isl_arg.c: fix typo affecting argument parsing when flags are used
[isl.git] / isl_tab_pip.c
blob8d6e7c99315015c099e4d3bb5c47acff010b936d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
21 * The implementation of parametric integer linear programming in this file
22 * was inspired by the paper "Parametric Integer Programming" and the
23 * report "Solving systems of affine (in)equalities" by Paul Feautrier
24 * (and others).
26 * The strategy used for obtaining a feasible solution is different
27 * from the one used in isl_tab.c. In particular, in isl_tab.c,
28 * upon finding a constraint that is not yet satisfied, we pivot
29 * in a row that increases the constant term of the row holding the
30 * constraint, making sure the sample solution remains feasible
31 * for all the constraints it already satisfied.
32 * Here, we always pivot in the row holding the constraint,
33 * choosing a column that induces the lexicographically smallest
34 * increment to the sample solution.
36 * By starting out from a sample value that is lexicographically
37 * smaller than any integer point in the problem space, the first
38 * feasible integer sample point we find will also be the lexicographically
39 * smallest. If all variables can be assumed to be non-negative,
40 * then the initial sample value may be chosen equal to zero.
41 * However, we will not make this assumption. Instead, we apply
42 * the "big parameter" trick. Any variable x is then not directly
43 * used in the tableau, but instead it is represented by another
44 * variable x' = M + x, where M is an arbitrarily large (positive)
45 * value. x' is therefore always non-negative, whatever the value of x.
46 * Taking as initial sample value x' = 0 corresponds to x = -M,
47 * which is always smaller than any possible value of x.
49 * The big parameter trick is used in the main tableau and
50 * also in the context tableau if isl_context_lex is used.
51 * In this case, each tableaus has its own big parameter.
52 * Before doing any real work, we check if all the parameters
53 * happen to be non-negative. If so, we drop the column corresponding
54 * to M from the initial context tableau.
55 * If isl_context_gbr is used, then the big parameter trick is only
56 * used in the main tableau.
59 struct isl_context;
60 struct isl_context_op {
61 /* detect nonnegative parameters in context and mark them in tab */
62 struct isl_tab *(*detect_nonnegative_parameters)(
63 struct isl_context *context, struct isl_tab *tab);
64 /* return temporary reference to basic set representation of context */
65 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
66 /* return temporary reference to tableau representation of context */
67 struct isl_tab *(*peek_tab)(struct isl_context *context);
68 /* add equality; check is 1 if eq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_eq)(struct isl_context *context, isl_int *eq,
72 int check, int update);
73 /* add inequality; check is 1 if ineq may not be valid;
74 * update is 1 if we may want to call ineq_sign on context later.
76 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
77 int check, int update);
78 /* check sign of ineq based on previous information.
79 * strict is 1 if saturation should be treated as a positive sign.
81 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
82 isl_int *ineq, int strict);
83 /* check if inequality maintains feasibility */
84 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
85 /* return index of a div that corresponds to "div" */
86 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
87 struct isl_vec *div);
88 /* add div "div" to context and return non-negativity */
89 int (*add_div)(struct isl_context *context, struct isl_vec *div);
90 int (*detect_equalities)(struct isl_context *context,
91 struct isl_tab *tab);
92 /* return row index of "best" split */
93 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
94 /* check if context has already been determined to be empty */
95 int (*is_empty)(struct isl_context *context);
96 /* check if context is still usable */
97 int (*is_ok)(struct isl_context *context);
98 /* save a copy/snapshot of context */
99 void *(*save)(struct isl_context *context);
100 /* restore saved context */
101 void (*restore)(struct isl_context *context, void *);
102 /* invalidate context */
103 void (*invalidate)(struct isl_context *context);
104 /* free context */
105 void (*free)(struct isl_context *context);
108 struct isl_context {
109 struct isl_context_op *op;
112 struct isl_context_lex {
113 struct isl_context context;
114 struct isl_tab *tab;
117 struct isl_partial_sol {
118 int level;
119 struct isl_basic_set *dom;
120 struct isl_mat *M;
122 struct isl_partial_sol *next;
125 struct isl_sol;
126 struct isl_sol_callback {
127 struct isl_tab_callback callback;
128 struct isl_sol *sol;
131 /* isl_sol is an interface for constructing a solution to
132 * a parametric integer linear programming problem.
133 * Every time the algorithm reaches a state where a solution
134 * can be read off from the tableau (including cases where the tableau
135 * is empty), the function "add" is called on the isl_sol passed
136 * to find_solutions_main.
138 * The context tableau is owned by isl_sol and is updated incrementally.
140 * There are currently two implementations of this interface,
141 * isl_sol_map, which simply collects the solutions in an isl_map
142 * and (optionally) the parts of the context where there is no solution
143 * in an isl_set, and
144 * isl_sol_for, which calls a user-defined function for each part of
145 * the solution.
147 struct isl_sol {
148 int error;
149 int rational;
150 int level;
151 int max;
152 int n_out;
153 struct isl_context *context;
154 struct isl_partial_sol *partial;
155 void (*add)(struct isl_sol *sol,
156 struct isl_basic_set *dom, struct isl_mat *M);
157 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
158 void (*free)(struct isl_sol *sol);
159 struct isl_sol_callback dec_level;
162 static void sol_free(struct isl_sol *sol)
164 struct isl_partial_sol *partial, *next;
165 if (!sol)
166 return;
167 for (partial = sol->partial; partial; partial = next) {
168 next = partial->next;
169 isl_basic_set_free(partial->dom);
170 isl_mat_free(partial->M);
171 free(partial);
173 sol->free(sol);
176 /* Push a partial solution represented by a domain and mapping M
177 * onto the stack of partial solutions.
179 static void sol_push_sol(struct isl_sol *sol,
180 struct isl_basic_set *dom, struct isl_mat *M)
182 struct isl_partial_sol *partial;
184 if (sol->error || !dom)
185 goto error;
187 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
188 if (!partial)
189 goto error;
191 partial->level = sol->level;
192 partial->dom = dom;
193 partial->M = M;
194 partial->next = sol->partial;
196 sol->partial = partial;
198 return;
199 error:
200 isl_basic_set_free(dom);
201 sol->error = 1;
204 /* Pop one partial solution from the partial solution stack and
205 * pass it on to sol->add or sol->add_empty.
207 static void sol_pop_one(struct isl_sol *sol)
209 struct isl_partial_sol *partial;
211 partial = sol->partial;
212 sol->partial = partial->next;
214 if (partial->M)
215 sol->add(sol, partial->dom, partial->M);
216 else
217 sol->add_empty(sol, partial->dom);
218 free(partial);
221 /* Return a fresh copy of the domain represented by the context tableau.
