1;
1759 dim = 1 + node->start + 1 + j;
1760 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1761 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1762 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1766 return 0;
1769 /* Construct an ILP problem for finding schedule coefficients
1770 * that result in non-negative, but small dependence distances
1771 * over all dependences.
1772 * In particular, the dependence distances over proximity edges
1773 * are bounded by m_0 + m_n n and we compute schedule coefficients
1774 * with small values (preferably zero) of m_n and m_0.
1776 * All variables of the ILP are non-negative. The actual coefficients
1777 * may be negative, so each coefficient is represented as the difference
1778 * of two non-negative variables. The negative part always appears
1779 * immediately before the positive part.
1780 * Other than that, the variables have the following order
1782 * - sum of positive and negative parts of m_n coefficients
1783 * - m_0
1784 * - sum of positive and negative parts of all c_n coefficients
1785 * (unconstrained when computing non-parametric schedules)
1786 * - sum of positive and negative parts of all c_x coefficients
1787 * - positive and negative parts of m_n coefficients
1788 * - for each node
1789 * - c_i_0
1790 * - positive and negative parts of c_i_n (if parametric)
1791 * - positive and negative parts of c_i_x
1793 * The c_i_x are not represented directly, but through the columns of
1794 * node->cmap. That is, the computed values are for variable t_i_x
1795 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1797 * The constraints are those from the edges plus two or three equalities
1798 * to express the sums.
1800 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1801 * Otherwise, we ignore them.
1803 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1804 int use_coincidence)
1806 int i, j;
1807 int k;
1808 unsigned nparam;
1809 unsigned total;
1810 isl_space *dim;
1811 int parametric;
1812 int param_pos;
1813 int n_eq, n_ineq;
1814 int max_constant_term;
1816 max_constant_term = ctx->opt->schedule_max_constant_term;
1818 parametric = ctx->opt->schedule_parametric;
1819 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1820 param_pos = 4;
1821 total = param_pos + 2 * nparam;
1822 for (i = 0; i < graph->n; ++i) {
1823 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1824 if (node_update_cmap(node) < 0)
1825 return -1;
1826 node->start = total;
1827 total += 1 + 2 * (node->nparam + node->nvar);
1830 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
1831 return -1;
1832 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1833 return -1;
1835 dim = isl_space_set_alloc(ctx, 0, total);
1836 isl_basic_set_free(graph->lp);
1837 n_eq += 2 + parametric;
1838 if (max_constant_term != -1)
1839 n_ineq += graph->n;
1841 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1843 k = isl_basic_set_alloc_equality(graph->lp);
1844 if (k < 0)
1845 return -1;
1846 isl_seq_clr(graph->lp->eq[k], 1 + total);
1847 isl_int_set_si(graph->lp->eq[k][1], -1);
1848 for (i = 0; i < 2 * nparam; ++i)
1849 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1851 if (parametric) {
1852 k = isl_basic_set_alloc_equality(graph->lp);
1853 if (k < 0)
1854 return -1;
1855 isl_seq_clr(graph->lp->eq[k], 1 + total);
1856 isl_int_set_si(graph->lp->eq[k][3], -1);
1857 for (i = 0; i < graph->n; ++i) {
1858 int pos = 1 + graph->node[i].start + 1;
1860 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1861 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1865 k = isl_basic_set_alloc_equality(graph->lp);
1866 if (k < 0)
1867 return -1;
1868 isl_seq_clr(graph->lp->eq[k], 1 + total);
1869 isl_int_set_si(graph->lp->eq[k][4], -1);
1870 for (i = 0; i < graph->n; ++i) {
1871 struct isl_sched_node *node = &graph->node[i];
1872 int pos = 1 + node->start + 1 + 2 * node->nparam;
1874 for (j = 0; j < 2 * node->nvar; ++j)
1875 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1878 if (max_constant_term != -1)
1879 for (i = 0; i < graph->n; ++i) {
1880 struct isl_sched_node *node = &graph->node[i];
1881 k = isl_basic_set_alloc_inequality(graph->lp);
1882 if (k < 0)
1883 return -1;
1884 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1885 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1886 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1889 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1890 return -1;
1891 if (add_all_validity_constraints(graph, use_coincidence) < 0)
1892 return -1;
1893 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
1894 return -1;
1896 return 0;
1899 /* Analyze the conflicting constraint found by
1900 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1901 * constraint of one of the edges between distinct nodes, living, moreover
1902 * in distinct SCCs, then record the source and sink SCC as this may
1903 * be a good place to cut between SCCs.
1905 static int check_conflict(int con, void *user)
1907 int i;
1908 struct isl_sched_graph *graph = user;
1910 if (graph->src_scc >= 0)
1911 return 0;
1913 con -= graph->lp->n_eq;
1915 if (con >= graph->lp->n_ineq)
1916 return 0;
1918 for (i = 0; i < graph->n_edge; ++i) {
1919 if (!graph->edge[i].validity)
1920 continue;
1921 if (graph->edge[i].src == graph->edge[i].dst)
1922 continue;
1923 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1924 continue;
1925 if (graph->edge[i].start > con)
1926 continue;
1927 if (graph->edge[i].end <= con)
1928 continue;
1929 graph->src_scc = graph->edge[i].src->scc;
1930 graph->dst_scc = graph->edge[i].dst->scc;
1933 return 0;
1936 /* Check whether the next schedule row of the given node needs to be
1937 * non-trivial. Lower-dimensional domains may have some trivial rows,
1938 * but as soon as the number of remaining required non-trivial rows
1939 * is as large as the number or remaining rows to be computed,
1940 * all remaining rows need to be non-trivial.
1942 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1944 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1947 /* Solve the ILP problem constructed in setup_lp.
1948 * For each node such that all the remaining rows of its schedule
1949 * need to be non-trivial, we construct a non-triviality region.
1950 * This region imposes that the next row is independent of previous rows.
1951 * In particular the coefficients c_i_x are represented by t_i_x
1952 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1953 * its first columns span the rows of the previously computed part
1954 * of the schedule. The non-triviality region enforces that at least
1955 * one of the remaining components of t_i_x is non-zero, i.e.,
1956 * that the new schedule row depends on at least one of the remaining
1957 * columns of Q.
1959 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1961 int i;
1962 isl_vec *sol;
1963 isl_basic_set *lp;
1965 for (i = 0; i < graph->n; ++i) {
1966 struct isl_sched_node *node = &graph->node[i];
1967 int skip = node->rank;
1968 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1969 if (needs_row(graph, node))
1970 graph->region[i].len = 2 * (node->nvar - skip);
1971 else
1972 graph->region[i].len = 0;
1974 lp = isl_basic_set_copy(graph->lp);
1975 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1976 graph->region, &check_conflict, graph);
1977 return sol;
1980 /* Update the schedules of all nodes based on the given solution
1981 * of the LP problem.
1982 * The new row is added to the current band.
1983 * All possibly negative coefficients are encoded as a difference
1984 * of two non-negative variables, so we need to perform the subtraction
1985 * here. Moreover, if use_cmap is set, then the solution does
1986 * not refer to the actual coefficients c_i_x, but instead to variables
1987 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1988 * In this case, we then also need to perform this multiplication
1989 * to obtain the values of c_i_x.
1991 * If coincident is set, then the caller guarantees that the new
1992 * row satisfies the coincidence constraints.
1994 static int update_schedule(struct isl_sched_graph *graph,
1995 __isl_take isl_vec *sol, int use_cmap, int coincident)
1997 int i, j;
1998 isl_vec *csol = NULL;
2000 if (!sol)
2001 goto error;
2002 if (sol->size == 0)
2003 isl_die(sol->ctx, isl_error_internal,
2004 "no solution found", goto error);
2005 if (graph->n_total_row >= graph->max_row)
2006 isl_die(sol->ctx, isl_error_internal,
2007 "too many schedule rows", goto error);
2009 for (i = 0; i < graph->n; ++i) {
2010 struct isl_sched_node *node = &graph->node[i];
2011 int pos = node->start;
2012 int row = isl_mat_rows(node->sched);
2014 isl_vec_free(csol);
2015 csol = isl_vec_alloc(sol->ctx, node->nvar);
2016 if (!csol)
2017 goto error;
2019 isl_map_free(node->sched_map);
2020 node->sched_map = NULL;
2021 node->sched = isl_mat_add_rows(node->sched, 1);
2022 if (!node->sched)
2023 goto error;
2024 node->sched = isl_mat_set_element(node->sched, row, 0,
2025 sol->el[1 + pos]);
2026 for (j = 0; j < node->nparam + node->nvar; ++j)
2027 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2028 sol->el[1 + pos + 1 + 2 * j + 1],
2029 sol->el[1 + pos + 1 + 2 * j]);
2030 for (j = 0; j < node->nparam; ++j)
2031 node->sched = isl_mat_set_element(node->sched,
2032 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2033 for (j = 0; j < node->nvar; ++j)
2034 isl_int_set(csol->el[j],
2035 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2036 if (use_cmap)
2037 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2038 csol);
2039 if (!csol)
2040 goto error;
2041 for (j = 0; j < node->nvar; ++j)
2042 node->sched = isl_mat_set_element(node->sched,
2043 row, 1 + node->nparam + j, csol->el[j]);
2044 node->band[graph->n_total_row] = graph->n_band;
2045 node->coincident[graph->n_total_row] = coincident;
2047 isl_vec_free(sol);
2048 isl_vec_free(csol);
2050 graph->n_row++;
2051 graph->n_total_row++;
2053 return 0;
2054 error:
2055 isl_vec_free(sol);
2056 isl_vec_free(csol);
2057 return -1;
2060 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2061 * and return this isl_aff.
2063 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2064 struct isl_sched_node *node, int row)
2066 int j;
2067 isl_int v;
2068 isl_aff *aff;
2070 isl_int_init(v);
2072 aff = isl_aff_zero_on_domain(ls);
2073 isl_mat_get_element(node->sched, row, 0, &v);
2074 aff = isl_aff_set_constant(aff, v);
2075 for (j = 0; j < node->nparam; ++j) {
2076 isl_mat_get_element(node->sched, row, 1 + j, &v);
2077 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2079 for (j = 0; j < node->nvar; ++j) {
2080 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2081 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2084 isl_int_clear(v);
2086 return aff;
2089 /* Convert node->sched into a multi_aff and return this multi_aff.
