isl_scheduler.c: compute_carrying_sol: extract out compute_carrying_sol_coef
[isl.git] / isl_scheduler.c
blobd1b1d2e8593b091d569a717e05fc3fa9671f1473
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
29 #include <isl/set.h>
30 #include <isl/union_set.h>
31 #include <isl_seq.h>
32 #include <isl_tab.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
35 #include <isl_sort.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
39 #include <isl/ilp.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
50 * of a schedule.
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
60 * of sched
61 * the rows of "vmap" represent a change of basis for the node
62 * variables; the first rank rows span the linear part of
63 * the schedule rows; the remaining rows are linearly independent
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * start is the first variable in the LP problem in the sequences that
68 * represents the schedule coefficients of this node
69 * nvar is the dimension of the domain
70 * nparam is the number of parameters or 0 if we are not constructing
71 * a parametric schedule
73 * If compressed is set, then hull represents the constraints
74 * that were used to derive the compression, while compress and
75 * decompress map the original space to the compressed space and
76 * vice versa.
78 * scc is the index of SCC (or WCC) this node belongs to
80 * "cluster" is only used inside extract_clusters and identifies
81 * the cluster of SCCs that the node belongs to.
83 * coincident contains a boolean for each of the rows of the schedule,
84 * indicating whether the corresponding scheduling dimension satisfies
85 * the coincidence constraints in the sense that the corresponding
86 * dependence distances are zero.
88 * If the schedule_treat_coalescing option is set, then
89 * "sizes" contains the sizes of the (compressed) instance set
90 * in each direction. If there is no fixed size in a given direction,
91 * then the corresponding size value is set to infinity.
92 * If the schedule_treat_coalescing option or the schedule_max_coefficient
93 * option is set, then "max" contains the maximal values for
94 * schedule coefficients of the (compressed) variables. If no bound
95 * needs to be imposed on a particular variable, then the corresponding
96 * value is negative.
98 struct isl_sched_node {
99 isl_space *space;
100 int compressed;
101 isl_set *hull;
102 isl_multi_aff *compress;
103 isl_multi_aff *decompress;
104 isl_mat *sched;
105 isl_map *sched_map;
106 int rank;
107 isl_mat *indep;
108 isl_mat *vmap;
109 int start;
110 int nvar;
111 int nparam;
113 int scc;
114 int cluster;
116 int *coincident;
118 isl_multi_val *sizes;
119 isl_vec *max;
122 static int node_has_tuples(const void *entry, const void *val)
124 struct isl_sched_node *node = (struct isl_sched_node *)entry;
125 isl_space *space = (isl_space *) val;
127 return isl_space_has_equal_tuples(node->space, space);
130 static int node_scc_exactly(struct isl_sched_node *node, int scc)
132 return node->scc == scc;
135 static int node_scc_at_most(struct isl_sched_node *node, int scc)
137 return node->scc <= scc;
140 static int node_scc_at_least(struct isl_sched_node *node, int scc)
142 return node->scc >= scc;
145 /* An edge in the dependence graph. An edge may be used to
146 * ensure validity of the generated schedule, to minimize the dependence
147 * distance or both
149 * map is the dependence relation, with i -> j in the map if j depends on i
150 * tagged_condition and tagged_validity contain the union of all tagged
151 * condition or conditional validity dependence relations that
152 * specialize the dependence relation "map"; that is,
153 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
154 * or "tagged_validity", then i -> j is an element of "map".
155 * If these fields are NULL, then they represent the empty relation.
156 * src is the source node
157 * dst is the sink node
159 * types is a bit vector containing the types of this edge.
160 * validity is set if the edge is used to ensure correctness
161 * coincidence is used to enforce zero dependence distances
162 * proximity is set if the edge is used to minimize dependence distances
163 * condition is set if the edge represents a condition
164 * for a conditional validity schedule constraint
165 * local can only be set for condition edges and indicates that
166 * the dependence distance over the edge should be zero
167 * conditional_validity is set if the edge is used to conditionally
168 * ensure correctness
170 * For validity edges, start and end mark the sequence of inequality
171 * constraints in the LP problem that encode the validity constraint
172 * corresponding to this edge.
174 * During clustering, an edge may be marked "no_merge" if it should
175 * not be used to merge clusters.
176 * The weight is also only used during clustering and it is
177 * an indication of how many schedule dimensions on either side
178 * of the schedule constraints can be aligned.
179 * If the weight is negative, then this means that this edge was postponed
180 * by has_bounded_distances or any_no_merge. The original weight can
181 * be retrieved by adding 1 + graph->max_weight, with "graph"
182 * the graph containing this edge.
184 struct isl_sched_edge {
185 isl_map *map;
186 isl_union_map *tagged_condition;
187 isl_union_map *tagged_validity;
189 struct isl_sched_node *src;
190 struct isl_sched_node *dst;
192 unsigned types;
194 int start;
195 int end;
197 int no_merge;
198 int weight;
201 /* Is "edge" marked as being of type "type"?
203 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
205 return ISL_FL_ISSET(edge->types, 1 << type);
208 /* Mark "edge" as being of type "type".
210 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 ISL_FL_SET(edge->types, 1 << type);
215 /* No longer mark "edge" as being of type "type"?
217 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_CLR(edge->types, 1 << type);
222 /* Is "edge" marked as a validity edge?
224 static int is_validity(struct isl_sched_edge *edge)
226 return is_type(edge, isl_edge_validity);
229 /* Mark "edge" as a validity edge.
231 static void set_validity(struct isl_sched_edge *edge)
233 set_type(edge, isl_edge_validity);
236 /* Is "edge" marked as a proximity edge?
238 static int is_proximity(struct isl_sched_edge *edge)
240 return is_type(edge, isl_edge_proximity);
243 /* Is "edge" marked as a local edge?
245 static int is_local(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_local);
250 /* Mark "edge" as a local edge.
252 static void set_local(struct isl_sched_edge *edge)
254 set_type(edge, isl_edge_local);
257 /* No longer mark "edge" as a local edge.
259 static void clear_local(struct isl_sched_edge *edge)
261 clear_type(edge, isl_edge_local);
264 /* Is "edge" marked as a coincidence edge?
266 static int is_coincidence(struct isl_sched_edge *edge)
268 return is_type(edge, isl_edge_coincidence);
271 /* Is "edge" marked as a condition edge?
273 static int is_condition(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_condition);
278 /* Is "edge" marked as a conditional validity edge?
280 static int is_conditional_validity(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_conditional_validity);
285 /* Internal information about the dependence graph used during
286 * the construction of the schedule.
288 * intra_hmap is a cache, mapping dependence relations to their dual,
289 * for dependences from a node to itself
290 * inter_hmap is a cache, mapping dependence relations to their dual,
291 * for dependences between distinct nodes
292 * if compression is involved then the key for these maps
293 * is the original, uncompressed dependence relation, while
294 * the value is the dual of the compressed dependence relation.
296 * n is the number of nodes
297 * node is the list of nodes
298 * maxvar is the maximal number of variables over all nodes
299 * max_row is the allocated number of rows in the schedule
300 * n_row is the current (maximal) number of linearly independent
301 * rows in the node schedules
302 * n_total_row is the current number of rows in the node schedules
303 * band_start is the starting row in the node schedules of the current band
304 * root is set if this graph is the original dependence graph,
305 * without any splitting
307 * sorted contains a list of node indices sorted according to the
308 * SCC to which a node belongs
310 * n_edge is the number of edges
311 * edge is the list of edges
312 * max_edge contains the maximal number of edges of each type;
313 * in particular, it contains the number of edges in the inital graph.
314 * edge_table contains pointers into the edge array, hashed on the source
315 * and sink spaces; there is one such table for each type;
316 * a given edge may be referenced from more than one table
317 * if the corresponding relation appears in more than one of the
318 * sets of dependences; however, for each type there is only
319 * a single edge between a given pair of source and sink space
320 * in the entire graph
322 * node_table contains pointers into the node array, hashed on the space tuples
324 * region contains a list of variable sequences that should be non-trivial
326 * lp contains the (I)LP problem used to obtain new schedule rows
328 * src_scc and dst_scc are the source and sink SCCs of an edge with
329 * conflicting constraints
331 * scc represents the number of components
332 * weak is set if the components are weakly connected
334 * max_weight is used during clustering and represents the maximal
335 * weight of the relevant proximity edges.
337 struct isl_sched_graph {
338 isl_map_to_basic_set *intra_hmap;
339 isl_map_to_basic_set *inter_hmap;
341 struct isl_sched_node *node;
342 int n;
343 int maxvar;
344 int max_row;
345 int n_row;
347 int *sorted;
349 int n_total_row;
350 int band_start;
352 int root;
354 struct isl_sched_edge *edge;
355 int n_edge;
356 int max_edge[isl_edge_last + 1];
357 struct isl_hash_table *edge_table[isl_edge_last + 1];
359 struct isl_hash_table *node_table;
360 struct isl_trivial_region *region;
362 isl_basic_set *lp;
364 int src_scc;
365 int dst_scc;
367 int scc;
368 int weak;
370 int max_weight;
373 /* Initialize node_table based on the list of nodes.
375 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
377 int i;
379 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
380 if (!graph->node_table)
381 return -1;
383 for (i = 0; i < graph->n; ++i) {
384 struct isl_hash_table_entry *entry;
385 uint32_t hash;
387 hash = isl_space_get_tuple_hash(graph->node[i].space);
388 entry = isl_hash_table_find(ctx, graph->node_table, hash,
389 &node_has_tuples,
390 graph->node[i].space, 1);
391 if (!entry)
392 return -1;
393 entry->data = &graph->node[i];
396 return 0;
399 /* Return a pointer to the node that lives within the given space,
400 * or NULL if there is no such node.
402 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
403 struct isl_sched_graph *graph, __isl_keep isl_space *space)
405 struct isl_hash_table_entry *entry;
406 uint32_t hash;
408 hash = isl_space_get_tuple_hash(space);
409 entry = isl_hash_table_find(ctx, graph->node_table, hash,
410 &node_has_tuples, space, 0);
412 return entry ? entry->data : NULL;
415 static int edge_has_src_and_dst(const void *entry, const void *val)
417 const struct isl_sched_edge *edge = entry;
418 const struct isl_sched_edge *temp = val;
420 return edge->src == temp->src && edge->dst == temp->dst;
423 /* Add the given edge to graph->edge_table[type].
425 static isl_stat graph_edge_table_add(isl_ctx *ctx,
426 struct isl_sched_graph *graph, enum isl_edge_type type,
427 struct isl_sched_edge *edge)
429 struct isl_hash_table_entry *entry;
430 uint32_t hash;
432 hash = isl_hash_init();
433 hash = isl_hash_builtin(hash, edge->src);
434 hash = isl_hash_builtin(hash, edge->dst);
435 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
436 &edge_has_src_and_dst, edge, 1);
437 if (!entry)
438 return isl_stat_error;
439 entry->data = edge;
441 return isl_stat_ok;
444 /* Allocate the edge_tables based on the maximal number of edges of
445 * each type.
447 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
449 int i;
451 for (i = 0; i <= isl_edge_last; ++i) {
452 graph->edge_table[i] = isl_hash_table_alloc(ctx,
453 graph->max_edge[i]);
454 if (!graph->edge_table[i])
455 return -1;
458 return 0;
461 /* If graph->edge_table[type] contains an edge from the given source
462 * to the given destination, then return the hash table entry of this edge.
463 * Otherwise, return NULL.
465 static struct isl_hash_table_entry *graph_find_edge_entry(
466 struct isl_sched_graph *graph,
467 enum isl_edge_type type,
468 struct isl_sched_node *src, struct isl_sched_node *dst)
470 isl_ctx *ctx = isl_space_get_ctx(src->space);
471 uint32_t hash;
472 struct isl_sched_edge temp = { .src = src, .dst = dst };
474 hash = isl_hash_init();
475 hash = isl_hash_builtin(hash, temp.src);
476 hash = isl_hash_builtin(hash, temp.dst);
477 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
478 &edge_has_src_and_dst, &temp, 0);
482 /* If graph->edge_table[type] contains an edge from the given source
483 * to the given destination, then return this edge.
484 * Otherwise, return NULL.
486 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
487 enum isl_edge_type type,
488 struct isl_sched_node *src, struct isl_sched_node *dst)
490 struct isl_hash_table_entry *entry;
492 entry = graph_find_edge_entry(graph, type, src, dst);
493 if (!entry)
494 return NULL;
496 return entry->data;
499 /* Check whether the dependence graph has an edge of the given type
500 * between the given two nodes.
502 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
503 enum isl_edge_type type,
504 struct isl_sched_node *src, struct isl_sched_node *dst)
506 struct isl_sched_edge *edge;
507 isl_bool empty;
509 edge = graph_find_edge(graph, type, src, dst);
510 if (!edge)
511 return 0;
513 empty = isl_map_plain_is_empty(edge->map);
514 if (empty < 0)
515 return isl_bool_error;
517 return !empty;
520 /* Look for any edge with the same src, dst and map fields as "model".
522 * Return the matching edge if one can be found.
523 * Return "model" if no matching edge is found.
524 * Return NULL on error.
526 static struct isl_sched_edge *graph_find_matching_edge(
527 struct isl_sched_graph *graph, struct isl_sched_edge *model)
529 enum isl_edge_type i;
530 struct isl_sched_edge *edge;
532 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
533 int is_equal;
535 edge = graph_find_edge(graph, i, model->src, model->dst);
536 if (!edge)
537 continue;
538 is_equal = isl_map_plain_is_equal(model->map, edge->map);
539 if (is_equal < 0)
540 return NULL;
541 if (is_equal)
542 return edge;
545 return model;
548 /* Remove the given edge from all the edge_tables that refer to it.
550 static void graph_remove_edge(struct isl_sched_graph *graph,
551 struct isl_sched_edge *edge)
553 isl_ctx *ctx = isl_map_get_ctx(edge->map);
554 enum isl_edge_type i;
556 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
557 struct isl_hash_table_entry *entry;
559 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
560 if (!entry)
561 continue;
562 if (entry->data != edge)
563 continue;
564 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
568 /* Check whether the dependence graph has any edge
569 * between the given two nodes.
571 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
572 struct isl_sched_node *src, struct isl_sched_node *dst)
574 enum isl_edge_type i;
575 isl_bool r;
577 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
578 r = graph_has_edge(graph, i, src, dst);
579 if (r < 0 || r)
580 return r;
583 return r;
586 /* Check whether the dependence graph has a validity edge
587 * between the given two nodes.
589 * Conditional validity edges are essentially validity edges that
590 * can be ignored if the corresponding condition edges are iteration private.
591 * Here, we are only checking for the presence of validity
592 * edges, so we need to consider the conditional validity edges too.
593 * In particular, this function is used during the detection
594 * of strongly connected components and we cannot ignore
595 * conditional validity edges during this detection.
597 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
598 struct isl_sched_node *src, struct isl_sched_node *dst)
600 isl_bool r;
602 r = graph_has_edge(graph, isl_edge_validity, src, dst);
603 if (r < 0 || r)
604 return r;
606 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
609 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
610 int n_node, int n_edge)
612 int i;
614 graph->n = n_node;
615 graph->n_edge = n_edge;
616 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
617 graph->sorted = isl_calloc_array(ctx, int, graph->n);
618 graph->region = isl_alloc_array(ctx,
619 struct isl_trivial_region, graph->n);
620 graph->edge = isl_calloc_array(ctx,
621 struct isl_sched_edge, graph->n_edge);
623 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
626 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
627 !graph->sorted)
628 return -1;
630 for(i = 0; i < graph->n; ++i)
631 graph->sorted[i] = i;
633 return 0;
636 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
638 int i;
640 isl_map_to_basic_set_free(graph->intra_hmap);
641 isl_map_to_basic_set_free(graph->inter_hmap);
643 if (graph->node)
644 for (i = 0; i < graph->n; ++i) {
645 isl_space_free(graph->node[i].space);
646 isl_set_free(graph->node[i].hull);
647 isl_multi_aff_free(graph->node[i].compress);
648 isl_multi_aff_free(graph->node[i].decompress);
649 isl_mat_free(graph->node[i].sched);
650 isl_map_free(graph->node[i].sched_map);
651 isl_mat_free(graph->node[i].indep);
652 isl_mat_free(graph->node[i].vmap);
653 if (graph->root)
654 free(graph->node[i].coincident);
655 isl_multi_val_free(graph->node[i].sizes);
656 isl_vec_free(graph->node[i].max);
658 free(graph->node);
659 free(graph->sorted);
660 if (graph->edge)
661 for (i = 0; i < graph->n_edge; ++i) {
662 isl_map_free(graph->edge[i].map);
663 isl_union_map_free(graph->edge[i].tagged_condition);
664 isl_union_map_free(graph->edge[i].tagged_validity);
666 free(graph->edge);
667 free(graph->region);
668 for (i = 0; i <= isl_edge_last; ++i)
669 isl_hash_table_free(ctx, graph->edge_table[i]);
670 isl_hash_table_free(ctx, graph->node_table);
671 isl_basic_set_free(graph->lp);
674 /* For each "set" on which this function is called, increment
675 * graph->n by one and update graph->maxvar.
677 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
679 struct isl_sched_graph *graph = user;
680 int nvar = isl_set_dim(set, isl_dim_set);
682 graph->n++;
683 if (nvar > graph->maxvar)
684 graph->maxvar = nvar;
686 isl_set_free(set);
688 return isl_stat_ok;
691 /* Compute the number of rows that should be allocated for the schedule.
692 * In particular, we need one row for each variable or one row
693 * for each basic map in the dependences.
694 * Note that it is practically impossible to exhaust both
695 * the number of dependences and the number of variables.
697 static isl_stat compute_max_row(struct isl_sched_graph *graph,
698 __isl_keep isl_schedule_constraints *sc)
700 int n_edge;
701 isl_stat r;
702 isl_union_set *domain;
704 graph->n = 0;
705 graph->maxvar = 0;
706 domain = isl_schedule_constraints_get_domain(sc);
707 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
708 isl_union_set_free(domain);
709 if (r < 0)
710 return isl_stat_error;
711 n_edge = isl_schedule_constraints_n_basic_map(sc);
712 if (n_edge < 0)
713 return isl_stat_error;
714 graph->max_row = n_edge + graph->maxvar;
716 return isl_stat_ok;
719 /* Does "bset" have any defining equalities for its set variables?
721 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
723 int i, n;
725 if (!bset)
726 return isl_bool_error;
728 n = isl_basic_set_dim(bset, isl_dim_set);
729 for (i = 0; i < n; ++i) {
730 isl_bool has;
732 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
733 NULL);
734 if (has < 0 || has)
735 return has;
738 return isl_bool_false;
741 /* Set the entries of node->max to the value of the schedule_max_coefficient
742 * option, if set.
744 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
746 int max;
748 max = isl_options_get_schedule_max_coefficient(ctx);
749 if (max == -1)
750 return isl_stat_ok;
752 node->max = isl_vec_alloc(ctx, node->nvar);
753 node->max = isl_vec_set_si(node->max, max);
754 if (!node->max)
755 return isl_stat_error;
757 return isl_stat_ok;
760 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
761 * option (if set) and half of the minimum of the sizes in the other
762 * dimensions. Round up when computing the half such that
763 * if the minimum of the sizes is one, half of the size is taken to be one
764 * rather than zero.
765 * If the global minimum is unbounded (i.e., if both
766 * the schedule_max_coefficient is not set and the sizes in the other
767 * dimensions are unbounded), then store a negative value.
768 * If the schedule coefficient is close to the size of the instance set
769 * in another dimension, then the schedule may represent a loop
770 * coalescing transformation (especially if the coefficient
771 * in that other dimension is one). Forcing the coefficient to be
772 * smaller than or equal to half the minimal size should avoid this
773 * situation.
775 static isl_stat compute_max_coefficient(isl_ctx *ctx,
776 struct isl_sched_node *node)
778 int max;
779 int i, j;
780 isl_vec *v;
782 max = isl_options_get_schedule_max_coefficient(ctx);
783 v = isl_vec_alloc(ctx, node->nvar);
784 if (!v)
785 return isl_stat_error;
787 for (i = 0; i < node->nvar; ++i) {
788 isl_int_set_si(v->el[i], max);
789 isl_int_mul_si(v->el[i], v->el[i], 2);
792 for (i = 0; i < node->nvar; ++i) {
793 isl_val *size;
795 size = isl_multi_val_get_val(node->sizes, i);
796 if (!size)
797 goto error;
798 if (!isl_val_is_int(size)) {
799 isl_val_free(size);
800 continue;
802 for (j = 0; j < node->nvar; ++j) {
803 if (j == i)
804 continue;
805 if (isl_int_is_neg(v->el[j]) ||
806 isl_int_gt(v->el[j], size->n))
807 isl_int_set(v->el[j], size->n);
809 isl_val_free(size);
812 for (i = 0; i < node->nvar; ++i)
813 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
815 node->max = v;
816 return isl_stat_ok;
817 error:
818 isl_vec_free(v);
819 return isl_stat_error;
822 /* Compute and return the size of "set" in dimension "dim".
823 * The size is taken to be the difference in values for that variable
824 * for fixed values of the other variables.
825 * In particular, the variable is first isolated from the other variables
826 * in the range of a map
828 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
830 * and then duplicated
832 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
834 * The shared variables are then projected out and the maximal value
835 * of i_dim' - i_dim is computed.
837 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
839 isl_map *map;
840 isl_local_space *ls;
841 isl_aff *obj;
842 isl_val *v;
844 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
845 map = isl_map_project_out(map, isl_dim_in, dim, 1);
846 map = isl_map_range_product(map, isl_map_copy(map));
847 map = isl_set_unwrap(isl_map_range(map));
848 set = isl_map_deltas(map);
849 ls = isl_local_space_from_space(isl_set_get_space(set));
850 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
851 v = isl_set_max_val(set, obj);
852 isl_aff_free(obj);
853 isl_set_free(set);
855 return v;
858 /* Compute the size of the instance set "set" of "node", after compression,
859 * as well as bounds on the corresponding coefficients, if needed.
861 * The sizes are needed when the schedule_treat_coalescing option is set.
862 * The bounds are needed when the schedule_treat_coalescing option or
863 * the schedule_max_coefficient option is set.
865 * If the schedule_treat_coalescing option is not set, then at most
866 * the bounds need to be set and this is done in set_max_coefficient.
867 * Otherwise, compress the domain if needed, compute the size
868 * in each direction and store the results in node->size.
869 * Finally, set the bounds on the coefficients based on the sizes
870 * and the schedule_max_coefficient option in compute_max_coefficient.
872 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
873 __isl_take isl_set *set)
875 int j, n;
876 isl_multi_val *mv;
878 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
879 isl_set_free(set);
880 return set_max_coefficient(ctx, node);
883 if (node->compressed)
884 set = isl_set_preimage_multi_aff(set,
885 isl_multi_aff_copy(node->decompress));
886 mv = isl_multi_val_zero(isl_set_get_space(set));
887 n = isl_set_dim(set, isl_dim_set);
888 for (j = 0; j < n; ++j) {
889 isl_val *v;
891 v = compute_size(isl_set_copy(set), j);
892 mv = isl_multi_val_set_val(mv, j, v);
894 node->sizes = mv;
895 isl_set_free(set);
896 if (!node->sizes)
897 return isl_stat_error;
898 return compute_max_coefficient(ctx, node);
901 /* Add a new node to the graph representing the given instance set.
902 * "nvar" is the (possibly compressed) number of variables and
903 * may be smaller than then number of set variables in "set"
904 * if "compressed" is set.
905 * If "compressed" is set, then "hull" represents the constraints
906 * that were used to derive the compression, while "compress" and
907 * "decompress" map the original space to the compressed space and
908 * vice versa.
909 * If "compressed" is not set, then "hull", "compress" and "decompress"
910 * should be NULL.
912 * Compute the size of the instance set and bounds on the coefficients,
913 * if needed.
915 static isl_stat add_node(struct isl_sched_graph *graph,
916 __isl_take isl_set *set, int nvar, int compressed,
917 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
918 __isl_take isl_multi_aff *decompress)
920 int nparam;
921 isl_ctx *ctx;
922 isl_mat *sched;
923 isl_space *space;
924 int *coincident;
925 struct isl_sched_node *node;
927 if (!set)
928 return isl_stat_error;
930 ctx = isl_set_get_ctx(set);
931 nparam = isl_set_dim(set, isl_dim_param);
932 if (!ctx->opt->schedule_parametric)
933 nparam = 0;
934 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
935 node = &graph->node[graph->n];
936 graph->n++;
937 space = isl_set_get_space(set);
938 node->space = space;
939 node->nvar = nvar;
940 node->nparam = nparam;
941 node->sched = sched;
942 node->sched_map = NULL;
943 coincident = isl_calloc_array(ctx, int, graph->max_row);
944 node->coincident = coincident;
945 node->compressed = compressed;
946 node->hull = hull;
947 node->compress = compress;
948 node->decompress = decompress;
949 if (compute_sizes_and_max(ctx, node, set) < 0)
950 return isl_stat_error;
952 if (!space || !sched || (graph->max_row && !coincident))
953 return isl_stat_error;
954 if (compressed && (!hull || !compress || !decompress))
955 return isl_stat_error;
957 return isl_stat_ok;
960 /* Construct an identifier for node "node", which will represent "set".