223 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
225 struct isl_basic_set *bset;
227 if (sol->error)
228 return NULL;
230 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
231 bset = isl_basic_set_update_from_tab(bset,
232 sol->context->op->peek_tab(sol->context));
234 return bset;
237 /* Check whether two partial solutions have the same mapping, where n_div
238 * is the number of divs that the two partial solutions have in common.
240 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
241 unsigned n_div)
243 int i;
244 unsigned dim;
246 if (!s1->M != !s2->M)
247 return 0;
248 if (!s1->M)
249 return 1;
251 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
253 for (i = 0; i < s1->M->n_row; ++i) {
254 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
255 s1->M->n_col-1-dim-n_div) != -1)
256 return 0;
257 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
258 s2->M->n_col-1-dim-n_div) != -1)
259 return 0;
260 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
261 return 0;
263 return 1;
266 /* Pop all solutions from the partial solution stack that were pushed onto
267 * the stack at levels that are deeper than the current level.
268 * If the two topmost elements on the stack have the same level
269 * and represent the same solution, then their domains are combined.
270 * This combined domain is the same as the current context domain
271 * as sol_pop is called each time we move back to a higher level.
273 static void sol_pop(struct isl_sol *sol)
275 struct isl_partial_sol *partial;
276 unsigned n_div;
278 if (sol->error)
279 return;
281 if (sol->level == 0) {
282 for (partial = sol->partial; partial; partial = sol->partial)
283 sol_pop_one(sol);
284 return;
287 partial = sol->partial;
288 if (!partial)
289 return;
291 if (partial->level <= sol->level)
292 return;
294 if (partial->next && partial->next->level == partial->level) {
295 n_div = isl_basic_set_dim(
296 sol->context->op->peek_basic_set(sol->context),
297 isl_dim_div);
299 if (!same_solution(partial, partial->next, n_div)) {
300 sol_pop_one(sol);
301 sol_pop_one(sol);
302 } else {
303 struct isl_basic_set *bset;
305 bset = sol_domain(sol);
307 isl_basic_set_free(partial->next->dom);
308 partial->next->dom = bset;
309 partial->next->level = sol->level;
311 sol->partial = partial->next;
312 isl_basic_set_free(partial->dom);
313 isl_mat_free(partial->M);
314 free(partial);
316 } else
317 sol_pop_one(sol);
320 static void sol_dec_level(struct isl_sol *sol)
322 if (sol->error)
323 return;
325 sol->level--;
327 sol_pop(sol);
330 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
332 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
334 sol_dec_level(callback->sol);
336 return callback->sol->error ? -1 : 0;
339 /* Move down to next level and push callback onto context tableau
340 * to decrease the level again when it gets rolled back across
341 * the current state. That is, dec_level will be called with
342 * the context tableau in the same state as it is when inc_level
343 * is called.
345 static void sol_inc_level(struct isl_sol *sol)
347 struct isl_tab *tab;
349 if (sol->error)
350 return;
352 sol->level++;
353 tab = sol->context->op->peek_tab(sol->context);
354 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
355 sol->error = 1;
358 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
360 int i;
362 if (isl_int_is_one(m))
363 return;
365 for (i = 0; i < n_row; ++i)
366 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
369 /* Add the solution identified by the tableau and the context tableau.
371 * The layout of the variables is as follows.
372 * tab->n_var is equal to the total number of variables in the input
373 * map (including divs that were copied from the context)
374 * + the number of extra divs constructed
375 * Of these, the first tab->n_param and the last tab->n_div variables
376 * correspond to the variables in the context, i.e.,
377 * tab->n_param + tab->n_div = context_tab->n_var
378 * tab->n_param is equal to the number of parameters and input
379 * dimensions in the input map
380 * tab->n_div is equal to the number of divs in the context
382 * If there is no solution, then call add_empty with a basic set
383 * that corresponds to the context tableau. (If add_empty is NULL,
384 * then do nothing).
386 * If there is a solution, then first construct a matrix that maps
387 * all dimensions of the context to the output variables, i.e.,
388 * the output dimensions in the input map.
389 * The divs in the input map (if any) that do not correspond to any
390 * div in the context do not appear in the solution.
391 * The algorithm will make sure that they have an integer value,
392 * but these values themselves are of no interest.
393 * We have to be careful not to drop or rearrange any divs in the
394 * context because that would change the meaning of the matrix.
396 * To extract the value of the output variables, it should be noted
397 * that we always use a big parameter M in the main tableau and so
398 * the variable stored in this tableau is not an output variable x itself, but
399 * x' = M + x (in case of minimization)
400 * or
401 * x' = M - x (in case of maximization)
402 * If x' appears in a column, then its optimal value is zero,
403 * which means that the optimal value of x is an unbounded number
404 * (-M for minimization and M for maximization).
405 * We currently assume that the output dimensions in the original map
406 * are bounded, so this cannot occur.
407 * Similarly, when x' appears in a row, then the coefficient of M in that
408 * row is necessarily 1.
409 * If the row in the tableau represents
410 * d x' = c + d M + e(y)
411 * then, in case of minimization, the corresponding row in the matrix
412 * will be
413 * a c + a e(y)
414 * with a d = m, the (updated) common denominator of the matrix.