2091 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2092 struct isl_sched_node *node)
2094 int i;
2095 isl_space *space;
2096 isl_local_space *ls;
2097 isl_aff *aff;
2098 isl_multi_aff *ma;
2099 int nrow, ncol;
2101 nrow = isl_mat_rows(node->sched);
2102 ncol = isl_mat_cols(node->sched) - 1;
2103 space = isl_space_from_domain(isl_space_copy(node->dim));
2104 space = isl_space_add_dims(space, isl_dim_out, nrow);
2105 ma = isl_multi_aff_zero(space);
2106 ls = isl_local_space_from_space(isl_space_copy(node->dim));
2108 for (i = 0; i < nrow; ++i) {
2109 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2110 ma = isl_multi_aff_set_aff(ma, i, aff);
2113 isl_local_space_free(ls);
2115 return ma;
2118 /* Convert node->sched into a map and return this map.
2120 * The result is cached in node->sched_map, which needs to be released
2121 * whenever node->sched is updated.
2123 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2125 if (!node->sched_map) {
2126 isl_multi_aff *ma;
2128 ma = node_extract_schedule_multi_aff(node);
2129 node->sched_map = isl_map_from_multi_aff(ma);
2132 return isl_map_copy(node->sched_map);
2135 /* Construct a map that can be used to update dependence relation
2136 * based on the current schedule.
2137 * That is, construct a map expressing that source and sink
2138 * are executed within the same iteration of the current schedule.
2139 * This map can then be intersected with the dependence relation.
2140 * This is not the most efficient way, but this shouldn't be a critical
2141 * operation.
2143 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2144 struct isl_sched_node *dst)
2146 isl_map *src_sched, *dst_sched;
2148 src_sched = node_extract_schedule(src);
2149 dst_sched = node_extract_schedule(dst);
2150 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2153 /* Intersect the domains of the nested relations in domain and range
2154 * of "umap" with "map".
2156 static __isl_give isl_union_map *intersect_domains(
2157 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2159 isl_union_set *uset;
2161 umap = isl_union_map_zip(umap);
2162 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2163 umap = isl_union_map_intersect_domain(umap, uset);
2164 umap = isl_union_map_zip(umap);
2165 return umap;
2168 /* Update the dependence relation of the given edge based
2169 * on the current schedule.
2170 * If the dependence is carried completely by the current schedule, then
2171 * it is removed from the edge_tables. It is kept in the list of edges
2172 * as otherwise all edge_tables would have to be recomputed.
2174 static int update_edge(struct isl_sched_graph *graph,
2175 struct isl_sched_edge *edge)
2177 isl_map *id;
2179 id = specializer(edge->src, edge->dst);
2180 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2181 if (!edge->map)
2182 goto error;
2184 if (edge->tagged_condition) {
2185 edge->tagged_condition =
2186 intersect_domains(edge->tagged_condition, id);
2187 if (!edge->tagged_condition)
2188 goto error;
2190 if (edge->tagged_validity) {
2191 edge->tagged_validity =
2192 intersect_domains(edge->tagged_validity, id);
2193 if (!edge->tagged_validity)
2194 goto error;
2197 isl_map_free(id);
2198 if (isl_map_plain_is_empty(edge->map))
2199 graph_remove_edge(graph, edge);
2201 return 0;
2202 error:
2203 isl_map_free(id);
2204 return -1;
2207 /* Update the dependence relations of all edges based on the current schedule.
2209 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2211 int i;
2213 for (i = graph->n_edge - 1; i >= 0; --i) {
2214 if (update_edge(graph, &graph->edge[i]) < 0)
2215 return -1;
2218 return 0;
2221 static void next_band(struct isl_sched_graph *graph)
2223 graph->band_start = graph->n_total_row;
2224 graph->n_band++;
2227 /* Topologically sort statements mapped to the same schedule iteration
2228 * and add a row to the schedule corresponding to this order.
2230 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
2232 int i, j;
2234 if (graph->n <= 1)
2235 return 0;
2237 if (update_edges(ctx, graph) < 0)
2238 return -1;
2240 if (graph->n_edge == 0)
2241 return 0;
2243 if (detect_sccs(ctx, graph) < 0)
2244 return -1;
2246 if (graph->n_total_row >= graph->max_row)
2247 isl_die(ctx, isl_error_internal,
2248 "too many schedule rows", return -1);
2250 for (i = 0; i < graph->n; ++i) {
2251 struct isl_sched_node *node = &graph->node[i];
2252 int row = isl_mat_rows(node->sched);
2253 int cols = isl_mat_cols(node->sched);
2255 isl_map_free(node->sched_map);
2256 node->sched_map = NULL;
2257 node->sched = isl_mat_add_rows(node->sched, 1);
2258 if (!node->sched)
2259 return -1;
2260 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2261 node->scc);
2262 for (j = 1; j < cols; ++j)
2263 node->sched = isl_mat_set_element_si(node->sched,
2264 row, j, 0);
2265 node->band[graph->n_total_row] = graph->n_band;
2268 graph->n_total_row++;
2269 next_band(graph);
2271 return 0;
2274 /* Construct an isl_schedule based on the computed schedule stored
2275 * in graph and with parameters specified by dim.
2277 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
2278 __isl_take isl_space *dim)
2280 int i;
2281 isl_ctx *ctx;
2282 isl_schedule *sched = NULL;
2284 if (!dim)
2285 return NULL;
2287 ctx = isl_space_get_ctx(dim);
2288 sched = isl_calloc(ctx, struct isl_schedule,
2289 sizeof(struct isl_schedule) +
2290 (graph->n - 1) * sizeof(struct isl_schedule_node));
2291 if (!sched)
2292 goto error;
2294 sched->ref = 1;
2295 sched->n = graph->n;
2296 sched->n_band = graph->n_band;
2297 sched->n_total_row = graph->n_total_row;
2299 for (i = 0; i < sched->n; ++i) {
2300 int r, b;
2301 int *band_end, *band_id, *coincident;
2303 sched->node[i].sched =
2304 node_extract_schedule_multi_aff(&graph->node[i]);
2305 if (!sched->node[i].sched)
2306 goto error;
2308 sched->node[i].n_band = graph->n_band;
2309 if (graph->n_band == 0)
2310 continue;
2312 band_end = isl_alloc_array(ctx, int, graph->n_band);
2313 band_id = isl_alloc_array(ctx, int, graph->n_band);
2314 coincident = isl_alloc_array(ctx, int, graph->n_total_row);
2315 sched->node[i].band_end = band_end;
2316 sched->node[i].band_id = band_id;
2317 sched->node[i].coincident = coincident;
2318 if (!band_end || !band_id || !coincident)
2319 goto error;
2321 for (r = 0; r < graph->n_total_row; ++r)
2322 coincident[r] = graph->node[i].coincident[r];
2323 for (r = b = 0; r < graph->n_total_row; ++r) {
2324 if (graph->node[i].band[r] == b)
2325 continue;
2326 band_end[b++] = r;
2327 if (graph->node[i].band[r] == -1)
2328 break;
2330 if (r == graph->n_total_row)
2331 band_end[b++] = r;
2332 sched->node[i].n_band = b;
2333 for (--b; b >= 0; --b)
2334 band_id[b] = graph->node[i].band_id[b];
2337 sched->dim = dim;
2339 return sched;
2340 error:
2341 isl_space_free(dim);
2342 isl_schedule_free(sched);
2343 return NULL;
2346 /* Copy nodes that satisfy node_pred from the src dependence graph
2347 * to the dst dependence graph.
2349 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2350 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2352 int i;
2354 dst->n = 0;
2355 for (i = 0; i < src->n; ++i) {
2356 if (!node_pred(&src->node[i], data))
2357 continue;
2358 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
2359 dst->node[dst->n].nvar = src->node[i].nvar;
2360 dst->node[dst->n].nparam = src->node[i].nparam;
2361 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
2362 dst->node[dst->n].sched_map =
2363 isl_map_copy(src->node[i].sched_map);
2364 dst->node[dst->n].band = src->node[i].band;
2365 dst->node[dst->n].band_id = src->node[i].band_id;
2366 dst->node[dst->n].coincident = src->node[i].coincident;
2367 dst->n++;
2370 return 0;
2373 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2374 * to the dst dependence graph.
2375 * If the source or destination node of the edge is not in the destination
2376 * graph, then it must be a backward proximity edge and it should simply
2377 * be ignored.
2379 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2380 struct isl_sched_graph *src,
2381 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2383 int i;
2384 enum isl_edge_type t;
2386 dst->n_edge = 0;
2387 for (i = 0; i < src->n_edge; ++i) {
2388 struct isl_sched_edge *edge = &src->edge[i];
2389 isl_map *map;
2390 isl_union_map *tagged_condition;
2391 isl_union_map *tagged_validity;
2392 struct isl_sched_node *dst_src, *dst_dst;
2394 if (!edge_pred(edge, data))
2395 continue;
2397 if (isl_map_plain_is_empty(edge->map))
2398 continue;
2400 dst_src = graph_find_node(ctx, dst, edge->src->dim);
2401 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
2402 if (!dst_src || !dst_dst) {
2403 if (edge->validity || edge->conditional_validity)
2404 isl_die(ctx, isl_error_internal,
2405 "backward (conditional) validity edge",
2406 return -1);
2407 continue;
2410 map = isl_map_copy(edge->map);
2411 tagged_condition = isl_union_map_copy(edge->tagged_condition);
2412 tagged_validity = isl_union_map_copy(edge->tagged_validity);
2414 dst->edge[dst->n_edge].src = dst_src;
2415 dst->edge[dst->n_edge].dst = dst_dst;
2416 dst->edge[dst->n_edge].map = map;
2417 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
2418 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
2419 dst->edge[dst->n_edge].validity = edge->validity;
2420 dst->edge[dst->n_edge].proximity = edge->proximity;
2421 dst->edge[dst->n_edge].coincidence = edge->coincidence;
2422 dst->edge[dst->n_edge].condition = edge->condition;
2423 dst->edge[dst->n_edge].conditional_validity =
2424 edge->conditional_validity;
2425 dst->n_edge++;
2427 if (edge->tagged_condition && !tagged_condition)
2428 return -1;
2429 if (edge->tagged_validity && !tagged_validity)
2430 return -1;
2432 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2433 if (edge !=
2434 graph_find_edge(src, t, edge->src, edge->dst))
2435 continue;
2436 if (graph_edge_table_add(ctx, dst, t,
2437 &dst->edge[dst->n_edge - 1]) < 0)
2438 return -1;
2442 return 0;
2445 /* Given a "src" dependence graph that contains the nodes from "dst"
2446 * that satisfy node_pred, copy the schedule computed in "src"
2447 * for those nodes back to "dst".
