isl_stream: keep track of textual representation of tokens for better error reporting
[isl.git] / isl_bernstein.c
blob0d1a6cebbd623b7d32dd6bb72b6dfcec97d09fac
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_map_private.h>
17 #include <isl/set.h>
18 #include <isl/seq.h>
19 #include <isl_morph.h>
20 #include <isl_factorization.h>
21 #include <isl_vertices_private.h>
22 #include <isl_polynomial_private.h>
23 #include <isl_bernstein.h>
25 struct bernstein_data {
26 enum isl_fold type;
27 isl_qpolynomial *poly;
28 int check_tight;
30 isl_cell *cell;
32 isl_qpolynomial_fold *fold;
33 isl_qpolynomial_fold *fold_tight;
34 isl_pw_qpolynomial_fold *pwf;
35 isl_pw_qpolynomial_fold *pwf_tight;
38 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
40 unsigned nvar;
41 unsigned nparam;
42 int i;
44 nvar = isl_basic_set_dim(vertex, isl_dim_set);
45 nparam = isl_basic_set_dim(vertex, isl_dim_param);
46 for (i = 0; i < nvar; ++i) {
47 int r = nvar - 1 - i;
48 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
49 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
50 return 0;
53 return 1;
56 static __isl_give isl_qpolynomial *vertex_coordinate(
57 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
59 unsigned nvar;
60 unsigned nparam;
61 int r;
62 isl_int denom;
63 isl_qpolynomial *v;
65 nvar = isl_basic_set_dim(vertex, isl_dim_set);
66 nparam = isl_basic_set_dim(vertex, isl_dim_param);
67 r = nvar - 1 - i;
69 isl_int_init(denom);
70 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
71 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
73 if (isl_int_is_pos(denom))
74 isl_seq_neg(vertex->eq[r], vertex->eq[r],
75 1 + isl_basic_set_total_dim(vertex));
76 else
77 isl_int_neg(denom, denom);
79 v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
80 isl_int_clear(denom);
82 return v;
83 error:
84 isl_dim_free(dim);
85 isl_int_clear(denom);
86 return NULL;
89 /* Check whether the bound associated to the selection "k" is tight,
90 * which is the case if we select exactly one vertex and if that vertex
91 * is integral for all values of the parameters.
93 static int is_tight(int *k, int n, int d, isl_cell *cell)
95 int i, j;
97 for (i = 0; i < n; ++i) {
98 int v;
99 if (k[i] != d) {
100 if (k[i])
101 return 0;
102 continue;
104 v = cell->ids[n - 1 - i];
105 return vertex_is_integral(cell->vertices->v[v].vertex);
108 return 0;
111 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
112 int *k, int n, int d, struct bernstein_data *data)
114 isl_qpolynomial_fold *fold;
116 fold = isl_qpolynomial_fold_alloc(data->type, b);
118 if (data->check_tight && is_tight(k, n, d, data->cell))
119 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
120 data->fold_tight, fold);
121 else
122 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
123 data->fold, fold);
126 /* Extract the coefficients of the Bernstein base polynomials and store
127 * them in data->fold and data->fold_tight.
129 * In particular, the coefficient of each monomial
130 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
131 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
133 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
134 * multinom[i] contains the partial multinomial coefficient.
136 static void extract_coefficients(isl_qpolynomial *poly,
137 __isl_keep isl_set *dom, struct bernstein_data *data)
139 int i;
140 int d;
141 int n;
142 isl_ctx *ctx;
143 isl_qpolynomial **c = NULL;
144 int *k = NULL;
145 int *left = NULL;
146 isl_vec *multinom = NULL;
148 if (!poly)
149 return;
151 ctx = isl_qpolynomial_get_ctx(poly);
152 n = isl_qpolynomial_dim(poly, isl_dim_set);
153 d = isl_qpolynomial_degree(poly);
154 isl_assert(ctx, n >= 2, return);
156 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
157 k = isl_alloc_array(ctx, int, n);
158 left = isl_alloc_array(ctx, int, n);
159 multinom = isl_vec_alloc(ctx, n);
160 if (!c || !k || !left || !multinom)
161 goto error;
163 isl_int_set_si(multinom->el[0], 1);
164 for (k[0] = d; k[0] >= 0; --k[0]) {
165 int i = 1;
166 isl_qpolynomial_free(c[0]);
167 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
168 left[0] = d - k[0];
169 k[1] = -1;
170 isl_int_set(multinom->el[1], multinom->el[0]);
171 while (i > 0) {
172 if (i == n - 1) {
173 int j;
174 isl_dim *dim;
175 isl_qpolynomial *b;
176 isl_qpolynomial *f;
