isl_tab: store undo argument in a union for future extensions
[isl.git] / isl_tab.c
blob8d98e21247c09e6afcb6d6d511e9707ebaa4857a
1 #include "isl_mat.h"
2 #include "isl_map_private.h"
3 #include "isl_tab.h"
5 /*
6 * The implementation of tableaus in this file was inspired by Section 8
7 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
8 * prover for program checking".
9 */
11 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
12 unsigned n_row, unsigned n_var)
14 int i;
15 struct isl_tab *tab;
17 tab = isl_calloc_type(ctx, struct isl_tab);
18 if (!tab)
19 return NULL;
20 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
21 if (!tab->mat)
22 goto error;
23 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
24 if (!tab->var)
25 goto error;
26 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
27 if (!tab->con)
28 goto error;
29 tab->col_var = isl_alloc_array(ctx, int, n_var);
30 if (!tab->col_var)
31 goto error;
32 tab->row_var = isl_alloc_array(ctx, int, n_row);
33 if (!tab->row_var)
34 goto error;
35 for (i = 0; i < n_var; ++i) {
36 tab->var[i].index = i;
37 tab->var[i].is_row = 0;
38 tab->var[i].is_nonneg = 0;
39 tab->var[i].is_zero = 0;
40 tab->var[i].is_redundant = 0;
41 tab->var[i].frozen = 0;
42 tab->col_var[i] = i;
44 tab->n_row = 0;
45 tab->n_con = 0;
46 tab->n_eq = 0;
47 tab->max_con = n_row;
48 tab->n_col = n_var;
49 tab->n_var = n_var;
50 tab->n_dead = 0;
51 tab->n_redundant = 0;
52 tab->need_undo = 0;
53 tab->rational = 0;
54 tab->empty = 0;
55 tab->in_undo = 0;
56 tab->bottom.type = isl_tab_undo_bottom;
57 tab->bottom.next = NULL;
58 tab->top = &tab->bottom;
59 return tab;
60 error:
61 isl_tab_free(tab);
62 return NULL;
65 static int extend_cons(struct isl_tab *tab, unsigned n_new)
67 if (tab->max_con < tab->n_con + n_new) {
68 struct isl_tab_var *con;
70 con = isl_realloc_array(tab->mat->ctx, tab->con,
71 struct isl_tab_var, tab->max_con + n_new);
72 if (!con)
73 return -1;
74 tab->con = con;
75 tab->max_con += n_new;
77 if (tab->mat->n_row < tab->n_row + n_new) {
78 int *row_var;
80 tab->mat = isl_mat_extend(tab->mat,
81 tab->n_row + n_new, tab->n_col);
82 if (!tab->mat)
83 return -1;
84 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
85 int, tab->mat->n_row);
86 if (!row_var)
87 return -1;
88 tab->row_var = row_var;
90 return 0;
93 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
95 if (extend_cons(tab, n_new) >= 0)
96 return tab;
98 isl_tab_free(tab);
99 return NULL;
102 static void free_undo(struct isl_tab *tab)
104 struct isl_tab_undo *undo, *next;
106 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
107 next = undo->next;
108 free(undo);
110 tab->top = undo;
113 void isl_tab_free(struct isl_tab *tab)
115 if (!tab)
116 return;
117 free_undo(tab);
118 isl_mat_free(tab->mat);
119 isl_vec_free(tab->dual);
120 free(tab->var);
121 free(tab->con);
122 free(tab->row_var);
123 free(tab->col_var);
124 free(tab);
127 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
129 int i;
130 struct isl_tab *dup;
132 if (!tab)
133 return NULL;
135 dup = isl_calloc_type(tab->ctx, struct isl_tab);
136 if (!dup)
137 return NULL;
138 dup->mat = isl_mat_dup(tab->mat);
139 if (!dup->mat)
140 goto error;
141 dup->var = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->n_var);
142 if (!dup->var)
143 goto error;
144 for (i = 0; i < tab->n_var; ++i)
145 dup->var[i] = tab->var[i];
146 dup->con = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->max_con);
147 if (!dup->con)
148 goto error;
149 for (i = 0; i < tab->n_con; ++i)
150 dup->con[i] = tab->con[i];
151 dup->col_var = isl_alloc_array(tab->ctx, int, tab->mat->n_col);
152 if (!dup->col_var)
153 goto error;
154 for (i = 0; i < tab->n_var; ++i)
155 dup->col_var[i] = tab->col_var[i];
156 dup->row_var = isl_alloc_array(tab->ctx, int, tab->mat->n_row);
157 if (!dup->row_var)
158 goto error;
159 for (i = 0; i < tab->n_row; ++i)
160 dup->row_var[i] = tab->row_var[i];
161 dup->n_row = tab->n_row;
162 dup->n_con = tab->n_con;
163 dup->n_eq = tab->n_eq;
164 dup->max_con = tab->max_con;
165 dup->n_col = tab->n_col;
166 dup->n_var = tab->n_var;
167 dup->n_dead = tab->n_dead;
168 dup->n_redundant = tab->n_redundant;
169 dup->rational = tab->rational;
170 dup->empty = tab->empty;
171 dup->need_undo = 0;
172 dup->in_undo = 0;
173 dup->bottom.type = isl_tab_undo_bottom;
174 dup->bottom.next = NULL;
175 dup->top = &dup->bottom;
176 return dup;
177 error:
178 isl_tab_free(dup);
179 return NULL;
182 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
184 if (i >= 0)
185 return &tab->var[i];
186 else
187 return &tab->con[~i];
190 static struct isl_tab_var *var_from_row(struct isl_tab *tab, int i)
192 return var_from_index(tab, tab->row_var[i]);
195 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
197 return var_from_index(tab, tab->col_var[i]);
200 /* Check if there are any upper bounds on column variable "var",
201 * i.e., non-negative rows where var appears with a negative coefficient.
202 * Return 1 if there are no such bounds.
204 static int max_is_manifestly_unbounded(struct isl_tab *tab,
205 struct isl_tab_var *var)
207 int i;
209 if (var->is_row)
210 return 0;
211 for (i = tab->n_redundant; i < tab->n_row; ++i) {
212 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
213 continue;
214 if (var_from_row(tab, i)->is_nonneg)
215 return 0;
217 return 1;
220 /* Check if there are any lower bounds on column variable "var",
221 * i.e., non-negative rows where var appears with a positive coefficient.
222 * Return 1 if there are no such bounds.
224 static int min_is_manifestly_unbounded(struct isl_tab *tab,
225 struct isl_tab_var *var)
227 int i;
229 if (var->is_row)
230 return 0;
231 for (i = tab->n_redundant; i < tab->n_row; ++i) {
232 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
233 continue;
234 if (var_from_row(tab, i)->is_nonneg)
235 return 0;
237 return 1;
240 /* Given the index of a column "c", return the index of a row
241 * that can be used to pivot the column in, with either an increase
242 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
243 * If "var" is not NULL, then the row returned will be different from
244 * the one associated with "var".
246 * Each row in the tableau is of the form
248 * x_r = a_r0 + \sum_i a_ri x_i
250 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
251 * impose any limit on the increase or decrease in the value of x_c
252 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
253 * for the row with the smallest (most stringent) such bound.