2449 static int copy_schedule(struct isl_sched_graph *dst,
2450 struct isl_sched_graph *src,
2451 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2453 int i;
2455 src->n = 0;
2456 for (i = 0; i < dst->n; ++i) {
2457 if (!node_pred(&dst->node[i], data))
2458 continue;
2459 isl_mat_free(dst->node[i].sched);
2460 isl_map_free(dst->node[i].sched_map);
2461 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2462 dst->node[i].sched_map =
2463 isl_map_copy(src->node[src->n].sched_map);
2464 src->n++;
2467 dst->max_row = src->max_row;
2468 dst->n_total_row = src->n_total_row;
2469 dst->n_band = src->n_band;
2471 return 0;
2474 /* Compute the maximal number of variables over all nodes.
2475 * This is the maximal number of linearly independent schedule
2476 * rows that we need to compute.
2477 * Just in case we end up in a part of the dependence graph
2478 * with only lower-dimensional domains, we make sure we will
2479 * compute the required amount of extra linearly independent rows.
2481 static int compute_maxvar(struct isl_sched_graph *graph)
2483 int i;
2485 graph->maxvar = 0;
2486 for (i = 0; i < graph->n; ++i) {
2487 struct isl_sched_node *node = &graph->node[i];
2488 int nvar;
2490 if (node_update_cmap(node) < 0)
2491 return -1;
2492 nvar = node->nvar + graph->n_row - node->rank;
2493 if (nvar > graph->maxvar)
2494 graph->maxvar = nvar;
2497 return 0;
2500 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2501 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2503 /* Compute a schedule for a subgraph of "graph". In particular, for
2504 * the graph composed of nodes that satisfy node_pred and edges that
2505 * that satisfy edge_pred. The caller should precompute the number
2506 * of nodes and edges that satisfy these predicates and pass them along
2507 * as "n" and "n_edge".
2508 * If the subgraph is known to consist of a single component, then wcc should
2509 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2510 * Otherwise, we call compute_schedule, which will check whether the subgraph
2511 * is connected.
2513 static int compute_sub_schedule(isl_ctx *ctx,
2514 struct isl_sched_graph *graph, int n, int n_edge,
2515 int (*node_pred)(struct isl_sched_node *node, int data),
2516 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2517 int data, int wcc)
2519 struct isl_sched_graph split = { 0 };
2520 int t;
2522 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2523 goto error;
2524 if (copy_nodes(&split, graph, node_pred, data) < 0)
2525 goto error;
2526 if (graph_init_table(ctx, &split) < 0)
2527 goto error;
2528 for (t = 0; t <= isl_edge_last; ++t)
2529 split.max_edge[t] = graph->max_edge[t];
2530 if (graph_init_edge_tables(ctx, &split) < 0)
2531 goto error;
2532 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2533 goto error;
2534 split.n_row = graph->n_row;
2535 split.max_row = graph->max_row;
2536 split.n_total_row = graph->n_total_row;
2537 split.n_band = graph->n_band;
2538 split.band_start = graph->band_start;
2540 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2541 goto error;
2542 if (!wcc && compute_schedule(ctx, &split) < 0)
2543 goto error;
2545 copy_schedule(graph, &split, node_pred, data);
2547 graph_free(ctx, &split);
2548 return 0;
2549 error:
2550 graph_free(ctx, &split);
2551 return -1;
2554 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2556 return node->scc == scc;
2559 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2561 return node->scc <= scc;
2564 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2566 return node->scc >= scc;
2569 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2571 return edge->src->scc == scc && edge->dst->scc == scc;
2574 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2576 return edge->dst->scc <= scc;
2579 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2581 return edge->src->scc >= scc;
2584 /* Pad the schedules of all nodes with zero rows such that in the end
2585 * they all have graph->n_total_row rows.
2586 * The extra rows don't belong to any band, so they get assigned band number -1.
2588 static int pad_schedule(struct isl_sched_graph *graph)
2590 int i, j;
2592 for (i = 0; i < graph->n; ++i) {
2593 struct isl_sched_node *node = &graph->node[i];
2594 int row = isl_mat_rows(node->sched);
2595 if (graph->n_total_row > row) {
2596 isl_map_free(node->sched_map);
2597 node->sched_map = NULL;
2599 node->sched = isl_mat_add_zero_rows(node->sched,
2600 graph->n_total_row - row);
2601 if (!node->sched)
2602 return -1;
2603 for (j = row; j < graph->n_total_row; ++j)
2604 node->band[j] = -1;
2607 return 0;
2610 /* Reset the current band by dropping all its schedule rows.
2612 static int reset_band(struct isl_sched_graph *graph)
2614 int i;
2615 int drop;
2617 drop = graph->n_total_row - graph->band_start;
2618 graph->n_total_row -= drop;
2619 graph->n_row -= drop;
2621 for (i = 0; i < graph->n; ++i) {
2622 struct isl_sched_node *node = &graph->node[i];
2624 isl_map_free(node->sched_map);
2625 node->sched_map = NULL;
2627 node->sched = isl_mat_drop_rows(node->sched,
2628 graph->band_start, drop);
2630 if (!node->sched)
2631 return -1;
2634 return 0;
2637 /* Split the current graph into two parts and compute a schedule for each
2638 * part individually. In particular, one part consists of all SCCs up
2639 * to and including graph->src_scc, while the other part contains the other
2640 * SCCS.
2642 * The split is enforced in the schedule by constant rows with two different
2643 * values (0 and 1). These constant rows replace the previously computed rows
2644 * in the current band.
2645 * It would be possible to reuse them as the first rows in the next
2646 * band, but recomputing them may result in better rows as we are looking
2647 * at a smaller part of the dependence graph.
2649 * Since we do not enforce coincidence, we conservatively mark the
2650 * splitting row as not coincident.
2652 * The band_id of the second group is set to n, where n is the number
2653 * of nodes in the first group. This ensures that the band_ids over
2654 * the two groups remain disjoint, even if either or both of the two
2655 * groups contain independent components.
2657 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2659 int i, j, n, e1, e2;
2660 int n_total_row, orig_total_row;
2661 int n_band, orig_band;
2663 if (graph->n_total_row >= graph->max_row)
2664 isl_die(ctx, isl_error_internal,
2665 "too many schedule rows", return -1);
2667 if (reset_band(graph) < 0)
2668 return -1;
2670 n = 0;
2671 for (i = 0; i < graph->n; ++i) {
2672 struct isl_sched_node *node = &graph->node[i];
2673 int row = isl_mat_rows(node->sched);
2674 int cols = isl_mat_cols(node->sched);
2675 int before = node->scc <= graph->src_scc;
2677 if (before)
2678 n++;
2680 isl_map_free(node->sched_map);
2681 node->sched_map = NULL;
2682 node->sched = isl_mat_add_rows(node->sched, 1);
2683 if (!node->sched)
2684 return -1;
2685 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2686 !before);
2687 for (j = 1; j < cols; ++j)
2688 node->sched = isl_mat_set_element_si(node->sched,
2689 row, j, 0);
2690 node->band[graph->n_total_row] = graph->n_band;
2691 node->coincident[graph->n_total_row] = 0;
2694 e1 = e2 = 0;
2695 for (i = 0; i < graph->n_edge; ++i) {
2696 if (graph->edge[i].dst->scc <= graph->src_scc)
2697 e1++;
2698 if (graph->edge[i].src->scc > graph->src_scc)
2699 e2++;
2702 graph->n_total_row++;
2703 next_band(graph);
2705 for (i = 0; i < graph->n; ++i) {
2706 struct isl_sched_node *node = &graph->node[i];
2707 if (node->scc > graph->src_scc)
2708 node->band_id[graph->n_band] = n;
2711 orig_total_row = graph->n_total_row;
2712 orig_band = graph->n_band;
2713 if (compute_sub_schedule(ctx, graph, n, e1,
2714 &node_scc_at_most, &edge_dst_scc_at_most,
2715 graph->src_scc, 0) < 0)
2716 return -1;
2717 n_total_row = graph->n_total_row;
2718 graph->n_total_row = orig_total_row;
2719 n_band = graph->n_band;
2720 graph->n_band = orig_band;
2721 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2722 &node_scc_at_least, &edge_src_scc_at_least,
2723 graph->src_scc + 1, 0) < 0)
2724 return -1;
2725 if (n_total_row > graph->n_total_row)
2726 graph->n_total_row = n_total_row;
2727 if (n_band > graph->n_band)
2728 graph->n_band = n_band;
2730 return pad_schedule(graph);
2733 /* Compute the next band of the schedule after updating the dependence
2734 * relations based on the the current schedule.
2736 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2738 if (update_edges(ctx, graph) < 0)
2739 return -1;
2740 next_band(graph);
2742 return compute_schedule(ctx, graph);
2745 /* Add constraints to graph->lp that force the dependence "map" (which
2746 * is part of the dependence relation of "edge")
2747 * to be respected and attempt to carry it, where the edge is one from
2748 * a node j to itself. "pos" is the sequence number of the given map.
2749 * That is, add constraints that enforce
2751 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2752 * = c_j_x (y - x) >= e_i
2754 * for each (x,y) in R.
2755 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2756 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2757 * with each coefficient in c_j_x represented as a pair of non-negative
2758 * coefficients.