415 * In case of maximization, the row will be
416 * -a c - a e(y)
418 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
420 struct isl_basic_set *bset = NULL;
421 struct isl_mat *mat = NULL;
422 unsigned off;
423 int row;
424 isl_int m;
426 if (sol->error || !tab)
427 goto error;
429 if (tab->empty && !sol->add_empty)
430 return;
432 bset = sol_domain(sol);
434 if (tab->empty) {
435 sol_push_sol(sol, bset, NULL);
436 return;
439 off = 2 + tab->M;
441 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
442 1 + tab->n_param + tab->n_div);
443 if (!mat)
444 goto error;
446 isl_int_init(m);
448 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
449 isl_int_set_si(mat->row[0][0], 1);
450 for (row = 0; row < sol->n_out; ++row) {
451 int i = tab->n_param + row;
452 int r, j;
454 isl_seq_clr(mat->row[1 + row], mat->n_col);
455 if (!tab->var[i].is_row) {
456 if (tab->M)
457 isl_die(mat->ctx, isl_error_invalid,
458 "unbounded optimum", goto error2);
459 continue;
462 r = tab->var[i].index;
463 if (tab->M &&
464 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
465 isl_die(mat->ctx, isl_error_invalid,
466 "unbounded optimum", goto error2);
467 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
468 isl_int_divexact(m, tab->mat->row[r][0], m);
469 scale_rows(mat, m, 1 + row);
470 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
471 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
472 for (j = 0; j < tab->n_param; ++j) {
473 int col;
474 if (tab->var[j].is_row)
475 continue;
476 col = tab->var[j].index;
477 isl_int_mul(mat->row[1 + row][1 + j], m,
478 tab->mat->row[r][off + col]);
480 for (j = 0; j < tab->n_div; ++j) {
481 int col;
482 if (tab->var[tab->n_var - tab->n_div+j].is_row)
483 continue;
484 col = tab->var[tab->n_var - tab->n_div+j].index;
485 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
486 tab->mat->row[r][off + col]);
488 if (sol->max)
489 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
490 mat->n_col);
493 isl_int_clear(m);
495 sol_push_sol(sol, bset, mat);
496 return;
497 error2:
498 isl_int_clear(m);
499 error:
500 isl_basic_set_free(bset);
501 isl_mat_free(mat);
502 sol->error = 1;
505 struct isl_sol_map {
506 struct isl_sol sol;
507 struct isl_map *map;
508 struct isl_set *empty;
511 static void sol_map_free(struct isl_sol_map *sol_map)
513 if (!sol_map)
514 return;
515 if (sol_map->sol.context)
516 sol_map->sol.context->op->free(sol_map->sol.context);
517 isl_map_free(sol_map->map);
518 isl_set_free(sol_map->empty);
519 free(sol_map);
522 static void sol_map_free_wrap(struct isl_sol *sol)
524 sol_map_free((struct isl_sol_map *)sol);
527 /* This function is called for parts of the context where there is
528 * no solution, with "bset" corresponding to the context tableau.
529 * Simply add the basic set to the set "empty".
531 static void sol_map_add_empty(struct isl_sol_map *sol,
532 struct isl_basic_set *bset)
534 if (!bset)
535 goto error;
536 isl_assert(bset->ctx, sol->empty, goto error);
538 sol->empty = isl_set_grow(sol->empty, 1);
539 bset = isl_basic_set_simplify(bset);
540 bset = isl_basic_set_finalize(bset);
541 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
542 if (!sol->empty)
543 goto error;
544 isl_basic_set_free(bset);
545 return;
546 error:
547 isl_basic_set_free(bset);
548 sol->sol.error = 1;
551 static void sol_map_add_empty_wrap(struct isl_sol *sol,
552 struct isl_basic_set *bset)
554 sol_map_add_empty((struct isl_sol_map *)sol, bset);
557 /* Add bset to sol's empty, but only if we are actually collecting
558 * the empty set.
560 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
561 struct isl_basic_set *bset)
563 if (sol->empty)
564 sol_map_add_empty(sol, bset);
565 else
566 isl_basic_set_free(bset);
569 /* Given a basic map "dom" that represents the context and an affine
570 * matrix "M" that maps the dimensions of the context to the
571 * output variables, construct a basic map with the same parameters
572 * and divs as the context, the dimensions of the context as input
573 * dimensions and a number of output dimensions that is equal to
574 * the number of output dimensions in the input map.
576 * The constraints and divs of the context are simply copied
577 * from "dom". For each row
578 * x = c + e(y)
579 * an equality
580 * c + e(y) - d x = 0
581 * is added, with d the common denominator of M.
583 static void sol_map_add(struct isl_sol_map *sol,
584 struct isl_basic_set *dom, struct isl_mat *M)
586 int i;
587 struct isl_basic_map *bmap = NULL;
588 unsigned n_eq;
589 unsigned n_ineq;
590 unsigned nparam;
591 unsigned total;
592 unsigned n_div;
593 unsigned n_out;
595 if (sol->sol.error || !dom || !M)
596 goto error;
598 n_out = sol->sol.n_out;
599 n_eq = dom->n_eq + n_out;
600 n_ineq = dom->n_ineq;
601 n_div = dom->n_div;
602 nparam = isl_basic_set_total_dim(dom) - n_div;
603 total = isl_map_dim(sol->map, isl_dim_all);
604 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
605 n_div, n_eq, 2 * n_div + n_ineq);
606 if (!bmap)
607 goto error;
608 if (sol->sol.rational)
609 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
610 for (i = 0; i < dom->n_div; ++i) {
611 int k = isl_basic_map_alloc_div(bmap);
612 if (k < 0)
613 goto error;
614 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
615 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
616 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
617 dom->div[i] + 1 + 1 + nparam, i);
619 for (i = 0; i < dom->n_eq; ++i) {
620 int k = isl_basic_map_alloc_equality(bmap);
621 if (k < 0)
622 goto error;
623 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
624 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
625 isl_seq_cpy(bmap->eq[k] + 1 + total,
626 dom->eq[i] + 1 + nparam, n_div);
628 for (i = 0; i < dom->n_ineq; ++i) {
629 int k = isl_basic_map_alloc_inequality(bmap);
630 if (k < 0)
631 goto error;
632 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
633 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
634 isl_seq_cpy(bmap->ineq[k] + 1 + total,
635 dom->ineq[i] + 1 + nparam, n_div);
637 for (i = 0; i < M->n_row - 1; ++i) {
638 int k = isl_basic_map_alloc_equality(bmap);
639 if (k < 0)
640 goto error;
641 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
642 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
643 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
644 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
645 M->row[1 + i] + 1 + nparam, n_div);
647 bmap = isl_basic_map_simplify(bmap);
648 bmap = isl_basic_map_finalize(bmap);
649 sol->map = isl_map_grow(sol->map, 1);
650 sol->map = isl_map_add_basic_map(sol->map, bmap);
651 if (!sol->map)
652 goto error;
653 isl_basic_set_free(dom);
654 isl_mat_free(M);
655 return;
656 error:
657 isl_basic_set_free(dom);
658 isl_mat_free(M);
659 isl_basic_map_free(bmap);
660 sol->sol.error = 1;
663 static void sol_map_add_wrap(struct isl_sol *sol,
664 struct isl_basic_set *dom, struct isl_mat *M)
666 sol_map_add((struct isl_sol_map *)sol, dom, M);
670 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
671 * i.e., the constant term and the coefficients of all variables that
672 * appear in the context tableau.
673 * Note that the coefficient of the big parameter M is NOT copied.
674 * The context tableau may not have a big parameter and even when it
675 * does, it is a different big parameter.