961 * The name of the identifier is either "compressed" or
962 * "compressed_<name>", with <name> the name of the space of "set".
963 * The user pointer of the identifier points to "node".
965 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
966 struct isl_sched_node *node)
968 isl_bool has_name;
969 isl_ctx *ctx;
970 isl_id *id;
971 isl_printer *p;
972 const char *name;
973 char *id_name;
975 has_name = isl_set_has_tuple_name(set);
976 if (has_name < 0)
977 return NULL;
979 ctx = isl_set_get_ctx(set);
980 if (!has_name)
981 return isl_id_alloc(ctx, "compressed", node);
983 p = isl_printer_to_str(ctx);
984 name = isl_set_get_tuple_name(set);
985 p = isl_printer_print_str(p, "compressed_");
986 p = isl_printer_print_str(p, name);
987 id_name = isl_printer_get_str(p);
988 isl_printer_free(p);
990 id = isl_id_alloc(ctx, id_name, node);
991 free(id_name);
993 return id;
996 /* Add a new node to the graph representing the given set.
998 * If any of the set variables is defined by an equality, then
999 * we perform variable compression such that we can perform
1000 * the scheduling on the compressed domain.
1001 * In this case, an identifier is used that references the new node
1002 * such that each compressed space is unique and
1003 * such that the node can be recovered from the compressed space.
1005 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1007 int nvar;
1008 isl_bool has_equality;
1009 isl_id *id;
1010 isl_basic_set *hull;
1011 isl_set *hull_set;
1012 isl_morph *morph;
1013 isl_multi_aff *compress, *decompress;
1014 struct isl_sched_graph *graph = user;
1016 hull = isl_set_affine_hull(isl_set_copy(set));
1017 hull = isl_basic_set_remove_divs(hull);
1018 nvar = isl_set_dim(set, isl_dim_set);
1019 has_equality = has_any_defining_equality(hull);
1021 if (has_equality < 0)
1022 goto error;
1023 if (!has_equality) {
1024 isl_basic_set_free(hull);
1025 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1028 id = construct_compressed_id(set, &graph->node[graph->n]);
1029 morph = isl_basic_set_variable_compression_with_id(hull,
1030 isl_dim_set, id);
1031 isl_id_free(id);
1032 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1033 compress = isl_morph_get_var_multi_aff(morph);
1034 morph = isl_morph_inverse(morph);
1035 decompress = isl_morph_get_var_multi_aff(morph);
1036 isl_morph_free(morph);
1038 hull_set = isl_set_from_basic_set(hull);
1039 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1040 error:
1041 isl_basic_set_free(hull);
1042 isl_set_free(set);
1043 return isl_stat_error;
1046 struct isl_extract_edge_data {
1047 enum isl_edge_type type;
1048 struct isl_sched_graph *graph;
1051 /* Merge edge2 into edge1, freeing the contents of edge2.
1052 * Return 0 on success and -1 on failure.
1054 * edge1 and edge2 are assumed to have the same value for the map field.
1056 static int merge_edge(struct isl_sched_edge *edge1,
1057 struct isl_sched_edge *edge2)
1059 edge1->types |= edge2->types;
1060 isl_map_free(edge2->map);
1062 if (is_condition(edge2)) {
1063 if (!edge1->tagged_condition)
1064 edge1->tagged_condition = edge2->tagged_condition;
1065 else
1066 edge1->tagged_condition =
1067 isl_union_map_union(edge1->tagged_condition,
1068 edge2->tagged_condition);
1071 if (is_conditional_validity(edge2)) {
1072 if (!edge1->tagged_validity)
1073 edge1->tagged_validity = edge2->tagged_validity;
1074 else
1075 edge1->tagged_validity =
1076 isl_union_map_union(edge1->tagged_validity,
1077 edge2->tagged_validity);
1080 if (is_condition(edge2) && !edge1->tagged_condition)
1081 return -1;
1082 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1083 return -1;
1085 return 0;
1088 /* Insert dummy tags in domain and range of "map".
1090 * In particular, if "map" is of the form
1092 * A -> B
1094 * then return
1096 * [A -> dummy_tag] -> [B -> dummy_tag]
1098 * where the dummy_tags are identical and equal to any dummy tags
1099 * introduced by any other call to this function.
1101 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1103 static char dummy;
1104 isl_ctx *ctx;
1105 isl_id *id;
1106 isl_space *space;
1107 isl_set *domain, *range;
1109 ctx = isl_map_get_ctx(map);
1111 id = isl_id_alloc(ctx, NULL, &dummy);
1112 space = isl_space_params(isl_map_get_space(map));
1113 space = isl_space_set_from_params(space);
1114 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1115 space = isl_space_map_from_set(space);
1117 domain = isl_map_wrap(map);
1118 range = isl_map_wrap(isl_map_universe(space));
1119 map = isl_map_from_domain_and_range(domain, range);
1120 map = isl_map_zip(map);
1122 return map;
1125 /* Given that at least one of "src" or "dst" is compressed, return
1126 * a map between the spaces of these nodes restricted to the affine
1127 * hull that was used in the compression.
1129 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1130 struct isl_sched_node *dst)
1132 isl_set *dom, *ran;
1134 if (src->compressed)
1135 dom = isl_set_copy(src->hull);
1136 else
1137 dom = isl_set_universe(isl_space_copy(src->space));
1138 if (dst->compressed)
1139 ran = isl_set_copy(dst->hull);
1140 else
1141 ran = isl_set_universe(isl_space_copy(dst->space));
1143 return isl_map_from_domain_and_range(dom, ran);
1146 /* Intersect the domains of the nested relations in domain and range
1147 * of "tagged" with "map".
1149 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1150 __isl_keep isl_map *map)
1152 isl_set *set;
1154 tagged = isl_map_zip(tagged);
1155 set = isl_map_wrap(isl_map_copy(map));
1156 tagged = isl_map_intersect_domain(tagged, set);
1157 tagged = isl_map_zip(tagged);
1158 return tagged;
1161 /* Return a pointer to the node that lives in the domain space of "map"
1162 * or NULL if there is no such node.
1164 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1165 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1167 struct isl_sched_node *node;
1168 isl_space *space;
1170 space = isl_space_domain(isl_map_get_space(map));
1171 node = graph_find_node(ctx, graph, space);
1172 isl_space_free(space);
1174 return node;
1177 /* Return a pointer to the node that lives in the range space of "map"
1178 * or NULL if there is no such node.
1180 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1181 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1183 struct isl_sched_node *node;
1184 isl_space *space;
1186 space = isl_space_range(isl_map_get_space(map));
1187 node = graph_find_node(ctx, graph, space);
1188 isl_space_free(space);
1190 return node;
1193 /* Add a new edge to the graph based on the given map
1194 * and add it to data->graph->edge_table[data->type].
1195 * If a dependence relation of a given type happens to be identical
1196 * to one of the dependence relations of a type that was added before,
1197 * then we don't create a new edge, but instead mark the original edge
1198 * as also representing a dependence of the current type.
1200 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1201 * may be specified as "tagged" dependence relations. That is, "map"
1202 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1203 * the dependence on iterations and a and b are tags.
1204 * edge->map is set to the relation containing the elements i -> j,
1205 * while edge->tagged_condition and edge->tagged_validity contain
1206 * the union of all the "map" relations
1207 * for which extract_edge is called that result in the same edge->map.
1209 * If the source or the destination node is compressed, then
1210 * intersect both "map" and "tagged" with the constraints that
1211 * were used to construct the compression.
1212 * This ensures that there are no schedule constraints defined
1213 * outside of these domains, while the scheduler no longer has
1214 * any control over those outside parts.
1216 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1218 isl_ctx *ctx = isl_map_get_ctx(map);
1219 struct isl_extract_edge_data *data = user;
1220 struct isl_sched_graph *graph = data->graph;
1221 struct isl_sched_node *src, *dst;
1222 struct isl_sched_edge *edge;
1223 isl_map *tagged = NULL;
1225 if (data->type == isl_edge_condition ||
1226 data->type == isl_edge_conditional_validity) {
1227 if (isl_map_can_zip(map)) {
1228 tagged = isl_map_copy(map);
1229 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1230 } else {
1231 tagged = insert_dummy_tags(isl_map_copy(map));
1235 src = find_domain_node(ctx, graph, map);
1236 dst = find_range_node(ctx, graph, map);
1238 if (!src || !dst) {
1239 isl_map_free(map);
1240 isl_map_free(tagged);
1241 return isl_stat_ok;
1244 if (src->compressed || dst->compressed) {
1245 isl_map *hull;
1246 hull = extract_hull(src, dst);
1247 if (tagged)
1248 tagged = map_intersect_domains(tagged, hull);
1249 map = isl_map_intersect(map, hull);
1252 graph->edge[graph->n_edge].src = src;
1253 graph->edge[graph->n_edge].dst = dst;
1254 graph->edge[graph->n_edge].map = map;
1255 graph->edge[graph->n_edge].types = 0;
1256 graph->edge[graph->n_edge].tagged_condition = NULL;
1257 graph->edge[graph->n_edge].tagged_validity = NULL;
1258 set_type(&graph->edge[graph->n_edge], data->type);
1259 if (data->type == isl_edge_condition)
1260 graph->edge[graph->n_edge].tagged_condition =
1261 isl_union_map_from_map(tagged);
1262 if (data->type == isl_edge_conditional_validity)
1263 graph->edge[graph->n_edge].tagged_validity =
1264 isl_union_map_from_map(tagged);
1266 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1267 if (!edge) {
1268 graph->n_edge++;
1269 return isl_stat_error;
1271 if (edge == &graph->edge[graph->n_edge])
1272 return graph_edge_table_add(ctx, graph, data->type,
1273 &graph->edge[graph->n_edge++]);
1275 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1276 return -1;
1278 return graph_edge_table_add(ctx, graph, data->type, edge);
1281 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1283 * The context is included in the domain before the nodes of
1284 * the graphs are extracted in order to be able to exploit
1285 * any possible additional equalities.
1286 * Note that this intersection is only performed locally here.
1288 static isl_stat graph_init(struct isl_sched_graph *graph,
1289 __isl_keep isl_schedule_constraints *sc)
1291 isl_ctx *ctx;
1292 isl_union_set *domain;
1293 isl_union_map *c;
1294 struct isl_extract_edge_data data;
1295 enum isl_edge_type i;
1296 isl_stat r;
1298 if (!sc)
1299 return isl_stat_error;
1301 ctx = isl_schedule_constraints_get_ctx(sc);
1303 domain = isl_schedule_constraints_get_domain(sc);
1304 graph->n = isl_union_set_n_set(domain);
1305 isl_union_set_free(domain);
1307 if (graph_alloc(ctx, graph, graph->n,
1308 isl_schedule_constraints_n_map(sc)) < 0)
1309 return isl_stat_error;
1311 if (compute_max_row(graph, sc) < 0)
1312 return isl_stat_error;
1313 graph->root = 1;
1314 graph->n = 0;
1315 domain = isl_schedule_constraints_get_domain(sc);
1316 domain = isl_union_set_intersect_params(domain,
1317 isl_schedule_constraints_get_context(sc));
1318 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1319 isl_union_set_free(domain);
1320 if (r < 0)
1321 return isl_stat_error;
1322 if (graph_init_table(ctx, graph) < 0)
1323 return isl_stat_error;
1324 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1325 c = isl_schedule_constraints_get(sc, i);
1326 graph->max_edge[i] = isl_union_map_n_map(c);
1327 isl_union_map_free(c);
1328 if (!c)
1329 return isl_stat_error;
1331 if (graph_init_edge_tables(ctx, graph) < 0)
1332 return isl_stat_error;
1333 graph->n_edge = 0;
1334 data.graph = graph;
1335 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1336 isl_stat r;
1338 data.type = i;
1339 c = isl_schedule_constraints_get(sc, i);
1340 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1341 isl_union_map_free(c);
1342 if (r < 0)
1343 return isl_stat_error;
1346 return isl_stat_ok;
1349 /* Check whether there is any dependence from node[j] to node[i]
1350 * or from node[i] to node[j].
1352 static isl_bool node_follows_weak(int i, int j, void *user)
1354 isl_bool f;
1355 struct isl_sched_graph *graph = user;
1357 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1358 if (f < 0 || f)
1359 return f;
1360 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1363 /* Check whether there is a (conditional) validity dependence from node[j]
1364 * to node[i], forcing node[i] to follow node[j].
1366 static isl_bool node_follows_strong(int i, int j, void *user)
1368 struct isl_sched_graph *graph = user;
1370 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1373 /* Use Tarjan's algorithm for computing the strongly connected components
1374 * in the dependence graph only considering those edges defined by "follows".
1376 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1377 isl_bool (*follows)(int i, int j, void *user))
1379 int i, n;
1380 struct isl_tarjan_graph *g = NULL;
1382 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1383 if (!g)
1384 return -1;
1386 graph->scc = 0;
1387 i = 0;
1388 n = graph->n;
1389 while (n) {
1390 while (g->order[i] != -1) {
1391 graph->node[g->order[i]].scc = graph->scc;
1392 --n;
1393 ++i;
1395 ++i;
1396 graph->scc++;
1399 isl_tarjan_graph_free(g);
1401 return 0;
1404 /* Apply Tarjan's algorithm to detect the strongly connected components
1405 * in the dependence graph.
1406 * Only consider the (conditional) validity dependences and clear "weak".
1408 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1410 graph->weak = 0;
1411 return detect_ccs(ctx, graph, &node_follows_strong);
1414 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1415 * in the dependence graph.
1416 * Consider all dependences and set "weak".
1418 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1420 graph->weak = 1;
1421 return detect_ccs(ctx, graph, &node_follows_weak);
1424 static int cmp_scc(const void *a, const void *b, void *data)
1426 struct isl_sched_graph *graph = data;
1427 const int *i1 = a;
1428 const int *i2 = b;
1430 return graph->node[*i1].scc - graph->node[*i2].scc;
1433 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1435 static int sort_sccs(struct isl_sched_graph *graph)
1437 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1440 /* Given a dependence relation R from "node" to itself,
1441 * construct the set of coefficients of valid constraints for elements
1442 * in that dependence relation.
1443 * In particular, the result contains tuples of coefficients
1444 * c_0, c_n, c_x such that
1446 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1448 * or, equivalently,
1450 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1452 * We choose here to compute the dual of delta R.
1453 * Alternatively, we could have computed the dual of R, resulting
1454 * in a set of tuples c_0, c_n, c_x, c_y, and then
1455 * plugged in (c_0, c_n, c_x, -c_x).
1457 * If "node" has been compressed, then the dependence relation
1458 * is also compressed before the set of coefficients is computed.
1460 static __isl_give isl_basic_set *intra_coefficients(
1461 struct isl_sched_graph *graph, struct isl_sched_node *node,
1462 __isl_take isl_map *map)
1464 isl_set *delta;
1465 isl_map *key;
1466 isl_basic_set *coef;
1467 isl_maybe_isl_basic_set m;
1469 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1470 if (m.valid < 0 || m.valid) {
1471 isl_map_free(map);
1472 return m.value;
1475 key = isl_map_copy(map);
1476 if (node->compressed) {
1477 map = isl_map_preimage_domain_multi_aff(map,
1478 isl_multi_aff_copy(node->decompress));
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(node->decompress));
1482 delta = isl_set_remove_divs(isl_map_deltas(map));
1483 coef = isl_set_coefficients(delta);
1484 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1485 isl_basic_set_copy(coef));
1487 return coef;
1490 /* Given a dependence relation R, construct the set of coefficients
1491 * of valid constraints for elements in that dependence relation.
1492 * In particular, the result contains tuples of coefficients
1493 * c_0, c_n, c_x, c_y such that
1495 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1497 * If the source or destination nodes of "edge" have been compressed,
1498 * then the dependence relation is also compressed before
1499 * the set of coefficients is computed.
1501 static __isl_give isl_basic_set *inter_coefficients(
1502 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1503 __isl_take isl_map *map)
1505 isl_set *set;
1506 isl_map *key;
1507 isl_basic_set *coef;
1508 isl_maybe_isl_basic_set m;
1510 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1511 if (m.valid < 0 || m.valid) {
1512 isl_map_free(map);
1513 return m.value;
1516 key = isl_map_copy(map);
1517 if (edge->src->compressed)
1518 map = isl_map_preimage_domain_multi_aff(map,
1519 isl_multi_aff_copy(edge->src->decompress));
1520 if (edge->dst->compressed)
1521 map = isl_map_preimage_range_multi_aff(map,
1522 isl_multi_aff_copy(edge->dst->decompress));
1523 set = isl_map_wrap(isl_map_remove_divs(map));
1524 coef = isl_set_coefficients(set);
1525 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1526 isl_basic_set_copy(coef));
1528 return coef;
1531 /* Return the position of the coefficients of the variables in
1532 * the coefficients constraints "coef".
1534 * The space of "coef" is of the form
1536 * { coefficients[[cst, params] -> S] }
1538 * Return the position of S.
1540 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1542 int offset;
1543 isl_space *space;
1545 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1546 offset = isl_space_dim(space, isl_dim_in);
1547 isl_space_free(space);
1549 return offset;
1552 /* Return the offset of the coefficient of the constant term of "node"
1553 * within the (I)LP.
1555 * Within each node, the coefficients have the following order:
1556 * - positive and negative parts of c_i_x
1557 * - c_i_n (if parametric)
1558 * - c_i_0
1560 static int node_cst_coef_offset(struct isl_sched_node *node)
1562 return node->start + 2 * node->nvar + node->nparam;
1565 /* Return the offset of the coefficients of the parameters of "node"
1566 * within the (I)LP.
1568 * Within each node, the coefficients have the following order:
1569 * - positive and negative parts of c_i_x
1570 * - c_i_n (if parametric)
1571 * - c_i_0
1573 static int node_par_coef_offset(struct isl_sched_node *node)
1575 return node->start + 2 * node->nvar;
1578 /* Return the offset of the coefficients of the variables of "node"
1579 * within the (I)LP.
1581 * Within each node, the coefficients have the following order:
1582 * - positive and negative parts of c_i_x
1583 * - c_i_n (if parametric)
1584 * - c_i_0
1586 static int node_var_coef_offset(struct isl_sched_node *node)
1588 return node->start;
1591 /* Return the position of the pair of variables encoding
1592 * coefficient "i" of "node".
1594 * The order of these variable pairs is the opposite of
1595 * that of the coefficients, with 2 variables per coefficient.
1597 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1599 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1602 /* Construct an isl_dim_map for mapping constraints on coefficients
1603 * for "node" to the corresponding positions in graph->lp.
1604 * "offset" is the offset of the coefficients for the variables
1605 * in the input constraints.
1606 * "s" is the sign of the mapping.
1608 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1609 * The mapping produced by this function essentially plugs in
1610 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1611 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1612 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1613 * Furthermore, the order of these pairs is the opposite of that
1614 * of the corresponding coefficients.
1616 * The caller can extend the mapping to also map the other coefficients
1617 * (and therefore not plug in 0).
1619 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1620 struct isl_sched_graph *graph, struct isl_sched_node *node,
1621 int offset, int s)
1623 int pos;
1624 unsigned total;
1625 isl_dim_map *dim_map;
1627 if (!node)
1628 return NULL;
1630 total = isl_basic_set_total_dim(graph->lp);
1631 pos = node_var_coef_pos(node, 0);
1632 dim_map = isl_dim_map_alloc(ctx, total);
1633 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1634 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1636 return dim_map;
1639 /* Construct an isl_dim_map for mapping constraints on coefficients
1640 * for "src" (node i) and "dst" (node j) to the corresponding positions
1641 * in graph->lp.
1642 * "offset" is the offset of the coefficients for the variables of "src"
1643 * in the input constraints.
1644 * "s" is the sign of the mapping.
1646 * The input constraints are given in terms of the coefficients
1647 * (c_0, c_n, c_x, c_y).
1648 * The mapping produced by this function essentially plugs in
1649 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1650 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1651 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1652 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1653 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1654 * Furthermore, the order of these pairs is the opposite of that
1655 * of the corresponding coefficients.
1657 * The caller can further extend the mapping.
1659 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1660 struct isl_sched_graph *graph, struct isl_sched_node *src,
1661 struct isl_sched_node *dst, int offset, int s)
1663 int pos;
1664 unsigned total;
1665 isl_dim_map *dim_map;
1667 if (!src || !dst)
1668 return NULL;
1670 total = isl_basic_set_total_dim(graph->lp);
1671 dim_map = isl_dim_map_alloc(ctx, total);
1673 pos = node_cst_coef_offset(dst);
1674 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1675 pos = node_par_coef_offset(dst);
1676 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1677 pos = node_var_coef_pos(dst, 0);
1678 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1679 dst->nvar, -s);
1680 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1681 dst->nvar, s);
1683 pos = node_cst_coef_offset(src);
1684 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1685 pos = node_par_coef_offset(src);
1686 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1687 pos = node_var_coef_pos(src, 0);
1688 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1689 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1691 return dim_map;
1694 /* Add the constraints from "src" to "dst" using "dim_map",
1695 * after making sure there is enough room in "dst" for the extra constraints.
1697 static __isl_give isl_basic_set *add_constraints_dim_map(
1698 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1699 __isl_take isl_dim_map *dim_map)
1701 int n_eq, n_ineq;
1703 n_eq = isl_basic_set_n_equality(src);
1704 n_ineq = isl_basic_set_n_inequality(src);
1705 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1706 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1707 return dst;
1710 /* Add constraints to graph->lp that force validity for the given
1711 * dependence from a node i to itself.
1712 * That is, add constraints that enforce
1714 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1715 * = c_i_x (y - x) >= 0
1717 * for each (x,y) in R.
1718 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1719 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1720 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1721 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1723 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1724 struct isl_sched_edge *edge)
1726 int offset;
1727 isl_map *map = isl_map_copy(edge->map);
1728 isl_ctx *ctx = isl_map_get_ctx(map);
1729 isl_dim_map *dim_map;
1730 isl_basic_set *coef;
1731 struct isl_sched_node *node = edge->src;
1733 coef = intra_coefficients(graph, node, map);
1735 offset = coef_var_offset(coef);
1737 if (!coef)
1738 return isl_stat_error;
1740 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1741 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1743 return isl_stat_ok;
1746 /* Add constraints to graph->lp that force validity for the given
1747 * dependence from node i to node j.
1748 * That is, add constraints that enforce
1750 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1752 * for each (x,y) in R.
1753 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1754 * of valid constraints for R and then plug in
1755 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1756 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1757 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1759 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1760 struct isl_sched_edge *edge)
1762 int offset;
1763 isl_map *map;
1764 isl_ctx *ctx;
1765 isl_dim_map *dim_map;
1766 isl_basic_set *coef;
1767 struct isl_sched_node *src = edge->src;
1768 struct isl_sched_node *dst = edge->dst;
1770 if (!graph->lp)
1771 return isl_stat_error;
1773 map = isl_map_copy(edge->map);
1774 ctx = isl_map_get_ctx(map);
1775 coef = inter_coefficients(graph, edge, map);
1777 offset = coef_var_offset(coef);
1779 if (!coef)
1780 return isl_stat_error;
1782 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1784 edge->start = graph->lp->n_ineq;
1785 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1786 if (!graph->lp)
1787 return isl_stat_error;
1788 edge->end = graph->lp->n_ineq;
1790 return isl_stat_ok;
1793 /* Add constraints to graph->lp that bound the dependence distance for the given
1794 * dependence from a node i to itself.
1795 * If s = 1, we add the constraint
1797 * c_i_x (y - x) <= m_0 + m_n n
1799 * or
1801 * -c_i_x (y - x) + m_0 + m_n n >= 0
1803 * for each (x,y) in R.
1804 * If s = -1, we add the constraint
1806 * -c_i_x (y - x) <= m_0 + m_n n
1808 * or
1810 * c_i_x (y - x) + m_0 + m_n n >= 0
1812 * for each (x,y) in R.
1813 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1814 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1815 * with each coefficient (except m_0) represented as a pair of non-negative
1816 * coefficients.