2760 static int add_intra_constraints(struct isl_sched_graph *graph,
2761 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2763 unsigned total;
2764 isl_ctx *ctx = isl_map_get_ctx(map);
2765 isl_space *dim;
2766 isl_dim_map *dim_map;
2767 isl_basic_set *coef;
2768 struct isl_sched_node *node = edge->src;
2770 coef = intra_coefficients(graph, map);
2771 if (!coef)
2772 return -1;
2774 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2776 total = isl_basic_set_total_dim(graph->lp);
2777 dim_map = isl_dim_map_alloc(ctx, total);
2778 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2779 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2780 isl_space_dim(dim, isl_dim_set), 1,
2781 node->nvar, -1);
2782 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2783 isl_space_dim(dim, isl_dim_set), 1,
2784 node->nvar, 1);
2785 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2786 coef->n_eq, coef->n_ineq);
2787 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2788 coef, dim_map);
2789 isl_space_free(dim);
2791 return 0;
2794 /* Add constraints to graph->lp that force the dependence "map" (which
2795 * is part of the dependence relation of "edge")
2796 * to be respected and attempt to carry it, where the edge is one from
2797 * node j to node k. "pos" is the sequence number of the given map.
2798 * That is, add constraints that enforce
2800 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2802 * for each (x,y) in R.
2803 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2804 * of valid constraints for R and then plug in
2805 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2806 * with each coefficient (except e_i, c_k_0 and c_j_0)
2807 * represented as a pair of non-negative coefficients.
2809 static int add_inter_constraints(struct isl_sched_graph *graph,
2810 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2812 unsigned total;
2813 isl_ctx *ctx = isl_map_get_ctx(map);
2814 isl_space *dim;
2815 isl_dim_map *dim_map;
2816 isl_basic_set *coef;
2817 struct isl_sched_node *src = edge->src;
2818 struct isl_sched_node *dst = edge->dst;
2820 coef = inter_coefficients(graph, map);
2821 if (!coef)
2822 return -1;
2824 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2826 total = isl_basic_set_total_dim(graph->lp);
2827 dim_map = isl_dim_map_alloc(ctx, total);
2829 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2831 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2832 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2833 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2834 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2835 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2836 dst->nvar, -1);
2837 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2838 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2839 dst->nvar, 1);
2841 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2842 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2843 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2844 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2845 isl_space_dim(dim, isl_dim_set), 1,
2846 src->nvar, 1);
2847 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2848 isl_space_dim(dim, isl_dim_set), 1,
2849 src->nvar, -1);
2851 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2852 coef->n_eq, coef->n_ineq);
2853 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2854 coef, dim_map);
2855 isl_space_free(dim);
2857 return 0;
2860 /* Add constraints to graph->lp that force all (conditional) validity
2861 * dependences to be respected and attempt to carry them.
2863 static int add_all_constraints(struct isl_sched_graph *graph)
2865 int i, j;
2866 int pos;
2868 pos = 0;
2869 for (i = 0; i < graph->n_edge; ++i) {
2870 struct isl_sched_edge *edge= &graph->edge[i];
2872 if (!edge->validity && !edge->conditional_validity)
2873 continue;
2875 for (j = 0; j < edge->map->n; ++j) {
2876 isl_basic_map *bmap;
2877 isl_map *map;
2879 bmap = isl_basic_map_copy(edge->map->p[j]);
2880 map = isl_map_from_basic_map(bmap);
2882 if (edge->src == edge->dst &&
2883 add_intra_constraints(graph, edge, map, pos) < 0)
2884 return -1;
2885 if (edge->src != edge->dst &&
2886 add_inter_constraints(graph, edge, map, pos) < 0)
2887 return -1;
2888 ++pos;
2892 return 0;
2895 /* Count the number of equality and inequality constraints
2896 * that will be added to the carry_lp problem.
2897 * We count each edge exactly once.
2899 static int count_all_constraints(struct isl_sched_graph *graph,
2900 int *n_eq, int *n_ineq)
2902 int i, j;
2904 *n_eq = *n_ineq = 0;
2905 for (i = 0; i < graph->n_edge; ++i) {
2906 struct isl_sched_edge *edge= &graph->edge[i];
2907 for (j = 0; j < edge->map->n; ++j) {
2908 isl_basic_map *bmap;
2909 isl_map *map;
2911 bmap = isl_basic_map_copy(edge->map->p[j]);
2912 map = isl_map_from_basic_map(bmap);
2914 if (count_map_constraints(graph, edge, map,
2915 n_eq, n_ineq, 1, 0) < 0)
2916 return -1;
2920 return 0;
2923 /* Construct an LP problem for finding schedule coefficients
2924 * such that the schedule carries as many dependences as possible.
2925 * In particular, for each dependence i, we bound the dependence distance
2926 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2927 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2928 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2929 * Note that if the dependence relation is a union of basic maps,
2930 * then we have to consider each basic map individually as it may only
2931 * be possible to carry the dependences expressed by some of those
2932 * basic maps and not all off them.
2933 * Below, we consider each of those basic maps as a separate "edge".
2935 * All variables of the LP are non-negative. The actual coefficients
2936 * may be negative, so each coefficient is represented as the difference
2937 * of two non-negative variables. The negative part always appears
2938 * immediately before the positive part.
2939 * Other than that, the variables have the following order
2941 * - sum of (1 - e_i) over all edges
2942 * - sum of positive and negative parts of all c_n coefficients
2943 * (unconstrained when computing non-parametric schedules)
2944 * - sum of positive and negative parts of all c_x coefficients
2945 * - for each edge
2946 * - e_i
2947 * - for each node
2948 * - c_i_0
2949 * - positive and negative parts of c_i_n (if parametric)
2950 * - positive and negative parts of c_i_x
2952 * The constraints are those from the (validity) edges plus three equalities
2953 * to express the sums and n_edge inequalities to express e_i <= 1.
2955 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2957 int i, j;
2958 int k;
2959 isl_space *dim;
2960 unsigned total;
2961 int n_eq, n_ineq;
2962 int n_edge;
2964 n_edge = 0;
2965 for (i = 0; i < graph->n_edge; ++i)
2966 n_edge += graph->edge[i].map->n;
2968 total = 3 + n_edge;
2969 for (i = 0; i < graph->n; ++i) {
2970 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2971 node->start = total;
2972 total += 1 + 2 * (node->nparam + node->nvar);
2975 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2976 return -1;
2977 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2978 return -1;
2980 dim = isl_space_set_alloc(ctx, 0, total);
2981 isl_basic_set_free(graph->lp);
2982 n_eq += 3;
2983 n_ineq += n_edge;
2984 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2985 graph->lp = isl_basic_set_set_rational(graph->lp);
2987 k = isl_basic_set_alloc_equality(graph->lp);
2988 if (k < 0)
2989 return -1;
2990 isl_seq_clr(graph->lp->eq[k], 1 + total);
2991 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2992 isl_int_set_si(graph->lp->eq[k][1], 1);
2993 for (i = 0; i < n_edge; ++i)
2994 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2996 k = isl_basic_set_alloc_equality(graph->lp);
2997 if (k < 0)
2998 return -1;
2999 isl_seq_clr(graph->lp->eq[k], 1 + total);
3000 isl_int_set_si(graph->lp->eq[k][2], -1);
3001 for (i = 0; i < graph->n; ++i) {
3002 int pos = 1 + graph->node[i].start + 1;
3004 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3005 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3008 k = isl_basic_set_alloc_equality(graph->lp);
3009 if (k < 0)
3010 return -1;
3011 isl_seq_clr(graph->lp->eq[k], 1 + total);
3012 isl_int_set_si(graph->lp->eq[k][3], -1);
3013 for (i = 0; i < graph->n; ++i) {
3014 struct isl_sched_node *node = &graph->node[i];
3015 int pos = 1 + node->start + 1 + 2 * node->nparam;
3017 for (j = 0; j < 2 * node->nvar; ++j)
3018 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3021 for (i = 0; i < n_edge; ++i) {
3022 k = isl_basic_set_alloc_inequality(graph->lp);
3023 if (k < 0)
3024 return -1;
3025 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3026 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3027 isl_int_set_si(graph->lp->ineq[k][0], 1);
3030 if (add_bound_coefficient_constraints(ctx, graph) < 0)
3031 return -1;
3032 if (add_all_constraints(graph) < 0)
3033 return -1;
3035 return 0;
3038 /* If the schedule_split_scaled option is set and if the linear
3039 * parts of the scheduling rows for all nodes in the graphs have
3040 * non-trivial common divisor, then split off the constant term
3041 * from the linear part.
3042 * The constant term is then placed in a separate band and
3043 * the linear part is reduced.
3045 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
3047 int i;
3048 int row;
3049 isl_int gcd, gcd_i;
3051 if (!ctx->opt->schedule_split_scaled)
3052 return 0;
3053 if (graph->n <= 1)
3054 return 0;
3056 if (graph->n_total_row >= graph->max_row)
3057 isl_die(ctx, isl_error_internal,
3058 "too many schedule rows", return -1);
3060 isl_int_init(gcd);
3061 isl_int_init(gcd_i);
3063 isl_int_set_si(gcd, 0);
3065 row = isl_mat_rows(graph->node[0].sched) - 1;
3067 for (i = 0; i < graph->n; ++i) {
3068 struct isl_sched_node *node = &graph->node[i];
3069 int cols = isl_mat_cols(node->sched);
3071 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3072 isl_int_gcd(gcd, gcd, gcd_i);
3075 isl_int_clear(gcd_i);
3077 if (isl_int_cmp_si(gcd, 1) <= 0) {
3078 isl_int_clear(gcd);
3079 return 0;
3082 next_band(graph);
3084 for (i = 0; i < graph->n; ++i) {
3085 struct isl_sched_node *node = &graph->node[i];
3087 isl_map_free(node->sched_map);
3088 node->sched_map = NULL;
3089 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3090 if (!node->sched)
3091 goto error;
3092 isl_int_fdiv_r(node->sched->row[row + 1][0],
3093 node->sched->row[row][0], gcd);
3094 isl_int_fdiv_q(node->sched->row[row][0],
3095 node->sched->row[row][0], gcd);
3096 isl_int_mul(node->sched->row[row][0],
3097 node->sched->row[row][0], gcd);
3098 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3099 if (!node->sched)
3100 goto error;
3101 node->band[graph->n_total_row] = graph->n_band;
3104 graph->n_total_row++;
3106 isl_int_clear(gcd);
3107 return 0;
3108 error:
3109 isl_int_clear(gcd);
3110 return -1;
3113 static int compute_component_schedule(isl_ctx *ctx,
3114 struct isl_sched_graph *graph);
3116 /* Is the schedule row "sol" trivial on node "node"?