677 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
679 int i;
680 unsigned off = 2 + tab->M;
682 isl_int_set(line[0], tab->mat->row[row][1]);
683 for (i = 0; i < tab->n_param; ++i) {
684 if (tab->var[i].is_row)
685 isl_int_set_si(line[1 + i], 0);
686 else {
687 int col = tab->var[i].index;
688 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
691 for (i = 0; i < tab->n_div; ++i) {
692 if (tab->var[tab->n_var - tab->n_div + i].is_row)
693 isl_int_set_si(line[1 + tab->n_param + i], 0);
694 else {
695 int col = tab->var[tab->n_var - tab->n_div + i].index;
696 isl_int_set(line[1 + tab->n_param + i],
697 tab->mat->row[row][off + col]);
702 /* Check if rows "row1" and "row2" have identical "parametric constants",
703 * as explained above.
704 * In this case, we also insist that the coefficients of the big parameter
705 * be the same as the values of the constants will only be the same
706 * if these coefficients are also the same.
708 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
710 int i;
711 unsigned off = 2 + tab->M;
713 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
714 return 0;
716 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
717 tab->mat->row[row2][2]))
718 return 0;
720 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
721 int pos = i < tab->n_param ? i :
722 tab->n_var - tab->n_div + i - tab->n_param;
723 int col;
725 if (tab->var[pos].is_row)
726 continue;
727 col = tab->var[pos].index;
728 if (isl_int_ne(tab->mat->row[row1][off + col],
729 tab->mat->row[row2][off + col]))
730 return 0;
732 return 1;
735 /* Return an inequality that expresses that the "parametric constant"
736 * should be non-negative.
737 * This function is only called when the coefficient of the big parameter
738 * is equal to zero.
740 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
742 struct isl_vec *ineq;
744 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
745 if (!ineq)
746 return NULL;
748 get_row_parameter_line(tab, row, ineq->el);
749 if (ineq)
750 ineq = isl_vec_normalize(ineq);
752 return ineq;
755 /* Return a integer division for use in a parametric cut based on the given row.
756 * In particular, let the parametric constant of the row be
758 * \sum_i a_i y_i
760 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
761 * The div returned is equal to
763 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
765 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
767 struct isl_vec *div;
769 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
770 if (!div)
771 return NULL;
773 isl_int_set(div->el[0], tab->mat->row[row][0]);
774 get_row_parameter_line(tab, row, div->el + 1);
775 div = isl_vec_normalize(div);
776 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
777 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
779 return div;
782 /* Return a integer division for use in transferring an integrality constraint
783 * to the context.
784 * In particular, let the parametric constant of the row be
786 * \sum_i a_i y_i
788 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
789 * The the returned div is equal to
791 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
793 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
795 struct isl_vec *div;
797 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
798 if (!div)
799 return NULL;
801 isl_int_set(div->el[0], tab->mat->row[row][0]);
802 get_row_parameter_line(tab, row, div->el + 1);
803 div = isl_vec_normalize(div);
804 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
806 return div;
809 /* Construct and return an inequality that expresses an upper bound
810 * on the given div.
811 * In particular, if the div is given by
813 * d = floor(e/m)
815 * then the inequality expresses
817 * m d <= e
819 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
821 unsigned total;
822 unsigned div_pos;
823 struct isl_vec *ineq;
825 if (!bset)
826 return NULL;
828 total = isl_basic_set_total_dim(bset);
829 div_pos = 1 + total - bset->n_div + div;
831 ineq = isl_vec_alloc(bset->ctx, 1 + total);
832 if (!ineq)
833 return NULL;
835 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
836 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
837 return ineq;
840 /* Given a row in the tableau and a div that was created
841 * using get_row_split_div and that been constrained to equality, i.e.,
843 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
845 * replace the expression "\sum_i {a_i} y_i" in the row by d,
846 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
847 * The coefficients of the non-parameters in the tableau have been
848 * verified to be integral. We can therefore simply replace coefficient b
849 * by floor(b). For the coefficients of the parameters we have
850 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
851 * floor(b) = b.
853 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
855 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
856 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
858 isl_int_set_si(tab->mat->row[row][0], 1);
860 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
861 int drow = tab->var[tab->n_var - tab->n_div + div].index;
863 isl_assert(tab->mat->ctx,
864 isl_int_is_one(tab->mat->row[drow][0]), goto error);
865 isl_seq_combine(tab->mat->row[row] + 1,
866 tab->mat->ctx->one, tab->mat->row[row] + 1,
867 tab->mat->ctx->one, tab->mat->row[drow] + 1,
868 1 + tab->M + tab->n_col);
869 } else {
870 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
872 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
875 return tab;
876 error:
877 isl_tab_free(tab);
878 return NULL;
881 /* Check if the (parametric) constant of the given row is obviously
882 * negative, meaning that we don't need to consult the context tableau.
883 * If there is a big parameter and its coefficient is non-zero,
884 * then this coefficient determines the outcome.
885 * Otherwise, we check whether the constant is negative and
886 * all non-zero coefficients of parameters are negative and
887 * belong to non-negative parameters.
889 static int is_obviously_neg(struct isl_tab *tab, int row)
891 int i;
892 int col;
893 unsigned off = 2 + tab->M;
895 if (tab->M) {
896 if (isl_int_is_pos(tab->mat->row[row][2]))
897 return 0;
898 if (isl_int_is_neg(tab->mat->row[row][2]))
899 return 1;
902 if (isl_int_is_nonneg(tab->mat->row[row][1]))
903 return 0;
904 for (i = 0; i < tab->n_param; ++i) {
905 /* Eliminated parameter */
906 if (tab->var[i].is_row)
907 continue;
908 col = tab->var[i].index;
909 if (isl_int_is_zero(tab->mat->row[row][off + col]))
910 continue;
911 if (!tab->var[i].is_nonneg)
912 return 0;
913 if (isl_int_is_pos(tab->mat->row[row][off + col]))
914 return 0;
916 for (i = 0; i < tab->n_div; ++i) {
917 if (tab->var[tab->n_var - tab->n_div + i].is_row)
918 continue;
919 col = tab->var[tab->n_var - tab->n_div + i].index;
920 if (isl_int_is_zero(tab->mat->row[row][off + col]))
921 continue;
922 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
923 return 0;
924 if (isl_int_is_pos(tab->mat->row[row][off + col]))
925 return 0;
927 return 1;
930 /* Check if the (parametric) constant of the given row is obviously
931 * non-negative, meaning that we don't need to consult the context tableau.
932 * If there is a big parameter and its coefficient is non-zero,
933 * then this coefficient determines the outcome.