177 for (j = 2; j <= left[i - 1]; ++j)
178 isl_int_divexact_ui(multinom->el[i],
179 multinom->el[i], j);
180 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
181 n - 1 - i, left[i - 1]);
182 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
183 0, n);
184 dim = isl_qpolynomial_get_dim(b);
185 f = isl_qpolynomial_rat_cst(dim, ctx->one,
186 multinom->el[i]);
187 b = isl_qpolynomial_mul(b, f);
188 k[n - 1] = left[n - 2];
189 add_fold(b, dom, k, n, d, data);
190 --i;
191 continue;
193 if (k[i] >= left[i - 1]) {
194 --i;
195 continue;
197 ++k[i];
198 if (k[i])
199 isl_int_divexact_ui(multinom->el[i],
200 multinom->el[i], k[i]);
201 isl_qpolynomial_free(c[i]);
202 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
203 n - 1 - i, k[i]);
204 left[i] = left[i - 1] - k[i];
205 k[i + 1] = -1;
206 isl_int_set(multinom->el[i + 1], multinom->el[i]);
207 ++i;
209 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
212 for (i = 0; i < n; ++i)
213 isl_qpolynomial_free(c[i]);
215 isl_vec_free(multinom);
216 free(left);
217 free(k);
218 free(c);
219 return;
220 error:
221 isl_vec_free(multinom);
222 free(left);
223 free(k);
224 if (c)
225 for (i = 0; i < n; ++i)
226 isl_qpolynomial_free(c[i]);
227 free(c);
228 return;
231 /* Perform bernstein expansion on the parametric vertices that are active
232 * on "cell".
234 * data->poly has been homogenized in the calling function.
236 * We plug in the barycentric coordinates for the set variables
238 * \vec x = \sum_i \alpha_i v_i(\vec p)
240 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241 * Next, we extract the coefficients of the Bernstein base polynomials.
243 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
245 int i, j;
246 struct bernstein_data *data = (struct bernstein_data *)user;
247 isl_dim *dim_param;
248 isl_dim *dim_dst;
249 isl_qpolynomial *poly = data->poly;
250 unsigned nvar;
251 int n_vertices;
252 isl_qpolynomial **subs;
253 isl_pw_qpolynomial_fold *pwf;
254 isl_set *dom;
255 isl_ctx *ctx;
257 nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
258 n_vertices = cell->n_vertices;
260 ctx = isl_qpolynomial_get_ctx(poly);
261 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
262 return isl_cell_foreach_simplex(cell,
263 &bernstein_coefficients_cell, user);
265 subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
266 if (!subs)
267 goto error;
269 dim_param = isl_basic_set_get_dim(cell->dom);
270 dim_dst = isl_qpolynomial_get_dim(poly);
271 dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
273 for (i = 0; i < 1 + nvar; ++i)
274 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
276 for (i = 0; i < n_vertices; ++i) {
277 isl_qpolynomial *c;
278 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
279 1 + nvar + i);
280 for (j = 0; j < nvar; ++j) {
281 int k = cell->ids[i];
282 isl_qpolynomial *v;
283 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
284 isl_dim_copy(dim_param));
285 v = isl_qpolynomial_add_dims(v, isl_dim_set,
286 1 + nvar + n_vertices);
287 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
288 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
290 subs[0] = isl_qpolynomial_add(subs[0], c);
292 isl_dim_free(dim_dst);
294 poly = isl_qpolynomial_copy(poly);
296 poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
297 poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
298 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
300 data->cell = cell;
301 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
302 data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
303 data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
304 extract_coefficients(poly, dom, data);
306 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
307 data->fold);
308 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
309 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
310 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
312 isl_qpolynomial_free(poly);
313 isl_cell_free(cell);
314 for (i = 0; i < 1 + nvar; ++i)
315 isl_qpolynomial_free(subs[i]);
316 free(subs);
317 return 0;
318 error:
319 isl_cell_free(cell);
320 return -1;
323 /* Base case of applying bernstein expansion.
325 * We compute the chamber decomposition of the parametric polytope "bset"
326 * and then perform bernstein expansion on the parametric vertices
327 * that are active on each chamber.