3117 * That is, is the solution zero on the dimensions orthogonal to
3118 * the previously found solutions?
3119 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3121 * Each coefficient is represented as the difference between
3122 * two non-negative values in "sol". "sol" has been computed
3123 * in terms of the original iterators (i.e., without use of cmap).
3124 * We construct the schedule row s and write it as a linear
3125 * combination of (linear combinations of) previously computed schedule rows.
3126 * s = Q c or c = U s.
3127 * If the final entries of c are all zero, then the solution is trivial.
3129 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3131 int i;
3132 int pos;
3133 int trivial;
3134 isl_ctx *ctx;
3135 isl_vec *node_sol;
3137 if (!sol)
3138 return -1;
3139 if (node->nvar == node->rank)
3140 return 0;
3142 ctx = isl_vec_get_ctx(sol);
3143 node_sol = isl_vec_alloc(ctx, node->nvar);
3144 if (!node_sol)
3145 return -1;
3147 pos = 1 + node->start + 1 + 2 * node->nparam;
3149 for (i = 0; i < node->nvar; ++i)
3150 isl_int_sub(node_sol->el[i],
3151 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3153 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3155 if (!node_sol)
3156 return -1;
3158 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3159 node->nvar - node->rank) == -1;
3161 isl_vec_free(node_sol);
3163 return trivial;
3166 /* Is the schedule row "sol" trivial on any node where it should
3167 * not be trivial?
3168 * "sol" has been computed in terms of the original iterators
3169 * (i.e., without use of cmap).
3170 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3172 static int is_any_trivial(struct isl_sched_graph *graph,
3173 __isl_keep isl_vec *sol)
3175 int i;
3177 for (i = 0; i < graph->n; ++i) {
3178 struct isl_sched_node *node = &graph->node[i];
3179 int trivial;
3181 if (!needs_row(graph, node))
3182 continue;
3183 trivial = is_trivial(node, sol);
3184 if (trivial < 0 || trivial)
3185 return trivial;
3188 return 0;
3191 /* Construct a schedule row for each node such that as many dependences
3192 * as possible are carried and then continue with the next band.
3194 * If the computed schedule row turns out to be trivial on one or
3195 * more nodes where it should not be trivial, then we throw it away
3196 * and try again on each component separately.
3198 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
3200 int i;
3201 int n_edge;
3202 int trivial;
3203 isl_vec *sol;
3204 isl_basic_set *lp;
3206 n_edge = 0;
3207 for (i = 0; i < graph->n_edge; ++i)
3208 n_edge += graph->edge[i].map->n;
3210 if (setup_carry_lp(ctx, graph) < 0)
3211 return -1;
3213 lp = isl_basic_set_copy(graph->lp);
3214 sol = isl_tab_basic_set_non_neg_lexmin(lp);
3215 if (!sol)
3216 return -1;
3218 if (sol->size == 0) {
3219 isl_vec_free(sol);
3220 isl_die(ctx, isl_error_internal,
3221 "error in schedule construction", return -1);
3224 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
3225 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
3226 isl_vec_free(sol);
3227 isl_die(ctx, isl_error_unknown,
3228 "unable to carry dependences", return -1);
3231 trivial = is_any_trivial(graph, sol);
3232 if (trivial < 0) {
3233 sol = isl_vec_free(sol);
3234 } else if (trivial) {
3235 isl_vec_free(sol);
3236 if (graph->scc > 1)
3237 return compute_component_schedule(ctx, graph);
3238 isl_die(ctx, isl_error_unknown,
3239 "unable to construct non-trivial solution", return -1);
3242 if (update_schedule(graph, sol, 0, 0) < 0)
3243 return -1;
3245 if (split_scaled(ctx, graph) < 0)
3246 return -1;
3248 return compute_next_band(ctx, graph);
3251 /* Are there any (non-empty) (conditional) validity edges in the graph?
3253 static int has_validity_edges(struct isl_sched_graph *graph)
3255 int i;
3257 for (i = 0; i < graph->n_edge; ++i) {
3258 int empty;
3260 empty = isl_map_plain_is_empty(graph->edge[i].map);
3261 if (empty < 0)
3262 return -1;
3263 if (empty)
3264 continue;
3265 if (graph->edge[i].validity ||
3266 graph->edge[i].conditional_validity)
3267 return 1;
3270 return 0;
3273 /* Should we apply a Feautrier step?
3274 * That is, did the user request the Feautrier algorithm and are
3275 * there any validity dependences (left)?
3277 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
3279 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
3280 return 0;
3282 return has_validity_edges(graph);
3285 /* Compute a schedule for a connected dependence graph using Feautrier's
3286 * multi-dimensional scheduling algorithm.
3287 * The original algorithm is described in [1].
3288 * The main idea is to minimize the number of scheduling dimensions, by
3289 * trying to satisfy as many dependences as possible per scheduling dimension.
3291 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3292 * Problem, Part II: Multi-Dimensional Time.
3293 * In Intl. Journal of Parallel Programming, 1992.
3295 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
3296 struct isl_sched_graph *graph)
3298 return carry_dependences(ctx, graph);
3301 /* Turn off the "local" bit on all (condition) edges.
3303 static void clear_local_edges(struct isl_sched_graph *graph)
3305 int i;
3307 for (i = 0; i < graph->n_edge; ++i)
3308 if (graph->edge[i].condition)
3309 graph->edge[i].local = 0;
3312 /* Does "graph" have both condition and conditional validity edges?
3314 static int need_condition_check(struct isl_sched_graph *graph)
3316 int i;
3317 int any_condition = 0;
3318 int any_conditional_validity = 0;
3320 for (i = 0; i < graph->n_edge; ++i) {
3321 if (graph->edge[i].condition)
3322 any_condition = 1;
3323 if (graph->edge[i].conditional_validity)
3324 any_conditional_validity = 1;
3327 return any_condition && any_conditional_validity;
3330 /* Does "graph" contain any coincidence edge?
3332 static int has_any_coincidence(struct isl_sched_graph *graph)
3334 int i;
3336 for (i = 0; i < graph->n_edge; ++i)
3337 if (graph->edge[i].coincidence)
3338 return 1;
3340 return 0;
3343 /* Extract the final schedule row as a map with the iteration domain
3344 * of "node" as domain.
3346 static __isl_give isl_map *final_row(struct isl_sched_node *node)
3348 isl_local_space *ls;
3349 isl_aff *aff;
3350 int row;
3352 row = isl_mat_rows(node->sched) - 1;
3353 ls = isl_local_space_from_space(isl_space_copy(node->dim));
3354 aff = extract_schedule_row(ls, node, row);
3355 return isl_map_from_aff(aff);
3358 /* Is the conditional validity dependence in the edge with index "edge_index"
3359 * violated by the latest (i.e., final) row of the schedule?
3360 * That is, is i scheduled after j
3361 * for any conditional validity dependence i -> j?
3363 static int is_violated(struct isl_sched_graph *graph, int edge_index)
3365 isl_map *src_sched, *dst_sched, *map;
3366 struct isl_sched_edge *edge = &graph->edge[edge_index];
3367 int empty;
3369 src_sched = final_row(edge->src);
3370 dst_sched = final_row(edge->dst);
3371 map = isl_map_copy(edge->map);
3372 map = isl_map_apply_domain(map, src_sched);
3373 map = isl_map_apply_range(map, dst_sched);
3374 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
3375 empty = isl_map_is_empty(map);
3376 isl_map_free(map);
3378 if (empty < 0)
3379 return -1;
3381 return !empty;
3384 /* Does the domain of "umap" intersect "uset"?
3386 static int domain_intersects(__isl_keep isl_union_map *umap,
3387 __isl_keep isl_union_set *uset)
3389 int empty;
3391 umap = isl_union_map_copy(umap);
3392 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3393 empty = isl_union_map_is_empty(umap);
3394 isl_union_map_free(umap);
3396 return empty < 0 ? -1 : !empty;
3399 /* Does the range of "umap" intersect "uset"?
3401 static int range_intersects(__isl_keep isl_union_map *umap,
3402 __isl_keep isl_union_set *uset)
3404 int empty;
3406 umap = isl_union_map_copy(umap);
3407 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3408 empty = isl_union_map_is_empty(umap);
3409 isl_union_map_free(umap);
3411 return empty < 0 ? -1 : !empty;
3414 /* Are the condition dependences of "edge" local with respect to
3415 * the current schedule?
3417 * That is, are domain and range of the condition dependences mapped
3418 * to the same point?
3420 * In other words, is the condition false?
3422 static int is_condition_false(struct isl_sched_edge *edge)
3424 isl_union_map *umap;
3425 isl_map *map, *sched, *test;
3426 int local;
3428 umap = isl_union_map_copy(edge->tagged_condition);
3429 umap = isl_union_map_zip(umap);
3430 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3431 map = isl_map_from_union_map(umap);
3433 sched = node_extract_schedule(edge->src);
3434 map = isl_map_apply_domain(map, sched);
3435 sched = node_extract_schedule(edge->dst);
3436 map = isl_map_apply_range(map, sched);
3438 test = isl_map_identity(isl_map_get_space(map));
3439 local = isl_map_is_subset(map, test);
3440 isl_map_free(map);
3441 isl_map_free(test);
3443 return local;
3446 /* Does "graph" have any satisfied condition edges that
3447 * are adjacent to the conditional validity constraint with
3448 * domain "conditional_source" and range "conditional_sink"?
3450 * A satisfied condition is one that is not local.
3451 * If a condition was forced to be local already (i.e., marked as local)
3452 * then there is no need to check if it is in fact local.
3454 * Additionally, mark all adjacent condition edges found as local.