934 * Otherwise, we check whether the constant is non-negative and
935 * all non-zero coefficients of parameters are positive and
936 * belong to non-negative parameters.
938 static int is_obviously_nonneg(struct isl_tab *tab, int row)
940 int i;
941 int col;
942 unsigned off = 2 + tab->M;
944 if (tab->M) {
945 if (isl_int_is_pos(tab->mat->row[row][2]))
946 return 1;
947 if (isl_int_is_neg(tab->mat->row[row][2]))
948 return 0;
951 if (isl_int_is_neg(tab->mat->row[row][1]))
952 return 0;
953 for (i = 0; i < tab->n_param; ++i) {
954 /* Eliminated parameter */
955 if (tab->var[i].is_row)
956 continue;
957 col = tab->var[i].index;
958 if (isl_int_is_zero(tab->mat->row[row][off + col]))
959 continue;
960 if (!tab->var[i].is_nonneg)
961 return 0;
962 if (isl_int_is_neg(tab->mat->row[row][off + col]))
963 return 0;
965 for (i = 0; i < tab->n_div; ++i) {
966 if (tab->var[tab->n_var - tab->n_div + i].is_row)
967 continue;
968 col = tab->var[tab->n_var - tab->n_div + i].index;
969 if (isl_int_is_zero(tab->mat->row[row][off + col]))
970 continue;
971 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
972 return 0;
973 if (isl_int_is_neg(tab->mat->row[row][off + col]))
974 return 0;
976 return 1;
979 /* Given a row r and two columns, return the column that would
980 * lead to the lexicographically smallest increment in the sample
981 * solution when leaving the basis in favor of the row.
982 * Pivoting with column c will increment the sample value by a non-negative
983 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
984 * corresponding to the non-parametric variables.
985 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
986 * with all other entries in this virtual row equal to zero.
987 * If variable v appears in a row, then a_{v,c} is the element in column c
988 * of that row.
990 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
991 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
992 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
993 * increment. Otherwise, it's c2.
995 static int lexmin_col_pair(struct isl_tab *tab,
996 int row, int col1, int col2, isl_int tmp)
998 int i;
999 isl_int *tr;
1001 tr = tab->mat->row[row] + 2 + tab->M;
1003 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1004 int s1, s2;
1005 isl_int *r;
1007 if (!tab->var[i].is_row) {
1008 if (tab->var[i].index == col1)
1009 return col2;
1010 if (tab->var[i].index == col2)
1011 return col1;
1012 continue;
1015 if (tab->var[i].index == row)
1016 continue;
1018 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1019 s1 = isl_int_sgn(r[col1]);
1020 s2 = isl_int_sgn(r[col2]);
1021 if (s1 == 0 && s2 == 0)
1022 continue;
1023 if (s1 < s2)
1024 return col1;
1025 if (s2 < s1)
1026 return col2;
1028 isl_int_mul(tmp, r[col2], tr[col1]);
1029 isl_int_submul(tmp, r[col1], tr[col2]);
1030 if (isl_int_is_pos(tmp))
1031 return col1;
1032 if (isl_int_is_neg(tmp))
1033 return col2;
1035 return -1;
1038 /* Given a row in the tableau, find and return the column that would
1039 * result in the lexicographically smallest, but positive, increment
1040 * in the sample point.
1041 * If there is no such column, then return tab->n_col.
1042 * If anything goes wrong, return -1.
1044 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1046 int j;
1047 int col = tab->n_col;
1048 isl_int *tr;
1049 isl_int tmp;
1051 tr = tab->mat->row[row] + 2 + tab->M;
1053 isl_int_init(tmp);
1055 for (j = tab->n_dead; j < tab->n_col; ++j) {
1056 if (tab->col_var[j] >= 0 &&
1057 (tab->col_var[j] < tab->n_param ||
1058 tab->col_var[j] >= tab->n_var - tab->n_div))
1059 continue;
1061 if (!isl_int_is_pos(tr[j]))
1062 continue;
1064 if (col == tab->n_col)
1065 col = j;
1066 else
1067 col = lexmin_col_pair(tab, row, col, j, tmp);
1068 isl_assert(tab->mat->ctx, col >= 0, goto error);
1071 isl_int_clear(tmp);
1072 return col;
1073 error:
1074 isl_int_clear(tmp);
1075 return -1;
1078 /* Return the first known violated constraint, i.e., a non-negative
1079 * constraint that currently has an either obviously negative value
1080 * or a previously determined to be negative value.
1082 * If any constraint has a negative coefficient for the big parameter,
1083 * if any, then we return one of these first.
1085 static int first_neg(struct isl_tab *tab)
1087 int row;
1089 if (tab->M)
1090 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1091 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1092 continue;
1093 if (!isl_int_is_neg(tab->mat->row[row][2]))
1094 continue;
1095 if (tab->row_sign)
1096 tab->row_sign[row] = isl_tab_row_neg;
1097 return row;
1099 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1100 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1101 continue;
1102 if (tab->row_sign) {
1103 if (tab->row_sign[row] == 0 &&
1104 is_obviously_neg(tab, row))
1105 tab->row_sign[row] = isl_tab_row_neg;
1106 if (tab->row_sign[row] != isl_tab_row_neg)
1107 continue;
1108 } else if (!is_obviously_neg(tab, row))
1109 continue;
1110 return row;
1112 return -1;
1115 /* Check whether the invariant that all columns are lexico-positive
1116 * is satisfied. This function is not called from the current code
1117 * but is useful during debugging.
1119 static void check_lexpos(struct isl_tab *tab)
1121 unsigned off = 2 + tab->M;
1122 int col;
1123 int var;
1124 int row;
1126 for (col = tab->n_dead; col < tab->n_col; ++col) {
1127 if (tab->col_var[col] >= 0 &&
1128 (tab->col_var[col] < tab->n_param ||
1129 tab->col_var[col] >= tab->n_var - tab->n_div))
1130 continue;
1131 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1132 if (!tab->var[var].is_row) {
1133 if (tab->var[var].index == col)
1134 break;
1135 else
1136 continue;
1138 row = tab->var[var].index;
1139 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1140 continue;
1141 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1142 break;
1143 fprintf(stderr, "lexneg column %d (row %d)\n",
1144 col, row);
1146 if (var >= tab->n_var - tab->n_div)
1147 fprintf(stderr, "zero column %d\n", col);
1151 /* Report to the caller that the given constraint is part of an encountered
1152 * conflict.