254 * Note that the common denominator of each row drops out of the fraction.
255 * To check if row j has a smaller bound than row r, i.e.,
256 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
257 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
258 * where -sign(a_jc) is equal to "sgn".
260 static int pivot_row(struct isl_tab *tab,
261 struct isl_tab_var *var, int sgn, int c)
263 int j, r, tsgn;
264 isl_int t;
266 isl_int_init(t);
267 r = -1;
268 for (j = tab->n_redundant; j < tab->n_row; ++j) {
269 if (var && j == var->index)
270 continue;
271 if (!var_from_row(tab, j)->is_nonneg)
272 continue;
273 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
274 continue;
275 if (r < 0) {
276 r = j;
277 continue;
279 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
280 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
281 tsgn = sgn * isl_int_sgn(t);
282 if (tsgn < 0 || (tsgn == 0 &&
283 tab->row_var[j] < tab->row_var[r]))
284 r = j;
286 isl_int_clear(t);
287 return r;
290 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
291 * (sgn < 0) the value of row variable var.
292 * If not NULL, then skip_var is a row variable that should be ignored
293 * while looking for a pivot row. It is usually equal to var.
295 * As the given row in the tableau is of the form
297 * x_r = a_r0 + \sum_i a_ri x_i
299 * we need to find a column such that the sign of a_ri is equal to "sgn"
300 * (such that an increase in x_i will have the desired effect) or a
301 * column with a variable that may attain negative values.
302 * If a_ri is positive, then we need to move x_i in the same direction
303 * to obtain the desired effect. Otherwise, x_i has to move in the
304 * opposite direction.
306 static void find_pivot(struct isl_tab *tab,
307 struct isl_tab_var *var, struct isl_tab_var *skip_var,
308 int sgn, int *row, int *col)
310 int j, r, c;
311 isl_int *tr;
313 *row = *col = -1;
315 isl_assert(tab->mat->ctx, var->is_row, return);
316 tr = tab->mat->row[var->index];
318 c = -1;
319 for (j = tab->n_dead; j < tab->n_col; ++j) {
320 if (isl_int_is_zero(tr[2 + j]))
321 continue;
322 if (isl_int_sgn(tr[2 + j]) != sgn &&
323 var_from_col(tab, j)->is_nonneg)
324 continue;
325 if (c < 0 || tab->col_var[j] < tab->col_var[c])
326 c = j;
328 if (c < 0)
329 return;
331 sgn *= isl_int_sgn(tr[2 + c]);
332 r = pivot_row(tab, skip_var, sgn, c);
333 *row = r < 0 ? var->index : r;
334 *col = c;
337 /* Return 1 if row "row" represents an obviously redundant inequality.
338 * This means
339 * - it represents an inequality or a variable
340 * - that is the sum of a non-negative sample value and a positive
341 * combination of zero or more non-negative variables.
343 static int is_redundant(struct isl_tab *tab, int row)
345 int i;
347 if (tab->row_var[row] < 0 && !var_from_row(tab, row)->is_nonneg)
348 return 0;
350 if (isl_int_is_neg(tab->mat->row[row][1]))
351 return 0;
353 for (i = tab->n_dead; i < tab->n_col; ++i) {
354 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
355 continue;
356 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
357 return 0;
358 if (!var_from_col(tab, i)->is_nonneg)
359 return 0;
361 return 1;
364 static void swap_rows(struct isl_tab *tab, int row1, int row2)
366 int t;
367 t = tab->row_var[row1];
368 tab->row_var[row1] = tab->row_var[row2];
369 tab->row_var[row2] = t;
370 var_from_row(tab, row1)->index = row1;
371 var_from_row(tab, row2)->index = row2;
372 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
375 static void push_union(struct isl_tab *tab,
376 enum isl_tab_undo_type type, union isl_tab_undo_val u)
378 struct isl_tab_undo *undo;
380 if (!tab->need_undo)
381 return;
383 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
384 if (!undo) {
385 free_undo(tab);
386 tab->top = NULL;
387 return;
389 undo->type = type;
390 undo->u = u;
391 undo->next = tab->top;
392 tab->top = undo;
395 void push_var(struct isl_tab *tab,
396 enum isl_tab_undo_type type, struct isl_tab_var *var)
398 union isl_tab_undo_val u;
399 if (var->is_row)
400 u.var_index = tab->row_var[var->index];
401 else
402 u.var_index = tab->col_var[var->index];
403 push_union(tab, type, u);
406 void push(struct isl_tab *tab, enum isl_tab_undo_type type)
408 union isl_tab_undo_val u = { 0 };
409 push_union(tab, type, u);
412 /* Mark row with index "row" as being redundant.
413 * If we may need to undo the operation or if the row represents
414 * a variable of the original problem, the row is kept,
415 * but no longer considered when looking for a pivot row.
416 * Otherwise, the row is simply removed.
418 * The row may be interchanged with some other row. If it
419 * is interchanged with a later row, return 1. Otherwise return 0.
420 * If the rows are checked in order in the calling function,
421 * then a return value of 1 means that the row with the given
422 * row number may now contain a different row that hasn't been checked yet.
424 static int mark_redundant(struct isl_tab *tab, int row)
426 struct isl_tab_var *var = var_from_row(tab, row);
427 var->is_redundant = 1;
428 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return);
429 if (tab->need_undo || tab->row_var[row] >= 0) {
430 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
431 var->is_nonneg = 1;
432 push_var(tab, isl_tab_undo_nonneg, var);
434 if (row != tab->n_redundant)
435 swap_rows(tab, row, tab->n_redundant);
436 push_var(tab, isl_tab_undo_redundant, var);
437 tab->n_redundant++;
438 return 0;
439 } else {
440 if (row != tab->n_row - 1)
441 swap_rows(tab, row, tab->n_row - 1);
442 var_from_row(tab, tab->n_row - 1)->index = -1;
443 tab->n_row--;
444 return 1;
448 static struct isl_tab *mark_empty(struct isl_tab *tab)
450 if (!tab->empty && tab->need_undo)
451 push(tab, isl_tab_undo_empty);
452 tab->empty = 1;
453 return tab;
456 /* Given a row number "row" and a column number "col", pivot the tableau
457 * such that the associated variables are interchanged.