3456 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
3457 __isl_keep isl_union_set *conditional_source,
3458 __isl_keep isl_union_set *conditional_sink)
3460 int i;
3461 int any = 0;
3463 for (i = 0; i < graph->n_edge; ++i) {
3464 int adjacent, local;
3465 isl_union_map *condition;
3467 if (!graph->edge[i].condition)
3468 continue;
3469 if (graph->edge[i].local)
3470 continue;
3472 condition = graph->edge[i].tagged_condition;
3473 adjacent = domain_intersects(condition, conditional_sink);
3474 if (adjacent >= 0 && !adjacent)
3475 adjacent = range_intersects(condition,
3476 conditional_source);
3477 if (adjacent < 0)
3478 return -1;
3479 if (!adjacent)
3480 continue;
3482 graph->edge[i].local = 1;
3484 local = is_condition_false(&graph->edge[i]);
3485 if (local < 0)
3486 return -1;
3487 if (!local)
3488 any = 1;
3491 return any;
3494 /* Are there any violated conditional validity dependences with
3495 * adjacent condition dependences that are not local with respect
3496 * to the current schedule?
3497 * That is, is the conditional validity constraint violated?
3499 * Additionally, mark all those adjacent condition dependences as local.
3500 * We also mark those adjacent condition dependences that were not marked
3501 * as local before, but just happened to be local already. This ensures
3502 * that they remain local if the schedule is recomputed.
3504 * We first collect domain and range of all violated conditional validity
3505 * dependences and then check if there are any adjacent non-local
3506 * condition dependences.
3508 static int has_violated_conditional_constraint(isl_ctx *ctx,
3509 struct isl_sched_graph *graph)
3511 int i;
3512 int any = 0;
3513 isl_union_set *source, *sink;
3515 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3516 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3517 for (i = 0; i < graph->n_edge; ++i) {
3518 isl_union_set *uset;
3519 isl_union_map *umap;
3520 int violated;
3522 if (!graph->edge[i].conditional_validity)
3523 continue;
3525 violated = is_violated(graph, i);
3526 if (violated < 0)
3527 goto error;
3528 if (!violated)
3529 continue;
3531 any = 1;
3533 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3534 uset = isl_union_map_domain(umap);
3535 source = isl_union_set_union(source, uset);
3536 source = isl_union_set_coalesce(source);
3538 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3539 uset = isl_union_map_range(umap);
3540 sink = isl_union_set_union(sink, uset);
3541 sink = isl_union_set_coalesce(sink);
3544 if (any)
3545 any = has_adjacent_true_conditions(graph, source, sink);
3547 isl_union_set_free(source);
3548 isl_union_set_free(sink);
3549 return any;
3550 error:
3551 isl_union_set_free(source);
3552 isl_union_set_free(sink);
3553 return -1;
3556 /* Compute a schedule for a connected dependence graph.
3557 * We try to find a sequence of as many schedule rows as possible that result
3558 * in non-negative dependence distances (independent of the previous rows
3559 * in the sequence, i.e., such that the sequence is tilable), with as
3560 * many of the initial rows as possible satisfying the coincidence constraints.
3561 * If we can't find any more rows we either
3562 * - split between SCCs and start over (assuming we found an interesting
3563 * pair of SCCs between which to split)
3564 * - continue with the next band (assuming the current band has at least
3565 * one row)
3566 * - try to carry as many dependences as possible and continue with the next
3567 * band
3569 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3570 * as many validity dependences as possible. When all validity dependences
3571 * are satisfied we extend the schedule to a full-dimensional schedule.
3573 * If we manage to complete the schedule, we finish off by topologically
3574 * sorting the statements based on the remaining dependences.
3576 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3577 * outermost dimension to satisfy the coincidence constraints. If this
3578 * turns out to be impossible, we fall back on the general scheme above
3579 * and try to carry as many dependences as possible.
3581 * If "graph" contains both condition and conditional validity dependences,
3582 * then we need to check that that the conditional schedule constraint
3583 * is satisfied, i.e., there are no violated conditional validity dependences
3584 * that are adjacent to any non-local condition dependences.
3585 * If there are, then we mark all those adjacent condition dependences
3586 * as local and recompute the current band. Those dependences that
3587 * are marked local will then be forced to be local.
3588 * The initial computation is performed with no dependences marked as local.
3589 * If we are lucky, then there will be no violated conditional validity
3590 * dependences adjacent to any non-local condition dependences.
3591 * Otherwise, we mark some additional condition dependences as local and
3592 * recompute. We continue this process until there are no violations left or
3593 * until we are no longer able to compute a schedule.
3594 * Since there are only a finite number of dependences,
3595 * there will only be a finite number of iterations.
3597 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
3599 int has_coincidence;
3600 int use_coincidence;
3601 int force_coincidence = 0;
3602 int check_conditional;
3604 if (detect_sccs(ctx, graph) < 0)
3605 return -1;
3606 if (sort_sccs(graph) < 0)
3607 return -1;
3609 if (compute_maxvar(graph) < 0)
3610 return -1;
3612 if (need_feautrier_step(ctx, graph))
3613 return compute_schedule_wcc_feautrier(ctx, graph);
3615 clear_local_edges(graph);
3616 check_conditional = need_condition_check(graph);
3617 has_coincidence = has_any_coincidence(graph);
3619 if (ctx->opt->schedule_outer_coincidence)
3620 force_coincidence = 1;
3622 use_coincidence = has_coincidence;
3623 while (graph->n_row < graph->maxvar) {
3624 isl_vec *sol;
3625 int violated;
3626 int coincident;
3628 graph->src_scc = -1;
3629 graph->dst_scc = -1;
3631 if (setup_lp(ctx, graph, use_coincidence) < 0)
3632 return -1;
3633 sol = solve_lp(graph);
3634 if (!sol)
3635 return -1;
3636 if (sol->size == 0) {
3637 int empty = graph->n_total_row == graph->band_start;
3639 isl_vec_free(sol);
3640 if (use_coincidence && (!force_coincidence || !empty)) {
3641 use_coincidence = 0;
3642 continue;
3644 if (!ctx->opt->schedule_maximize_band_depth && !empty)
3645 return compute_next_band(ctx, graph);
3646 if (graph->src_scc >= 0)
3647 return compute_split_schedule(ctx, graph);
3648 if (!empty)
3649 return compute_next_band(ctx, graph);
3650 return carry_dependences(ctx, graph);
3652 coincident = !has_coincidence || use_coincidence;
3653 if (update_schedule(graph, sol, 1, coincident) < 0)
3654 return -1;
3656 if (!check_conditional)
3657 continue;
3658 violated = has_violated_conditional_constraint(ctx, graph);
3659 if (violated < 0)
3660 return -1;
3661 if (!violated)
3662 continue;
3663 if (reset_band(graph) < 0)
3664 return -1;
3665 use_coincidence = has_coincidence;
3668 if (graph->n_total_row > graph->band_start)
3669 next_band(graph);
3670 return sort_statements(ctx, graph);
3673 /* Add a row to the schedules that separates the SCCs and move
3674 * to the next band.
3676 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
3678 int i;
3680 if (graph->n_total_row >= graph->max_row)
3681 isl_die(ctx, isl_error_internal,
3682 "too many schedule rows", return -1);
3684 for (i = 0; i < graph->n; ++i) {
3685 struct isl_sched_node *node = &graph->node[i];
3686 int row = isl_mat_rows(node->sched);
3688 isl_map_free(node->sched_map);
3689 node->sched_map = NULL;
3690 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3691 node->sched = isl_mat_set_element_si(node->sched, row, 0,
3692 node->scc);
3693 if (!node->sched)
3694 return -1;
3695 node->band[graph->n_total_row] = graph->n_band;
3698 graph->n_total_row++;
3699 next_band(graph);
3701 return 0;
3704 /* Compute a schedule for each component (identified by node->scc)
3705 * of the dependence graph separately and then combine the results.
3706 * Depending on the setting of schedule_fuse, a component may be
3707 * either weakly or strongly connected.
3709 * The band_id is adjusted such that each component has a separate id.
3710 * Note that the band_id may have already been set to a value different
3711 * from zero by compute_split_schedule.
3713 static int compute_component_schedule(isl_ctx *ctx,
3714 struct isl_sched_graph *graph)
3716 int wcc, i;
3717 int n, n_edge;
3718 int n_total_row, orig_total_row;
3719 int n_band, orig_band;
3721 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3722 ctx->opt->schedule_separate_components)
3723 if (split_on_scc(ctx, graph) < 0)
3724 return -1;
3726 n_total_row = 0;
3727 orig_total_row = graph->n_total_row;
3728 n_band = 0;
3729 orig_band = graph->n_band;
3730 for (i = 0; i < graph->n; ++i)
3731 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3732 for (wcc = 0; wcc < graph->scc; ++wcc) {
3733 n = 0;
3734 for (i = 0; i < graph->n; ++i)
3735 if (graph->node[i].scc == wcc)
3736 n++;
3737 n_edge = 0;
3738 for (i = 0; i < graph->n_edge; ++i)
3739 if (graph->edge[i].src->scc == wcc &&
3740 graph->edge[i].dst->scc == wcc)
3741 n_edge++;
3743 if (compute_sub_schedule(ctx, graph, n, n_edge,
3744 &node_scc_exactly,
3745 &edge_scc_exactly, wcc, 1) < 0)
3746 return -1;
3747 if (graph->n_total_row > n_total_row)
3748 n_total_row = graph->n_total_row;
3749 graph->n_total_row = orig_total_row;
3750 if (graph->n_band > n_band)
3751 n_band = graph->n_band;
3752 graph->n_band = orig_band;
3755 graph->n_total_row = n_total_row;
3756 graph->n_band = n_band;
3758 return pad_schedule(graph);
3761 /* Compute a schedule for the given dependence graph.
3762 * We first check if the graph is connected (through validity and conditional
3763 * validity dependences) and, if not, compute a schedule
3764 * for each component separately.
3765 * If schedule_fuse is set to minimal fusion, then we check for strongly
3766 * connected components instead and compute a separate schedule for
3767 * each such strongly connected component.
3769 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3771 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3772 if (detect_sccs(ctx, graph) < 0)
3773 return -1;
3774 } else {
3775 if (detect_wccs(ctx, graph) < 0)
3776 return -1;
3779 if (graph->scc > 1)
3780 return compute_component_schedule(ctx, graph);
3782 return compute_schedule_wcc(ctx, graph);
3785 /* Compute a schedule on sc->domain that respects the given schedule
3786 * constraints.