1154 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1156 return tab->conflict(con, tab->conflict_user);
1159 /* Given a conflicting row in the tableau, report all constraints
1160 * involved in the row to the caller. That is, the row itself
1161 * (if represents a constraint) and all constraint columns with
1162 * non-zero (and therefore negative) coefficient.
1164 static int report_conflict(struct isl_tab *tab, int row)
1166 int j;
1167 isl_int *tr;
1169 if (!tab->conflict)
1170 return 0;
1172 if (tab->row_var[row] < 0 &&
1173 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1174 return -1;
1176 tr = tab->mat->row[row] + 2 + tab->M;
1178 for (j = tab->n_dead; j < tab->n_col; ++j) {
1179 if (tab->col_var[j] >= 0 &&
1180 (tab->col_var[j] < tab->n_param ||
1181 tab->col_var[j] >= tab->n_var - tab->n_div))
1182 continue;
1184 if (!isl_int_is_neg(tr[j]))
1185 continue;
1187 if (tab->col_var[j] < 0 &&
1188 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1189 return -1;
1192 return 0;
1195 /* Resolve all known or obviously violated constraints through pivoting.
1196 * In particular, as long as we can find any violated constraint, we
1197 * look for a pivoting column that would result in the lexicographically
1198 * smallest increment in the sample point. If there is no such column
1199 * then the tableau is infeasible.
1201 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1202 static int restore_lexmin(struct isl_tab *tab)
1204 int row, col;
1206 if (!tab)
1207 return -1;
1208 if (tab->empty)
1209 return 0;
1210 while ((row = first_neg(tab)) != -1) {
1211 col = lexmin_pivot_col(tab, row);
1212 if (col >= tab->n_col) {
1213 if (report_conflict(tab, row) < 0)
1214 return -1;
1215 if (isl_tab_mark_empty(tab) < 0)
1216 return -1;
1217 return 0;
1219 if (col < 0)
1220 return -1;
1221 if (isl_tab_pivot(tab, row, col) < 0)
1222 return -1;
1224 return 0;
1227 /* Given a row that represents an equality, look for an appropriate
1228 * pivoting column.
1229 * In particular, if there are any non-zero coefficients among
1230 * the non-parameter variables, then we take the last of these
1231 * variables. Eliminating this variable in terms of the other
1232 * variables and/or parameters does not influence the property
1233 * that all column in the initial tableau are lexicographically
1234 * positive. The row corresponding to the eliminated variable
1235 * will only have non-zero entries below the diagonal of the
1236 * initial tableau. That is, we transform
1238 * I I
1239 * 1 into a
1240 * I I
1242 * If there is no such non-parameter variable, then we are dealing with
1243 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1244 * for elimination. This will ensure that the eliminated parameter
1245 * always has an integer value whenever all the other parameters are integral.
1246 * If there is no such parameter then we return -1.
1248 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1250 unsigned off = 2 + tab->M;
1251 int i;
1253 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1254 int col;
1255 if (tab->var[i].is_row)
1256 continue;
1257 col = tab->var[i].index;
1258 if (col <= tab->n_dead)
1259 continue;
1260 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1261 return col;
1263 for (i = tab->n_dead; i < tab->n_col; ++i) {
1264 if (isl_int_is_one(tab->mat->row[row][off + i]))
1265 return i;
1266 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1267 return i;
1269 return -1;
1272 /* Add an equality that is known to be valid to the tableau.
1273 * We first check if we can eliminate a variable or a parameter.
1274 * If not, we add the equality as two inequalities.
1275 * In this case, the equality was a pure parameter equality and there
1276 * is no need to resolve any constraint violations.
1278 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1280 int i;
1281 int r;
1283 if (!tab)
1284 return NULL;
1285 r = isl_tab_add_row(tab, eq);
1286 if (r < 0)
1287 goto error;
1289 r = tab->con[r].index;
1290 i = last_var_col_or_int_par_col(tab, r);
1291 if (i < 0) {
1292 tab->con[r].is_nonneg = 1;
1293 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1294 goto error;
1295 isl_seq_neg(eq, eq, 1 + tab->n_var);
1296 r = isl_tab_add_row(tab, eq);
1297 if (r < 0)
1298 goto error;
1299 tab->con[r].is_nonneg = 1;
1300 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1301 goto error;
1302 } else {
1303 if (isl_tab_pivot(tab, r, i) < 0)
1304 goto error;
1305 if (isl_tab_kill_col(tab, i) < 0)
1306 goto error;
1307 tab->n_eq++;
1310 return tab;
1311 error:
1312 isl_tab_free(tab);
1313 return NULL;
1316 /* Check if the given row is a pure constant.
1318 static int is_constant(struct isl_tab *tab, int row)
1320 unsigned off = 2 + tab->M;
1322 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1323 tab->n_col - tab->n_dead) == -1;
1326 /* Add an equality that may or may not be valid to the tableau.
1327 * If the resulting row is a pure constant, then it must be zero.
1328 * Otherwise, the resulting tableau is empty.
1330 * If the row is not a pure constant, then we add two inequalities,
1331 * each time checking that they can be satisfied.
1332 * In the end we try to use one of the two constraints to eliminate
1333 * a column.
1335 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1336 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1338 int r1, r2;
1339 int row;
1340 struct isl_tab_undo *snap;
1342 if (!tab)
1343 return -1;
1344 snap = isl_tab_snap(tab);
1345 r1 = isl_tab_add_row(tab, eq);
1346 if (r1 < 0)
1347 return -1;
1348 tab->con[r1].is_nonneg = 1;
1349 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1350 return -1;
1352 row = tab->con[r1].index;
1353 if (is_constant(tab, row)) {
1354 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1355 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1356 if (isl_tab_mark_empty(tab) < 0)
1357 return -1;
1358 return 0;
1360 if (isl_tab_rollback(tab, snap) < 0)
1361 return -1;
1362 return 0;
1365 if (restore_lexmin(tab) < 0)
1366 return -1;
1367 if (tab->empty)
1368 return 0;
1370 isl_seq_neg(eq, eq, 1 + tab->n_var);
1372 r2 = isl_tab_add_row(tab, eq);
1373 if (r2 < 0)
1374 return -1;
1375 tab->con[r2].is_nonneg = 1;
1376 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1377 return -1;
1379 if (restore_lexmin(tab) < 0)
1380 return -1;
1381 if (tab->empty)
1382 return 0;
1384 if (!tab->con[r1].is_row) {
1385 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1386 return -1;
1387 } else if (!tab->con[r2].is_row) {
1388 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1389 return -1;
1392 if (tab->bmap) {
1393 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1394 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1395 return -1;
1396 isl_seq_neg(eq, eq, 1 + tab->n_var);
1397 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1398 isl_seq_neg(eq, eq, 1 + tab->n_var);
1399 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1400 return -1;
1401 if (!tab->bmap)
1402 return -1;
1405 return 0;
1408 /* Add an inequality to the tableau, resolving violations using
1409 * restore_lexmin.