1819 * If "local" is set, then we add constraints
1821 * c_i_x (y - x) <= 0
1823 * or
1825 * -c_i_x (y - x) <= 0
1827 * instead, forcing the dependence distance to be (less than or) equal to 0.
1828 * That is, we plug in (0, 0, -s * c_i_x),
1829 * Note that dependences marked local are treated as validity constraints
1830 * by add_all_validity_constraints and therefore also have
1831 * their distances bounded by 0 from below.
1833 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1834 struct isl_sched_edge *edge, int s, int local)
1836 int offset;
1837 unsigned nparam;
1838 isl_map *map = isl_map_copy(edge->map);
1839 isl_ctx *ctx = isl_map_get_ctx(map);
1840 isl_dim_map *dim_map;
1841 isl_basic_set *coef;
1842 struct isl_sched_node *node = edge->src;
1844 coef = intra_coefficients(graph, node, map);
1846 offset = coef_var_offset(coef);
1848 if (!coef)
1849 return isl_stat_error;
1851 nparam = isl_space_dim(node->space, isl_dim_param);
1852 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1854 if (!local) {
1855 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1856 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1857 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1859 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1861 return isl_stat_ok;
1864 /* Add constraints to graph->lp that bound the dependence distance for the given
1865 * dependence from node i to node j.
1866 * If s = 1, we add the constraint
1868 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1869 * <= m_0 + m_n n
1871 * or
1873 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1874 * m_0 + m_n n >= 0
1876 * for each (x,y) in R.
1877 * If s = -1, we add the constraint
1879 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1880 * <= m_0 + m_n n
1882 * or
1884 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1885 * m_0 + m_n n >= 0
1887 * for each (x,y) in R.
1888 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1889 * of valid constraints for R and then plug in
1890 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1891 * s*c_i_x, -s*c_j_x)
1892 * with each coefficient (except m_0, c_*_0 and c_*_n)
1893 * represented as a pair of non-negative coefficients.
1896 * If "local" is set (and s = 1), then we add constraints
1898 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1900 * or
1902 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1904 * instead, forcing the dependence distance to be (less than or) equal to 0.
1905 * That is, we plug in
1906 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1907 * Note that dependences marked local are treated as validity constraints
1908 * by add_all_validity_constraints and therefore also have
1909 * their distances bounded by 0 from below.
1911 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1912 struct isl_sched_edge *edge, int s, int local)
1914 int offset;
1915 unsigned nparam;
1916 isl_map *map = isl_map_copy(edge->map);
1917 isl_ctx *ctx = isl_map_get_ctx(map);
1918 isl_dim_map *dim_map;
1919 isl_basic_set *coef;
1920 struct isl_sched_node *src = edge->src;
1921 struct isl_sched_node *dst = edge->dst;
1923 coef = inter_coefficients(graph, edge, map);
1925 offset = coef_var_offset(coef);
1927 if (!coef)
1928 return isl_stat_error;
1930 nparam = isl_space_dim(src->space, isl_dim_param);
1931 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1933 if (!local) {
1934 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1935 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1936 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1939 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1941 return isl_stat_ok;
1944 /* Add all validity constraints to graph->lp.
1946 * An edge that is forced to be local needs to have its dependence
1947 * distances equal to zero. We take care of bounding them by 0 from below
1948 * here. add_all_proximity_constraints takes care of bounding them by 0
1949 * from above.
1951 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1952 * Otherwise, we ignore them.
1954 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1955 int use_coincidence)
1957 int i;
1959 for (i = 0; i < graph->n_edge; ++i) {
1960 struct isl_sched_edge *edge = &graph->edge[i];
1961 int local;
1963 local = is_local(edge) ||
1964 (is_coincidence(edge) && use_coincidence);
1965 if (!is_validity(edge) && !local)
1966 continue;
1967 if (edge->src != edge->dst)
1968 continue;
1969 if (add_intra_validity_constraints(graph, edge) < 0)
1970 return -1;
1973 for (i = 0; i < graph->n_edge; ++i) {
1974 struct isl_sched_edge *edge = &graph->edge[i];
1975 int local;
1977 local = is_local(edge) ||
1978 (is_coincidence(edge) && use_coincidence);
1979 if (!is_validity(edge) && !local)
1980 continue;
1981 if (edge->src == edge->dst)
1982 continue;
1983 if (add_inter_validity_constraints(graph, edge) < 0)
1984 return -1;
1987 return 0;
1990 /* Add constraints to graph->lp that bound the dependence distance
1991 * for all dependence relations.
1992 * If a given proximity dependence is identical to a validity
1993 * dependence, then the dependence distance is already bounded
1994 * from below (by zero), so we only need to bound the distance
1995 * from above. (This includes the case of "local" dependences
1996 * which are treated as validity dependence by add_all_validity_constraints.)
1997 * Otherwise, we need to bound the distance both from above and from below.
1999 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2000 * Otherwise, we ignore them.
2002 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2003 int use_coincidence)
2005 int i;
2007 for (i = 0; i < graph->n_edge; ++i) {
2008 struct isl_sched_edge *edge = &graph->edge[i];
2009 int local;
2011 local = is_local(edge) ||
2012 (is_coincidence(edge) && use_coincidence);
2013 if (!is_proximity(edge) && !local)
2014 continue;
2015 if (edge->src == edge->dst &&
2016 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2017 return -1;
2018 if (edge->src != edge->dst &&
2019 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2020 return -1;
2021 if (is_validity(edge) || local)
2022 continue;
2023 if (edge->src == edge->dst &&
2024 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2025 return -1;
2026 if (edge->src != edge->dst &&
2027 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2028 return -1;
2031 return 0;
2034 /* Normalize the rows of "indep" such that all rows are lexicographically
2035 * positive and such that each row contains as many final zeros as possible,
2036 * given the choice for the previous rows.
2037 * Do this by performing elementary row operations.
2039 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2041 indep = isl_mat_reverse_gauss(indep);
2042 indep = isl_mat_lexnonneg_rows(indep);
2043 return indep;
2046 /* Compute a basis for the rows in the linear part of the schedule
2047 * and extend this basis to a full basis. The remaining rows
2048 * can then be used to force linear independence from the rows
2049 * in the schedule.
2051 * In particular, given the schedule rows S, we compute
2053 * S = H Q
2054 * S U = H
2056 * with H the Hermite normal form of S. That is, all but the
2057 * first rank columns of H are zero and so each row in S is
2058 * a linear combination of the first rank rows of Q.
2059 * The matrix Q can be used as a variable transformation
2060 * that isolates the directions of S in the first rank rows.
2061 * Transposing S U = H yields
2063 * U^T S^T = H^T
2065 * with all but the first rank rows of H^T zero.
2066 * The last rows of U^T are therefore linear combinations
2067 * of schedule coefficients that are all zero on schedule
2068 * coefficients that are linearly dependent on the rows of S.
2069 * At least one of these combinations is non-zero on
2070 * linearly independent schedule coefficients.
2071 * The rows are normalized to involve as few of the last
2072 * coefficients as possible and to have a positive initial value.
2074 static int node_update_vmap(struct isl_sched_node *node)
2076 isl_mat *H, *U, *Q;
2077 int n_row = isl_mat_rows(node->sched);
2079 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2080 1 + node->nparam, node->nvar);
2082 H = isl_mat_left_hermite(H, 0, &U, &Q);
2083 isl_mat_free(node->indep);
2084 isl_mat_free(node->vmap);
2085 node->vmap = Q;
2086 node->indep = isl_mat_transpose(U);
2087 node->rank = isl_mat_initial_non_zero_cols(H);
2088 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2089 node->indep = normalize_independent(node->indep);
2090 isl_mat_free(H);
2092 if (!node->indep || !node->vmap || node->rank < 0)
2093 return -1;
2094 return 0;
2097 /* Is "edge" marked as a validity or a conditional validity edge?
2099 static int is_any_validity(struct isl_sched_edge *edge)
2101 return is_validity(edge) || is_conditional_validity(edge);
2104 /* How many times should we count the constraints in "edge"?
2106 * We count as follows
2107 * validity -> 1 (>= 0)
2108 * validity+proximity -> 2 (>= 0 and upper bound)
2109 * proximity -> 2 (lower and upper bound)
2110 * local(+any) -> 2 (>= 0 and <= 0)
2112 * If an edge is only marked conditional_validity then it counts
2113 * as zero since it is only checked afterwards.
2115 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2116 * Otherwise, we ignore them.
2118 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2120 if (is_proximity(edge) || is_local(edge))
2121 return 2;
2122 if (use_coincidence && is_coincidence(edge))
2123 return 2;
2124 if (is_validity(edge))
2125 return 1;
2126 return 0;
2129 /* Count the number of equality and inequality constraints
2130 * that will be added for the given map.
2132 * "use_coincidence" is set if we should take into account coincidence edges.
2134 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2135 struct isl_sched_edge *edge, __isl_take isl_map *map,
2136 int *n_eq, int *n_ineq, int use_coincidence)
2138 isl_basic_set *coef;
2139 int f = edge_multiplicity(edge, use_coincidence);
2141 if (f == 0) {
2142 isl_map_free(map);
2143 return isl_stat_ok;
2146 if (edge->src == edge->dst)
2147 coef = intra_coefficients(graph, edge->src, map);
2148 else
2149 coef = inter_coefficients(graph, edge, map);
2150 if (!coef)
2151 return isl_stat_error;
2152 *n_eq += f * isl_basic_set_n_equality(coef);
2153 *n_ineq += f * isl_basic_set_n_inequality(coef);
2154 isl_basic_set_free(coef);
2156 return isl_stat_ok;
2159 /* Count the number of equality and inequality constraints
2160 * that will be added to the main lp problem.
2161 * We count as follows
2162 * validity -> 1 (>= 0)
2163 * validity+proximity -> 2 (>= 0 and upper bound)
2164 * proximity -> 2 (lower and upper bound)
2165 * local(+any) -> 2 (>= 0 and <= 0)
2167 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2168 * Otherwise, we ignore them.
2170 static int count_constraints(struct isl_sched_graph *graph,
2171 int *n_eq, int *n_ineq, int use_coincidence)
2173 int i;
2175 *n_eq = *n_ineq = 0;
2176 for (i = 0; i < graph->n_edge; ++i) {
2177 struct isl_sched_edge *edge = &graph->edge[i];
2178 isl_map *map = isl_map_copy(edge->map);
2180 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2181 use_coincidence) < 0)
2182 return -1;
2185 return 0;
2188 /* Count the number of constraints that will be added by
2189 * add_bound_constant_constraints to bound the values of the constant terms
2190 * and increment *n_eq and *n_ineq accordingly.
2192 * In practice, add_bound_constant_constraints only adds inequalities.
2194 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2195 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2197 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2198 return isl_stat_ok;
2200 *n_ineq += graph->n;
2202 return isl_stat_ok;
2205 /* Add constraints to bound the values of the constant terms in the schedule,
2206 * if requested by the user.
2208 * The maximal value of the constant terms is defined by the option
2209 * "schedule_max_constant_term".
2211 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2212 struct isl_sched_graph *graph)
2214 int i, k;
2215 int max;
2216 int total;
2218 max = isl_options_get_schedule_max_constant_term(ctx);
2219 if (max == -1)
2220 return isl_stat_ok;
2222 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2224 for (i = 0; i < graph->n; ++i) {
2225 struct isl_sched_node *node = &graph->node[i];
2226 int pos;
2228 k = isl_basic_set_alloc_inequality(graph->lp);
2229 if (k < 0)
2230 return isl_stat_error;
2231 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2232 pos = node_cst_coef_offset(node);
2233 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2234 isl_int_set_si(graph->lp->ineq[k][0], max);
2237 return isl_stat_ok;
2240 /* Count the number of constraints that will be added by
2241 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2242 * accordingly.
2244 * In practice, add_bound_coefficient_constraints only adds inequalities.
2246 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2247 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2249 int i;
2251 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2252 !isl_options_get_schedule_treat_coalescing(ctx))
2253 return 0;
2255 for (i = 0; i < graph->n; ++i)
2256 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2258 return 0;
2261 /* Add constraints to graph->lp that bound the values of
2262 * the parameter schedule coefficients of "node" to "max" and
2263 * the variable schedule coefficients to the corresponding entry
2264 * in node->max.
2265 * In either case, a negative value means that no bound needs to be imposed.
2267 * For parameter coefficients, this amounts to adding a constraint
2269 * c_n <= max
2271 * i.e.,
2273 * -c_n + max >= 0
2275 * The variables coefficients are, however, not represented directly.
2276 * Instead, the variable coefficients c_x are written as differences
2277 * c_x = c_x^+ - c_x^-.
2278 * That is,
2280 * -max_i <= c_x_i <= max_i
2282 * is encoded as
2284 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2286 * or
2288 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2289 * c_x_i^+ - c_x_i^- + max_i >= 0
2291 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2292 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2294 int i, j, k;
2295 int total;
2296 isl_vec *ineq;
2298 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2300 for (j = 0; j < node->nparam; ++j) {
2301 int dim;
2303 if (max < 0)
2304 continue;
2306 k = isl_basic_set_alloc_inequality(graph->lp);
2307 if (k < 0)
2308 return isl_stat_error;
2309 dim = 1 + node_par_coef_offset(node) + j;
2310 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2311 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2312 isl_int_set_si(graph->lp->ineq[k][0], max);
2315 ineq = isl_vec_alloc(ctx, 1 + total);
2316 ineq = isl_vec_clr(ineq);
2317 if (!ineq)
2318 return isl_stat_error;
2319 for (i = 0; i < node->nvar; ++i) {
2320 int pos = 1 + node_var_coef_pos(node, i);
2322 if (isl_int_is_neg(node->max->el[i]))
2323 continue;
2325 isl_int_set_si(ineq->el[pos], 1);
2326 isl_int_set_si(ineq->el[pos + 1], -1);
2327 isl_int_set(ineq->el[0], node->max->el[i]);
2329 k = isl_basic_set_alloc_inequality(graph->lp);
2330 if (k < 0)
2331 goto error;
2332 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2334 isl_seq_neg(ineq->el + pos, ineq->el + pos + 2 * i, 2);
2335 k = isl_basic_set_alloc_inequality(graph->lp);
2336 if (k < 0)
2337 goto error;
2338 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2340 isl_vec_free(ineq);
2342 return isl_stat_ok;
2343 error:
2344 isl_vec_free(ineq);
2345 return isl_stat_error;
2348 /* Add constraints that bound the values of the variable and parameter
2349 * coefficients of the schedule.
2351 * The maximal value of the coefficients is defined by the option
2352 * 'schedule_max_coefficient' and the entries in node->max.
2353 * These latter entries are only set if either the schedule_max_coefficient
2354 * option or the schedule_treat_coalescing option is set.
2356 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2357 struct isl_sched_graph *graph)
2359 int i;
2360 int max;
2362 max = isl_options_get_schedule_max_coefficient(ctx);
2364 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2365 return isl_stat_ok;
2367 for (i = 0; i < graph->n; ++i) {
2368 struct isl_sched_node *node = &graph->node[i];
2370 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2371 return isl_stat_error;
2374 return isl_stat_ok;
2377 /* Add a constraint to graph->lp that equates the value at position
2378 * "sum_pos" to the sum of the "n" values starting at "first".
2380 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2381 int sum_pos, int first, int n)
2383 int i, k;
2384 int total;
2386 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2388 k = isl_basic_set_alloc_equality(graph->lp);
2389 if (k < 0)
2390 return isl_stat_error;
2391 isl_seq_clr(graph->lp->eq[k], 1 + total);
2392 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2393 for (i = 0; i < n; ++i)
2394 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2396 return isl_stat_ok;
2399 /* Add a constraint to graph->lp that equates the value at position
2400 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2402 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2403 int sum_pos)
2405 int i, j, k;
2406 int total;
2408 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2410 k = isl_basic_set_alloc_equality(graph->lp);
2411 if (k < 0)
2412 return isl_stat_error;
2413 isl_seq_clr(graph->lp->eq[k], 1 + total);
2414 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2415 for (i = 0; i < graph->n; ++i) {
2416 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2418 for (j = 0; j < graph->node[i].nparam; ++j)
2419 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2422 return isl_stat_ok;
2425 /* Add a constraint to graph->lp that equates the value at position
2426 * "sum_pos" to the sum of the variable coefficients of all nodes.
2428 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2429 int sum_pos)
2431 int i, j, k;
2432 int total;
2434 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2436 k = isl_basic_set_alloc_equality(graph->lp);
2437 if (k < 0)
2438 return isl_stat_error;
2439 isl_seq_clr(graph->lp->eq[k], 1 + total);
2440 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2441 for (i = 0; i < graph->n; ++i) {
2442 struct isl_sched_node *node = &graph->node[i];
2443 int pos = 1 + node_var_coef_offset(node);
2445 for (j = 0; j < 2 * node->nvar; ++j)
2446 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2449 return isl_stat_ok;
2452 /* Construct an ILP problem for finding schedule coefficients
2453 * that result in non-negative, but small dependence distances
2454 * over all dependences.
2455 * In particular, the dependence distances over proximity edges
2456 * are bounded by m_0 + m_n n and we compute schedule coefficients
2457 * with small values (preferably zero) of m_n and m_0.
2459 * All variables of the ILP are non-negative. The actual coefficients
2460 * may be negative, so each coefficient is represented as the difference
2461 * of two non-negative variables. The negative part always appears
2462 * immediately before the positive part.
2463 * Other than that, the variables have the following order
2465 * - sum of positive and negative parts of m_n coefficients
2466 * - m_0
2467 * - sum of all c_n coefficients
2468 * (unconstrained when computing non-parametric schedules)
2469 * - sum of positive and negative parts of all c_x coefficients
2470 * - positive and negative parts of m_n coefficients
2471 * - for each node
2472 * - positive and negative parts of c_i_x, in opposite order
2473 * - c_i_n (if parametric)
2474 * - c_i_0
2476 * The constraints are those from the edges plus two or three equalities
2477 * to express the sums.
2479 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2480 * Otherwise, we ignore them.
2482 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2483 int use_coincidence)
2485 int i;
2486 unsigned nparam;
2487 unsigned total;
2488 isl_space *space;
2489 int parametric;
2490 int param_pos;
2491 int n_eq, n_ineq;
2493 parametric = ctx->opt->schedule_parametric;
2494 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2495 param_pos = 4;
2496 total = param_pos + 2 * nparam;
2497 for (i = 0; i < graph->n; ++i) {
2498 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2499 if (node_update_vmap(node) < 0)
2500 return isl_stat_error;
2501 node->start = total;
2502 total += 1 + node->nparam + 2 * node->nvar;
2505 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2506 return isl_stat_error;
2507 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2508 return isl_stat_error;
2509 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2510 return isl_stat_error;
2512 space = isl_space_set_alloc(ctx, 0, total);
2513 isl_basic_set_free(graph->lp);
2514 n_eq += 2 + parametric;
2516 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2518 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2519 return isl_stat_error;
2520 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2521 return isl_stat_error;
2522 if (add_var_sum_constraint(graph, 3) < 0)
2523 return isl_stat_error;
2524 if (add_bound_constant_constraints(ctx, graph) < 0)
2525 return isl_stat_error;
2526 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2527 return isl_stat_error;
2528 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2529 return isl_stat_error;
2530 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2531 return isl_stat_error;
2533 return isl_stat_ok;
2536 /* Analyze the conflicting constraint found by
2537 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2538 * constraint of one of the edges between distinct nodes, living, moreover
2539 * in distinct SCCs, then record the source and sink SCC as this may
2540 * be a good place to cut between SCCs.
2542 static int check_conflict(int con, void *user)
2544 int i;
2545 struct isl_sched_graph *graph = user;
2547 if (graph->src_scc >= 0)
2548 return 0;
2550 con -= graph->lp->n_eq;
2552 if (con >= graph->lp->n_ineq)
2553 return 0;
2555 for (i = 0; i < graph->n_edge; ++i) {
2556 if (!is_validity(&graph->edge[i]))
2557 continue;
2558 if (graph->edge[i].src == graph->edge[i].dst)
2559 continue;
2560 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2561 continue;
2562 if (graph->edge[i].start > con)
2563 continue;
2564 if (graph->edge[i].end <= con)
2565 continue;
2566 graph->src_scc = graph->edge[i].src->scc;
2567 graph->dst_scc = graph->edge[i].dst->scc;
2570 return 0;
2573 /* Check whether the next schedule row of the given node needs to be
2574 * non-trivial. Lower-dimensional domains may have some trivial rows,
2575 * but as soon as the number of remaining required non-trivial rows
2576 * is as large as the number or remaining rows to be computed,
2577 * all remaining rows need to be non-trivial.
2579 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2581 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2584 /* Construct a non-triviality region with triviality directions
2585 * corresponding to the rows of "indep".
2586 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2587 * while the triviality directions are expressed in terms of
2588 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2589 * before c^+_i. Furthermore,
2590 * the pairs of non-negative variables representing the coefficients
2591 * are stored in the opposite order.
2593 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2595 isl_ctx *ctx;
2596 isl_mat *mat;
2597 int i, j, n, n_var;
2599 if (!indep)
2600 return NULL;
2602 ctx = isl_mat_get_ctx(indep);
2603 n = isl_mat_rows(indep);
2604 n_var = isl_mat_cols(indep);
2605 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2606 if (!mat)
2607 return NULL;
2608 for (i = 0; i < n; ++i) {
2609 for (j = 0; j < n_var; ++j) {
2610 int nj = n_var - 1 - j;
2611 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2612 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2616 return mat;
2619 /* Solve the ILP problem constructed in setup_lp.
2620 * For each node such that all the remaining rows of its schedule
2621 * need to be non-trivial, we construct a non-triviality region.
2622 * This region imposes that the next row is independent of previous rows.
2623 * In particular, the non-triviality region enforces that at least
2624 * one of the linear combinations in the rows of node->indep is non-zero.
2626 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2628 int i;
2629 isl_vec *sol;
2630 isl_basic_set *lp;
2632 for (i = 0; i < graph->n; ++i) {
2633 struct isl_sched_node *node = &graph->node[i];
2634 isl_mat *trivial;
2636 graph->region[i].pos = node_var_coef_offset(node);
2637 if (needs_row(graph, node))
2638 trivial = construct_trivial(node->indep);
2639 else
2640 trivial = isl_mat_zero(ctx, 0, 0);
2641 graph->region[i].trivial = trivial;
2643 lp = isl_basic_set_copy(graph->lp);
2644 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2645 graph->region, &check_conflict, graph);
2646 for (i = 0; i < graph->n; ++i)
2647 isl_mat_free(graph->region[i].trivial);
2648 return sol;
2651 /* Extract the coefficients for the variables of "node" from "sol".
2653 * Each schedule coefficient c_i_x is represented as the difference
2654 * between two non-negative variables c_i_x^+ - c_i_x^-.
2655 * The c_i_x^- appear before their c_i_x^+ counterpart.
2656 * Furthermore, the order of these pairs is the opposite of that
2657 * of the corresponding coefficients.
2659 * Return c_i_x = c_i_x^+ - c_i_x^-
2661 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2662 __isl_keep isl_vec *sol)
2664 int i;
2665 int pos;
2666 isl_vec *csol;
2668 if (!sol)
2669 return NULL;
2670 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2671 if (!csol)
2672 return NULL;
2674 pos = 1 + node_var_coef_offset(node);
2675 for (i = 0; i < node->nvar; ++i)
2676 isl_int_sub(csol->el[node->nvar - 1 - i],
2677 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2679 return csol;
2682 /* Update the schedules of all nodes based on the given solution
2683 * of the LP problem.
2684 * The new row is added to the current band.
2685 * All possibly negative coefficients are encoded as a difference
2686 * of two non-negative variables, so we need to perform the subtraction
2687 * here.
2689 * If coincident is set, then the caller guarantees that the new
2690 * row satisfies the coincidence constraints.
2692 static int update_schedule(struct isl_sched_graph *graph,
2693 __isl_take isl_vec *sol, int coincident)
2695 int i, j;
2696 isl_vec *csol = NULL;
2698 if (!sol)
2699 goto error;
2700 if (sol->size == 0)
2701 isl_die(sol->ctx, isl_error_internal,
2702 "no solution found", goto error);
2703 if (graph->n_total_row >= graph->max_row)
2704 isl_die(sol->ctx, isl_error_internal,
2705 "too many schedule rows", goto error);
2707 for (i = 0; i < graph->n; ++i) {
2708 struct isl_sched_node *node = &graph->node[i];
2709 int pos;
2710 int row = isl_mat_rows(node->sched);
2712 isl_vec_free(csol);
2713 csol = extract_var_coef(node, sol);
2714 if (!csol)
2715 goto error;
2717 isl_map_free(node->sched_map);
2718 node->sched_map = NULL;
2719 node->sched = isl_mat_add_rows(node->sched, 1);
2720 if (!node->sched)
2721 goto error;
2722 pos = node_cst_coef_offset(node);
2723 node->sched = isl_mat_set_element(node->sched,
2724 row, 0, sol->el[1 + pos]);
2725 pos = node_par_coef_offset(node);
2726 for (j = 0; j < node->nparam; ++j)
2727 node->sched = isl_mat_set_element(node->sched,
2728 row, 1 + j, sol->el[1 + pos + j]);
2729 for (j = 0; j < node->nvar; ++j)
2730 node->sched = isl_mat_set_element(node->sched,
2731 row, 1 + node->nparam + j, csol->el[j]);
2732 node->coincident[graph->n_total_row] = coincident;
2734 isl_vec_free(sol);
2735 isl_vec_free(csol);
2737 graph->n_row++;
2738 graph->n_total_row++;
2740 return 0;
2741 error:
2742 isl_vec_free(sol);
2743 isl_vec_free(csol);
2744 return -1;
2747 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2748 * and return this isl_aff.