458 * The given row in the tableau expresses
460 * x_r = a_r0 + \sum_i a_ri x_i
462 * or
464 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
466 * Substituting this equality into the other rows
468 * x_j = a_j0 + \sum_i a_ji x_i
470 * with a_jc \ne 0, we obtain
472 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
474 * The tableau
476 * n_rc/d_r n_ri/d_r
477 * n_jc/d_j n_ji/d_j
479 * where i is any other column and j is any other row,
480 * is therefore transformed into
482 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
483 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
485 * The transformation is performed along the following steps
487 * d_r/n_rc n_ri/n_rc
488 * n_jc/d_j n_ji/d_j
490 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
491 * n_jc/d_j n_ji/d_j
493 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
494 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
496 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
497 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
499 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
500 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
502 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
503 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
506 static void pivot(struct isl_tab *tab, int row, int col)
508 int i, j;
509 int sgn;
510 int t;
511 struct isl_mat *mat = tab->mat;
512 struct isl_tab_var *var;
514 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
515 sgn = isl_int_sgn(mat->row[row][0]);
516 if (sgn < 0) {
517 isl_int_neg(mat->row[row][0], mat->row[row][0]);
518 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
519 } else
520 for (j = 0; j < 1 + tab->n_col; ++j) {
521 if (j == 1 + col)
522 continue;
523 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
525 if (!isl_int_is_one(mat->row[row][0]))
526 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
527 for (i = 0; i < tab->n_row; ++i) {
528 if (i == row)
529 continue;
530 if (isl_int_is_zero(mat->row[i][2 + col]))
531 continue;
532 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
533 for (j = 0; j < 1 + tab->n_col; ++j) {
534 if (j == 1 + col)
535 continue;
536 isl_int_mul(mat->row[i][1 + j],
537 mat->row[i][1 + j], mat->row[row][0]);
538 isl_int_addmul(mat->row[i][1 + j],
539 mat->row[i][2 + col], mat->row[row][1 + j]);
541 isl_int_mul(mat->row[i][2 + col],
542 mat->row[i][2 + col], mat->row[row][2 + col]);
543 if (!isl_int_is_one(mat->row[i][0]))
544 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
546 t = tab->row_var[row];
547 tab->row_var[row] = tab->col_var[col];
548 tab->col_var[col] = t;
549 var = var_from_row(tab, row);
550 var->is_row = 1;
551 var->index = row;
552 var = var_from_col(tab, col);
553 var->is_row = 0;
554 var->index = col;
555 if (tab->in_undo)
556 return;
557 for (i = tab->n_redundant; i < tab->n_row; ++i) {
558 if (isl_int_is_zero(mat->row[i][2 + col]))
559 continue;
560 if (!var_from_row(tab, i)->frozen &&
561 is_redundant(tab, i))
562 if (mark_redundant(tab, i))
563 --i;
567 /* If "var" represents a column variable, then pivot is up (sgn > 0)
568 * or down (sgn < 0) to a row. The variable is assumed not to be
569 * unbounded in the specified direction.
570 * If sgn = 0, then the variable is unbounded in both directions,
571 * and we pivot with any row we can find.
573 static void to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
575 int r;
577 if (var->is_row)
578 return;
580 if (sign == 0) {
581 for (r = tab->n_redundant; r < tab->n_row; ++r)
582 if (!isl_int_is_zero(tab->mat->row[r][2 + var->index]))
583 break;
584 isl_assert(tab->mat->ctx, r < tab->n_row, return);
585 } else {
586 r = pivot_row(tab, NULL, sign, var->index);
587 isl_assert(tab->mat->ctx, r >= 0, return);
590 pivot(tab, r, var->index);
593 static void check_table(struct isl_tab *tab)
595 int i;
597 if (tab->empty)
598 return;
599 for (i = 0; i < tab->n_row; ++i) {
600 if (!var_from_row(tab, i)->is_nonneg)
601 continue;
602 assert(!isl_int_is_neg(tab->mat->row[i][1]));
606 /* Return the sign of the maximal value of "var".
607 * If the sign is not negative, then on return from this function,
608 * the sample value will also be non-negative.
610 * If "var" is manifestly unbounded wrt positive values, we are done.
611 * Otherwise, we pivot the variable up to a row if needed
612 * Then we continue pivoting down until either
613 * - no more down pivots can be performed
614 * - the sample value is positive
615 * - the variable is pivoted into a manifestly unbounded column
617 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
619 int row, col;
621 if (max_is_manifestly_unbounded(tab, var))
622 return 1;
623 to_row(tab, var, 1);
624 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
625 find_pivot(tab, var, var, 1, &row, &col);
626 if (row == -1)
627 return isl_int_sgn(tab->mat->row[var->index][1]);
628 pivot(tab, row, col);
629 if (!var->is_row) /* manifestly unbounded */
630 return 1;
632 return 1;
635 /* Perform pivots until the row variable "var" has a non-negative
636 * sample value or until no more upward pivots can be performed.
637 * Return the sign of the sample value after the pivots have been
638 * performed.
640 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
642 int row, col;
644 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
645 find_pivot(tab, var, var, 1, &row, &col);
646 if (row == -1)
647 break;
648 pivot(tab, row, col);
649 if (!var->is_row) /* manifestly unbounded */
650 return 1;
652 return isl_int_sgn(tab->mat->row[var->index][1]);
655 /* Perform pivots until we are sure that the row variable "var"
656 * can attain non-negative values. After return from this
657 * function, "var" is still a row variable, but its sample
658 * value may not be non-negative, even if the function returns 1.
660 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
662 int row, col;
664 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
665 find_pivot(tab, var, var, 1, &row, &col);
666 if (row == -1)
667 break;
668 if (row == var->index) /* manifestly unbounded */
669 return 1;
670 pivot(tab, row, col);
672 return !isl_int_is_neg(tab->mat->row[var->index][1]);
675 /* Return a negative value if "var" can attain negative values.
676 * Return a non-negative value otherwise.
678 * If "var" is manifestly unbounded wrt negative values, we are done.
679 * Otherwise, if var is in a column, we can pivot it down to a row.
680 * Then we continue pivoting down until either
681 * - the pivot would result in a manifestly unbounded column
682 * => we don't perform the pivot, but simply return -1
683 * - no more down pivots can be performed
684 * - the sample value is negative
685 * If the sample value becomes negative and the variable is supposed
686 * to be nonnegative, then we undo the last pivot.
687 * However, if the last pivot has made the pivoting variable
688 * obviously redundant, then it may have moved to another row.
689 * In that case we look for upward pivots until we reach a non-negative
690 * value again.
692 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
694 int row, col;
695 struct isl_tab_var *pivot_var;
697 if (min_is_manifestly_unbounded(tab, var))
698 return -1;
699 if (!var->is_row) {
700 col = var->index;
701 row = pivot_row(tab, NULL, -1, col);
702 pivot_var = var_from_col(tab, col);
703 pivot(tab, row, col);
704 if (var->is_redundant)
705 return 0;
706 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
707 if (var->is_nonneg) {
708 if (!pivot_var->is_redundant &&
709 pivot_var->index == row)
710 pivot(tab, row, col);
711 else
712 restore_row(tab, var);
714 return -1;
717 if (var->is_redundant)
718 return 0;
719 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
720 find_pivot(tab, var, var, -1, &row, &col);
721 if (row == var->index)
722 return -1;
723 if (row == -1)
724 return isl_int_sgn(tab->mat->row[var->index][1]);
725 pivot_var = var_from_col(tab, col);
726 pivot(tab, row, col);
727 if (var->is_redundant)
728 return 0;
730 if (var->is_nonneg) {
731 /* pivot back to non-negative value */
732 if (!pivot_var->is_redundant && pivot_var->index == row)
733 pivot(tab, row, col);
734 else
735 restore_row(tab, var);
737 return -1;
740 /* Return 1 if "var" can attain values <= -1.