1411 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1413 int r;
1415 if (!tab)
1416 return NULL;
1417 if (tab->bmap) {
1418 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1419 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1420 goto error;
1421 if (!tab->bmap)
1422 goto error;
1424 r = isl_tab_add_row(tab, ineq);
1425 if (r < 0)
1426 goto error;
1427 tab->con[r].is_nonneg = 1;
1428 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1429 goto error;
1430 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1431 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1432 goto error;
1433 return tab;
1436 if (restore_lexmin(tab) < 0)
1437 goto error;
1438 if (!tab->empty && tab->con[r].is_row &&
1439 isl_tab_row_is_redundant(tab, tab->con[r].index))
1440 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1441 goto error;
1442 return tab;
1443 error:
1444 isl_tab_free(tab);
1445 return NULL;
1448 /* Check if the coefficients of the parameters are all integral.
1450 static int integer_parameter(struct isl_tab *tab, int row)
1452 int i;
1453 int col;
1454 unsigned off = 2 + tab->M;
1456 for (i = 0; i < tab->n_param; ++i) {
1457 /* Eliminated parameter */
1458 if (tab->var[i].is_row)
1459 continue;
1460 col = tab->var[i].index;
1461 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1462 tab->mat->row[row][0]))
1463 return 0;
1465 for (i = 0; i < tab->n_div; ++i) {
1466 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1467 continue;
1468 col = tab->var[tab->n_var - tab->n_div + i].index;
1469 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1470 tab->mat->row[row][0]))
1471 return 0;
1473 return 1;
1476 /* Check if the coefficients of the non-parameter variables are all integral.
1478 static int integer_variable(struct isl_tab *tab, int row)
1480 int i;
1481 unsigned off = 2 + tab->M;
1483 for (i = tab->n_dead; i < tab->n_col; ++i) {
1484 if (tab->col_var[i] >= 0 &&
1485 (tab->col_var[i] < tab->n_param ||
1486 tab->col_var[i] >= tab->n_var - tab->n_div))
1487 continue;
1488 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1489 tab->mat->row[row][0]))
1490 return 0;
1492 return 1;
1495 /* Check if the constant term is integral.
1497 static int integer_constant(struct isl_tab *tab, int row)
1499 return isl_int_is_divisible_by(tab->mat->row[row][1],
1500 tab->mat->row[row][0]);
1503 #define I_CST 1 << 0
1504 #define I_PAR 1 << 1
1505 #define I_VAR 1 << 2
1507 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1508 * that is non-integer and therefore requires a cut and return
1509 * the index of the variable.
1510 * For parametric tableaus, there are three parts in a row,
1511 * the constant, the coefficients of the parameters and the rest.
1512 * For each part, we check whether the coefficients in that part
1513 * are all integral and if so, set the corresponding flag in *f.
1514 * If the constant and the parameter part are integral, then the
1515 * current sample value is integral and no cut is required
1516 * (irrespective of whether the variable part is integral).
1518 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1520 var = var < 0 ? tab->n_param : var + 1;
1522 for (; var < tab->n_var - tab->n_div; ++var) {
1523 int flags = 0;
1524 int row;
1525 if (!tab->var[var].is_row)
1526 continue;
1527 row = tab->var[var].index;
1528 if (integer_constant(tab, row))
1529 ISL_FL_SET(flags, I_CST);
1530 if (integer_parameter(tab, row))
1531 ISL_FL_SET(flags, I_PAR);
1532 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1533 continue;
1534 if (integer_variable(tab, row))
1535 ISL_FL_SET(flags, I_VAR);
1536 *f = flags;
1537 return var;
1539 return -1;
1542 /* Check for first (non-parameter) variable that is non-integer and
1543 * therefore requires a cut and return the corresponding row.
1544 * For parametric tableaus, there are three parts in a row,
1545 * the constant, the coefficients of the parameters and the rest.
1546 * For each part, we check whether the coefficients in that part
1547 * are all integral and if so, set the corresponding flag in *f.
1548 * If the constant and the parameter part are integral, then the
1549 * current sample value is integral and no cut is required
1550 * (irrespective of whether the variable part is integral).
1552 static int first_non_integer_row(struct isl_tab *tab, int *f)
1554 int var = next_non_integer_var(tab, -1, f);
1556 return var < 0 ? -1 : tab->var[var].index;
1559 /* Add a (non-parametric) cut to cut away the non-integral sample
1560 * value of the given row.
1562 * If the row is given by
1564 * m r = f + \sum_i a_i y_i
1566 * then the cut is
1568 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1570 * The big parameter, if any, is ignored, since it is assumed to be big
1571 * enough to be divisible by any integer.
1572 * If the tableau is actually a parametric tableau, then this function
1573 * is only called when all coefficients of the parameters are integral.
1574 * The cut therefore has zero coefficients for the parameters.
1576 * The current value is known to be negative, so row_sign, if it
1577 * exists, is set accordingly.
1579 * Return the row of the cut or -1.
1581 static int add_cut(struct isl_tab *tab, int row)
1583 int i;
1584 int r;
1585 isl_int *r_row;
1586 unsigned off = 2 + tab->M;
1588 if (isl_tab_extend_cons(tab, 1) < 0)
1589 return -1;
1590 r = isl_tab_allocate_con(tab);
1591 if (r < 0)
1592 return -1;
1594 r_row = tab->mat->row[tab->con[r].index];
1595 isl_int_set(r_row[0], tab->mat->row[row][0]);
1596 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1597 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1598 isl_int_neg(r_row[1], r_row[1]);
1599 if (tab->M)
1600 isl_int_set_si(r_row[2], 0);
1601 for (i = 0; i < tab->n_col; ++i)
1602 isl_int_fdiv_r(r_row[off + i],
1603 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1605 tab->con[r].is_nonneg = 1;
1606 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1607 return -1;
1608 if (tab->row_sign)
1609 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1611 return tab->con[r].index;
1614 /* Given a non-parametric tableau, add cuts until an integer
1615 * sample point is obtained or until the tableau is determined
1616 * to be integer infeasible.
1617 * As long as there is any non-integer value in the sample point,
1618 * we add appropriate cuts, if possible, for each of these
1619 * non-integer values and then resolve the violated
1620 * cut constraints using restore_lexmin.