2750 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2751 struct isl_sched_node *node, int row)
2753 int j;
2754 isl_int v;
2755 isl_aff *aff;
2757 isl_int_init(v);
2759 aff = isl_aff_zero_on_domain(ls);
2760 isl_mat_get_element(node->sched, row, 0, &v);
2761 aff = isl_aff_set_constant(aff, v);
2762 for (j = 0; j < node->nparam; ++j) {
2763 isl_mat_get_element(node->sched, row, 1 + j, &v);
2764 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2766 for (j = 0; j < node->nvar; ++j) {
2767 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2768 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2771 isl_int_clear(v);
2773 return aff;
2776 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2777 * and return this multi_aff.
2779 * The result is defined over the uncompressed node domain.
2781 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2782 struct isl_sched_node *node, int first, int n)
2784 int i;
2785 isl_space *space;
2786 isl_local_space *ls;
2787 isl_aff *aff;
2788 isl_multi_aff *ma;
2789 int nrow;
2791 if (!node)
2792 return NULL;
2793 nrow = isl_mat_rows(node->sched);
2794 if (node->compressed)
2795 space = isl_multi_aff_get_domain_space(node->decompress);
2796 else
2797 space = isl_space_copy(node->space);
2798 ls = isl_local_space_from_space(isl_space_copy(space));
2799 space = isl_space_from_domain(space);
2800 space = isl_space_add_dims(space, isl_dim_out, n);
2801 ma = isl_multi_aff_zero(space);
2803 for (i = first; i < first + n; ++i) {
2804 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2805 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2808 isl_local_space_free(ls);
2810 if (node->compressed)
2811 ma = isl_multi_aff_pullback_multi_aff(ma,
2812 isl_multi_aff_copy(node->compress));
2814 return ma;
2817 /* Convert node->sched into a multi_aff and return this multi_aff.
2819 * The result is defined over the uncompressed node domain.
2821 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2822 struct isl_sched_node *node)
2824 int nrow;
2826 nrow = isl_mat_rows(node->sched);
2827 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2830 /* Convert node->sched into a map and return this map.
2832 * The result is cached in node->sched_map, which needs to be released
2833 * whenever node->sched is updated.
2834 * It is defined over the uncompressed node domain.
2836 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2838 if (!node->sched_map) {
2839 isl_multi_aff *ma;
2841 ma = node_extract_schedule_multi_aff(node);
2842 node->sched_map = isl_map_from_multi_aff(ma);
2845 return isl_map_copy(node->sched_map);
2848 /* Construct a map that can be used to update a dependence relation
2849 * based on the current schedule.
2850 * That is, construct a map expressing that source and sink
2851 * are executed within the same iteration of the current schedule.
2852 * This map can then be intersected with the dependence relation.
2853 * This is not the most efficient way, but this shouldn't be a critical
2854 * operation.
2856 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2857 struct isl_sched_node *dst)
2859 isl_map *src_sched, *dst_sched;
2861 src_sched = node_extract_schedule(src);
2862 dst_sched = node_extract_schedule(dst);
2863 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2866 /* Intersect the domains of the nested relations in domain and range
2867 * of "umap" with "map".
2869 static __isl_give isl_union_map *intersect_domains(
2870 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2872 isl_union_set *uset;
2874 umap = isl_union_map_zip(umap);
2875 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2876 umap = isl_union_map_intersect_domain(umap, uset);
2877 umap = isl_union_map_zip(umap);
2878 return umap;
2881 /* Update the dependence relation of the given edge based
2882 * on the current schedule.
2883 * If the dependence is carried completely by the current schedule, then
2884 * it is removed from the edge_tables. It is kept in the list of edges
2885 * as otherwise all edge_tables would have to be recomputed.
2887 static int update_edge(struct isl_sched_graph *graph,
2888 struct isl_sched_edge *edge)
2890 int empty;
2891 isl_map *id;
2893 id = specializer(edge->src, edge->dst);
2894 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2895 if (!edge->map)
2896 goto error;
2898 if (edge->tagged_condition) {
2899 edge->tagged_condition =
2900 intersect_domains(edge->tagged_condition, id);
2901 if (!edge->tagged_condition)
2902 goto error;
2904 if (edge->tagged_validity) {
2905 edge->tagged_validity =
2906 intersect_domains(edge->tagged_validity, id);
2907 if (!edge->tagged_validity)
2908 goto error;
2911 empty = isl_map_plain_is_empty(edge->map);
2912 if (empty < 0)
2913 goto error;
2914 if (empty)
2915 graph_remove_edge(graph, edge);
2917 isl_map_free(id);
2918 return 0;
2919 error:
2920 isl_map_free(id);
2921 return -1;
2924 /* Does the domain of "umap" intersect "uset"?
2926 static int domain_intersects(__isl_keep isl_union_map *umap,
2927 __isl_keep isl_union_set *uset)
2929 int empty;
2931 umap = isl_union_map_copy(umap);
2932 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2933 empty = isl_union_map_is_empty(umap);
2934 isl_union_map_free(umap);
2936 return empty < 0 ? -1 : !empty;
2939 /* Does the range of "umap" intersect "uset"?
2941 static int range_intersects(__isl_keep isl_union_map *umap,
2942 __isl_keep isl_union_set *uset)
2944 int empty;
2946 umap = isl_union_map_copy(umap);
2947 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2948 empty = isl_union_map_is_empty(umap);
2949 isl_union_map_free(umap);
2951 return empty < 0 ? -1 : !empty;
2954 /* Are the condition dependences of "edge" local with respect to
2955 * the current schedule?
2957 * That is, are domain and range of the condition dependences mapped
2958 * to the same point?
2960 * In other words, is the condition false?
2962 static int is_condition_false(struct isl_sched_edge *edge)
2964 isl_union_map *umap;
2965 isl_map *map, *sched, *test;
2966 int empty, local;
2968 empty = isl_union_map_is_empty(edge->tagged_condition);
2969 if (empty < 0 || empty)
2970 return empty;
2972 umap = isl_union_map_copy(edge->tagged_condition);
2973 umap = isl_union_map_zip(umap);
2974 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2975 map = isl_map_from_union_map(umap);
2977 sched = node_extract_schedule(edge->src);
2978 map = isl_map_apply_domain(map, sched);
2979 sched = node_extract_schedule(edge->dst);
2980 map = isl_map_apply_range(map, sched);
2982 test = isl_map_identity(isl_map_get_space(map));
2983 local = isl_map_is_subset(map, test);
2984 isl_map_free(map);
2985 isl_map_free(test);
2987 return local;
2990 /* For each conditional validity constraint that is adjacent
2991 * to a condition with domain in condition_source or range in condition_sink,
2992 * turn it into an unconditional validity constraint.
2994 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2995 __isl_take isl_union_set *condition_source,
2996 __isl_take isl_union_set *condition_sink)
2998 int i;
3000 condition_source = isl_union_set_coalesce(condition_source);
3001 condition_sink = isl_union_set_coalesce(condition_sink);
3003 for (i = 0; i < graph->n_edge; ++i) {
3004 int adjacent;
3005 isl_union_map *validity;
3007 if (!is_conditional_validity(&graph->edge[i]))
3008 continue;
3009 if (is_validity(&graph->edge[i]))
3010 continue;
3012 validity = graph->edge[i].tagged_validity;
3013 adjacent = domain_intersects(validity, condition_sink);
3014 if (adjacent >= 0 && !adjacent)
3015 adjacent = range_intersects(validity, condition_source);
3016 if (adjacent < 0)
3017 goto error;
3018 if (!adjacent)
3019 continue;
3021 set_validity(&graph->edge[i]);
3024 isl_union_set_free(condition_source);
3025 isl_union_set_free(condition_sink);
3026 return 0;
3027 error:
3028 isl_union_set_free(condition_source);
3029 isl_union_set_free(condition_sink);
3030 return -1;
3033 /* Update the dependence relations of all edges based on the current schedule
3034 * and enforce conditional validity constraints that are adjacent
3035 * to satisfied condition constraints.
3037 * First check if any of the condition constraints are satisfied
3038 * (i.e., not local to the outer schedule) and keep track of
3039 * their domain and range.
3040 * Then update all dependence relations (which removes the non-local
3041 * constraints).
3042 * Finally, if any condition constraints turned out to be satisfied,
3043 * then turn all adjacent conditional validity constraints into
3044 * unconditional validity constraints.
3046 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3048 int i;
3049 int any = 0;
3050 isl_union_set *source, *sink;
3052 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3053 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3054 for (i = 0; i < graph->n_edge; ++i) {
3055 int local;
3056 isl_union_set *uset;
3057 isl_union_map *umap;
3059 if (!is_condition(&graph->edge[i]))
3060 continue;
3061 if (is_local(&graph->edge[i]))
3062 continue;
3063 local = is_condition_false(&graph->edge[i]);
3064 if (local < 0)
3065 goto error;
3066 if (local)
3067 continue;
3069 any = 1;
3071 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3072 uset = isl_union_map_domain(umap);
3073 source = isl_union_set_union(source, uset);
3075 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3076 uset = isl_union_map_range(umap);
3077 sink = isl_union_set_union(sink, uset);
3080 for (i = graph->n_edge - 1; i >= 0; --i) {
3081 if (update_edge(graph, &graph->edge[i]) < 0)
3082 goto error;
3085 if (any)
3086 return unconditionalize_adjacent_validity(graph, source, sink);
3088 isl_union_set_free(source);
3089 isl_union_set_free(sink);
3090 return 0;
3091 error:
3092 isl_union_set_free(source);
3093 isl_union_set_free(sink);
3094 return -1;
3097 static void next_band(struct isl_sched_graph *graph)
3099 graph->band_start = graph->n_total_row;
3102 /* Return the union of the universe domains of the nodes in "graph"
3103 * that satisfy "pred".
3105 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3106 struct isl_sched_graph *graph,
3107 int (*pred)(struct isl_sched_node *node, int data), int data)
3109 int i;
3110 isl_set *set;
3111 isl_union_set *dom;
3113 for (i = 0; i < graph->n; ++i)
3114 if (pred(&graph->node[i], data))
3115 break;
3117 if (i >= graph->n)
3118 isl_die(ctx, isl_error_internal,
3119 "empty component", return NULL);
3121 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3122 dom = isl_union_set_from_set(set);
3124 for (i = i + 1; i < graph->n; ++i) {
3125 if (!pred(&graph->node[i], data))
3126 continue;
3127 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3128 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3131 return dom;
3134 /* Return a list of unions of universe domains, where each element
3135 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3137 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3138 struct isl_sched_graph *graph)
3140 int i;
3141 isl_union_set_list *filters;
3143 filters = isl_union_set_list_alloc(ctx, graph->scc);
3144 for (i = 0; i < graph->scc; ++i) {
3145 isl_union_set *dom;
3147 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3148 filters = isl_union_set_list_add(filters, dom);
3151 return filters;
3154 /* Return a list of two unions of universe domains, one for the SCCs up
3155 * to and including graph->src_scc and another for the other SCCs.
3157 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3158 struct isl_sched_graph *graph)
3160 isl_union_set *dom;
3161 isl_union_set_list *filters;
3163 filters = isl_union_set_list_alloc(ctx, 2);
3164 dom = isl_sched_graph_domain(ctx, graph,
3165 &node_scc_at_most, graph->src_scc);
3166 filters = isl_union_set_list_add(filters, dom);
3167 dom = isl_sched_graph_domain(ctx, graph,
3168 &node_scc_at_least, graph->src_scc + 1);
3169 filters = isl_union_set_list_add(filters, dom);
3171 return filters;
3174 /* Copy nodes that satisfy node_pred from the src dependence graph
3175 * to the dst dependence graph.
3177 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3178 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3180 int i;
3182 dst->n = 0;
3183 for (i = 0; i < src->n; ++i) {
3184 int j;
3186 if (!node_pred(&src->node[i], data))
3187 continue;
3189 j = dst->n;
3190 dst->node[j].space = isl_space_copy(src->node[i].space);
3191 dst->node[j].compressed = src->node[i].compressed;
3192 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3193 dst->node[j].compress =
3194 isl_multi_aff_copy(src->node[i].compress);
3195 dst->node[j].decompress =
3196 isl_multi_aff_copy(src->node[i].decompress);
3197 dst->node[j].nvar = src->node[i].nvar;
3198 dst->node[j].nparam = src->node[i].nparam;
3199 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3200 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3201 dst->node[j].coincident = src->node[i].coincident;
3202 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3203 dst->node[j].max = isl_vec_copy(src->node[i].max);
3204 dst->n++;
3206 if (!dst->node[j].space || !dst->node[j].sched)
3207 return -1;
3208 if (dst->node[j].compressed &&
3209 (!dst->node[j].hull || !dst->node[j].compress ||
3210 !dst->node[j].decompress))
3211 return -1;
3214 return 0;
3217 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3218 * to the dst dependence graph.
3219 * If the source or destination node of the edge is not in the destination
3220 * graph, then it must be a backward proximity edge and it should simply
3221 * be ignored.
3223 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3224 struct isl_sched_graph *src,
3225 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3227 int i;
3228 enum isl_edge_type t;
3230 dst->n_edge = 0;
3231 for (i = 0; i < src->n_edge; ++i) {
3232 struct isl_sched_edge *edge = &src->edge[i];
3233 isl_map *map;
3234 isl_union_map *tagged_condition;
3235 isl_union_map *tagged_validity;
3236 struct isl_sched_node *dst_src, *dst_dst;
3238 if (!edge_pred(edge, data))
3239 continue;
3241 if (isl_map_plain_is_empty(edge->map))
3242 continue;
3244 dst_src = graph_find_node(ctx, dst, edge->src->space);
3245 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3246 if (!dst_src || !dst_dst) {
3247 if (is_validity(edge) || is_conditional_validity(edge))
3248 isl_die(ctx, isl_error_internal,
3249 "backward (conditional) validity edge",
3250 return -1);
3251 continue;
3254 map = isl_map_copy(edge->map);
3255 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3256 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3258 dst->edge[dst->n_edge].src = dst_src;
3259 dst->edge[dst->n_edge].dst = dst_dst;
3260 dst->edge[dst->n_edge].map = map;
3261 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3262 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3263 dst->edge[dst->n_edge].types = edge->types;
3264 dst->n_edge++;
3266 if (edge->tagged_condition && !tagged_condition)
3267 return -1;
3268 if (edge->tagged_validity && !tagged_validity)
3269 return -1;
3271 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3272 if (edge !=
3273 graph_find_edge(src, t, edge->src, edge->dst))
3274 continue;
3275 if (graph_edge_table_add(ctx, dst, t,
3276 &dst->edge[dst->n_edge - 1]) < 0)
3277 return -1;
3281 return 0;
3284 /* Compute the maximal number of variables over all nodes.
3285 * This is the maximal number of linearly independent schedule
3286 * rows that we need to compute.
3287 * Just in case we end up in a part of the dependence graph
3288 * with only lower-dimensional domains, we make sure we will
3289 * compute the required amount of extra linearly independent rows.
3291 static int compute_maxvar(struct isl_sched_graph *graph)
3293 int i;
3295 graph->maxvar = 0;
3296 for (i = 0; i < graph->n; ++i) {
3297 struct isl_sched_node *node = &graph->node[i];
3298 int nvar;
3300 if (node_update_vmap(node) < 0)
3301 return -1;
3302 nvar = node->nvar + graph->n_row - node->rank;
3303 if (nvar > graph->maxvar)
3304 graph->maxvar = nvar;
3307 return 0;
3310 /* Extract the subgraph of "graph" that consists of the node satisfying
3311 * "node_pred" and the edges satisfying "edge_pred" and store
3312 * the result in "sub".
3314 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3315 int (*node_pred)(struct isl_sched_node *node, int data),
3316 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3317 int data, struct isl_sched_graph *sub)
3319 int i, n = 0, n_edge = 0;
3320 int t;
3322 for (i = 0; i < graph->n; ++i)
3323 if (node_pred(&graph->node[i], data))
3324 ++n;
3325 for (i = 0; i < graph->n_edge; ++i)
3326 if (edge_pred(&graph->edge[i], data))
3327 ++n_edge;
3328 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3329 return -1;
3330 if (copy_nodes(sub, graph, node_pred, data) < 0)
3331 return -1;
3332 if (graph_init_table(ctx, sub) < 0)
3333 return -1;
3334 for (t = 0; t <= isl_edge_last; ++t)
3335 sub->max_edge[t] = graph->max_edge[t];
3336 if (graph_init_edge_tables(ctx, sub) < 0)
3337 return -1;
3338 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3339 return -1;
3340 sub->n_row = graph->n_row;
3341 sub->max_row = graph->max_row;
3342 sub->n_total_row = graph->n_total_row;
3343 sub->band_start = graph->band_start;
3345 return 0;
3348 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3349 struct isl_sched_graph *graph);
3350 static __isl_give isl_schedule_node *compute_schedule_wcc(
3351 isl_schedule_node *node, struct isl_sched_graph *graph);
3353 /* Compute a schedule for a subgraph of "graph". In particular, for
3354 * the graph composed of nodes that satisfy node_pred and edges that
3355 * that satisfy edge_pred.
3356 * If the subgraph is known to consist of a single component, then wcc should
3357 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3358 * Otherwise, we call compute_schedule, which will check whether the subgraph
3359 * is connected.
3361 * The schedule is inserted at "node" and the updated schedule node
3362 * is returned.
3364 static __isl_give isl_schedule_node *compute_sub_schedule(
3365 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3366 struct isl_sched_graph *graph,
3367 int (*node_pred)(struct isl_sched_node *node, int data),
3368 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3369 int data, int wcc)
3371 struct isl_sched_graph split = { 0 };
3373 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3374 &split) < 0)
3375 goto error;
3377 if (wcc)
3378 node = compute_schedule_wcc(node, &split);
3379 else
3380 node = compute_schedule(node, &split);
3382 graph_free(ctx, &split);
3383 return node;
3384 error:
3385 graph_free(ctx, &split);
3386 return isl_schedule_node_free(node);
3389 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3391 return edge->src->scc == scc && edge->dst->scc == scc;
3394 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3396 return edge->dst->scc <= scc;
3399 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3401 return edge->src->scc >= scc;
3404 /* Reset the current band by dropping all its schedule rows.
3406 static int reset_band(struct isl_sched_graph *graph)
3408 int i;
3409 int drop;
3411 drop = graph->n_total_row - graph->band_start;
3412 graph->n_total_row -= drop;
3413 graph->n_row -= drop;
3415 for (i = 0; i < graph->n; ++i) {
3416 struct isl_sched_node *node = &graph->node[i];
3418 isl_map_free(node->sched_map);
3419 node->sched_map = NULL;
3421 node->sched = isl_mat_drop_rows(node->sched,
3422 graph->band_start, drop);
3424 if (!node->sched)
3425 return -1;
3428 return 0;
3431 /* Split the current graph into two parts and compute a schedule for each
3432 * part individually. In particular, one part consists of all SCCs up
3433 * to and including graph->src_scc, while the other part contains the other
3434 * SCCs. The split is enforced by a sequence node inserted at position "node"
3435 * in the schedule tree. Return the updated schedule node.
3436 * If either of these two parts consists of a sequence, then it is spliced
3437 * into the sequence containing the two parts.
3439 * The current band is reset. It would be possible to reuse
3440 * the previously computed rows as the first rows in the next
3441 * band, but recomputing them may result in better rows as we are looking
3442 * at a smaller part of the dependence graph.
3444 static __isl_give isl_schedule_node *compute_split_schedule(
3445 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3447 int is_seq;
3448 isl_ctx *ctx;
3449 isl_union_set_list *filters;
3451 if (!node)
3452 return NULL;
3454 if (reset_band(graph) < 0)
3455 return isl_schedule_node_free(node);
3457 next_band(graph);
3459 ctx = isl_schedule_node_get_ctx(node);
3460 filters = extract_split(ctx, graph);
3461 node = isl_schedule_node_insert_sequence(node, filters);
3462 node = isl_schedule_node_child(node, 1);
3463 node = isl_schedule_node_child(node, 0);
3465 node = compute_sub_schedule(node, ctx, graph,
3466 &node_scc_at_least, &edge_src_scc_at_least,
3467 graph->src_scc + 1, 0);
3468 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3469 node = isl_schedule_node_parent(node);
3470 node = isl_schedule_node_parent(node);
3471 if (is_seq)
3472 node = isl_schedule_node_sequence_splice_child(node, 1);
3473 node = isl_schedule_node_child(node, 0);
3474 node = isl_schedule_node_child(node, 0);
3475 node = compute_sub_schedule(node, ctx, graph,
3476 &node_scc_at_most, &edge_dst_scc_at_most,
3477 graph->src_scc, 0);
3478 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3479 node = isl_schedule_node_parent(node);
3480 node = isl_schedule_node_parent(node);
3481 if (is_seq)
3482 node = isl_schedule_node_sequence_splice_child(node, 0);
3484 return node;
3487 /* Insert a band node at position "node" in the schedule tree corresponding
3488 * to the current band in "graph". Mark the band node permutable
3489 * if "permutable" is set.
3490 * The partial schedules and the coincidence property are extracted
3491 * from the graph nodes.
3492 * Return the updated schedule node.
3494 static __isl_give isl_schedule_node *insert_current_band(
3495 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3496 int permutable)
3498 int i;
3499 int start, end, n;
3500 isl_multi_aff *ma;
3501 isl_multi_pw_aff *mpa;
3502 isl_multi_union_pw_aff *mupa;
3504 if (!node)
3505 return NULL;
3507 if (graph->n < 1)
3508 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3509 "graph should have at least one node",
3510 return isl_schedule_node_free(node));
3512 start = graph->band_start;
3513 end = graph->n_total_row;
3514 n = end - start;
3516 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3517 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3518 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3520 for (i = 1; i < graph->n; ++i) {
3521 isl_multi_union_pw_aff *mupa_i;
3523 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3524 start, n);
3525 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3526 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3527 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3529 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3531 for (i = 0; i < n; ++i)
3532 node = isl_schedule_node_band_member_set_coincident(node, i,
3533 graph->node[0].coincident[start + i]);
3534 node = isl_schedule_node_band_set_permutable(node, permutable);
3536 return node;
3539 /* Update the dependence relations based on the current schedule,
3540 * add the current band to "node" and then continue with the computation
3541 * of the next band.
3542 * Return the updated schedule node.
3544 static __isl_give isl_schedule_node *compute_next_band(
3545 __isl_take isl_schedule_node *node,
3546 struct isl_sched_graph *graph, int permutable)
3548 isl_ctx *ctx;
3550 if (!node)
3551 return NULL;
3553 ctx = isl_schedule_node_get_ctx(node);
3554 if (update_edges(ctx, graph) < 0)
3555 return isl_schedule_node_free(node);
3556 node = insert_current_band(node, graph, permutable);
3557 next_band(graph);
3559 node = isl_schedule_node_child(node, 0);
3560 node = compute_schedule(node, graph);
3561 node = isl_schedule_node_parent(node);
3563 return node;
3566 /* Add the constraints "coef" derived from an edge from "node" to itself
3567 * to graph->lp in order to respect the dependences and to try and carry them.
3568 * "pos" is the sequence number of the edge that needs to be carried.
3569 * "coef" represents general constraints on coefficients (c_0, c_n, c_x)
3570 * of valid constraints for (y - x) with x and y instances of the node.
3572 * The constraints added to graph->lp need to enforce
3574 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3575 * = c_j_x (y - x) >= e_i
3577 * for each (x,y) in the dependence relation of the edge.
3578 * That is, (-e_i, 0, c_j_x) needs to be plugged in for (c_0, c_n, c_x),
3579 * taking into account that each coefficient in c_j_x is represented
3580 * as a pair of non-negative coefficients.