741 * Return 0 otherwise.
743 * The sample value of "var" is assumed to be non-negative when the
744 * the function is called and will be made non-negative again before
745 * the function returns.
747 static int min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
749 int row, col;
750 struct isl_tab_var *pivot_var;
752 if (min_is_manifestly_unbounded(tab, var))
753 return 1;
754 if (!var->is_row) {
755 col = var->index;
756 row = pivot_row(tab, NULL, -1, col);
757 pivot_var = var_from_col(tab, col);
758 pivot(tab, row, col);
759 if (var->is_redundant)
760 return 0;
761 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
762 isl_int_abs_ge(tab->mat->row[var->index][1],
763 tab->mat->row[var->index][0])) {
764 if (var->is_nonneg) {
765 if (!pivot_var->is_redundant &&
766 pivot_var->index == row)
767 pivot(tab, row, col);
768 else
769 restore_row(tab, var);
771 return 1;
774 if (var->is_redundant)
775 return 0;
776 do {
777 find_pivot(tab, var, var, -1, &row, &col);
778 if (row == var->index)
779 return 1;
780 if (row == -1)
781 return 0;
782 pivot_var = var_from_col(tab, col);
783 pivot(tab, row, col);
784 if (var->is_redundant)
785 return 0;
786 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
787 isl_int_abs_lt(tab->mat->row[var->index][1],
788 tab->mat->row[var->index][0]));
789 if (var->is_nonneg) {
790 /* pivot back to non-negative value */
791 if (!pivot_var->is_redundant && pivot_var->index == row)
792 pivot(tab, row, col);
793 restore_row(tab, var);
795 return 1;
798 /* Return 1 if "var" can attain values >= 1.
799 * Return 0 otherwise.
801 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
803 int row, col;
804 isl_int *r;
806 if (max_is_manifestly_unbounded(tab, var))
807 return 1;
808 to_row(tab, var, 1);
809 r = tab->mat->row[var->index];
810 while (isl_int_lt(r[1], r[0])) {
811 find_pivot(tab, var, var, 1, &row, &col);
812 if (row == -1)
813 return isl_int_ge(r[1], r[0]);
814 if (row == var->index) /* manifestly unbounded */
815 return 1;
816 pivot(tab, row, col);
818 return 1;
821 static void swap_cols(struct isl_tab *tab, int col1, int col2)
823 int t;
824 t = tab->col_var[col1];
825 tab->col_var[col1] = tab->col_var[col2];
826 tab->col_var[col2] = t;
827 var_from_col(tab, col1)->index = col1;
828 var_from_col(tab, col2)->index = col2;
829 tab->mat = isl_mat_swap_cols(tab->mat, 2 + col1, 2 + col2);
832 /* Mark column with index "col" as representing a zero variable.
833 * If we may need to undo the operation the column is kept,
834 * but no longer considered.
835 * Otherwise, the column is simply removed.
837 * The column may be interchanged with some other column. If it
838 * is interchanged with a later column, return 1. Otherwise return 0.
839 * If the columns are checked in order in the calling function,
840 * then a return value of 1 means that the column with the given
841 * column number may now contain a different column that
842 * hasn't been checked yet.
844 static int kill_col(struct isl_tab *tab, int col)
846 var_from_col(tab, col)->is_zero = 1;
847 if (tab->need_undo) {
848 push_var(tab, isl_tab_undo_zero, var_from_col(tab, col));
849 if (col != tab->n_dead)
850 swap_cols(tab, col, tab->n_dead);
851 tab->n_dead++;
852 return 0;
853 } else {
854 if (col != tab->n_col - 1)
855 swap_cols(tab, col, tab->n_col - 1);
856 var_from_col(tab, tab->n_col - 1)->index = -1;
857 tab->n_col--;
858 return 1;
862 /* Row variable "var" is non-negative and cannot attain any values
863 * larger than zero. This means that the coefficients of the unrestricted
864 * column variables are zero and that the coefficients of the non-negative
865 * column variables are zero or negative.
866 * Each of the non-negative variables with a negative coefficient can
867 * then also be written as the negative sum of non-negative variables
868 * and must therefore also be zero.
870 static void close_row(struct isl_tab *tab, struct isl_tab_var *var)
872 int j;
873 struct isl_mat *mat = tab->mat;
875 isl_assert(tab->mat->ctx, var->is_nonneg, return);
876 var->is_zero = 1;
877 for (j = tab->n_dead; j < tab->n_col; ++j) {
878 if (isl_int_is_zero(mat->row[var->index][2 + j]))
879 continue;
880 isl_assert(tab->mat->ctx,
881 isl_int_is_neg(mat->row[var->index][2 + j]), return);
882 if (kill_col(tab, j))
883 --j;
885 mark_redundant(tab, var->index);
888 /* Add a constraint to the tableau and allocate a row for it.
889 * Return the index into the constraint array "con".
891 static int allocate_con(struct isl_tab *tab)
893 int r;
895 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
897 r = tab->n_con;
898 tab->con[r].index = tab->n_row;
899 tab->con[r].is_row = 1;
900 tab->con[r].is_nonneg = 0;
901 tab->con[r].is_zero = 0;
902 tab->con[r].is_redundant = 0;
903 tab->con[r].frozen = 0;
904 tab->row_var[tab->n_row] = ~r;
906 tab->n_row++;
907 tab->n_con++;
908 push_var(tab, isl_tab_undo_allocate, &tab->con[r]);
910 return r;
913 /* Add a row to the tableau. The row is given as an affine combination
914 * of the original variables and needs to be expressed in terms of the
915 * column variables.
917 * We add each term in turn.
918 * If r = n/d_r is the current sum and we need to add k x, then
919 * if x is a column variable, we increase the numerator of
920 * this column by k d_r
921 * if x = f/d_x is a row variable, then the new representation of r is
923 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
924 * --- + --- = ------------------- = -------------------
925 * d_r d_r d_r d_x/g m
927 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
929 static int add_row(struct isl_tab *tab, isl_int *line)
931 int i;
932 int r;
933 isl_int *row;
934 isl_int a, b;
936 r = allocate_con(tab);
937 if (r < 0)
938 return -1;
940 isl_int_init(a);
941 isl_int_init(b);
942 row = tab->mat->row[tab->con[r].index];
943 isl_int_set_si(row[0], 1);
944 isl_int_set(row[1], line[0]);
945 isl_seq_clr(row + 2, tab->n_col);
946 for (i = 0; i < tab->n_var; ++i) {
947 if (tab->var[i].is_zero)
948 continue;
949 if (tab->var[i].is_row) {
950 isl_int_lcm(a,
951 row[0], tab->mat->row[tab->var[i].index][0]);
952 isl_int_swap(a, row[0]);
953 isl_int_divexact(a, row[0], a);
954 isl_int_divexact(b,
955 row[0], tab->mat->row[tab->var[i].index][0]);
956 isl_int_mul(b, b, line[1 + i]);
957 isl_seq_combine(row + 1, a, row + 1,
958 b, tab->mat->row[tab->var[i].index] + 1,
959 1 + tab->n_col);
960 } else
961 isl_int_addmul(row[2 + tab->var[i].index],
962 line[1 + i], row[0]);
964 isl_seq_normalize(row, 2 + tab->n_col);
965 isl_int_clear(a);
966 isl_int_clear(b);
968 return r;
971 static int drop_row(struct isl_tab *tab, int row)
973 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
974 if (row != tab->n_row - 1)
975 swap_rows(tab, row, tab->n_row - 1);
976 tab->n_row--;
977 tab->n_con--;
978 return 0;
981 /* Add inequality "ineq" and check if it conflicts with the
982 * previously added constraints or if it is obviously redundant.