329 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
330 __isl_take isl_basic_set *bset,
331 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
333 unsigned nvar;
334 isl_dim *dim;
335 isl_pw_qpolynomial_fold *pwf;
336 isl_vertices *vertices;
337 int covers;
339 nvar = isl_basic_set_dim(bset, isl_dim_set);
340 if (nvar == 0) {
341 isl_set *dom;
342 isl_qpolynomial_fold *fold;
343 fold = isl_qpolynomial_fold_alloc(data->type, poly);
344 dom = isl_set_from_basic_set(bset);
345 if (tight)
346 *tight = 1;
347 return isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
350 if (isl_qpolynomial_is_zero(poly)) {
351 isl_set *dom;
352 isl_qpolynomial_fold *fold;
353 fold = isl_qpolynomial_fold_alloc(data->type, poly);
354 dom = isl_set_from_basic_set(bset);
355 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
356 if (tight)
357 *tight = 1;
358 return isl_pw_qpolynomial_fold_drop_dims(pwf,
359 isl_dim_set, 0, nvar);
362 dim = isl_basic_set_get_dim(bset);
363 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
364 data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim), data->type);
365 data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
366 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
367 vertices = isl_basic_set_compute_vertices(bset);
368 isl_vertices_foreach_disjoint_cell(vertices,
369 &bernstein_coefficients_cell, data);
370 isl_vertices_free(vertices);
371 isl_qpolynomial_free(data->poly);
373 isl_basic_set_free(bset);
374 isl_qpolynomial_free(poly);
376 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
377 if (covers < 0)
378 goto error;
380 if (tight)
381 *tight = covers;
383 if (covers) {
384 isl_pw_qpolynomial_fold_free(data->pwf);
385 return data->pwf_tight;
388 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
390 return data->pwf;
391 error:
392 isl_pw_qpolynomial_fold_free(data->pwf_tight);
393 isl_pw_qpolynomial_fold_free(data->pwf);
394 return NULL;
397 /* Apply bernstein expansion recursively by working in on len[i]
398 * set variables at a time, with i ranging from n_group - 1 to 0.
400 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
401 __isl_take isl_pw_qpolynomial *pwqp,
402 int n_group, int *len, struct bernstein_data *data, int *tight)
404 int i;
405 unsigned nparam;
406 unsigned nvar;
407 isl_pw_qpolynomial_fold *pwf;
409 if (!pwqp)
410 return NULL;
412 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
413 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
415 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
416 isl_dim_set, 0, nvar - len[n_group - 1]);
417 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
419 for (i = n_group - 2; i >= 0; --i) {
420 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
421 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
422 isl_dim_param, nparam - len[i], len[i]);
423 if (tight && !*tight)
424 tight = NULL;
425 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
428 return pwf;
431 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
432 __isl_take isl_basic_set *bset,
433 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
435 isl_factorizer *f;
436 isl_set *set;
437 isl_pw_qpolynomial *pwqp;
438 isl_pw_qpolynomial_fold *pwf;
440 f = isl_basic_set_factorizer(bset);
441 if (!f)
442 goto error;
443 if (f->n_group == 0) {
444 isl_factorizer_free(f);
445 return bernstein_coefficients_base(bset, poly, data, tight);
448 set = isl_set_from_basic_set(bset);
449 pwqp = isl_pw_qpolynomial_alloc(set, poly);
450 pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
452 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
453 tight);
455 isl_factorizer_free(f);
457 return pwf;
458 error:
459 isl_basic_set_free(bset);
460 isl_qpolynomial_free(poly);
461 return NULL;
464 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
465 __isl_take isl_basic_set *bset,
466 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
468 int i;
469 int *len;
470 unsigned nvar;
471 isl_pw_qpolynomial_fold *pwf;
472 isl_set *set;
473 isl_pw_qpolynomial *pwqp;
475 if (!bset || !poly)
476 goto error;
478 nvar = isl_basic_set_dim(bset, isl_dim_set);
480 len = isl_alloc_array(bset->ctx, int, nvar);
481 if (!len)
482 goto error;
484 for (i = 0; i < nvar; ++i)
485 len[i] = 1;
487 set = isl_set_from_basic_set(bset);
488 pwqp = isl_pw_qpolynomial_alloc(set, poly);
490 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
492 free(len);
494 return pwf;
495 error:
496 isl_basic_set_free(bset);
497 isl_qpolynomial_free(poly);
498 return NULL;
501 /* Compute a bound on the polynomial defined over the parametric polytope
502 * using bernstein expansion and store the result
503 * in bound->pwf and bound->pwf_tight.
505 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
506 * the polytope can be factorized and apply bernstein expansion recursively
507 * on the factors.
508 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
509 * bernstein expansion recursively on each dimension.
510 * Otherwise, we apply bernstein expansion on the entire polytope.
512 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
513 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
515 struct bernstein_data data;
516 isl_pw_qpolynomial_fold *pwf;
517 unsigned nvar;
518 int tight = 0;
519 int *tp = bound->check_tight ? &tight : NULL;
521 if (!bset || !poly)
522 goto error;
524 data.type = bound->type;
525 data.check_tight = bound->check_tight;
527 nvar = isl_basic_set_dim(bset, isl_dim_set);
529 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
530 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
531 else if (nvar > 1 &&
532 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
533 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
534 else
535 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
537 if (tight)
538 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
539 else
540 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
542 return 0;
543 error:
544 isl_basic_set_free(bset);
545 isl_qpolynomial_free(poly);
546 return -1;