3582 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3583 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3585 int offset;
3586 isl_ctx *ctx;
3587 isl_dim_map *dim_map;
3589 if (!coef)
3590 return isl_stat_error;
3592 ctx = isl_basic_set_get_ctx(coef);
3593 offset = coef_var_offset(coef);
3594 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3595 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3596 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3598 return isl_stat_ok;
3601 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3602 * to graph->lp in order to respect the dependences and to try and carry them.
3603 * "pos" is the sequence number of the edge that needs to be carried.
3604 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3605 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3607 * The constraints added to graph->lp need to enforce
3609 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3611 * for each (x,y) in the dependence relation of the edge.
3612 * That is,
3613 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3614 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3615 * taking into account that each coefficient in c_j_x and c_k_x is represented
3616 * as a pair of non-negative coefficients.
3618 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3619 struct isl_sched_node *src, struct isl_sched_node *dst,
3620 __isl_take isl_basic_set *coef, int pos)
3622 int offset;
3623 isl_ctx *ctx;
3624 isl_dim_map *dim_map;
3626 if (!coef)
3627 return isl_stat_error;
3629 ctx = isl_basic_set_get_ctx(coef);
3630 offset = coef_var_offset(coef);
3631 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3632 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3633 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3635 return isl_stat_ok;
3638 /* Data structure collecting information used during the construction
3639 * of an LP for carrying dependences.
3641 * "intra" is a sequence of coefficient constraints for intra-node edges.
3642 * "inter" is a sequence of coefficient constraints for inter-node edges.
3644 struct isl_carry {
3645 isl_basic_set_list *intra;
3646 isl_basic_set_list *inter;
3649 /* Free all the data stored in "carry".
3651 static void isl_carry_clear(struct isl_carry *carry)
3653 isl_basic_set_list_free(carry->intra);
3654 isl_basic_set_list_free(carry->inter);
3657 /* Return a pointer to the node in "graph" that lives in "space".
3658 * If the requested node has been compressed, then "space"
3659 * corresponds to the compressed space.
3661 * First try and see if "space" is the space of an uncompressed node.
3662 * If so, return that node.
3663 * Otherwise, "space" was constructed by construct_compressed_id and
3664 * contains a user pointer pointing to the node in the tuple id.
3666 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3667 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3669 isl_id *id;
3670 struct isl_sched_node *node;
3672 if (!space)
3673 return NULL;
3675 node = graph_find_node(ctx, graph, space);
3676 if (node)
3677 return node;
3679 id = isl_space_get_tuple_id(space, isl_dim_set);
3680 node = isl_id_get_user(id);
3681 isl_id_free(id);
3683 if (!node)
3684 return NULL;
3686 if (!(node >= &graph->node[0] && node < &graph->node[graph->n]))
3687 isl_die(ctx, isl_error_internal,
3688 "space points to invalid node", return NULL);
3690 return node;
3693 /* Internal data structure for add_all_constraints.
3695 * "graph" is the schedule constraint graph for which an LP problem
3696 * is being constructed.
3697 * "pos" is the position of the next edge that needs to be carried.
3699 struct isl_add_all_constraints_data {
3700 isl_ctx *ctx;
3701 struct isl_sched_graph *graph;
3702 int pos;
3705 /* Add the constraints "coef" derived from an edge from a node to itself
3706 * to data->graph->lp in order to respect the dependences and
3707 * to try and carry them.
3709 * The space of "coef" is of the form
3711 * coefficients[[c_cst, c_n] -> S[c_x]]
3713 * with S[c_x] the (compressed) space of the node.
3714 * Extract the node from the space and call add_intra_constraints.
3716 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
3718 struct isl_add_all_constraints_data *data = user;
3719 isl_space *space;
3720 struct isl_sched_node *node;
3722 space = isl_basic_set_get_space(coef);
3723 space = isl_space_range(isl_space_unwrap(space));
3724 node = graph_find_compressed_node(data->ctx, data->graph, space);
3725 isl_space_free(space);
3726 return add_intra_constraints(data->graph, node, coef, data->pos++);
3729 /* Add the constraints "coef" derived from an edge from a node j
3730 * to a node k to data->graph->lp in order to respect the dependences and
3731 * to try and carry them.
3733 * The space of "coef" is of the form
3735 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
3737 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
3738 * Extract the nodes from the space and call add_inter_constraints.
3740 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
3742 struct isl_add_all_constraints_data *data = user;
3743 isl_space *space, *dom;
3744 struct isl_sched_node *src, *dst;
3746 space = isl_basic_set_get_space(coef);
3747 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
3748 dom = isl_space_domain(isl_space_copy(space));
3749 src = graph_find_compressed_node(data->ctx, data->graph, dom);
3750 isl_space_free(dom);
3751 space = isl_space_range(space);
3752 dst = graph_find_compressed_node(data->ctx, data->graph, space);
3753 isl_space_free(space);
3755 return add_inter_constraints(data->graph, src, dst, coef, data->pos++);
3758 /* Add constraints to graph->lp that force all (conditional) validity
3759 * dependences to be respected and attempt to carry them.
3760 * "intra" is the sequence of coefficient constraints for intra-node edges.
3761 * "inter" is the sequence of coefficient constraints for inter-node edges.
3763 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
3764 __isl_keep isl_basic_set_list *intra,
3765 __isl_keep isl_basic_set_list *inter)
3767 struct isl_add_all_constraints_data data = { ctx, graph };
3769 data.pos = 0;
3770 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
3771 return isl_stat_error;
3772 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
3773 return isl_stat_error;
3774 return isl_stat_ok;
3777 /* Internal data structure for count_all_constraints
3778 * for keeping track of the number of equality and inequality constraints.
3780 struct isl_sched_count {
3781 int n_eq;
3782 int n_ineq;
3785 /* Add the number of equality and inequality constraints of "bset"
3786 * to data->n_eq and data->n_ineq.
3788 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
3790 struct isl_sched_count *data = user;
3792 data->n_eq += isl_basic_set_n_equality(bset);
3793 data->n_ineq += isl_basic_set_n_inequality(bset);
3794 isl_basic_set_free(bset);
3796 return isl_stat_ok;
3799 /* Count the number of equality and inequality constraints
3800 * that will be added to the carry_lp problem.
3801 * We count each edge exactly once.
3802 * "intra" is the sequence of coefficient constraints for intra-node edges.
3803 * "inter" is the sequence of coefficient constraints for inter-node edges.
3805 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
3806 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
3808 struct isl_sched_count data;
3810 data.n_eq = data.n_ineq = 0;
3811 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
3812 return isl_stat_error;
3813 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
3814 return isl_stat_error;
3816 *n_eq = data.n_eq;
3817 *n_ineq = data.n_ineq;
3819 return isl_stat_ok;
3822 /* Construct an LP problem for finding schedule coefficients
3823 * such that the schedule carries as many validity dependences as possible.
3824 * In particular, for each dependence i, we bound the dependence distance
3825 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3826 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3827 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3828 * "intra" is the sequence of coefficient constraints for intra-node edges.
3829 * "inter" is the sequence of coefficient constraints for inter-node edges.
3830 * "n_edge" is the total number of edges.
3832 * All variables of the LP are non-negative. The actual coefficients
3833 * may be negative, so each coefficient is represented as the difference
3834 * of two non-negative variables. The negative part always appears
3835 * immediately before the positive part.
3836 * Other than that, the variables have the following order
3838 * - sum of (1 - e_i) over all edges
3839 * - sum of all c_n coefficients
3840 * (unconstrained when computing non-parametric schedules)
3841 * - sum of positive and negative parts of all c_x coefficients
3842 * - for each edge
3843 * - e_i
3844 * - for each node
3845 * - positive and negative parts of c_i_x, in opposite order
3846 * - c_i_n (if parametric)
3847 * - c_i_0
3849 * The constraints are those from the (validity) edges plus three equalities
3850 * to express the sums and n_edge inequalities to express e_i <= 1.
3852 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3853 int n_edge, __isl_keep isl_basic_set_list *intra,
3854 __isl_keep isl_basic_set_list *inter)
3856 int i;
3857 int k;
3858 isl_space *dim;
3859 unsigned total;
3860 int n_eq, n_ineq;
3862 total = 3 + n_edge;
3863 for (i = 0; i < graph->n; ++i) {
3864 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3865 node->start = total;
3866 total += 1 + node->nparam + 2 * node->nvar;
3869 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
3870 return isl_stat_error;
3872 dim = isl_space_set_alloc(ctx, 0, total);
3873 isl_basic_set_free(graph->lp);
3874 n_eq += 3;
3875 n_ineq += n_edge;
3876 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3877 graph->lp = isl_basic_set_set_rational(graph->lp);
3879 k = isl_basic_set_alloc_equality(graph->lp);
3880 if (k < 0)
3881 return isl_stat_error;
3882 isl_seq_clr(graph->lp->eq[k], 1 + total);
3883 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3884 isl_int_set_si(graph->lp->eq[k][1], 1);
3885 for (i = 0; i < n_edge; ++i)
3886 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3888 if (add_param_sum_constraint(graph, 1) < 0)
3889 return isl_stat_error;
3890 if (add_var_sum_constraint(graph, 2) < 0)
3891 return isl_stat_error;
3893 for (i = 0; i < n_edge; ++i) {
3894 k = isl_basic_set_alloc_inequality(graph->lp);
3895 if (k < 0)
3896 return isl_stat_error;
3897 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3898 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3899 isl_int_set_si(graph->lp->ineq[k][0], 1);
3902 if (add_all_constraints(ctx, graph, intra, inter) < 0)
3903 return isl_stat_error;
3905 return isl_stat_ok;
3908 static __isl_give isl_schedule_node *compute_component_schedule(
3909 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3910 int wcc);
3912 /* If the schedule_split_scaled option is set and if the linear
3913 * parts of the scheduling rows for all nodes in the graphs have
3914 * a non-trivial common divisor, then remove this
3915 * common divisor from the linear part.
3916 * Otherwise, insert a band node directly and continue with
3917 * the construction of the schedule.
3919 * If a non-trivial common divisor is found, then
3920 * the linear part is reduced and the remainder is ignored.
3921 * The pieces of the graph that are assigned different remainders
3922 * form (groups of) strongly connected components within
3923 * the scaled down band. If needed, they can therefore
3924 * be ordered along this remainder in a sequence node.
3925 * However, this ordering is not enforced here in order to allow
3926 * the scheduler to combine some of the strongly connected components.
3928 static __isl_give isl_schedule_node *split_scaled(
3929 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3931 int i;
3932 int row;
3933 isl_ctx *ctx;
3934 isl_int gcd, gcd_i;
3936 if (!node)
3937 return NULL;
3939 ctx = isl_schedule_node_get_ctx(node);
3940 if (!ctx->opt->schedule_split_scaled)
3941 return compute_next_band(node, graph, 0);
3942 if (graph->n <= 1)
3943 return compute_next_band(node, graph, 0);
3945 isl_int_init(gcd);
3946 isl_int_init(gcd_i);
3948 isl_int_set_si(gcd, 0);
3950 row = isl_mat_rows(graph->node[0].sched) - 1;
3952 for (i = 0; i < graph->n; ++i) {
3953 struct isl_sched_node *node = &graph->node[i];
3954 int cols = isl_mat_cols(node->sched);
3956 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3957 isl_int_gcd(gcd, gcd, gcd_i);
3960 isl_int_clear(gcd_i);
3962 if (isl_int_cmp_si(gcd, 1) <= 0) {
3963 isl_int_clear(gcd);
3964 return compute_next_band(node, graph, 0);
3967 for (i = 0; i < graph->n; ++i) {
3968 struct isl_sched_node *node = &graph->node[i];
3970 isl_int_fdiv_q(node->sched->row[row][0],
3971 node->sched->row[row][0], gcd);
3972 isl_int_mul(node->sched->row[row][0],
3973 node->sched->row[row][0], gcd);
3974 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3975 if (!node->sched)
3976 goto error;
3979 isl_int_clear(gcd);
3981 return compute_next_band(node, graph, 0);
3982 error:
3983 isl_int_clear(gcd);
3984 return isl_schedule_node_free(node);
3987 /* Is the schedule row "sol" trivial on node "node"?
3988 * That is, is the solution zero on the dimensions linearly independent of
3989 * the previously found solutions?
3990 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3992 * Each coefficient is represented as the difference between
3993 * two non-negative values in "sol".
3994 * We construct the schedule row s and check if it is linearly
3995 * independent of previously computed schedule rows
3996 * by computing T s, with T the linear combinations that are zero
3997 * on linearly dependent schedule rows.
3998 * If the result consists of all zeros, then the solution is trivial.
4000 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4002 int trivial;
4003 isl_vec *node_sol;
4005 if (!sol)
4006 return -1;
4007 if (node->nvar == node->rank)
4008 return 0;
4010 node_sol = extract_var_coef(node, sol);
4011 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4012 if (!node_sol)
4013 return -1;
4015 trivial = isl_seq_first_non_zero(node_sol->el,
4016 node->nvar - node->rank) == -1;
4018 isl_vec_free(node_sol);
4020 return trivial;
4023 /* Is the schedule row "sol" trivial on any node where it should
4024 * not be trivial?
4025 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4027 static int is_any_trivial(struct isl_sched_graph *graph,
4028 __isl_keep isl_vec *sol)
4030 int i;
4032 for (i = 0; i < graph->n; ++i) {
4033 struct isl_sched_node *node = &graph->node[i];
4034 int trivial;
4036 if (!needs_row(graph, node))
4037 continue;
4038 trivial = is_trivial(node, sol);
4039 if (trivial < 0 || trivial)
4040 return trivial;
4043 return 0;
4046 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4047 * If so, return the position of the coalesced dimension.
4048 * Otherwise, return node->nvar or -1 on error.
4050 * In particular, look for pairs of coefficients c_i and c_j such that
4051 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4052 * If any such pair is found, then return i.
4053 * If size_i is infinity, then no check on c_i needs to be performed.
4055 static int find_node_coalescing(struct isl_sched_node *node,
4056 __isl_keep isl_vec *sol)
4058 int i, j;
4059 isl_int max;
4060 isl_vec *csol;
4062 if (node->nvar <= 1)
4063 return node->nvar;
4065 csol = extract_var_coef(node, sol);
4066 if (!csol)
4067 return -1;
4068 isl_int_init(max);
4069 for (i = 0; i < node->nvar; ++i) {
4070 isl_val *v;
4072 if (isl_int_is_zero(csol->el[i]))
4073 continue;
4074 v = isl_multi_val_get_val(node->sizes, i);
4075 if (!v)
4076 goto error;
4077 if (!isl_val_is_int(v)) {
4078 isl_val_free(v);
4079 continue;
4081 v = isl_val_div_ui(v, 2);
4082 v = isl_val_ceil(v);
4083 if (!v)
4084 goto error;
4085 isl_int_mul(max, v->n, csol->el[i]);
4086 isl_val_free(v);
4088 for (j = 0; j < node->nvar; ++j) {
4089 if (j == i)
4090 continue;
4091 if (isl_int_abs_gt(csol->el[j], max))
4092 break;
4094 if (j < node->nvar)
4095 break;
4098 isl_int_clear(max);
4099 isl_vec_free(csol);
4100 return i;
4101 error:
4102 isl_int_clear(max);
4103 isl_vec_free(csol);
4104 return -1;
4107 /* Force the schedule coefficient at position "pos" of "node" to be zero
4108 * in "tl".
4109 * The coefficient is encoded as the difference between two non-negative
4110 * variables. Force these two variables to have the same value.
4112 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4113 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4115 int dim;
4116 isl_ctx *ctx;
4117 isl_vec *eq;
4119 ctx = isl_space_get_ctx(node->space);
4120 dim = isl_tab_lexmin_dim(tl);
4121 if (dim < 0)
4122 return isl_tab_lexmin_free(tl);
4123 eq = isl_vec_alloc(ctx, 1 + dim);
4124 eq = isl_vec_clr(eq);
4125 if (!eq)
4126 return isl_tab_lexmin_free(tl);
4128 pos = 1 + node_var_coef_pos(node, pos);
4129 isl_int_set_si(eq->el[pos], 1);
4130 isl_int_set_si(eq->el[pos + 1], -1);
4131 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4132 isl_vec_free(eq);
4134 return tl;
4137 /* Return the lexicographically smallest rational point in the basic set
4138 * from which "tl" was constructed, double checking that this input set
4139 * was not empty.
4141 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4143 isl_vec *sol;
4145 sol = isl_tab_lexmin_get_solution(tl);
4146 if (!sol)
4147 return NULL;
4148 if (sol->size == 0)
4149 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4150 "error in schedule construction",
4151 return isl_vec_free(sol));
4152 return sol;
4155 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4156 * carry any of the "n_edge" groups of dependences?
4157 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4158 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4159 * by the edge are carried by the solution.
4160 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4161 * one of those is carried.
4163 * Note that despite the fact that the problem is solved using a rational
4164 * solver, the solution is guaranteed to be integral.
4165 * Specifically, the dependence distance lower bounds e_i (and therefore
4166 * also their sum) are integers. See Lemma 5 of [1].
4168 * Any potential denominator of the sum is cleared by this function.
4169 * The denominator is not relevant for any of the other elements
4170 * in the solution.
4172 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4173 * Problem, Part II: Multi-Dimensional Time.
4174 * In Intl. Journal of Parallel Programming, 1992.
4176 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4178 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4179 isl_int_set_si(sol->el[0], 1);
4180 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4183 /* Return the lexicographically smallest rational point in "lp",
4184 * assuming that all variables are non-negative and performing some
4185 * additional sanity checks.
4186 * If "want_integral" is set, then compute the lexicographically smallest
4187 * integer point instead.
4188 * In particular, "lp" should not be empty by construction.
4189 * Double check that this is the case.
4190 * If dependences are not carried for any of the "n_edge" edges,
4191 * then return an empty vector.
4193 * If the schedule_treat_coalescing option is set and
4194 * if the computed schedule performs loop coalescing on a given node,
4195 * i.e., if it is of the form
4197 * c_i i + c_j j + ...
4199 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4200 * to cut out this solution. Repeat this process until no more loop
4201 * coalescing occurs or until no more dependences can be carried.
4202 * In the latter case, revert to the previously computed solution.
4204 * If the caller requests an integral solution and if coalescing should
4205 * be treated, then perform the coalescing treatment first as
4206 * an integral solution computed before coalescing treatment
4207 * would carry the same number of edges and would therefore probably
4208 * also be coalescing.
4210 * To allow the coalescing treatment to be performed first,
4211 * the initial solution is allowed to be rational and it is only
4212 * cut out (if needed) in the next iteration, if no coalescing measures
4213 * were taken.
4215 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4216 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4218 int i, pos, cut;
4219 isl_ctx *ctx;
4220 isl_tab_lexmin *tl;
4221 isl_vec *sol, *prev = NULL;
4222 int treat_coalescing;
4224 if (!lp)
4225 return NULL;
4226 ctx = isl_basic_set_get_ctx(lp);
4227 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4228 tl = isl_tab_lexmin_from_basic_set(lp);
4230 cut = 0;
4231 do {
4232 int integral;
4234 if (cut)
4235 tl = isl_tab_lexmin_cut_to_integer(tl);
4236 sol = non_empty_solution(tl);
4237 if (!sol)
4238 goto error;
4240 integral = isl_int_is_one(sol->el[0]);
4241 if (!carries_dependences(sol, n_edge)) {
4242 if (!prev)
4243 prev = isl_vec_alloc(ctx, 0);
4244 isl_vec_free(sol);
4245 sol = prev;
4246 break;
4248 prev = isl_vec_free(prev);
4249 cut = want_integral && !integral;
4250 if (cut)
4251 prev = sol;
4252 if (!treat_coalescing)
4253 continue;
4254 for (i = 0; i < graph->n; ++i) {
4255 struct isl_sched_node *node = &graph->node[i];
4257 pos = find_node_coalescing(node, sol);
4258 if (pos < 0)
4259 goto error;
4260 if (pos < node->nvar)
4261 break;
4263 if (i < graph->n) {
4264 prev = sol;
4265 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4266 cut = 0;
4268 } while (prev);
4270 isl_tab_lexmin_free(tl);
4272 return sol;
4273 error:
4274 isl_tab_lexmin_free(tl);
4275 isl_vec_free(prev);
4276 isl_vec_free(sol);
4277 return NULL;
4280 /* If "edge" is an edge from a node to itself, then add the corresponding
4281 * dependence relation to "umap".
4282 * If "node" has been compressed, then the dependence relation
4283 * is also compressed first.
4285 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4286 struct isl_sched_edge *edge)
4288 isl_map *map;
4289 struct isl_sched_node *node = edge->src;
4291 if (edge->src != edge->dst)
4292 return umap;
4294 map = isl_map_copy(edge->map);
4295 if (node->compressed) {
4296 map = isl_map_preimage_domain_multi_aff(map,
4297 isl_multi_aff_copy(node->decompress));
4298 map = isl_map_preimage_range_multi_aff(map,
4299 isl_multi_aff_copy(node->decompress));
4301 umap = isl_union_map_add_map(umap, map);
4302 return umap;
4305 /* If "edge" is an edge from a node to another node, then add the corresponding
4306 * dependence relation to "umap".
4307 * If the source or destination nodes of "edge" have been compressed,
4308 * then the dependence relation is also compressed first.
4310 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4311 struct isl_sched_edge *edge)
4313 isl_map *map;
4315 if (edge->src == edge->dst)
4316 return umap;
4318 map = isl_map_copy(edge->map);
4319 if (edge->src->compressed)
4320 map = isl_map_preimage_domain_multi_aff(map,
4321 isl_multi_aff_copy(edge->src->decompress));
4322 if (edge->dst->compressed)
4323 map = isl_map_preimage_range_multi_aff(map,
4324 isl_multi_aff_copy(edge->dst->decompress));
4325 umap = isl_union_map_add_map(umap, map);
4326 return umap;
4329 /* For each (conditional) validity edge in "graph",
4330 * add the corresponding dependence relation using "add"
4331 * to a collection of dependence relations and return the result.
4332 * If "coincidence" is set, then coincidence edges are considered as well.
4334 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4335 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4336 struct isl_sched_edge *edge), int coincidence)
4338 int i;
4339 isl_space *space;
4340 isl_union_map *umap;
4342 space = isl_space_copy(graph->node[0].space);
4343 umap = isl_union_map_empty(space);
4345 for (i = 0; i < graph->n_edge; ++i) {
4346 struct isl_sched_edge *edge = &graph->edge[i];
4348 if (!is_any_validity(edge) &&
4349 (!coincidence || !is_coincidence(edge)))
4350 continue;
4352 umap = add(umap, edge);
4355 return umap;
4358 /* For each dependence relation on a (conditional) validity edge
4359 * from a node to itself,
4360 * construct the set of coefficients of valid constraints for elements
4361 * in that dependence relation and collect the results.
4362 * If "coincidence" is set, then coincidence edges are considered as well.
4364 * In particular, for each dependence relation R, constraints
4365 * on coefficients (c_0, c_n, c_x) are constructed such that
4367 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4369 * This computation is essentially the same as that performed
4370 * by intra_coefficients, except that it operates on multiple
4371 * edges together.
4373 * Note that if a dependence relation is a union of basic maps,
4374 * then each basic map needs to be treated individually as it may only
4375 * be possible to carry the dependences expressed by some of those
4376 * basic maps and not all of them.
4377 * The collected validity constraints are therefore not coalesced and
4378 * it is assumed that they are not coalesced automatically.
4379 * Duplicate basic maps can be removed, however.
4380 * In particular, if the same basic map appears as a disjunct
4381 * in multiple edges, then it only needs to be carried once.
4383 static __isl_give isl_basic_set_list *collect_intra_validity(
4384 struct isl_sched_graph *graph, int coincidence)
4386 isl_union_map *intra;
4387 isl_union_set *delta;
4388 isl_basic_set_list *list;
4390 intra = collect_validity(graph, &add_intra, coincidence);
4391 delta = isl_union_map_deltas(intra);
4392 delta = isl_union_set_remove_divs(delta);
4393 list = isl_union_set_get_basic_set_list(delta);
4394 isl_union_set_free(delta);
4396 return isl_basic_set_list_coefficients(list);
4399 /* For each dependence relation on a (conditional) validity edge
4400 * from a node to some other node,
4401 * construct the set of coefficients of valid constraints for elements
4402 * in that dependence relation and collect the results.
4403 * If "coincidence" is set, then coincidence edges are considered as well.
4405 * In particular, for each dependence relation R, constraints
4406 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4408 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4410 * This computation is essentially the same as that performed
4411 * by inter_coefficients, except that it operates on multiple
4412 * edges together.
4414 * Note that if a dependence relation is a union of basic maps,
4415 * then each basic map needs to be treated individually as it may only
4416 * be possible to carry the dependences expressed by some of those
4417 * basic maps and not all of them.