984 struct isl_tab *isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
986 int r;
987 int sgn;
989 if (!tab)
990 return NULL;
991 r = add_row(tab, ineq);
992 if (r < 0)
993 goto error;
994 tab->con[r].is_nonneg = 1;
995 push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
996 if (is_redundant(tab, tab->con[r].index)) {
997 mark_redundant(tab, tab->con[r].index);
998 return tab;
1001 sgn = restore_row(tab, &tab->con[r]);
1002 if (sgn < 0)
1003 return mark_empty(tab);
1004 if (tab->con[r].is_row && is_redundant(tab, tab->con[r].index))
1005 mark_redundant(tab, tab->con[r].index);
1006 return tab;
1007 error:
1008 isl_tab_free(tab);
1009 return NULL;
1012 /* Pivot a non-negative variable down until it reaches the value zero
1013 * and then pivot the variable into a column position.
1015 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1017 int i;
1018 int row, col;
1020 if (!var->is_row)
1021 return;
1023 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1024 find_pivot(tab, var, NULL, -1, &row, &col);
1025 isl_assert(tab->mat->ctx, row != -1, return -1);
1026 pivot(tab, row, col);
1027 if (!var->is_row)
1028 return;
1031 for (i = tab->n_dead; i < tab->n_col; ++i)
1032 if (!isl_int_is_zero(tab->mat->row[var->index][2 + i]))
1033 break;
1035 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1036 pivot(tab, var->index, i);
1038 return 0;
1041 /* We assume Gaussian elimination has been performed on the equalities.
1042 * The equalities can therefore never conflict.
1043 * Adding the equalities is currently only really useful for a later call
1044 * to isl_tab_ineq_type.
1046 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1048 int i;
1049 int r;
1051 if (!tab)
1052 return NULL;
1053 r = add_row(tab, eq);
1054 if (r < 0)
1055 goto error;
1057 r = tab->con[r].index;
1058 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->n_dead,
1059 tab->n_col - tab->n_dead);
1060 isl_assert(tab->mat->ctx, i >= 0, goto error);
1061 i += tab->n_dead;
1062 pivot(tab, r, i);
1063 kill_col(tab, i);
1064 tab->n_eq++;
1066 return tab;
1067 error:
1068 isl_tab_free(tab);
1069 return NULL;
1072 /* Add an equality that is known to be valid for the given tableau.
1074 struct isl_tab *isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1076 struct isl_tab_var *var;
1077 int i;
1078 int r;
1080 if (!tab)
1081 return NULL;
1082 r = add_row(tab, eq);
1083 if (r < 0)
1084 goto error;
1086 var = &tab->con[r];
1087 r = var->index;
1088 if (isl_int_is_neg(tab->mat->row[r][1]))
1089 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1090 1 + tab->n_col);
1091 var->is_nonneg = 1;
1092 if (to_col(tab, var) < 0)
1093 goto error;
1094 var->is_nonneg = 0;
1095 kill_col(tab, var->index);
1097 return tab;
1098 error:
1099 isl_tab_free(tab);
1100 return NULL;
1103 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
1105 int i;
1106 struct isl_tab *tab;
1108 if (!bmap)
1109 return NULL;
1110 tab = isl_tab_alloc(bmap->ctx,
1111 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
1112 isl_basic_map_total_dim(bmap));
1113 if (!tab)
1114 return NULL;
1115 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1116 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1117 return mark_empty(tab);
1118 for (i = 0; i < bmap->n_eq; ++i) {
1119 tab = add_eq(tab, bmap->eq[i]);
1120 if (!tab)
1121 return tab;
1123 for (i = 0; i < bmap->n_ineq; ++i) {
1124 tab = isl_tab_add_ineq(tab, bmap->ineq[i]);
1125 if (!tab || tab->empty)
1126 return tab;
1128 return tab;
1131 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
1133 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
1136 /* Construct a tableau corresponding to the recession cone of "bmap".
1138 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
1140 isl_int cst;
1141 int i;
1142 struct isl_tab *tab;
1144 if (!bmap)
1145 return NULL;
1146 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1147 isl_basic_map_total_dim(bmap));
1148 if (!tab)
1149 return NULL;
1150 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1152 isl_int_init(cst);
1153 for (i = 0; i < bmap->n_eq; ++i) {
1154 isl_int_swap(bmap->eq[i][0], cst);
1155 tab = add_eq(tab, bmap->eq[i]);
1156 isl_int_swap(bmap->eq[i][0], cst);
1157 if (!tab)
1158 goto done;
1160 for (i = 0; i < bmap->n_ineq; ++i) {
1161 int r;
1162 isl_int_swap(bmap->ineq[i][0], cst);
1163 r = add_row(tab, bmap->ineq[i]);
1164 isl_int_swap(bmap->ineq[i][0], cst);
1165 if (r < 0)
1166 goto error;
1167 tab->con[r].is_nonneg = 1;
1168 push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1170 done:
1171 isl_int_clear(cst);
1172 return tab;
1173 error:
1174 isl_int_clear(cst);
1175 isl_tab_free(tab);
1176 return NULL;
1179 /* Assuming "tab" is the tableau of a cone, check if the cone is
1180 * bounded, i.e., if it is empty or only contains the origin.
1182 int isl_tab_cone_is_bounded(struct isl_tab *tab)
1184 int i;
1186 if (!tab)
1187 return -1;
1188 if (tab->empty)
1189 return 1;
1190 if (tab->n_dead == tab->n_col)
1191 return 1;
1193 for (;;) {
1194 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1195 struct isl_tab_var *var;
1196 var = var_from_row(tab, i);
1197 if (!var->is_nonneg)
1198 continue;
1199 if (sign_of_max(tab, var) != 0)
1200 return 0;
1201 close_row(tab, var);
1202 break;
1204 if (tab->n_dead == tab->n_col)
1205 return 1;
1206 if (i == tab->n_row)
1207 return 0;
1211 int isl_tab_sample_is_integer(struct isl_tab *tab)
1213 int i;
1215 if (!tab)
1216 return -1;
1218 for (i = 0; i < tab->n_var; ++i) {
1219 int row;
1220 if (!tab->var[i].is_row)
1221 continue;
1222 row = tab->var[i].index;
1223 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1224 tab->mat->row[row][0]))
1225 return 0;
1227 return 1;
1230 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
1232 int i;
1233 struct isl_vec *vec;
1235 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1236 if (!vec)
1237 return NULL;
1239 isl_int_set_si(vec->block.data[0], 1);
1240 for (i = 0; i < tab->n_var; ++i) {
1241 if (!tab->var[i].is_row)
1242 isl_int_set_si(vec->block.data[1 + i], 0);
1243 else {
1244 int row = tab->var[i].index;
1245 isl_int_divexact(vec->block.data[1 + i],
1246 tab->mat->row[row][1], tab->mat->row[row][0]);
1250 return vec;
1253 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
1255 int i;
1256 struct isl_vec *vec;
1257 isl_int m;
1259 if (!tab)
1260 return NULL;
1262 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1263 if (!vec)
1264 return NULL;
1266 isl_int_init(m);
1268 isl_int_set_si(vec->block.data[0], 1);
1269 for (i = 0; i < tab->n_var; ++i) {
1270 int row;
1271 if (!tab->var[i].is_row) {
1272 isl_int_set_si(vec->block.data[1 + i], 0);
1273 continue;
1275 row = tab->var[i].index;
1276 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
1277 isl_int_divexact(m, tab->mat->row[row][0], m);
1278 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
1279 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
1280 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
1282 isl_seq_normalize(vec->block.data, vec->size);
1284 isl_int_clear(m);
1285 return vec;
1288 /* Update "bmap" based on the results of the tableau "tab".