3788 * In particular, the schedule respects all the validity dependences.
3789 * If the default isl scheduling algorithm is used, it tries to minimize
3790 * the dependence distances over the proximity dependences.
3791 * If Feautrier's scheduling algorithm is used, the proximity dependence
3792 * distances are only minimized during the extension to a full-dimensional
3793 * schedule.
3795 * If there are any condition and conditional validity dependences,
3796 * then the conditional validity dependences may be violated inside
3797 * a tilable band, provided they have no adjacent non-local
3798 * condition dependences.
3800 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
3801 __isl_take isl_schedule_constraints *sc)
3803 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
3804 struct isl_sched_graph graph = { 0 };
3805 isl_schedule *sched;
3806 struct isl_extract_edge_data data;
3807 enum isl_edge_type i;
3809 sc = isl_schedule_constraints_align_params(sc);
3810 if (!sc)
3811 return NULL;
3813 graph.n = isl_union_set_n_set(sc->domain);
3814 if (graph.n == 0)
3815 goto empty;
3816 if (graph_alloc(ctx, &graph, graph.n,
3817 isl_schedule_constraints_n_map(sc)) < 0)
3818 goto error;
3819 if (compute_max_row(&graph, sc->domain) < 0)
3820 goto error;
3821 graph.root = 1;
3822 graph.n = 0;
3823 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
3824 goto error;
3825 if (graph_init_table(ctx, &graph) < 0)
3826 goto error;
3827 for (i = isl_edge_first; i <= isl_edge_last; ++i)
3828 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
3829 if (graph_init_edge_tables(ctx, &graph) < 0)
3830 goto error;
3831 graph.n_edge = 0;
3832 data.graph = &graph;
3833 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
3834 data.type = i;
3835 if (isl_union_map_foreach_map(sc->constraint[i],
3836 &extract_edge, &data) < 0)
3837 goto error;
3840 if (compute_schedule(ctx, &graph) < 0)
3841 goto error;
3843 empty:
3844 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
3846 graph_free(ctx, &graph);
3847 isl_schedule_constraints_free(sc);
3849 return sched;
3850 error:
3851 graph_free(ctx, &graph);
3852 isl_schedule_constraints_free(sc);
3853 return NULL;
3856 /* Compute a schedule for the given union of domains that respects
3857 * all the validity dependences and minimizes
3858 * the dependence distances over the proximity dependences.
3860 * This function is kept for backward compatibility.
3862 __isl_give isl_schedule *isl_union_set_compute_schedule(
3863 __isl_take isl_union_set *domain,
3864 __isl_take isl_union_map *validity,
3865 __isl_take isl_union_map *proximity)
3867 isl_schedule_constraints *sc;
3869 sc = isl_schedule_constraints_on_domain(domain);
3870 sc = isl_schedule_constraints_set_validity(sc, validity);
3871 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3873 return isl_schedule_constraints_compute_schedule(sc);
3876 __isl_null isl_schedule *isl_schedule_free(__isl_take isl_schedule *sched)
3878 int i;
3879 if (!sched)
3880 return NULL;
3882 if (--sched->ref > 0)
3883 return NULL;
3885 for (i = 0; i < sched->n; ++i) {
3886 isl_multi_aff_free(sched->node[i].sched);
3887 free(sched->node[i].band_end);
3888 free(sched->node[i].band_id);
3889 free(sched->node[i].coincident);
3891 isl_space_free(sched->dim);
3892 isl_band_list_free(sched->band_forest);
3893 free(sched);
3894 return NULL;
3897 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
3899 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
3902 /* Set max_out to the maximal number of output dimensions over
3903 * all maps.
3905 static int update_max_out(__isl_take isl_map *map, void *user)
3907 int *max_out = user;
3908 int n_out = isl_map_dim(map, isl_dim_out);
3910 if (n_out > *max_out)
3911 *max_out = n_out;
3913 isl_map_free(map);
3914 return 0;
3917 /* Internal data structure for map_pad_range.
3919 * "max_out" is the maximal schedule dimension.
3920 * "res" collects the results.
3922 struct isl_pad_schedule_map_data {
3923 int max_out;
3924 isl_union_map *res;
3927 /* Pad the range of the given map with zeros to data->max_out and
3928 * then add the result to data->res.
3930 static int map_pad_range(__isl_take isl_map *map, void *user)
3932 struct isl_pad_schedule_map_data *data = user;
3933 int i;
3934 int n_out = isl_map_dim(map, isl_dim_out);
3936 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3937 for (i = n_out; i < data->max_out; ++i)
3938 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3940 data->res = isl_union_map_add_map(data->res, map);
3941 if (!data->res)
3942 return -1;
3944 return 0;
3947 /* Pad the ranges of the maps in the union map with zeros such they all have
3948 * the same dimension.
3950 static __isl_give isl_union_map *pad_schedule_map(
3951 __isl_take isl_union_map *umap)
3953 struct isl_pad_schedule_map_data data;
3955 if (!umap)
3956 return NULL;
3957 if (isl_union_map_n_map(umap) <= 1)
3958 return umap;
3960 data.max_out = 0;
3961 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3962 return isl_union_map_free(umap);
3964 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3965 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3966 data.res = isl_union_map_free(data.res);
3968 isl_union_map_free(umap);
3969 return data.res;
3972 /* Return an isl_union_map of the schedule. If we have already constructed
3973 * a band forest, then this band forest may have been modified so we need
3974 * to extract the isl_union_map from the forest rather than from
3975 * the originally computed schedule. This reconstructed schedule map
3976 * then needs to be padded with zeros to unify the schedule space
3977 * since the result of isl_band_list_get_suffix_schedule may not have
3978 * a unified schedule space.
3980 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3982 int i;
3983 isl_union_map *umap;
3985 if (!sched)
3986 return NULL;
3988 if (sched->band_forest) {
3989 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3990 return pad_schedule_map(umap);
3993 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3994 for (i = 0; i < sched->n; ++i) {
3995 isl_multi_aff *ma;
3997 ma = isl_multi_aff_copy(sched->node[i].sched);
3998 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
4001 return umap;
4004 static __isl_give isl_band_list *construct_band_list(
4005 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4006 int band_nr, int *parent_active, int n_active);
4008 /* Construct an isl_band structure for the band in the given schedule
4009 * with sequence number band_nr for the n_active nodes marked by active.
4010 * If the nodes don't have a band with the given sequence number,
4011 * then a band without members is created.
4013 * Because of the way the schedule is constructed, we know that
4014 * the position of the band inside the schedule of a node is the same
4015 * for all active nodes.
4017 * The partial schedule for the band is created before the children
4018 * are created to that construct_band_list can refer to the partial
4019 * schedule of the parent.
4021 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
4022 __isl_keep isl_band *parent,
4023 int band_nr, int *active, int n_active)
4025 int i, j;
4026 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4027 isl_band *band;
4028 unsigned start, end;
4030 band = isl_band_alloc(ctx);
4031 if (!band)
4032 return NULL;
4034 band->schedule = schedule;
4035 band->parent = parent;
4037 for (i = 0; i < schedule->n; ++i)
4038 if (active[i])
4039 break;
4041 if (i >= schedule->n)
4042 isl_die(ctx, isl_error_internal,
4043 "band without active statements", goto error);
4045 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
4046 end = band_nr < schedule->node[i].n_band ?
4047 schedule->node[i].band_end[band_nr] : start;
4048 band->n = end - start;
4050 band->coincident = isl_alloc_array(ctx, int, band->n);
4051 if (band->n && !band->coincident)
4052 goto error;
4054 for (j = 0; j < band->n; ++j)
4055 band->coincident[j] = schedule->node[i].coincident[start + j];
4057 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
4058 for (i = 0; i < schedule->n; ++i) {
4059 isl_multi_aff *ma;
4060 isl_pw_multi_aff *pma;
4061 unsigned n_out;
4063 if (!active[i])
4064 continue;
4066 ma = isl_multi_aff_copy(schedule->node[i].sched);
4067 n_out = isl_multi_aff_dim(ma, isl_dim_out);
4068 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
4069 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
4070 pma = isl_pw_multi_aff_from_multi_aff(ma);
4071 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
4072 pma);
4074 if (!band->pma)
4075 goto error;
4077 for (i = 0; i < schedule->n; ++i)
4078 if (active[i] && schedule->node[i].n_band > band_nr + 1)
4079 break;
4081 if (i < schedule->n) {
4082 band->children = construct_band_list(schedule, band,
4083 band_nr + 1, active, n_active);
4084 if (!band->children)
4085 goto error;
4088 return band;
4089 error:
4090 isl_band_free(band);
4091 return NULL;
4094 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
4096 * r is set to a negative value if anything goes wrong.
4098 * c1 stores the result of extract_int.
4099 * c2 is a temporary value used inside cmp_band_in_ancestor.
4100 * t is a temporary value used inside extract_int.
4102 * first and equal are used inside extract_int.
4103 * first is set if we are looking at the first isl_multi_aff inside
4104 * the isl_union_pw_multi_aff.
4105 * equal is set if all the isl_multi_affs have been equal so far.
4107 struct isl_cmp_band_data {
4108 int r;
4110 int first;
4111 int equal;
4113 isl_int t;
4114 isl_int c1;
4115 isl_int c2;
4118 /* Check if "ma" assigns a constant value.
4119 * Note that this function is only called on isl_multi_affs
4120 * with a single output dimension.
4122 * If "ma" assigns a constant value then we compare it to data->c1
4123 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
4124 * If "ma" does not assign a constant value or if it assigns a value
4125 * that is different from data->c1, then we set data->equal to zero
4126 * and terminate the check.