4418 * The collected validity constraints are therefore not coalesced and
4419 * it is assumed that they are not coalesced automatically.
4420 * Duplicate basic maps can be removed, however.
4421 * In particular, if the same basic map appears as a disjunct
4422 * in multiple edges, then it only needs to be carried once.
4424 static __isl_give isl_basic_set_list *collect_inter_validity(
4425 struct isl_sched_graph *graph, int coincidence)
4427 isl_union_map *inter;
4428 isl_union_set *wrap;
4429 isl_basic_set_list *list;
4431 inter = collect_validity(graph, &add_inter, coincidence);
4432 inter = isl_union_map_remove_divs(inter);
4433 wrap = isl_union_map_wrap(inter);
4434 list = isl_union_set_get_basic_set_list(wrap);
4435 isl_union_set_free(wrap);
4436 return isl_basic_set_list_coefficients(list);
4439 /* Construct an LP problem for finding schedule coefficients
4440 * such that the schedule carries as many of the "n_edge" groups of
4441 * dependences as possible based on the corresponding coefficient
4442 * constraints and return the lexicographically smallest non-trivial solution.
4443 * "intra" is the sequence of coefficient constraints for intra-node edges.
4444 * "inter" is the sequence of coefficient constraints for inter-node edges.
4445 * If "want_integral" is set, then compute an integral solution
4446 * for the coefficients rather than using the numerators
4447 * of a rational solution.
4449 * If none of the "n_edge" groups can be carried
4450 * then return an empty vector.
4452 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
4453 struct isl_sched_graph *graph, int n_edge,
4454 __isl_keep isl_basic_set_list *intra,
4455 __isl_keep isl_basic_set_list *inter, int want_integral)
4457 isl_basic_set *lp;
4459 if (setup_carry_lp(ctx, graph, n_edge, intra, inter) < 0)
4460 return NULL;
4462 lp = isl_basic_set_copy(graph->lp);
4463 return non_neg_lexmin(graph, lp, n_edge, want_integral);
4466 /* Construct an LP problem for finding schedule coefficients
4467 * such that the schedule carries as many of the validity dependences
4468 * as possible and
4469 * return the lexicographically smallest non-trivial solution.
4470 * If "fallback" is set, then the carrying is performed as a fallback
4471 * for the Pluto-like scheduler.
4472 * If "coincidence" is set, then try and carry coincidence edges as well.
4474 * The variable "n_edge" stores the number of groups that should be carried.
4475 * If none of the "n_edge" groups can be carried
4476 * then return an empty vector.
4477 * If, moreover, "n_edge" is zero, then the LP problem does not even
4478 * need to be constructed.
4480 * If a fallback solution is being computed, then compute an integral solution
4481 * for the coefficients rather than using the numerators
4482 * of a rational solution.
4484 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
4485 struct isl_sched_graph *graph, int fallback, int coincidence)
4487 int n_intra, n_inter;
4488 int n_edge;
4489 struct isl_carry carry = { 0 };
4490 isl_vec *sol;
4492 carry.intra = collect_intra_validity(graph, coincidence);
4493 carry.inter = collect_inter_validity(graph, coincidence);
4494 if (!carry.intra || !carry.inter)
4495 goto error;
4496 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
4497 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
4498 n_edge = n_intra + n_inter;
4499 if (n_edge == 0) {
4500 isl_carry_clear(&carry);
4501 return isl_vec_alloc(ctx, 0);
4504 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
4505 carry.intra, carry.inter, fallback);
4506 isl_carry_clear(&carry);
4507 return sol;
4508 error:
4509 isl_carry_clear(&carry);
4510 return NULL;
4513 /* Construct a schedule row for each node such that as many validity dependences
4514 * as possible are carried and then continue with the next band.
4515 * If "fallback" is set, then the carrying is performed as a fallback
4516 * for the Pluto-like scheduler.
4517 * If "coincidence" is set, then try and carry coincidence edges as well.
4519 * If there are no validity dependences, then no dependence can be carried and
4520 * the procedure is guaranteed to fail. If there is more than one component,
4521 * then try computing a schedule on each component separately
4522 * to prevent or at least postpone this failure.
4524 * If a schedule row is computed, then check that dependences are carried
4525 * for at least one of the edges.
4527 * If the computed schedule row turns out to be trivial on one or
4528 * more nodes where it should not be trivial, then we throw it away
4529 * and try again on each component separately.
4531 * If there is only one component, then we accept the schedule row anyway,
4532 * but we do not consider it as a complete row and therefore do not
4533 * increment graph->n_row. Note that the ranks of the nodes that
4534 * do get a non-trivial schedule part will get updated regardless and
4535 * graph->maxvar is computed based on these ranks. The test for
4536 * whether more schedule rows are required in compute_schedule_wcc
4537 * is therefore not affected.
4539 * Insert a band corresponding to the schedule row at position "node"
4540 * of the schedule tree and continue with the construction of the schedule.
4541 * This insertion and the continued construction is performed by split_scaled
4542 * after optionally checking for non-trivial common divisors.
4544 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
4545 struct isl_sched_graph *graph, int fallback, int coincidence)
4547 int trivial;
4548 isl_ctx *ctx;
4549 isl_vec *sol;
4551 if (!node)
4552 return NULL;
4554 ctx = isl_schedule_node_get_ctx(node);
4555 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
4556 if (!sol)
4557 return isl_schedule_node_free(node);
4558 if (sol->size == 0) {
4559 isl_vec_free(sol);
4560 if (graph->scc > 1)
4561 return compute_component_schedule(node, graph, 1);
4562 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
4563 return isl_schedule_node_free(node));
4566 trivial = is_any_trivial(graph, sol);
4567 if (trivial < 0) {
4568 sol = isl_vec_free(sol);
4569 } else if (trivial && graph->scc > 1) {
4570 isl_vec_free(sol);
4571 return compute_component_schedule(node, graph, 1);
4574 if (update_schedule(graph, sol, 0) < 0)
4575 return isl_schedule_node_free(node);
4576 if (trivial)
4577 graph->n_row--;
4579 return split_scaled(node, graph);
4582 /* Construct a schedule row for each node such that as many validity dependences
4583 * as possible are carried and then continue with the next band.
4584 * Do so as a fallback for the Pluto-like scheduler.
4585 * If "coincidence" is set, then try and carry coincidence edges as well.
4587 static __isl_give isl_schedule_node *carry_fallback(
4588 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4589 int coincidence)
4591 return carry(node, graph, 1, coincidence);
4594 /* Construct a schedule row for each node such that as many validity dependences
4595 * as possible are carried and then continue with the next band.
4596 * Do so for the case where the Feautrier scheduler was selected
4597 * by the user.
4599 static __isl_give isl_schedule_node *carry_feautrier(
4600 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4602 return carry(node, graph, 0, 0);
4605 /* Construct a schedule row for each node such that as many validity dependences
4606 * as possible are carried and then continue with the next band.
4607 * Do so as a fallback for the Pluto-like scheduler.
4609 static __isl_give isl_schedule_node *carry_dependences(
4610 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4612 return carry_fallback(node, graph, 0);
4615 /* Construct a schedule row for each node such that as many validity or
4616 * coincidence dependences as possible are carried and
4617 * then continue with the next band.
4618 * Do so as a fallback for the Pluto-like scheduler.
4620 static __isl_give isl_schedule_node *carry_coincidence(
4621 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4623 return carry_fallback(node, graph, 1);
4626 /* Topologically sort statements mapped to the same schedule iteration
4627 * and add insert a sequence node in front of "node"
4628 * corresponding to this order.
4629 * If "initialized" is set, then it may be assumed that compute_maxvar
4630 * has been called on the current band. Otherwise, call
4631 * compute_maxvar if and before carry_dependences gets called.
4633 * If it turns out to be impossible to sort the statements apart,
4634 * because different dependences impose different orderings
4635 * on the statements, then we extend the schedule such that
4636 * it carries at least one more dependence.
4638 static __isl_give isl_schedule_node *sort_statements(
4639 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4640 int initialized)
4642 isl_ctx *ctx;
4643 isl_union_set_list *filters;
4645 if (!node)
4646 return NULL;
4648 ctx = isl_schedule_node_get_ctx(node);
4649 if (graph->n < 1)
4650 isl_die(ctx, isl_error_internal,
4651 "graph should have at least one node",
4652 return isl_schedule_node_free(node));
4654 if (graph->n == 1)
4655 return node;
4657 if (update_edges(ctx, graph) < 0)
4658 return isl_schedule_node_free(node);
4660 if (graph->n_edge == 0)
4661 return node;
4663 if (detect_sccs(ctx, graph) < 0)
4664 return isl_schedule_node_free(node);
4666 next_band(graph);
4667 if (graph->scc < graph->n) {
4668 if (!initialized && compute_maxvar(graph) < 0)
4669 return isl_schedule_node_free(node);
4670 return carry_dependences(node, graph);
4673 filters = extract_sccs(ctx, graph);
4674 node = isl_schedule_node_insert_sequence(node, filters);
4676 return node;
4679 /* Are there any (non-empty) (conditional) validity edges in the graph?
4681 static int has_validity_edges(struct isl_sched_graph *graph)
4683 int i;
4685 for (i = 0; i < graph->n_edge; ++i) {
4686 int empty;
4688 empty = isl_map_plain_is_empty(graph->edge[i].map);
4689 if (empty < 0)
4690 return -1;
4691 if (empty)
4692 continue;
4693 if (is_any_validity(&graph->edge[i]))
4694 return 1;
4697 return 0;
4700 /* Should we apply a Feautrier step?
4701 * That is, did the user request the Feautrier algorithm and are
4702 * there any validity dependences (left)?
4704 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4706 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4707 return 0;
4709 return has_validity_edges(graph);
4712 /* Compute a schedule for a connected dependence graph using Feautrier's
4713 * multi-dimensional scheduling algorithm and return the updated schedule node.
4715 * The original algorithm is described in [1].
4716 * The main idea is to minimize the number of scheduling dimensions, by
4717 * trying to satisfy as many dependences as possible per scheduling dimension.
4719 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4720 * Problem, Part II: Multi-Dimensional Time.
4721 * In Intl. Journal of Parallel Programming, 1992.
4723 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4724 isl_schedule_node *node, struct isl_sched_graph *graph)
4726 return carry_feautrier(node, graph);
4729 /* Turn off the "local" bit on all (condition) edges.
4731 static void clear_local_edges(struct isl_sched_graph *graph)
4733 int i;
4735 for (i = 0; i < graph->n_edge; ++i)
4736 if (is_condition(&graph->edge[i]))
4737 clear_local(&graph->edge[i]);
4740 /* Does "graph" have both condition and conditional validity edges?
4742 static int need_condition_check(struct isl_sched_graph *graph)
4744 int i;
4745 int any_condition = 0;
4746 int any_conditional_validity = 0;
4748 for (i = 0; i < graph->n_edge; ++i) {
4749 if (is_condition(&graph->edge[i]))
4750 any_condition = 1;
4751 if (is_conditional_validity(&graph->edge[i]))
4752 any_conditional_validity = 1;
4755 return any_condition && any_conditional_validity;
4758 /* Does "graph" contain any coincidence edge?
4760 static int has_any_coincidence(struct isl_sched_graph *graph)
4762 int i;
4764 for (i = 0; i < graph->n_edge; ++i)
4765 if (is_coincidence(&graph->edge[i]))
4766 return 1;
4768 return 0;
4771 /* Extract the final schedule row as a map with the iteration domain
4772 * of "node" as domain.
4774 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4776 isl_multi_aff *ma;
4777 int row;
4779 row = isl_mat_rows(node->sched) - 1;
4780 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4781 return isl_map_from_multi_aff(ma);
4784 /* Is the conditional validity dependence in the edge with index "edge_index"
4785 * violated by the latest (i.e., final) row of the schedule?
4786 * That is, is i scheduled after j
4787 * for any conditional validity dependence i -> j?
4789 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4791 isl_map *src_sched, *dst_sched, *map;
4792 struct isl_sched_edge *edge = &graph->edge[edge_index];
4793 int empty;
4795 src_sched = final_row(edge->src);
4796 dst_sched = final_row(edge->dst);
4797 map = isl_map_copy(edge->map);
4798 map = isl_map_apply_domain(map, src_sched);
4799 map = isl_map_apply_range(map, dst_sched);
4800 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4801 empty = isl_map_is_empty(map);
4802 isl_map_free(map);
4804 if (empty < 0)
4805 return -1;
4807 return !empty;
4810 /* Does "graph" have any satisfied condition edges that
4811 * are adjacent to the conditional validity constraint with
4812 * domain "conditional_source" and range "conditional_sink"?
4814 * A satisfied condition is one that is not local.
4815 * If a condition was forced to be local already (i.e., marked as local)
4816 * then there is no need to check if it is in fact local.
4818 * Additionally, mark all adjacent condition edges found as local.
4820 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4821 __isl_keep isl_union_set *conditional_source,
4822 __isl_keep isl_union_set *conditional_sink)
4824 int i;
4825 int any = 0;
4827 for (i = 0; i < graph->n_edge; ++i) {
4828 int adjacent, local;
4829 isl_union_map *condition;
4831 if (!is_condition(&graph->edge[i]))
4832 continue;
4833 if (is_local(&graph->edge[i]))
4834 continue;
4836 condition = graph->edge[i].tagged_condition;
4837 adjacent = domain_intersects(condition, conditional_sink);
4838 if (adjacent >= 0 && !adjacent)
4839 adjacent = range_intersects(condition,
4840 conditional_source);
4841 if (adjacent < 0)
4842 return -1;
4843 if (!adjacent)
4844 continue;
4846 set_local(&graph->edge[i]);
4848 local = is_condition_false(&graph->edge[i]);
4849 if (local < 0)
4850 return -1;
4851 if (!local)
4852 any = 1;
4855 return any;
4858 /* Are there any violated conditional validity dependences with
4859 * adjacent condition dependences that are not local with respect
4860 * to the current schedule?
4861 * That is, is the conditional validity constraint violated?
4863 * Additionally, mark all those adjacent condition dependences as local.
4864 * We also mark those adjacent condition dependences that were not marked
4865 * as local before, but just happened to be local already. This ensures
4866 * that they remain local if the schedule is recomputed.
4868 * We first collect domain and range of all violated conditional validity
4869 * dependences and then check if there are any adjacent non-local
4870 * condition dependences.
4872 static int has_violated_conditional_constraint(isl_ctx *ctx,
4873 struct isl_sched_graph *graph)
4875 int i;
4876 int any = 0;
4877 isl_union_set *source, *sink;
4879 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4880 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4881 for (i = 0; i < graph->n_edge; ++i) {
4882 isl_union_set *uset;
4883 isl_union_map *umap;
4884 int violated;
4886 if (!is_conditional_validity(&graph->edge[i]))
4887 continue;
4889 violated = is_violated(graph, i);
4890 if (violated < 0)
4891 goto error;
4892 if (!violated)
4893 continue;
4895 any = 1;
4897 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4898 uset = isl_union_map_domain(umap);
4899 source = isl_union_set_union(source, uset);
4900 source = isl_union_set_coalesce(source);
4902 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4903 uset = isl_union_map_range(umap);
4904 sink = isl_union_set_union(sink, uset);
4905 sink = isl_union_set_coalesce(sink);
4908 if (any)
4909 any = has_adjacent_true_conditions(graph, source, sink);
4911 isl_union_set_free(source);
4912 isl_union_set_free(sink);
4913 return any;
4914 error:
4915 isl_union_set_free(source);
4916 isl_union_set_free(sink);
4917 return -1;
4920 /* Examine the current band (the rows between graph->band_start and
4921 * graph->n_total_row), deciding whether to drop it or add it to "node"
4922 * and then continue with the computation of the next band, if any.
4923 * If "initialized" is set, then it may be assumed that compute_maxvar
4924 * has been called on the current band. Otherwise, call
4925 * compute_maxvar if and before carry_dependences gets called.
4927 * The caller keeps looking for a new row as long as
4928 * graph->n_row < graph->maxvar. If the latest attempt to find
4929 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4930 * then we either
4931 * - split between SCCs and start over (assuming we found an interesting
4932 * pair of SCCs between which to split)
4933 * - continue with the next band (assuming the current band has at least
4934 * one row)
4935 * - if there is more than one SCC left, then split along all SCCs
4936 * - if outer coincidence needs to be enforced, then try to carry as many
4937 * validity or coincidence dependences as possible and
4938 * continue with the next band
4939 * - try to carry as many validity dependences as possible and
4940 * continue with the next band
4941 * In each case, we first insert a band node in the schedule tree
4942 * if any rows have been computed.
4944 * If the caller managed to complete the schedule, we insert a band node
4945 * (if any schedule rows were computed) and we finish off by topologically
4946 * sorting the statements based on the remaining dependences.
4948 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4949 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4950 int initialized)
4952 int insert;
4954 if (!node)
4955 return NULL;
4957 if (graph->n_row < graph->maxvar) {
4958 isl_ctx *ctx;
4959 int empty = graph->n_total_row == graph->band_start;
4961 ctx = isl_schedule_node_get_ctx(node);
4962 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4963 return compute_next_band(node, graph, 1);
4964 if (graph->src_scc >= 0)
4965 return compute_split_schedule(node, graph);
4966 if (!empty)
4967 return compute_next_band(node, graph, 1);
4968 if (graph->scc > 1)
4969 return compute_component_schedule(node, graph, 1);
4970 if (!initialized && compute_maxvar(graph) < 0)
4971 return isl_schedule_node_free(node);
4972 if (isl_options_get_schedule_outer_coincidence(ctx))
4973 return carry_coincidence(node, graph);
4974 return carry_dependences(node, graph);
4977 insert = graph->n_total_row > graph->band_start;
4978 if (insert) {
4979 node = insert_current_band(node, graph, 1);
4980 node = isl_schedule_node_child(node, 0);
4982 node = sort_statements(node, graph, initialized);
4983 if (insert)
4984 node = isl_schedule_node_parent(node);
4986 return node;
4989 /* Construct a band of schedule rows for a connected dependence graph.
4990 * The caller is responsible for determining the strongly connected
4991 * components and calling compute_maxvar first.
4993 * We try to find a sequence of as many schedule rows as possible that result
4994 * in non-negative dependence distances (independent of the previous rows
4995 * in the sequence, i.e., such that the sequence is tilable), with as
4996 * many of the initial rows as possible satisfying the coincidence constraints.
4997 * The computation stops if we can't find any more rows or if we have found
4998 * all the rows we wanted to find.
5000 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5001 * outermost dimension to satisfy the coincidence constraints. If this
5002 * turns out to be impossible, we fall back on the general scheme above
5003 * and try to carry as many dependences as possible.
5005 * If "graph" contains both condition and conditional validity dependences,
5006 * then we need to check that that the conditional schedule constraint
5007 * is satisfied, i.e., there are no violated conditional validity dependences
5008 * that are adjacent to any non-local condition dependences.
5009 * If there are, then we mark all those adjacent condition dependences
5010 * as local and recompute the current band. Those dependences that
5011 * are marked local will then be forced to be local.
5012 * The initial computation is performed with no dependences marked as local.
5013 * If we are lucky, then there will be no violated conditional validity
5014 * dependences adjacent to any non-local condition dependences.
5015 * Otherwise, we mark some additional condition dependences as local and
5016 * recompute. We continue this process until there are no violations left or
5017 * until we are no longer able to compute a schedule.
5018 * Since there are only a finite number of dependences,
5019 * there will only be a finite number of iterations.
5021 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5022 struct isl_sched_graph *graph)
5024 int has_coincidence;
5025 int use_coincidence;
5026 int force_coincidence = 0;
5027 int check_conditional;
5029 if (sort_sccs(graph) < 0)
5030 return isl_stat_error;
5032 clear_local_edges(graph);
5033 check_conditional = need_condition_check(graph);
5034 has_coincidence = has_any_coincidence(graph);
5036 if (ctx->opt->schedule_outer_coincidence)
5037 force_coincidence = 1;
5039 use_coincidence = has_coincidence;
5040 while (graph->n_row < graph->maxvar) {
5041 isl_vec *sol;
5042 int violated;
5043 int coincident;
5045 graph->src_scc = -1;
5046 graph->dst_scc = -1;
5048 if (setup_lp(ctx, graph, use_coincidence) < 0)
5049 return isl_stat_error;
5050 sol = solve_lp(ctx, graph);
5051 if (!sol)
5052 return isl_stat_error;
5053 if (sol->size == 0) {
5054 int empty = graph->n_total_row == graph->band_start;
5056 isl_vec_free(sol);
5057 if (use_coincidence && (!force_coincidence || !empty)) {
5058 use_coincidence = 0;
5059 continue;
5061 return isl_stat_ok;
5063 coincident = !has_coincidence || use_coincidence;
5064 if (update_schedule(graph, sol, coincident) < 0)
5065 return isl_stat_error;
5067 if (!check_conditional)
5068 continue;
5069 violated = has_violated_conditional_constraint(ctx, graph);
5070 if (violated < 0)
5071 return isl_stat_error;
5072 if (!violated)
5073 continue;
5074 if (reset_band(graph) < 0)
5075 return isl_stat_error;
5076 use_coincidence = has_coincidence;
5079 return isl_stat_ok;
5082 /* Compute a schedule for a connected dependence graph by considering
5083 * the graph as a whole and return the updated schedule node.
5085 * The actual schedule rows of the current band are computed by
5086 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5087 * care of integrating the band into "node" and continuing
5088 * the computation.
5090 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5091 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5093 isl_ctx *ctx;
5095 if (!node)
5096 return NULL;
5098 ctx = isl_schedule_node_get_ctx(node);
5099 if (compute_schedule_wcc_band(ctx, graph) < 0)
5100 return isl_schedule_node_free(node);
5102 return compute_schedule_finish_band(node, graph, 1);
5105 /* Clustering information used by compute_schedule_wcc_clustering.
5107 * "n" is the number of SCCs in the original dependence graph
5108 * "scc" is an array of "n" elements, each representing an SCC
5109 * of the original dependence graph. All entries in the same cluster
5110 * have the same number of schedule rows.
5111 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5112 * where each cluster is represented by the index of the first SCC
5113 * in the cluster. Initially, each SCC belongs to a cluster containing
5114 * only that SCC.
5116 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5117 * track of which SCCs need to be merged.
5119 * "cluster" contains the merged clusters of SCCs after the clustering
5120 * has completed.
5122 * "scc_node" is a temporary data structure used inside copy_partial.
5123 * For each SCC, it keeps track of the number of nodes in the SCC
5124 * that have already been copied.
5126 struct isl_clustering {
5127 int n;
5128 struct isl_sched_graph *scc;
5129 struct isl_sched_graph *cluster;
5130 int *scc_cluster;
5131 int *scc_node;
5132 int *scc_in_merge;
5135 /* Initialize the clustering data structure "c" from "graph".
5137 * In particular, allocate memory, extract the SCCs from "graph"
5138 * into c->scc, initialize scc_cluster and construct
5139 * a band of schedule rows for each SCC.
5140 * Within each SCC, there is only one SCC by definition.
5141 * Each SCC initially belongs to a cluster containing only that SCC.
5143 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5144 struct isl_sched_graph *graph)
5146 int i;
5148 c->n = graph->scc;
5149 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5150 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5151 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5152 c->scc_node = isl_calloc_array(ctx, int, c->n);
5153 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5154 if (!c->scc || !c->cluster ||
5155 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5156 return isl_stat_error;
5158 for (i = 0; i < c->n; ++i) {
5159 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5160 &edge_scc_exactly, i, &c->scc[i]) < 0)
5161 return isl_stat_error;
5162 c->scc[i].scc = 1;
5163 if (compute_maxvar(&c->scc[i]) < 0)
5164 return isl_stat_error;
5165 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5166 return isl_stat_error;
5167 c->scc_cluster[i] = i;
5170 return isl_stat_ok;
5173 /* Free all memory allocated for "c".
5175 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5177 int i;
5179 if (c->scc)
5180 for (i = 0; i < c->n; ++i)
5181 graph_free(ctx, &c->scc[i]);
5182 free(c->scc);
5183 if (c->cluster)
5184 for (i = 0; i < c->n; ++i)
5185 graph_free(ctx, &c->cluster[i]);
5186 free(c->cluster);
5187 free(c->scc_cluster);
5188 free(c->scc_node);
5189 free(c->scc_in_merge);
5192 /* Should we refrain from merging the cluster in "graph" with
5193 * any other cluster?
5194 * In particular, is its current schedule band empty and incomplete.
5196 static int bad_cluster(struct isl_sched_graph *graph)
5198 return graph->n_row < graph->maxvar &&
5199 graph->n_total_row == graph->band_start;
5202 /* Is "edge" a proximity edge with a non-empty dependence relation?