1289 * In particular, implicit equalities are made explicit, redundant constraints
1290 * are removed and if the sample value happens to be integer, it is stored
1291 * in "bmap" (unless "bmap" already had an integer sample).
1293 * The tableau is assumed to have been created from "bmap" using
1294 * isl_tab_from_basic_map.
1296 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1297 struct isl_tab *tab)
1299 int i;
1300 unsigned n_eq;
1302 if (!bmap)
1303 return NULL;
1304 if (!tab)
1305 return bmap;
1307 n_eq = tab->n_eq;
1308 if (tab->empty)
1309 bmap = isl_basic_map_set_to_empty(bmap);
1310 else
1311 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1312 if (isl_tab_is_equality(tab, n_eq + i))
1313 isl_basic_map_inequality_to_equality(bmap, i);
1314 else if (isl_tab_is_redundant(tab, n_eq + i))
1315 isl_basic_map_drop_inequality(bmap, i);
1317 if (!tab->rational &&
1318 !bmap->sample && isl_tab_sample_is_integer(tab))
1319 bmap->sample = extract_integer_sample(tab);
1320 return bmap;
1323 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1324 struct isl_tab *tab)
1326 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1327 (struct isl_basic_map *)bset, tab);
1330 /* Given a non-negative variable "var", add a new non-negative variable
1331 * that is the opposite of "var", ensuring that var can only attain the
1332 * value zero.
1333 * If var = n/d is a row variable, then the new variable = -n/d.
1334 * If var is a column variables, then the new variable = -var.
1335 * If the new variable cannot attain non-negative values, then
1336 * the resulting tableau is empty.
1337 * Otherwise, we know the value will be zero and we close the row.
1339 static struct isl_tab *cut_to_hyperplane(struct isl_tab *tab,
1340 struct isl_tab_var *var)
1342 unsigned r;
1343 isl_int *row;
1344 int sgn;
1346 if (extend_cons(tab, 1) < 0)
1347 goto error;
1349 r = tab->n_con;
1350 tab->con[r].index = tab->n_row;
1351 tab->con[r].is_row = 1;
1352 tab->con[r].is_nonneg = 0;
1353 tab->con[r].is_zero = 0;
1354 tab->con[r].is_redundant = 0;
1355 tab->con[r].frozen = 0;
1356 tab->row_var[tab->n_row] = ~r;
1357 row = tab->mat->row[tab->n_row];
1359 if (var->is_row) {
1360 isl_int_set(row[0], tab->mat->row[var->index][0]);
1361 isl_seq_neg(row + 1,
1362 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1363 } else {
1364 isl_int_set_si(row[0], 1);
1365 isl_seq_clr(row + 1, 1 + tab->n_col);
1366 isl_int_set_si(row[2 + var->index], -1);
1369 tab->n_row++;
1370 tab->n_con++;
1371 push_var(tab, isl_tab_undo_allocate, &tab->con[r]);
1373 sgn = sign_of_max(tab, &tab->con[r]);
1374 if (sgn < 0)
1375 return mark_empty(tab);
1376 tab->con[r].is_nonneg = 1;
1377 push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1378 /* sgn == 0 */
1379 close_row(tab, &tab->con[r]);
1381 return tab;
1382 error:
1383 isl_tab_free(tab);
1384 return NULL;
1387 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1388 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1389 * by r' = r + 1 >= 0.
1390 * If r is a row variable, we simply increase the constant term by one
1391 * (taking into account the denominator).
1392 * If r is a column variable, then we need to modify each row that
1393 * refers to r = r' - 1 by substituting this equality, effectively
1394 * subtracting the coefficient of the column from the constant.
1396 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
1398 struct isl_tab_var *var;
1399 if (!tab)
1400 return NULL;
1402 var = &tab->con[con];
1404 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1405 to_row(tab, var, 1);
1407 if (var->is_row)
1408 isl_int_add(tab->mat->row[var->index][1],
1409 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1410 else {
1411 int i;
1413 for (i = 0; i < tab->n_row; ++i) {
1414 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1415 continue;
1416 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1417 tab->mat->row[i][2 + var->index]);
1422 push_var(tab, isl_tab_undo_relax, var);
1424 return tab;
1427 struct isl_tab *isl_tab_select_facet(struct isl_tab *tab, int con)
1429 if (!tab)
1430 return NULL;
1432 return cut_to_hyperplane(tab, &tab->con[con]);
1435 static int may_be_equality(struct isl_tab *tab, int row)
1437 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1438 : isl_int_lt(tab->mat->row[row][1],
1439 tab->mat->row[row][0])) &&
1440 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1441 tab->n_col - tab->n_dead) != -1;
1444 /* Check for (near) equalities among the constraints.
1445 * A constraint is an equality if it is non-negative and if
1446 * its maximal value is either
1447 * - zero (in case of rational tableaus), or
1448 * - strictly less than 1 (in case of integer tableaus)
1450 * We first mark all non-redundant and non-dead variables that
1451 * are not frozen and not obviously not an equality.
1452 * Then we iterate over all marked variables if they can attain
1453 * any values larger than zero or at least one.
1454 * If the maximal value is zero, we mark any column variables
1455 * that appear in the row as being zero and mark the row as being redundant.
1456 * Otherwise, if the maximal value is strictly less than one (and the
1457 * tableau is integer), then we restrict the value to being zero
1458 * by adding an opposite non-negative variable.