4128 static int multi_aff_extract_int(__isl_take isl_set *set,
4129 __isl_take isl_multi_aff *ma, void *user)
4131 isl_aff *aff;
4132 struct isl_cmp_band_data *data = user;
4134 aff = isl_multi_aff_get_aff(ma, 0);
4135 data->r = isl_aff_is_cst(aff);
4136 if (data->r >= 0 && data->r) {
4137 isl_aff_get_constant(aff, &data->t);
4138 if (data->first) {
4139 isl_int_set(data->c1, data->t);
4140 data->first = 0;
4141 } else if (!isl_int_eq(data->c1, data->t))
4142 data->equal = 0;
4143 } else if (data->r >= 0 && !data->r)
4144 data->equal = 0;
4146 isl_aff_free(aff);
4147 isl_set_free(set);
4148 isl_multi_aff_free(ma);
4150 if (data->r < 0)
4151 return -1;
4152 if (!data->equal)
4153 return -1;
4154 return 0;
4157 /* This function is called for each isl_pw_multi_aff in
4158 * the isl_union_pw_multi_aff checked by extract_int.
4159 * Check all the isl_multi_affs inside "pma".
4161 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
4162 void *user)
4164 int r;
4166 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
4167 isl_pw_multi_aff_free(pma);
4169 return r;
4172 /* Check if "upma" assigns a single constant value to its domain.
4173 * If so, return 1 and store the result in data->c1.
4174 * If not, return 0.
4176 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
4177 * means that either an error occurred or that we have broken off the check
4178 * because we already know the result is going to be negative.
4179 * In the latter case, data->equal is set to zero.
4181 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
4182 struct isl_cmp_band_data *data)
4184 data->first = 1;
4185 data->equal = 1;
4187 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
4188 &pw_multi_aff_extract_int, data) < 0) {
4189 if (!data->equal)
4190 return 0;
4191 return -1;
4194 return !data->first && data->equal;
4197 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
4198 * "ancestor".
4200 * If the parent of "ancestor" also has a single member, then we
4201 * first try to compare the two band based on the partial schedule
4202 * of this parent.
4204 * Otherwise, or if the result is inconclusive, we look at the partial schedule
4205 * of "ancestor" itself.
4206 * In particular, we specialize the parent schedule based
4207 * on the domains of the child schedules, check if both assign
4208 * a single constant value and, if so, compare the two constant values.
4209 * If the specialized parent schedules do not assign a constant value,
4210 * then they cannot be used to order the two bands and so in this case
4211 * we return 0.
4213 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
4214 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
4215 __isl_keep isl_band *ancestor)
4217 isl_union_pw_multi_aff *upma;
4218 isl_union_set *domain;
4219 int r;
4221 if (data->r < 0)
4222 return 0;
4224 if (ancestor->parent && ancestor->parent->n == 1) {
4225 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
4226 if (data->r < 0)
4227 return 0;
4228 if (r)
4229 return r;
4232 upma = isl_union_pw_multi_aff_copy(b1->pma);
4233 domain = isl_union_pw_multi_aff_domain(upma);
4234 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4235 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4236 r = extract_int(upma, data);
4237 isl_union_pw_multi_aff_free(upma);
4239 if (r < 0)
4240 data->r = -1;
4241 if (r < 0 || !r)
4242 return 0;
4244 isl_int_set(data->c2, data->c1);
4246 upma = isl_union_pw_multi_aff_copy(b2->pma);
4247 domain = isl_union_pw_multi_aff_domain(upma);
4248 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4249 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4250 r = extract_int(upma, data);
4251 isl_union_pw_multi_aff_free(upma);
4253 if (r < 0)
4254 data->r = -1;
4255 if (r < 0 || !r)
4256 return 0;
4258 return isl_int_cmp(data->c2, data->c1);
4261 /* Compare "a" and "b" based on the parent schedule of their parent.
4263 static int cmp_band(const void *a, const void *b, void *user)
4265 isl_band *b1 = *(isl_band * const *) a;
4266 isl_band *b2 = *(isl_band * const *) b;
4267 struct isl_cmp_band_data *data = user;
4269 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
4272 /* Sort the elements in "list" based on the partial schedules of its parent
4273 * (and ancestors). In particular if the parent assigns constant values
4274 * to the domains of the bands in "list", then the elements are sorted
4275 * according to that order.
4276 * This order should be a more "natural" order for the user, but otherwise
4277 * shouldn't have any effect.
4278 * If we would be constructing an isl_band forest directly in
4279 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
4280 * for a reordering, since the children would be added to the list
4281 * in their natural order automatically.
4283 * If there is only one element in the list, then there is no need to sort
4284 * anything.
4285 * If the partial schedule of the parent has more than one member
4286 * (or if there is no parent), then it's
4287 * defnitely not assigning constant values to the different children in
4288 * the list and so we wouldn't be able to use it to sort the list.
4290 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
4291 __isl_keep isl_band *parent)
4293 struct isl_cmp_band_data data;
4295 if (!list)
4296 return NULL;
4297 if (list->n <= 1)
4298 return list;
4299 if (!parent || parent->n != 1)
4300 return list;
4302 data.r = 0;
4303 isl_int_init(data.c1);
4304 isl_int_init(data.c2);
4305 isl_int_init(data.t);
4306 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
4307 if (data.r < 0)
4308 list = isl_band_list_free(list);
4309 isl_int_clear(data.c1);
4310 isl_int_clear(data.c2);
4311 isl_int_clear(data.t);
4313 return list;
4316 /* Construct a list of bands that start at the same position (with
4317 * sequence number band_nr) in the schedules of the nodes that
4318 * were active in the parent band.
4320 * A separate isl_band structure is created for each band_id
4321 * and for each node that does not have a band with sequence
4322 * number band_nr. In the latter case, a band without members
4323 * is created.
4324 * This ensures that if a band has any children, then each node
4325 * that was active in the band is active in exactly one of the children.
4327 static __isl_give isl_band_list *construct_band_list(
4328 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4329 int band_nr, int *parent_active, int n_active)
4331 int i, j;
4332 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4333 int *active;
4334 int n_band;
4335 isl_band_list *list;
4337 n_band = 0;
4338 for (i = 0; i < n_active; ++i) {
4339 for (j = 0; j < schedule->n; ++j) {
4340 if (!parent_active[j])
4341 continue;
4342 if (schedule->node[j].n_band <= band_nr)
4343 continue;
4344 if (schedule->node[j].band_id[band_nr] == i) {
4345 n_band++;
4346 break;
4350 for (j = 0; j < schedule->n; ++j)
4351 if (schedule->node[j].n_band <= band_nr)
4352 n_band++;
4354 if (n_band == 1) {
4355 isl_band *band;
4356 list = isl_band_list_alloc(ctx, n_band);
4357 band = construct_band(schedule, parent, band_nr,
4358 parent_active, n_active);
4359 return isl_band_list_add(list, band);
4362 active = isl_alloc_array(ctx, int, schedule->n);
4363 if (schedule->n && !active)
4364 return NULL;
4366 list = isl_band_list_alloc(ctx, n_band);
4368 for (i = 0; i < n_active; ++i) {
4369 int n = 0;
4370 isl_band *band;
4372 for (j = 0; j < schedule->n; ++j) {
4373 active[j] = parent_active[j] &&
4374 schedule->node[j].n_band > band_nr &&
4375 schedule->node[j].band_id[band_nr] == i;
4376 if (active[j])
4377 n++;
4379 if (n == 0)
4380 continue;
4382 band = construct_band(schedule, parent, band_nr, active, n);
4384 list = isl_band_list_add(list, band);
4386 for (i = 0; i < schedule->n; ++i) {
4387 isl_band *band;
4388 if (!parent_active[i])
4389 continue;
4390 if (schedule->node[i].n_band > band_nr)
4391 continue;
4392 for (j = 0; j < schedule->n; ++j)
4393 active[j] = j == i;
4394 band = construct_band(schedule, parent, band_nr, active, 1);
4395 list = isl_band_list_add(list, band);
4398 free(active);
4400 list = sort_band_list(list, parent);
4402 return list;
4405 /* Construct a band forest representation of the schedule and
4406 * return the list of roots.
4408 static __isl_give isl_band_list *construct_forest(
4409 __isl_keep isl_schedule *schedule)
4411 int i;
4412 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4413 isl_band_list *forest;
4414 int *active;
4416 active = isl_alloc_array(ctx, int, schedule->n);
4417 if (schedule->n && !active)
4418 return NULL;
4420 for (i = 0; i < schedule->n; ++i)
4421 active[i] = 1;
4423 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
4425 free(active);
4427 return forest;
4430 /* Return the roots of a band forest representation of the schedule.
4432 __isl_give isl_band_list *isl_schedule_get_band_forest(
4433 __isl_keep isl_schedule *schedule)
4435 if (!schedule)
4436 return NULL;
4437 if (!schedule->band_forest)
4438 schedule->band_forest = construct_forest(schedule);
4439 return isl_band_list_dup(schedule->band_forest);
4442 /* Call "fn" on each band in the schedule in depth-first post-order.
4444 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
4445 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
4447 int r;
4448 isl_band_list *forest;
4450 if (!sched)
4451 return -1;
4453 forest = isl_schedule_get_band_forest(sched);
4454 r = isl_band_list_foreach_band(forest, fn, user);
4455 isl_band_list_free(forest);
4457 return r;
4460 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4461 __isl_keep isl_band_list *list);
4463 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
4464 __isl_keep isl_band *band)
4466 isl_band_list *children;
4468 p = isl_printer_start_line(p);
4469 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
4470 p = isl_printer_end_line(p);
4472 if (!isl_band_has_children(band))
4473 return p;
4475 children = isl_band_get_children(band);
4477 p = isl_printer_indent(p, 4);
4478 p = print_band_list(p, children);
4479 p = isl_printer_indent(p, -4);
4481 isl_band_list_free(children);
4483 return p;
4486 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4487 __isl_keep isl_band_list *list)
4489 int i, n;
4491 n = isl_band_list_n_band(list);
4492 for (i = 0; i < n; ++i) {
4493 isl_band *band;
4494 band = isl_band_list_get_band(list, i);
4495 p = print_band(p, band);
4496 isl_band_free(band);
4499 return p;
4502 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
4503 __isl_keep isl_schedule *schedule)
4505 isl_band_list *forest;
4507 forest = isl_schedule_get_band_forest(schedule);
4509 p = print_band_list(p, forest);
4511 isl_band_list_free(forest);
4513 return p;
4516 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
4518 isl_printer *printer;
4520 if (!schedule)
4521 return;
4523 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
4524 printer = isl_printer_print_schedule(printer, schedule);
4526 isl_printer_free(printer);