5204 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5206 if (!is_proximity(edge))
5207 return isl_bool_false;
5208 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5211 /* Return the index of an edge in "graph" that can be used to merge
5212 * two clusters in "c".
5213 * Return graph->n_edge if no such edge can be found.
5214 * Return -1 on error.
5216 * In particular, return a proximity edge between two clusters
5217 * that is not marked "no_merge" and such that neither of the
5218 * two clusters has an incomplete, empty band.
5220 * If there are multiple such edges, then try and find the most
5221 * appropriate edge to use for merging. In particular, pick the edge
5222 * with the greatest weight. If there are multiple of those,
5223 * then pick one with the shortest distance between
5224 * the two cluster representatives.
5226 static int find_proximity(struct isl_sched_graph *graph,
5227 struct isl_clustering *c)
5229 int i, best = graph->n_edge, best_dist, best_weight;
5231 for (i = 0; i < graph->n_edge; ++i) {
5232 struct isl_sched_edge *edge = &graph->edge[i];
5233 int dist, weight;
5234 isl_bool prox;
5236 prox = is_non_empty_proximity(edge);
5237 if (prox < 0)
5238 return -1;
5239 if (!prox)
5240 continue;
5241 if (edge->no_merge)
5242 continue;
5243 if (bad_cluster(&c->scc[edge->src->scc]) ||
5244 bad_cluster(&c->scc[edge->dst->scc]))
5245 continue;
5246 dist = c->scc_cluster[edge->dst->scc] -
5247 c->scc_cluster[edge->src->scc];
5248 if (dist == 0)
5249 continue;
5250 weight = edge->weight;
5251 if (best < graph->n_edge) {
5252 if (best_weight > weight)
5253 continue;
5254 if (best_weight == weight && best_dist <= dist)
5255 continue;
5257 best = i;
5258 best_dist = dist;
5259 best_weight = weight;
5262 return best;
5265 /* Internal data structure used in mark_merge_sccs.
5267 * "graph" is the dependence graph in which a strongly connected
5268 * component is constructed.
5269 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5270 * "src" and "dst" are the indices of the nodes that are being merged.
5272 struct isl_mark_merge_sccs_data {
5273 struct isl_sched_graph *graph;
5274 int *scc_cluster;
5275 int src;
5276 int dst;
5279 /* Check whether the cluster containing node "i" depends on the cluster
5280 * containing node "j". If "i" and "j" belong to the same cluster,
5281 * then they are taken to depend on each other to ensure that
5282 * the resulting strongly connected component consists of complete
5283 * clusters. Furthermore, if "i" and "j" are the two nodes that
5284 * are being merged, then they are taken to depend on each other as well.
5285 * Otherwise, check if there is a (conditional) validity dependence
5286 * from node[j] to node[i], forcing node[i] to follow node[j].
5288 static isl_bool cluster_follows(int i, int j, void *user)
5290 struct isl_mark_merge_sccs_data *data = user;
5291 struct isl_sched_graph *graph = data->graph;
5292 int *scc_cluster = data->scc_cluster;
5294 if (data->src == i && data->dst == j)
5295 return isl_bool_true;
5296 if (data->src == j && data->dst == i)
5297 return isl_bool_true;
5298 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5299 return isl_bool_true;
5301 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5304 /* Mark all SCCs that belong to either of the two clusters in "c"
5305 * connected by the edge in "graph" with index "edge", or to any
5306 * of the intermediate clusters.
5307 * The marking is recorded in c->scc_in_merge.
5309 * The given edge has been selected for merging two clusters,
5310 * meaning that there is at least a proximity edge between the two nodes.
5311 * However, there may also be (indirect) validity dependences
5312 * between the two nodes. When merging the two clusters, all clusters
5313 * containing one or more of the intermediate nodes along the
5314 * indirect validity dependences need to be merged in as well.
5316 * First collect all such nodes by computing the strongly connected
5317 * component (SCC) containing the two nodes connected by the edge, where
5318 * the two nodes are considered to depend on each other to make
5319 * sure they end up in the same SCC. Similarly, each node is considered
5320 * to depend on every other node in the same cluster to ensure
5321 * that the SCC consists of complete clusters.
5323 * Then the original SCCs that contain any of these nodes are marked
5324 * in c->scc_in_merge.
5326 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5327 int edge, struct isl_clustering *c)
5329 struct isl_mark_merge_sccs_data data;
5330 struct isl_tarjan_graph *g;
5331 int i;
5333 for (i = 0; i < c->n; ++i)
5334 c->scc_in_merge[i] = 0;
5336 data.graph = graph;
5337 data.scc_cluster = c->scc_cluster;
5338 data.src = graph->edge[edge].src - graph->node;
5339 data.dst = graph->edge[edge].dst - graph->node;
5341 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5342 &cluster_follows, &data);
5343 if (!g)
5344 goto error;
5346 i = g->op;
5347 if (i < 3)
5348 isl_die(ctx, isl_error_internal,
5349 "expecting at least two nodes in component",
5350 goto error);
5351 if (g->order[--i] != -1)
5352 isl_die(ctx, isl_error_internal,
5353 "expecting end of component marker", goto error);
5355 for (--i; i >= 0 && g->order[i] != -1; --i) {
5356 int scc = graph->node[g->order[i]].scc;
5357 c->scc_in_merge[scc] = 1;
5360 isl_tarjan_graph_free(g);
5361 return isl_stat_ok;
5362 error:
5363 isl_tarjan_graph_free(g);
5364 return isl_stat_error;
5367 /* Construct the identifier "cluster_i".
5369 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5371 char name[40];
5373 snprintf(name, sizeof(name), "cluster_%d", i);
5374 return isl_id_alloc(ctx, name, NULL);
5377 /* Construct the space of the cluster with index "i" containing
5378 * the strongly connected component "scc".
5380 * In particular, construct a space called cluster_i with dimension equal
5381 * to the number of schedule rows in the current band of "scc".
5383 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5385 int nvar;
5386 isl_space *space;
5387 isl_id *id;
5389 nvar = scc->n_total_row - scc->band_start;
5390 space = isl_space_copy(scc->node[0].space);
5391 space = isl_space_params(space);
5392 space = isl_space_set_from_params(space);
5393 space = isl_space_add_dims(space, isl_dim_set, nvar);
5394 id = cluster_id(isl_space_get_ctx(space), i);
5395 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5397 return space;
5400 /* Collect the domain of the graph for merging clusters.
5402 * In particular, for each cluster with first SCC "i", construct
5403 * a set in the space called cluster_i with dimension equal
5404 * to the number of schedule rows in the current band of the cluster.
5406 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5407 struct isl_sched_graph *graph, struct isl_clustering *c)
5409 int i;
5410 isl_space *space;
5411 isl_union_set *domain;
5413 space = isl_space_params_alloc(ctx, 0);
5414 domain = isl_union_set_empty(space);
5416 for (i = 0; i < graph->scc; ++i) {
5417 isl_space *space;
5419 if (!c->scc_in_merge[i])
5420 continue;
5421 if (c->scc_cluster[i] != i)
5422 continue;
5423 space = cluster_space(&c->scc[i], i);
5424 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5427 return domain;
5430 /* Construct a map from the original instances to the corresponding
5431 * cluster instance in the current bands of the clusters in "c".
5433 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5434 struct isl_sched_graph *graph, struct isl_clustering *c)
5436 int i, j;
5437 isl_space *space;
5438 isl_union_map *cluster_map;
5440 space = isl_space_params_alloc(ctx, 0);
5441 cluster_map = isl_union_map_empty(space);
5442 for (i = 0; i < graph->scc; ++i) {
5443 int start, n;
5444 isl_id *id;
5446 if (!c->scc_in_merge[i])
5447 continue;
5449 id = cluster_id(ctx, c->scc_cluster[i]);
5450 start = c->scc[i].band_start;
5451 n = c->scc[i].n_total_row - start;
5452 for (j = 0; j < c->scc[i].n; ++j) {
5453 isl_multi_aff *ma;
5454 isl_map *map;
5455 struct isl_sched_node *node = &c->scc[i].node[j];
5457 ma = node_extract_partial_schedule_multi_aff(node,
5458 start, n);
5459 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5460 isl_id_copy(id));
5461 map = isl_map_from_multi_aff(ma);
5462 cluster_map = isl_union_map_add_map(cluster_map, map);
5464 isl_id_free(id);
5467 return cluster_map;
5470 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5471 * that are not isl_edge_condition or isl_edge_conditional_validity.
5473 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5474 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5475 __isl_take isl_schedule_constraints *sc)
5477 enum isl_edge_type t;
5479 if (!sc)
5480 return NULL;
5482 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5483 if (t == isl_edge_condition ||
5484 t == isl_edge_conditional_validity)
5485 continue;
5486 if (!is_type(edge, t))
5487 continue;
5488 sc = isl_schedule_constraints_add(sc, t,
5489 isl_union_map_copy(umap));
5492 return sc;
5495 /* Add schedule constraints of types isl_edge_condition and
5496 * isl_edge_conditional_validity to "sc" by applying "umap" to
5497 * the domains of the wrapped relations in domain and range
5498 * of the corresponding tagged constraints of "edge".
5500 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5501 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5502 __isl_take isl_schedule_constraints *sc)
5504 enum isl_edge_type t;
5505 isl_union_map *tagged;
5507 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5508 if (!is_type(edge, t))
5509 continue;
5510 if (t == isl_edge_condition)
5511 tagged = isl_union_map_copy(edge->tagged_condition);
5512 else
5513 tagged = isl_union_map_copy(edge->tagged_validity);
5514 tagged = isl_union_map_zip(tagged);
5515 tagged = isl_union_map_apply_domain(tagged,
5516 isl_union_map_copy(umap));
5517 tagged = isl_union_map_zip(tagged);
5518 sc = isl_schedule_constraints_add(sc, t, tagged);
5519 if (!sc)
5520 return NULL;
5523 return sc;
5526 /* Given a mapping "cluster_map" from the original instances to
5527 * the cluster instances, add schedule constraints on the clusters
5528 * to "sc" corresponding to the original constraints represented by "edge".
5530 * For non-tagged dependence constraints, the cluster constraints
5531 * are obtained by applying "cluster_map" to the edge->map.
5533 * For tagged dependence constraints, "cluster_map" needs to be applied
5534 * to the domains of the wrapped relations in domain and range
5535 * of the tagged dependence constraints. Pick out the mappings
5536 * from these domains from "cluster_map" and construct their product.
5537 * This mapping can then be applied to the pair of domains.
5539 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5540 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5541 __isl_take isl_schedule_constraints *sc)
5543 isl_union_map *umap;
5544 isl_space *space;
5545 isl_union_set *uset;
5546 isl_union_map *umap1, *umap2;
5548 if (!sc)
5549 return NULL;
5551 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5552 umap = isl_union_map_apply_domain(umap,
5553 isl_union_map_copy(cluster_map));
5554 umap = isl_union_map_apply_range(umap,
5555 isl_union_map_copy(cluster_map));
5556 sc = add_non_conditional_constraints(edge, umap, sc);
5557 isl_union_map_free(umap);
5559 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5560 return sc;
5562 space = isl_space_domain(isl_map_get_space(edge->map));
5563 uset = isl_union_set_from_set(isl_set_universe(space));
5564 umap1 = isl_union_map_copy(cluster_map);
5565 umap1 = isl_union_map_intersect_domain(umap1, uset);
5566 space = isl_space_range(isl_map_get_space(edge->map));
5567 uset = isl_union_set_from_set(isl_set_universe(space));
5568 umap2 = isl_union_map_copy(cluster_map);
5569 umap2 = isl_union_map_intersect_domain(umap2, uset);
5570 umap = isl_union_map_product(umap1, umap2);
5572 sc = add_conditional_constraints(edge, umap, sc);
5574 isl_union_map_free(umap);
5575 return sc;
5578 /* Given a mapping "cluster_map" from the original instances to
5579 * the cluster instances, add schedule constraints on the clusters
5580 * to "sc" corresponding to all edges in "graph" between nodes that
5581 * belong to SCCs that are marked for merging in "scc_in_merge".
5583 static __isl_give isl_schedule_constraints *collect_constraints(
5584 struct isl_sched_graph *graph, int *scc_in_merge,
5585 __isl_keep isl_union_map *cluster_map,
5586 __isl_take isl_schedule_constraints *sc)
5588 int i;
5590 for (i = 0; i < graph->n_edge; ++i) {
5591 struct isl_sched_edge *edge = &graph->edge[i];
5593 if (!scc_in_merge[edge->src->scc])
5594 continue;
5595 if (!scc_in_merge[edge->dst->scc])
5596 continue;
5597 sc = collect_edge_constraints(edge, cluster_map, sc);
5600 return sc;
5603 /* Construct a dependence graph for scheduling clusters with respect
5604 * to each other and store the result in "merge_graph".
5605 * In particular, the nodes of the graph correspond to the schedule
5606 * dimensions of the current bands of those clusters that have been
5607 * marked for merging in "c".
5609 * First construct an isl_schedule_constraints object for this domain
5610 * by transforming the edges in "graph" to the domain.
5611 * Then initialize a dependence graph for scheduling from these
5612 * constraints.
5614 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5615 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5617 isl_union_set *domain;
5618 isl_union_map *cluster_map;
5619 isl_schedule_constraints *sc;
5620 isl_stat r;
5622 domain = collect_domain(ctx, graph, c);
5623 sc = isl_schedule_constraints_on_domain(domain);
5624 if (!sc)
5625 return isl_stat_error;
5626 cluster_map = collect_cluster_map(ctx, graph, c);
5627 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5628 isl_union_map_free(cluster_map);
5630 r = graph_init(merge_graph, sc);
5632 isl_schedule_constraints_free(sc);
5634 return r;
5637 /* Compute the maximal number of remaining schedule rows that still need
5638 * to be computed for the nodes that belong to clusters with the maximal
5639 * dimension for the current band (i.e., the band that is to be merged).
5640 * Only clusters that are about to be merged are considered.
5641 * "maxvar" is the maximal dimension for the current band.
5642 * "c" contains information about the clusters.
5644 * Return the maximal number of remaining schedule rows or -1 on error.
5646 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5648 int i, j;
5649 int max_slack;
5651 max_slack = 0;
5652 for (i = 0; i < c->n; ++i) {
5653 int nvar;
5654 struct isl_sched_graph *scc;
5656 if (!c->scc_in_merge[i])
5657 continue;
5658 scc = &c->scc[i];
5659 nvar = scc->n_total_row - scc->band_start;
5660 if (nvar != maxvar)
5661 continue;
5662 for (j = 0; j < scc->n; ++j) {
5663 struct isl_sched_node *node = &scc->node[j];
5664 int slack;
5666 if (node_update_vmap(node) < 0)
5667 return -1;
5668 slack = node->nvar - node->rank;
5669 if (slack > max_slack)
5670 max_slack = slack;
5674 return max_slack;
5677 /* If there are any clusters where the dimension of the current band
5678 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5679 * if there are any nodes in such a cluster where the number
5680 * of remaining schedule rows that still need to be computed
5681 * is greater than "max_slack", then return the smallest current band
5682 * dimension of all these clusters. Otherwise return the original value
5683 * of "maxvar". Return -1 in case of any error.
5684 * Only clusters that are about to be merged are considered.
5685 * "c" contains information about the clusters.
5687 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5688 struct isl_clustering *c)
5690 int i, j;
5692 for (i = 0; i < c->n; ++i) {
5693 int nvar;
5694 struct isl_sched_graph *scc;
5696 if (!c->scc_in_merge[i])
5697 continue;
5698 scc = &c->scc[i];
5699 nvar = scc->n_total_row - scc->band_start;
5700 if (nvar >= maxvar)
5701 continue;
5702 for (j = 0; j < scc->n; ++j) {
5703 struct isl_sched_node *node = &scc->node[j];
5704 int slack;
5706 if (node_update_vmap(node) < 0)
5707 return -1;
5708 slack = node->nvar - node->rank;
5709 if (slack > max_slack) {
5710 maxvar = nvar;
5711 break;
5716 return maxvar;
5719 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5720 * that still need to be computed. In particular, if there is a node
5721 * in a cluster where the dimension of the current band is smaller
5722 * than merge_graph->maxvar, but the number of remaining schedule rows
5723 * is greater than that of any node in a cluster with the maximal
5724 * dimension for the current band (i.e., merge_graph->maxvar),
5725 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5726 * of those clusters. Without this adjustment, the total number of
5727 * schedule dimensions would be increased, resulting in a skewed view
5728 * of the number of coincident dimensions.
5729 * "c" contains information about the clusters.
5731 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5732 * then there is no point in attempting any merge since it will be rejected
5733 * anyway. Set merge_graph->maxvar to zero in such cases.
5735 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5736 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5738 int max_slack, maxvar;
5740 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5741 if (max_slack < 0)
5742 return isl_stat_error;
5743 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5744 if (maxvar < 0)
5745 return isl_stat_error;
5747 if (maxvar < merge_graph->maxvar) {
5748 if (isl_options_get_schedule_maximize_band_depth(ctx))
5749 merge_graph->maxvar = 0;
5750 else
5751 merge_graph->maxvar = maxvar;
5754 return isl_stat_ok;
5757 /* Return the number of coincident dimensions in the current band of "graph",
5758 * where the nodes of "graph" are assumed to be scheduled by a single band.
5760 static int get_n_coincident(struct isl_sched_graph *graph)
5762 int i;
5764 for (i = graph->band_start; i < graph->n_total_row; ++i)
5765 if (!graph->node[0].coincident[i])
5766 break;
5768 return i - graph->band_start;
5771 /* Should the clusters be merged based on the cluster schedule
5772 * in the current (and only) band of "merge_graph", given that
5773 * coincidence should be maximized?
5775 * If the number of coincident schedule dimensions in the merged band
5776 * would be less than the maximal number of coincident schedule dimensions
5777 * in any of the merged clusters, then the clusters should not be merged.
5779 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5780 struct isl_sched_graph *merge_graph)
5782 int i;
5783 int n_coincident;
5784 int max_coincident;
5786 max_coincident = 0;
5787 for (i = 0; i < c->n; ++i) {
5788 if (!c->scc_in_merge[i])
5789 continue;
5790 n_coincident = get_n_coincident(&c->scc[i]);
5791 if (n_coincident > max_coincident)
5792 max_coincident = n_coincident;
5795 n_coincident = get_n_coincident(merge_graph);
5797 return n_coincident >= max_coincident;
5800 /* Return the transformation on "node" expressed by the current (and only)
5801 * band of "merge_graph" applied to the clusters in "c".
5803 * First find the representation of "node" in its SCC in "c" and
5804 * extract the transformation expressed by the current band.
5805 * Then extract the transformation applied by "merge_graph"
5806 * to the cluster to which this SCC belongs.
5807 * Combine the two to obtain the complete transformation on the node.
5809 * Note that the range of the first transformation is an anonymous space,
5810 * while the domain of the second is named "cluster_X". The range
5811 * of the former therefore needs to be adjusted before the two
5812 * can be combined.
5814 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5815 struct isl_sched_node *node, struct isl_clustering *c,
5816 struct isl_sched_graph *merge_graph)
5818 struct isl_sched_node *scc_node, *cluster_node;
5819 int start, n;
5820 isl_id *id;
5821 isl_space *space;
5822 isl_multi_aff *ma, *ma2;
5824 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5825 start = c->scc[node->scc].band_start;
5826 n = c->scc[node->scc].n_total_row - start;
5827 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5828 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5829 cluster_node = graph_find_node(ctx, merge_graph, space);
5830 if (space && !cluster_node)
5831 isl_die(ctx, isl_error_internal, "unable to find cluster",
5832 space = isl_space_free(space));
5833 id = isl_space_get_tuple_id(space, isl_dim_set);
5834 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5835 isl_space_free(space);
5836 n = merge_graph->n_total_row;
5837 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5838 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5840 return isl_map_from_multi_aff(ma);
5843 /* Give a set of distances "set", are they bounded by a small constant
5844 * in direction "pos"?
5845 * In practice, check if they are bounded by 2 by checking that there
5846 * are no elements with a value greater than or equal to 3 or
5847 * smaller than or equal to -3.
5849 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5851 isl_bool bounded;
5852 isl_set *test;
5854 if (!set)
5855 return isl_bool_error;
5857 test = isl_set_copy(set);
5858 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5859 bounded = isl_set_is_empty(test);
5860 isl_set_free(test);
5862 if (bounded < 0 || !bounded)
5863 return bounded;
5865 test = isl_set_copy(set);
5866 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5867 bounded = isl_set_is_empty(test);
5868 isl_set_free(test);
5870 return bounded;
5873 /* Does the set "set" have a fixed (but possible parametric) value
5874 * at dimension "pos"?
5876 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5878 int n;
5879 isl_bool single;
5881 if (!set)
5882 return isl_bool_error;
5883 set = isl_set_copy(set);
5884 n = isl_set_dim(set, isl_dim_set);
5885 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5886 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5887 single = isl_set_is_singleton(set);
5888 isl_set_free(set);
5890 return single;
5893 /* Does "map" have a fixed (but possible parametric) value
5894 * at dimension "pos" of either its domain or its range?
5896 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5898 isl_set *set;
5899 isl_bool single;
5901 set = isl_map_domain(isl_map_copy(map));
5902 single = has_single_value(set, pos);
5903 isl_set_free(set);
5905 if (single < 0 || single)
5906 return single;
5908 set = isl_map_range(isl_map_copy(map));
5909 single = has_single_value(set, pos);
5910 isl_set_free(set);
5912 return single;
5915 /* Does the edge "edge" from "graph" have bounded dependence distances
5916 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5918 * Extract the complete transformations of the source and destination
5919 * nodes of the edge, apply them to the edge constraints and
5920 * compute the differences. Finally, check if these differences are bounded
5921 * in each direction.
5923 * If the dimension of the band is greater than the number of
5924 * dimensions that can be expected to be optimized by the edge
5925 * (based on its weight), then also allow the differences to be unbounded
5926 * in the remaining dimensions, but only if either the source or
5927 * the destination has a fixed value in that direction.
5928 * This allows a statement that produces values that are used by
5929 * several instances of another statement to be merged with that
5930 * other statement.
5931 * However, merging such clusters will introduce an inherently
5932 * large proximity distance inside the merged cluster, meaning
5933 * that proximity distances will no longer be optimized in
5934 * subsequent merges. These merges are therefore only allowed
5935 * after all other possible merges have been tried.
5936 * The first time such a merge is encountered, the weight of the edge
5937 * is replaced by a negative weight. The second time (i.e., after
5938 * all merges over edges with a non-negative weight have been tried),
5939 * the merge is allowed.
5941 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5942 struct isl_sched_graph *graph, struct isl_clustering *c,
5943 struct isl_sched_graph *merge_graph)
5945 int i, n, n_slack;
5946 isl_bool bounded;
5947 isl_map *map, *t;
5948 isl_set *dist;
5950 map = isl_map_copy(edge->map);
5951 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5952 map = isl_map_apply_domain(map, t);
5953 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5954 map = isl_map_apply_range(map, t);
5955 dist = isl_map_deltas(isl_map_copy(map));
5957 bounded = isl_bool_true;
5958 n = isl_set_dim(dist, isl_dim_set);
5959 n_slack = n - edge->weight;
5960 if (edge->weight < 0)
5961 n_slack -= graph->max_weight + 1;
5962 for (i = 0; i < n; ++i) {
5963 isl_bool bounded_i, singular_i;
5965 bounded_i = distance_is_bounded(dist, i);
5966 if (bounded_i < 0)
5967 goto error;
5968 if (bounded_i)
5969 continue;
5970 if (edge->weight >= 0)
5971 bounded = isl_bool_false;
5972 n_slack--;
5973 if (n_slack < 0)
5974 break;
5975 singular_i = has_singular_src_or_dst(map, i);
5976 if (singular_i < 0)
5977 goto error;
5978 if (singular_i)
5979 continue;
5980 bounded = isl_bool_false;
5981 break;
5983 if (!bounded && i >= n && edge->weight >= 0)
5984 edge->weight -= graph->max_weight + 1;
5985 isl_map_free(map);
5986 isl_set_free(dist);
5988 return bounded;
5989 error:
5990 isl_map_free(map);
5991 isl_set_free(dist);
5992 return isl_bool_error;
5995 /* Should the clusters be merged based on the cluster schedule
5996 * in the current (and only) band of "merge_graph"?
5997 * "graph" is the original dependence graph, while "c" records
5998 * which SCCs are involved in the latest merge.
6000 * In particular, is there at least one proximity constraint
6001 * that is optimized by the merge?
6003 * A proximity constraint is considered to be optimized
6004 * if the dependence distances are small.