1460 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab)
1462 int i;
1463 unsigned n_marked;
1465 if (!tab)
1466 return NULL;
1467 if (tab->empty)
1468 return tab;
1469 if (tab->n_dead == tab->n_col)
1470 return tab;
1472 n_marked = 0;
1473 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1474 struct isl_tab_var *var = var_from_row(tab, i);
1475 var->marked = !var->frozen && var->is_nonneg &&
1476 may_be_equality(tab, i);
1477 if (var->marked)
1478 n_marked++;
1480 for (i = tab->n_dead; i < tab->n_col; ++i) {
1481 struct isl_tab_var *var = var_from_col(tab, i);
1482 var->marked = !var->frozen && var->is_nonneg;
1483 if (var->marked)
1484 n_marked++;
1486 while (n_marked) {
1487 struct isl_tab_var *var;
1488 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1489 var = var_from_row(tab, i);
1490 if (var->marked)
1491 break;
1493 if (i == tab->n_row) {
1494 for (i = tab->n_dead; i < tab->n_col; ++i) {
1495 var = var_from_col(tab, i);
1496 if (var->marked)
1497 break;
1499 if (i == tab->n_col)
1500 break;
1502 var->marked = 0;
1503 n_marked--;
1504 if (sign_of_max(tab, var) == 0)
1505 close_row(tab, var);
1506 else if (!tab->rational && !at_least_one(tab, var)) {
1507 tab = cut_to_hyperplane(tab, var);
1508 return isl_tab_detect_equalities(tab);
1510 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1511 var = var_from_row(tab, i);
1512 if (!var->marked)
1513 continue;
1514 if (may_be_equality(tab, i))
1515 continue;
1516 var->marked = 0;
1517 n_marked--;
1521 return tab;
1524 /* Check for (near) redundant constraints.
1525 * A constraint is redundant if it is non-negative and if
1526 * its minimal value (temporarily ignoring the non-negativity) is either
1527 * - zero (in case of rational tableaus), or
1528 * - strictly larger than -1 (in case of integer tableaus)
1530 * We first mark all non-redundant and non-dead variables that
1531 * are not frozen and not obviously negatively unbounded.
1532 * Then we iterate over all marked variables if they can attain
1533 * any values smaller than zero or at most negative one.
1534 * If not, we mark the row as being redundant (assuming it hasn't
1535 * been detected as being obviously redundant in the mean time).
1537 struct isl_tab *isl_tab_detect_redundant(struct isl_tab *tab)
1539 int i;
1540 unsigned n_marked;
1542 if (!tab)
1543 return NULL;
1544 if (tab->empty)
1545 return tab;
1546 if (tab->n_redundant == tab->n_row)
1547 return tab;
1549 n_marked = 0;
1550 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1551 struct isl_tab_var *var = var_from_row(tab, i);
1552 var->marked = !var->frozen && var->is_nonneg;
1553 if (var->marked)
1554 n_marked++;
1556 for (i = tab->n_dead; i < tab->n_col; ++i) {
1557 struct isl_tab_var *var = var_from_col(tab, i);
1558 var->marked = !var->frozen && var->is_nonneg &&
1559 !min_is_manifestly_unbounded(tab, var);
1560 if (var->marked)
1561 n_marked++;
1563 while (n_marked) {
1564 struct isl_tab_var *var;
1565 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1566 var = var_from_row(tab, i);
1567 if (var->marked)
1568 break;
1570 if (i == tab->n_row) {
1571 for (i = tab->n_dead; i < tab->n_col; ++i) {
1572 var = var_from_col(tab, i);
1573 if (var->marked)
1574 break;
1576 if (i == tab->n_col)
1577 break;
1579 var->marked = 0;
1580 n_marked--;
1581 if ((tab->rational ? (sign_of_min(tab, var) >= 0)
1582 : !min_at_most_neg_one(tab, var)) &&
1583 !var->is_redundant)
1584 mark_redundant(tab, var->index);
1585 for (i = tab->n_dead; i < tab->n_col; ++i) {
1586 var = var_from_col(tab, i);
1587 if (!var->marked)
1588 continue;
1589 if (!min_is_manifestly_unbounded(tab, var))
1590 continue;
1591 var->marked = 0;
1592 n_marked--;
1596 return tab;
1599 int isl_tab_is_equality(struct isl_tab *tab, int con)
1601 int row;
1603 if (!tab)
1604 return -1;
1605 if (tab->con[con].is_zero)
1606 return 1;
1607 if (tab->con[con].is_redundant)
1608 return 0;
1609 if (!tab->con[con].is_row)
1610 return tab->con[con].index < tab->n_dead;
1612 row = tab->con[con].index;
1614 return isl_int_is_zero(tab->mat->row[row][1]) &&
1615 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1616 tab->n_col - tab->n_dead) == -1;
1619 /* Return the minimial value of the affine expression "f" with denominator
1620 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1621 * the expression cannot attain arbitrarily small values.
1622 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1623 * The return value reflects the nature of the result (empty, unbounded,
1624 * minmimal value returned in *opt).
1626 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
1627 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
1628 unsigned flags)
1630 int r;
1631 enum isl_lp_result res = isl_lp_ok;
1632 struct isl_tab_var *var;
1633 struct isl_tab_undo *snap;
1635 if (tab->empty)
1636 return isl_lp_empty;
1638 snap = isl_tab_snap(tab);
1639 r = add_row(tab, f);
1640 if (r < 0)
1641 return isl_lp_error;
1642 var = &tab->con[r];
1643 isl_int_mul(tab->mat->row[var->index][0],
1644 tab->mat->row[var->index][0], denom);
1645 for (;;) {
1646 int row, col;
1647 find_pivot(tab, var, var, -1, &row, &col);
1648 if (row == var->index) {
1649 res = isl_lp_unbounded;
1650 break;
1652 if (row == -1)
1653 break;
1654 pivot(tab, row, col);
1656 if (isl_tab_rollback(tab, snap) < 0)
1657 return isl_lp_error;
1658 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
1659 int i;
1661 isl_vec_free(tab->dual);
1662 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
1663 if (!tab->dual)
1664 return isl_lp_error;
1665 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
1666 for (i = 0; i < tab->n_con; ++i) {
1667 if (tab->con[i].is_row)
1668 isl_int_set_si(tab->dual->el[1 + i], 0);
1669 else {
1670 int pos = 2 + tab->con[i].index;
1671 isl_int_set(tab->dual->el[1 + i],
1672 tab->mat->row[var->index][pos]);
1676 if (res == isl_lp_ok) {
1677 if (opt_denom) {
1678 isl_int_set(*opt, tab->mat->row[var->index][1]);
1679 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1680 } else
1681 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1682 tab->mat->row[var->index][0]);
1684 return res;
1687 int isl_tab_is_redundant(struct isl_tab *tab, int con)
1689 int row;
1690 unsigned n_col;
1692 if (!tab)
1693 return -1;
1694 if (tab->con[con].is_zero)
1695 return 0;
1696 if (tab->con[con].is_redundant)
1697 return 1;
1698 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1701 /* Take a snapshot of the tableau that can be restored by s call to
1702 * isl_tab_rollback.
1704 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
1706 if (!tab)
1707 return NULL;
1708 tab->need_undo = 1;
1709 return tab->top;
1712 /* Undo the operation performed by isl_tab_relax.