6006 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6007 struct isl_sched_graph *graph, struct isl_clustering *c,
6008 struct isl_sched_graph *merge_graph)
6010 int i;
6012 for (i = 0; i < graph->n_edge; ++i) {
6013 struct isl_sched_edge *edge = &graph->edge[i];
6014 isl_bool bounded;
6016 if (!is_proximity(edge))
6017 continue;
6018 if (!c->scc_in_merge[edge->src->scc])
6019 continue;
6020 if (!c->scc_in_merge[edge->dst->scc])
6021 continue;
6022 if (c->scc_cluster[edge->dst->scc] ==
6023 c->scc_cluster[edge->src->scc])
6024 continue;
6025 bounded = has_bounded_distances(ctx, edge, graph, c,
6026 merge_graph);
6027 if (bounded < 0 || bounded)
6028 return bounded;
6031 return isl_bool_false;
6034 /* Should the clusters be merged based on the cluster schedule
6035 * in the current (and only) band of "merge_graph"?
6036 * "graph" is the original dependence graph, while "c" records
6037 * which SCCs are involved in the latest merge.
6039 * If the current band is empty, then the clusters should not be merged.
6041 * If the band depth should be maximized and the merge schedule
6042 * is incomplete (meaning that the dimension of some of the schedule
6043 * bands in the original schedule will be reduced), then the clusters
6044 * should not be merged.
6046 * If the schedule_maximize_coincidence option is set, then check that
6047 * the number of coincident schedule dimensions is not reduced.
6049 * Finally, only allow the merge if at least one proximity
6050 * constraint is optimized.
6052 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6053 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6055 if (merge_graph->n_total_row == merge_graph->band_start)
6056 return isl_bool_false;
6058 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6059 merge_graph->n_total_row < merge_graph->maxvar)
6060 return isl_bool_false;
6062 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6063 isl_bool ok;
6065 ok = ok_to_merge_coincident(c, merge_graph);
6066 if (ok < 0 || !ok)
6067 return ok;
6070 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6073 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6074 * of the schedule in "node" and return the result.
6076 * That is, essentially compute
6078 * T * N(first:first+n-1)
6080 * taking into account the constant term and the parameter coefficients
6081 * in "t_node".
6083 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6084 struct isl_sched_node *t_node, struct isl_sched_node *node,
6085 int first, int n)
6087 int i, j;
6088 isl_mat *t;
6089 int n_row, n_col, n_param, n_var;
6091 n_param = node->nparam;
6092 n_var = node->nvar;
6093 n_row = isl_mat_rows(t_node->sched);
6094 n_col = isl_mat_cols(node->sched);
6095 t = isl_mat_alloc(ctx, n_row, n_col);
6096 if (!t)
6097 return NULL;
6098 for (i = 0; i < n_row; ++i) {
6099 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6100 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6101 for (j = 0; j < n; ++j)
6102 isl_seq_addmul(t->row[i],
6103 t_node->sched->row[i][1 + n_param + j],
6104 node->sched->row[first + j],
6105 1 + n_param + n_var);
6107 return t;
6110 /* Apply the cluster schedule in "t_node" to the current band
6111 * schedule of the nodes in "graph".
6113 * In particular, replace the rows starting at band_start
6114 * by the result of applying the cluster schedule in "t_node"
6115 * to the original rows.
6117 * The coincidence of the schedule is determined by the coincidence
6118 * of the cluster schedule.
6120 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6121 struct isl_sched_node *t_node)
6123 int i, j;
6124 int n_new;
6125 int start, n;
6127 start = graph->band_start;
6128 n = graph->n_total_row - start;
6130 n_new = isl_mat_rows(t_node->sched);
6131 for (i = 0; i < graph->n; ++i) {
6132 struct isl_sched_node *node = &graph->node[i];
6133 isl_mat *t;
6135 t = node_transformation(ctx, t_node, node, start, n);
6136 node->sched = isl_mat_drop_rows(node->sched, start, n);
6137 node->sched = isl_mat_concat(node->sched, t);
6138 node->sched_map = isl_map_free(node->sched_map);
6139 if (!node->sched)
6140 return isl_stat_error;
6141 for (j = 0; j < n_new; ++j)
6142 node->coincident[start + j] = t_node->coincident[j];
6144 graph->n_total_row -= n;
6145 graph->n_row -= n;
6146 graph->n_total_row += n_new;
6147 graph->n_row += n_new;
6149 return isl_stat_ok;
6152 /* Merge the clusters marked for merging in "c" into a single
6153 * cluster using the cluster schedule in the current band of "merge_graph".
6154 * The representative SCC for the new cluster is the SCC with
6155 * the smallest index.
6157 * The current band schedule of each SCC in the new cluster is obtained
6158 * by applying the schedule of the corresponding original cluster
6159 * to the original band schedule.
6160 * All SCCs in the new cluster have the same number of schedule rows.
6162 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6163 struct isl_sched_graph *merge_graph)
6165 int i;
6166 int cluster = -1;
6167 isl_space *space;
6169 for (i = 0; i < c->n; ++i) {
6170 struct isl_sched_node *node;
6172 if (!c->scc_in_merge[i])
6173 continue;
6174 if (cluster < 0)
6175 cluster = i;
6176 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6177 if (!space)
6178 return isl_stat_error;
6179 node = graph_find_node(ctx, merge_graph, space);
6180 isl_space_free(space);
6181 if (!node)
6182 isl_die(ctx, isl_error_internal,
6183 "unable to find cluster",
6184 return isl_stat_error);
6185 if (transform(ctx, &c->scc[i], node) < 0)
6186 return isl_stat_error;
6187 c->scc_cluster[i] = cluster;
6190 return isl_stat_ok;
6193 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6194 * by scheduling the current cluster bands with respect to each other.
6196 * Construct a dependence graph with a space for each cluster and
6197 * with the coordinates of each space corresponding to the schedule
6198 * dimensions of the current band of that cluster.
6199 * Construct a cluster schedule in this cluster dependence graph and
6200 * apply it to the current cluster bands if it is applicable
6201 * according to ok_to_merge.
6203 * If the number of remaining schedule dimensions in a cluster
6204 * with a non-maximal current schedule dimension is greater than
6205 * the number of remaining schedule dimensions in clusters
6206 * with a maximal current schedule dimension, then restrict
6207 * the number of rows to be computed in the cluster schedule
6208 * to the minimal such non-maximal current schedule dimension.
6209 * Do this by adjusting merge_graph.maxvar.
6211 * Return isl_bool_true if the clusters have effectively been merged
6212 * into a single cluster.
6214 * Note that since the standard scheduling algorithm minimizes the maximal
6215 * distance over proximity constraints, the proximity constraints between
6216 * the merged clusters may not be optimized any further than what is
6217 * sufficient to bring the distances within the limits of the internal
6218 * proximity constraints inside the individual clusters.
6219 * It may therefore make sense to perform an additional translation step
6220 * to bring the clusters closer to each other, while maintaining
6221 * the linear part of the merging schedule found using the standard
6222 * scheduling algorithm.
6224 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6225 struct isl_clustering *c)
6227 struct isl_sched_graph merge_graph = { 0 };
6228 isl_bool merged;
6230 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6231 goto error;
6233 if (compute_maxvar(&merge_graph) < 0)
6234 goto error;
6235 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6236 goto error;
6237 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6238 goto error;
6239 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6240 if (merged && merge(ctx, c, &merge_graph) < 0)
6241 goto error;
6243 graph_free(ctx, &merge_graph);
6244 return merged;
6245 error:
6246 graph_free(ctx, &merge_graph);
6247 return isl_bool_error;
6250 /* Is there any edge marked "no_merge" between two SCCs that are
6251 * about to be merged (i.e., that are set in "scc_in_merge")?
6252 * "merge_edge" is the proximity edge along which the clusters of SCCs
6253 * are going to be merged.
6255 * If there is any edge between two SCCs with a negative weight,
6256 * while the weight of "merge_edge" is non-negative, then this
6257 * means that the edge was postponed. "merge_edge" should then
6258 * also be postponed since merging along the edge with negative weight should
6259 * be postponed until all edges with non-negative weight have been tried.
6260 * Replace the weight of "merge_edge" by a negative weight as well and
6261 * tell the caller not to attempt a merge.
6263 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6264 struct isl_sched_edge *merge_edge)
6266 int i;
6268 for (i = 0; i < graph->n_edge; ++i) {
6269 struct isl_sched_edge *edge = &graph->edge[i];
6271 if (!scc_in_merge[edge->src->scc])
6272 continue;
6273 if (!scc_in_merge[edge->dst->scc])
6274 continue;
6275 if (edge->no_merge)
6276 return 1;
6277 if (merge_edge->weight >= 0 && edge->weight < 0) {
6278 merge_edge->weight -= graph->max_weight + 1;
6279 return 1;
6283 return 0;
6286 /* Merge the two clusters in "c" connected by the edge in "graph"
6287 * with index "edge" into a single cluster.
6288 * If it turns out to be impossible to merge these two clusters,
6289 * then mark the edge as "no_merge" such that it will not be
6290 * considered again.
6292 * First mark all SCCs that need to be merged. This includes the SCCs
6293 * in the two clusters, but it may also include the SCCs
6294 * of intermediate clusters.
6295 * If there is already a no_merge edge between any pair of such SCCs,
6296 * then simply mark the current edge as no_merge as well.
6297 * Likewise, if any of those edges was postponed by has_bounded_distances,
6298 * then postpone the current edge as well.
6299 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6300 * if the clusters did not end up getting merged, unless the non-merge
6301 * is due to the fact that the edge was postponed. This postponement
6302 * can be recognized by a change in weight (from non-negative to negative).
6304 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6305 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6307 isl_bool merged;
6308 int edge_weight = graph->edge[edge].weight;
6310 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6311 return isl_stat_error;
6313 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6314 merged = isl_bool_false;
6315 else
6316 merged = try_merge(ctx, graph, c);
6317 if (merged < 0)
6318 return isl_stat_error;
6319 if (!merged && edge_weight == graph->edge[edge].weight)
6320 graph->edge[edge].no_merge = 1;
6322 return isl_stat_ok;
6325 /* Does "node" belong to the cluster identified by "cluster"?
6327 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6329 return node->cluster == cluster;
6332 /* Does "edge" connect two nodes belonging to the cluster
6333 * identified by "cluster"?
6335 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6337 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6340 /* Swap the schedule of "node1" and "node2".
6341 * Both nodes have been derived from the same node in a common parent graph.
6342 * Since the "coincident" field is shared with that node
6343 * in the parent graph, there is no need to also swap this field.
6345 static void swap_sched(struct isl_sched_node *node1,
6346 struct isl_sched_node *node2)
6348 isl_mat *sched;
6349 isl_map *sched_map;
6351 sched = node1->sched;
6352 node1->sched = node2->sched;
6353 node2->sched = sched;
6355 sched_map = node1->sched_map;
6356 node1->sched_map = node2->sched_map;
6357 node2->sched_map = sched_map;
6360 /* Copy the current band schedule from the SCCs that form the cluster
6361 * with index "pos" to the actual cluster at position "pos".
6362 * By construction, the index of the first SCC that belongs to the cluster
6363 * is also "pos".
6365 * The order of the nodes inside both the SCCs and the cluster
6366 * is assumed to be same as the order in the original "graph".
6368 * Since the SCC graphs will no longer be used after this function,
6369 * the schedules are actually swapped rather than copied.
6371 static isl_stat copy_partial(struct isl_sched_graph *graph,
6372 struct isl_clustering *c, int pos)
6374 int i, j;
6376 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6377 c->cluster[pos].n_row = c->scc[pos].n_row;
6378 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6379 j = 0;
6380 for (i = 0; i < graph->n; ++i) {
6381 int k;
6382 int s;
6384 if (graph->node[i].cluster != pos)
6385 continue;
6386 s = graph->node[i].scc;
6387 k = c->scc_node[s]++;
6388 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6389 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6390 c->cluster[pos].maxvar = c->scc[s].maxvar;
6391 ++j;
6394 return isl_stat_ok;
6397 /* Is there a (conditional) validity dependence from node[j] to node[i],
6398 * forcing node[i] to follow node[j] or do the nodes belong to the same
6399 * cluster?
6401 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6403 struct isl_sched_graph *graph = user;
6405 if (graph->node[i].cluster == graph->node[j].cluster)
6406 return isl_bool_true;
6407 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6410 /* Extract the merged clusters of SCCs in "graph", sort them, and
6411 * store them in c->clusters. Update c->scc_cluster accordingly.
6413 * First keep track of the cluster containing the SCC to which a node
6414 * belongs in the node itself.
6415 * Then extract the clusters into c->clusters, copying the current
6416 * band schedule from the SCCs that belong to the cluster.
6417 * Do this only once per cluster.
6419 * Finally, topologically sort the clusters and update c->scc_cluster
6420 * to match the new scc numbering. While the SCCs were originally
6421 * sorted already, some SCCs that depend on some other SCCs may
6422 * have been merged with SCCs that appear before these other SCCs.
6423 * A reordering may therefore be required.
6425 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6426 struct isl_clustering *c)
6428 int i;
6430 for (i = 0; i < graph->n; ++i)
6431 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6433 for (i = 0; i < graph->scc; ++i) {
6434 if (c->scc_cluster[i] != i)
6435 continue;
6436 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6437 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6438 return isl_stat_error;
6439 c->cluster[i].src_scc = -1;
6440 c->cluster[i].dst_scc = -1;
6441 if (copy_partial(graph, c, i) < 0)
6442 return isl_stat_error;
6445 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6446 return isl_stat_error;
6447 for (i = 0; i < graph->n; ++i)
6448 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6450 return isl_stat_ok;
6453 /* Compute weights on the proximity edges of "graph" that can
6454 * be used by find_proximity to find the most appropriate
6455 * proximity edge to use to merge two clusters in "c".
6456 * The weights are also used by has_bounded_distances to determine
6457 * whether the merge should be allowed.
6458 * Store the maximum of the computed weights in graph->max_weight.
6460 * The computed weight is a measure for the number of remaining schedule
6461 * dimensions that can still be completely aligned.
6462 * In particular, compute the number of equalities between
6463 * input dimensions and output dimensions in the proximity constraints.
6464 * The directions that are already handled by outer schedule bands
6465 * are projected out prior to determining this number.
6467 * Edges that will never be considered by find_proximity are ignored.
6469 static isl_stat compute_weights(struct isl_sched_graph *graph,
6470 struct isl_clustering *c)
6472 int i;
6474 graph->max_weight = 0;
6476 for (i = 0; i < graph->n_edge; ++i) {
6477 struct isl_sched_edge *edge = &graph->edge[i];
6478 struct isl_sched_node *src = edge->src;
6479 struct isl_sched_node *dst = edge->dst;
6480 isl_basic_map *hull;
6481 isl_bool prox;
6482 int n_in, n_out;
6484 prox = is_non_empty_proximity(edge);
6485 if (prox < 0)
6486 return isl_stat_error;
6487 if (!prox)
6488 continue;
6489 if (bad_cluster(&c->scc[edge->src->scc]) ||
6490 bad_cluster(&c->scc[edge->dst->scc]))
6491 continue;
6492 if (c->scc_cluster[edge->dst->scc] ==
6493 c->scc_cluster[edge->src->scc])
6494 continue;
6496 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6497 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6498 isl_mat_copy(src->vmap));
6499 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6500 isl_mat_copy(dst->vmap));
6501 hull = isl_basic_map_project_out(hull,
6502 isl_dim_in, 0, src->rank);
6503 hull = isl_basic_map_project_out(hull,
6504 isl_dim_out, 0, dst->rank);
6505 hull = isl_basic_map_remove_divs(hull);
6506 n_in = isl_basic_map_dim(hull, isl_dim_in);
6507 n_out = isl_basic_map_dim(hull, isl_dim_out);
6508 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6509 isl_dim_in, 0, n_in);
6510 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6511 isl_dim_out, 0, n_out);
6512 if (!hull)
6513 return isl_stat_error;
6514 edge->weight = isl_basic_map_n_equality(hull);
6515 isl_basic_map_free(hull);
6517 if (edge->weight > graph->max_weight)
6518 graph->max_weight = edge->weight;
6521 return isl_stat_ok;
6524 /* Call compute_schedule_finish_band on each of the clusters in "c"
6525 * in their topological order. This order is determined by the scc
6526 * fields of the nodes in "graph".
6527 * Combine the results in a sequence expressing the topological order.
6529 * If there is only one cluster left, then there is no need to introduce
6530 * a sequence node. Also, in this case, the cluster necessarily contains
6531 * the SCC at position 0 in the original graph and is therefore also
6532 * stored in the first cluster of "c".
6534 static __isl_give isl_schedule_node *finish_bands_clustering(
6535 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6536 struct isl_clustering *c)
6538 int i;
6539 isl_ctx *ctx;
6540 isl_union_set_list *filters;
6542 if (graph->scc == 1)
6543 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6545 ctx = isl_schedule_node_get_ctx(node);
6547 filters = extract_sccs(ctx, graph);
6548 node = isl_schedule_node_insert_sequence(node, filters);
6550 for (i = 0; i < graph->scc; ++i) {
6551 int j = c->scc_cluster[i];
6552 node = isl_schedule_node_child(node, i);
6553 node = isl_schedule_node_child(node, 0);
6554 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6555 node = isl_schedule_node_parent(node);
6556 node = isl_schedule_node_parent(node);
6559 return node;
6562 /* Compute a schedule for a connected dependence graph by first considering
6563 * each strongly connected component (SCC) in the graph separately and then
6564 * incrementally combining them into clusters.
6565 * Return the updated schedule node.
6567 * Initially, each cluster consists of a single SCC, each with its
6568 * own band schedule. The algorithm then tries to merge pairs
6569 * of clusters along a proximity edge until no more suitable
6570 * proximity edges can be found. During this merging, the schedule
6571 * is maintained in the individual SCCs.
6572 * After the merging is completed, the full resulting clusters
6573 * are extracted and in finish_bands_clustering,
6574 * compute_schedule_finish_band is called on each of them to integrate
6575 * the band into "node" and to continue the computation.
6577 * compute_weights initializes the weights that are used by find_proximity.
6579 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6580 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6582 isl_ctx *ctx;
6583 struct isl_clustering c;
6584 int i;
6586 ctx = isl_schedule_node_get_ctx(node);
6588 if (clustering_init(ctx, &c, graph) < 0)
6589 goto error;
6591 if (compute_weights(graph, &c) < 0)
6592 goto error;
6594 for (;;) {
6595 i = find_proximity(graph, &c);
6596 if (i < 0)
6597 goto error;
6598 if (i >= graph->n_edge)
6599 break;
6600 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6601 goto error;
6604 if (extract_clusters(ctx, graph, &c) < 0)
6605 goto error;
6607 node = finish_bands_clustering(node, graph, &c);
6609 clustering_free(ctx, &c);
6610 return node;
6611 error:
6612 clustering_free(ctx, &c);
6613 return isl_schedule_node_free(node);
6616 /* Compute a schedule for a connected dependence graph and return
6617 * the updated schedule node.
6619 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6620 * as many validity dependences as possible. When all validity dependences
6621 * are satisfied we extend the schedule to a full-dimensional schedule.
6623 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6624 * depending on whether the user has selected the option to try and
6625 * compute a schedule for the entire (weakly connected) component first.
6626 * If there is only a single strongly connected component (SCC), then
6627 * there is no point in trying to combine SCCs
6628 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6629 * is called instead.
6631 static __isl_give isl_schedule_node *compute_schedule_wcc(
6632 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6634 isl_ctx *ctx;
6636 if (!node)
6637 return NULL;
6639 ctx = isl_schedule_node_get_ctx(node);
6640 if (detect_sccs(ctx, graph) < 0)
6641 return isl_schedule_node_free(node);
6643 if (compute_maxvar(graph) < 0)
6644 return isl_schedule_node_free(node);
6646 if (need_feautrier_step(ctx, graph))
6647 return compute_schedule_wcc_feautrier(node, graph);
6649 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6650 return compute_schedule_wcc_whole(node, graph);
6651 else
6652 return compute_schedule_wcc_clustering(node, graph);
6655 /* Compute a schedule for each group of nodes identified by node->scc
6656 * separately and then combine them in a sequence node (or as set node
6657 * if graph->weak is set) inserted at position "node" of the schedule tree.
6658 * Return the updated schedule node.
6660 * If "wcc" is set then each of the groups belongs to a single
6661 * weakly connected component in the dependence graph so that
6662 * there is no need for compute_sub_schedule to look for weakly
6663 * connected components.
6665 static __isl_give isl_schedule_node *compute_component_schedule(
6666 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6667 int wcc)
6669 int component;
6670 isl_ctx *ctx;
6671 isl_union_set_list *filters;
6673 if (!node)
6674 return NULL;
6675 ctx = isl_schedule_node_get_ctx(node);
6677 filters = extract_sccs(ctx, graph);
6678 if (graph->weak)
6679 node = isl_schedule_node_insert_set(node, filters);
6680 else
6681 node = isl_schedule_node_insert_sequence(node, filters);
6683 for (component = 0; component < graph->scc; ++component) {
6684 node = isl_schedule_node_child(node, component);
6685 node = isl_schedule_node_child(node, 0);
6686 node = compute_sub_schedule(node, ctx, graph,
6687 &node_scc_exactly,
6688 &edge_scc_exactly, component, wcc);
6689 node = isl_schedule_node_parent(node);
6690 node = isl_schedule_node_parent(node);
6693 return node;
6696 /* Compute a schedule for the given dependence graph and insert it at "node".
6697 * Return the updated schedule node.
6699 * We first check if the graph is connected (through validity and conditional
6700 * validity dependences) and, if not, compute a schedule
6701 * for each component separately.
6702 * If the schedule_serialize_sccs option is set, then we check for strongly
6703 * connected components instead and compute a separate schedule for
6704 * each such strongly connected component.
6706 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6707 struct isl_sched_graph *graph)
6709 isl_ctx *ctx;
6711 if (!node)
6712 return NULL;
6714 ctx = isl_schedule_node_get_ctx(node);
6715 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6716 if (detect_sccs(ctx, graph) < 0)
6717 return isl_schedule_node_free(node);
6718 } else {
6719 if (detect_wccs(ctx, graph) < 0)
6720 return isl_schedule_node_free(node);
6723 if (graph->scc > 1)
6724 return compute_component_schedule(node, graph, 1);
6726 return compute_schedule_wcc(node, graph);
6729 /* Compute a schedule on sc->domain that respects the given schedule
6730 * constraints.
6732 * In particular, the schedule respects all the validity dependences.
6733 * If the default isl scheduling algorithm is used, it tries to minimize
6734 * the dependence distances over the proximity dependences.
6735 * If Feautrier's scheduling algorithm is used, the proximity dependence
6736 * distances are only minimized during the extension to a full-dimensional
6737 * schedule.
6739 * If there are any condition and conditional validity dependences,
6740 * then the conditional validity dependences may be violated inside
6741 * a tilable band, provided they have no adjacent non-local
6742 * condition dependences.
6744 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6745 __isl_take isl_schedule_constraints *sc)
6747 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6748 struct isl_sched_graph graph = { 0 };
6749 isl_schedule *sched;
6750 isl_schedule_node *node;
6751 isl_union_set *domain;
6753 sc = isl_schedule_constraints_align_params(sc);
6755 domain = isl_schedule_constraints_get_domain(sc);
6756 if (isl_union_set_n_set(domain) == 0) {
6757 isl_schedule_constraints_free(sc);
6758 return isl_schedule_from_domain(domain);
6761 if (graph_init(&graph, sc) < 0)
6762 domain = isl_union_set_free(domain);
6764 node = isl_schedule_node_from_domain(domain);
6765 node = isl_schedule_node_child(node, 0);
6766 if (graph.n > 0)
6767 node = compute_schedule(node, &graph);
6768 sched = isl_schedule_node_get_schedule(node);
6769 isl_schedule_node_free(node);
6771 graph_free(ctx, &graph);
6772 isl_schedule_constraints_free(sc);
6774 return sched;
6777 /* Compute a schedule for the given union of domains that respects
6778 * all the validity dependences and minimizes
6779 * the dependence distances over the proximity dependences.
6781 * This function is kept for backward compatibility.
6783 __isl_give isl_schedule *isl_union_set_compute_schedule(
6784 __isl_take isl_union_set *domain,
6785 __isl_take isl_union_map *validity,
6786 __isl_take isl_union_map *proximity)
6788 isl_schedule_constraints *sc;
6790 sc = isl_schedule_constraints_on_domain(domain);
6791 sc = isl_schedule_constraints_set_validity(sc, validity);
6792 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6794 return isl_schedule_constraints_compute_schedule(sc);