1714 static void unrelax(struct isl_tab *tab, struct isl_tab_var *var)
1716 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1717 to_row(tab, var, 1);
1719 if (var->is_row)
1720 isl_int_sub(tab->mat->row[var->index][1],
1721 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1722 else {
1723 int i;
1725 for (i = 0; i < tab->n_row; ++i) {
1726 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1727 continue;
1728 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1729 tab->mat->row[i][2 + var->index]);
1735 static void perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
1737 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
1738 switch(undo->type) {
1739 case isl_tab_undo_nonneg:
1740 var->is_nonneg = 0;
1741 break;
1742 case isl_tab_undo_redundant:
1743 var->is_redundant = 0;
1744 tab->n_redundant--;
1745 break;
1746 case isl_tab_undo_zero:
1747 var->is_zero = 0;
1748 tab->n_dead--;
1749 break;
1750 case isl_tab_undo_allocate:
1751 if (!var->is_row) {
1752 if (!max_is_manifestly_unbounded(tab, var))
1753 to_row(tab, var, 1);
1754 else if (!min_is_manifestly_unbounded(tab, var))
1755 to_row(tab, var, -1);
1756 else
1757 to_row(tab, var, 0);
1759 drop_row(tab, var->index);
1760 break;
1761 case isl_tab_undo_relax:
1762 unrelax(tab, var);
1763 break;
1767 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
1769 switch (undo->type) {
1770 case isl_tab_undo_empty:
1771 tab->empty = 0;
1772 break;
1773 case isl_tab_undo_nonneg:
1774 case isl_tab_undo_redundant:
1775 case isl_tab_undo_zero:
1776 case isl_tab_undo_allocate:
1777 case isl_tab_undo_relax:
1778 perform_undo_var(tab, undo);
1779 break;
1780 default:
1781 isl_assert(tab->mat->ctx, 0, return -1);
1783 return 0;
1786 /* Return the tableau to the state it was in when the snapshot "snap"
1787 * was taken.
1789 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
1791 struct isl_tab_undo *undo, *next;
1793 if (!tab)
1794 return -1;
1796 tab->in_undo = 1;
1797 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1798 next = undo->next;
1799 if (undo == snap)
1800 break;
1801 if (perform_undo(tab, undo) < 0) {
1802 free_undo(tab);
1803 tab->in_undo = 0;
1804 return -1;
1806 free(undo);
1808 tab->in_undo = 0;
1809 tab->top = undo;
1810 if (!undo)
1811 return -1;
1812 return 0;
1815 /* The given row "row" represents an inequality violated by all
1816 * points in the tableau. Check for some special cases of such
1817 * separating constraints.
1818 * In particular, if the row has been reduced to the constant -1,
1819 * then we know the inequality is adjacent (but opposite) to
1820 * an equality in the tableau.
1821 * If the row has been reduced to r = -1 -r', with r' an inequality
1822 * of the tableau, then the inequality is adjacent (but opposite)
1823 * to the inequality r'.
1825 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
1827 int pos;
1829 if (tab->rational)
1830 return isl_ineq_separate;
1832 if (!isl_int_is_one(tab->mat->row[row][0]))
1833 return isl_ineq_separate;
1834 if (!isl_int_is_negone(tab->mat->row[row][1]))
1835 return isl_ineq_separate;
1837 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1838 tab->n_col - tab->n_dead);
1839 if (pos == -1)
1840 return isl_ineq_adj_eq;
1842 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1843 return isl_ineq_separate;
1845 pos = isl_seq_first_non_zero(
1846 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1847 tab->n_col - tab->n_dead - pos - 1);
1849 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1852 /* Check the effect of inequality "ineq" on the tableau "tab".
1853 * The result may be
1854 * isl_ineq_redundant: satisfied by all points in the tableau
1855 * isl_ineq_separate: satisfied by no point in the tableau
1856 * isl_ineq_cut: satisfied by some by not all points
1857 * isl_ineq_adj_eq: adjacent to an equality
1858 * isl_ineq_adj_ineq: adjacent to an inequality.
1860 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
1862 enum isl_ineq_type type = isl_ineq_error;
1863 struct isl_tab_undo *snap = NULL;
1864 int con;
1865 int row;
1867 if (!tab)
1868 return isl_ineq_error;
1870 if (extend_cons(tab, 1) < 0)
1871 return isl_ineq_error;
1873 snap = isl_tab_snap(tab);
1875 con = add_row(tab, ineq);
1876 if (con < 0)
1877 goto error;
1879 row = tab->con[con].index;
1880 if (is_redundant(tab, row))
1881 type = isl_ineq_redundant;
1882 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1883 (tab->rational ||
1884 isl_int_abs_ge(tab->mat->row[row][1],
1885 tab->mat->row[row][0]))) {
1886 if (at_least_zero(tab, &tab->con[con]))
1887 type = isl_ineq_cut;
1888 else
1889 type = separation_type(tab, row);
1890 } else if (tab->rational ? (sign_of_min(tab, &tab->con[con]) < 0)
1891 : min_at_most_neg_one(tab, &tab->con[con]))
1892 type = isl_ineq_cut;
1893 else
1894 type = isl_ineq_redundant;
1896 if (isl_tab_rollback(tab, snap))
1897 return isl_ineq_error;
1898 return type;
1899 error:
1900 isl_tab_rollback(tab, snap);
1901 return isl_ineq_error;
1904 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
1906 unsigned r, c;
1907 int i;
1909 if (!tab) {
1910 fprintf(out, "%*snull tab\n", indent, "");
1911 return;
1913 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1914 tab->n_redundant, tab->n_dead);
1915 if (tab->rational)
1916 fprintf(out, ", rational");
1917 if (tab->empty)
1918 fprintf(out, ", empty");
1919 fprintf(out, "\n");
1920 fprintf(out, "%*s[", indent, "");
1921 for (i = 0; i < tab->n_var; ++i) {
1922 if (i)
1923 fprintf(out, ", ");
1924 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1925 tab->var[i].index,
1926 tab->var[i].is_zero ? " [=0]" :
1927 tab->var[i].is_redundant ? " [R]" : "");
1929 fprintf(out, "]\n");
1930 fprintf(out, "%*s[", indent, "");
1931 for (i = 0; i < tab->n_con; ++i) {
1932 if (i)
1933 fprintf(out, ", ");
1934 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1935 tab->con[i].index,
1936 tab->con[i].is_zero ? " [=0]" :
1937 tab->con[i].is_redundant ? " [R]" : "");
1939 fprintf(out, "]\n");
1940 fprintf(out, "%*s[", indent, "");
1941 for (i = 0; i < tab->n_row; ++i) {
1942 if (i)
1943 fprintf(out, ", ");
1944 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1945 var_from_row(tab, i)->is_nonneg ? " [>=0]" : "");
1947 fprintf(out, "]\n");
1948 fprintf(out, "%*s[", indent, "");
1949 for (i = 0; i < tab->n_col; ++i) {
1950 if (i)
1951 fprintf(out, ", ");
1952 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1953 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
1955 fprintf(out, "]\n");
1956 r = tab->mat->n_row;
1957 tab->mat->n_row = tab->n_row;
1958 c = tab->mat->n_col;
1959 tab->mat->n_col = 2 + tab->n_col;
1960 isl_mat_dump(tab->mat, out, indent);
1961 tab->mat->n_row = r;
1962 tab->mat->n_col = c;