1621 * If one of the corresponding rows is equal to an integral
1622 * combination of variables/constraints plus a non-integral constant,
1623 * then there is no way to obtain an integer point and we return
1624 * a tableau that is marked empty.
1626 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1628 int var;
1629 int row;
1630 int flags;
1632 if (!tab)
1633 return NULL;
1634 if (tab->empty)
1635 return tab;
1637 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1638 do {
1639 if (ISL_FL_ISSET(flags, I_VAR)) {
1640 if (isl_tab_mark_empty(tab) < 0)
1641 goto error;
1642 return tab;
1644 row = tab->var[var].index;
1645 row = add_cut(tab, row);
1646 if (row < 0)
1647 goto error;
1648 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1649 if (restore_lexmin(tab) < 0)
1650 goto error;
1651 if (tab->empty)
1652 break;
1654 return tab;
1655 error:
1656 isl_tab_free(tab);
1657 return NULL;
1660 /* Check whether all the currently active samples also satisfy the inequality
1661 * "ineq" (treated as an equality if eq is set).
1662 * Remove those samples that do not.
1664 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1666 int i;
1667 isl_int v;
1669 if (!tab)
1670 return NULL;
1672 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1673 isl_assert(tab->mat->ctx, tab->samples, goto error);
1674 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1676 isl_int_init(v);
1677 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1678 int sgn;
1679 isl_seq_inner_product(ineq, tab->samples->row[i],
1680 1 + tab->n_var, &v);
1681 sgn = isl_int_sgn(v);
1682 if (eq ? (sgn == 0) : (sgn >= 0))
1683 continue;
1684 tab = isl_tab_drop_sample(tab, i);
1685 if (!tab)
1686 break;
1688 isl_int_clear(v);
1690 return tab;
1691 error:
1692 isl_tab_free(tab);
1693 return NULL;
1696 /* Check whether the sample value of the tableau is finite,
1697 * i.e., either the tableau does not use a big parameter, or
1698 * all values of the variables are equal to the big parameter plus
1699 * some constant. This constant is the actual sample value.
1701 static int sample_is_finite(struct isl_tab *tab)
1703 int i;
1705 if (!tab->M)
1706 return 1;
1708 for (i = 0; i < tab->n_var; ++i) {
1709 int row;
1710 if (!tab->var[i].is_row)
1711 return 0;
1712 row = tab->var[i].index;
1713 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1714 return 0;
1716 return 1;
1719 /* Check if the context tableau of sol has any integer points.
1720 * Leave tab in empty state if no integer point can be found.
1721 * If an integer point can be found and if moreover it is finite,
1722 * then it is added to the list of sample values.
1724 * This function is only called when none of the currently active sample
1725 * values satisfies the most recently added constraint.
1727 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1729 struct isl_tab_undo *snap;
1731 if (!tab)
1732 return NULL;
1734 snap = isl_tab_snap(tab);
1735 if (isl_tab_push_basis(tab) < 0)
1736 goto error;
1738 tab = cut_to_integer_lexmin(tab);
1739 if (!tab)
1740 goto error;
1742 if (!tab->empty && sample_is_finite(tab)) {
1743 struct isl_vec *sample;
1745 sample = isl_tab_get_sample_value(tab);
1747 tab = isl_tab_add_sample(tab, sample);
1750 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1751 goto error;
1753 return tab;
1754 error:
1755 isl_tab_free(tab);
1756 return NULL;
1759 /* Check if any of the currently active sample values satisfies
1760 * the inequality "ineq" (an equality if eq is set).
1762 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1764 int i;
1765 isl_int v;
1767 if (!tab)
1768 return -1;
1770 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1771 isl_assert(tab->mat->ctx, tab->samples, return -1);
1772 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1774 isl_int_init(v);
1775 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1776 int sgn;
1777 isl_seq_inner_product(ineq, tab->samples->row[i],
1778 1 + tab->n_var, &v);
1779 sgn = isl_int_sgn(v);
1780 if (eq ? (sgn == 0) : (sgn >= 0))
1781 break;
1783 isl_int_clear(v);
1785 return i < tab->n_sample;
1788 /* Add a div specified by "div" to the tableau "tab" and return
1789 * 1 if the div is obviously non-negative.
1791 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1792 int (*add_ineq)(void *user, isl_int *), void *user)
1794 int i;
1795 int r;
1796 struct isl_mat *samples;
1797 int nonneg;
1799 r = isl_tab_add_div(tab, div, add_ineq, user);
1800 if (r < 0)
1801 return -1;
1802 nonneg = tab->var[r].is_nonneg;
1803 tab->var[r].frozen = 1;
1805 samples = isl_mat_extend(tab->samples,
1806 tab->n_sample, 1 + tab->n_var);
1807 tab->samples = samples;
1808 if (!samples)
1809 return -1;
1810 for (i = tab->n_outside; i < samples->n_row; ++i) {
1811 isl_seq_inner_product(div->el + 1, samples->row[i],
1812 div->size - 1, &samples->row[i][samples->n_col - 1]);
1813 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1814 samples->row[i][samples->n_col - 1], div->el[0]);
1817 return nonneg;
1820 /* Add a div specified by "div" to both the main tableau and
1821 * the context tableau. In case of the main tableau, we only
1822 * need to add an extra div. In the context tableau, we also
1823 * need to express the meaning of the div.
1824 * Return the index of the div or -1 if anything went wrong.
1826 static int add_div(struct isl_tab *tab, struct isl_context *context,
1827 struct isl_vec *div)
1829 int r;
1830 int nonneg;
1832 if ((nonneg = context->op->add_div(context, div)) < 0)
1833 goto error;
1835 if (!context->op->is_ok(context))
1836 goto error;
1838 if (isl_tab_extend_vars(tab, 1) < 0)
1839 goto error;
1840 r = isl_tab_allocate_var(tab);
1841 if (r < 0)
1842 goto error;
1843 if (nonneg)
1844 tab->var[r].is_nonneg = 1;
1845 tab->var[r].frozen = 1;
1846 tab->n_div++;
1848 return tab->n_div - 1;
1849 error:
1850 context->op->invalidate(context);
1851 return -1;
1854 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1856 int i;
1857 unsigned total = isl_basic_map_total_dim(tab->bmap);
1859 for (i = 0; i < tab->bmap->n_div; ++i) {
1860 if (isl_int_ne(tab->bmap->div[i][0], denom))
1861 continue;
1862 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1863 continue;
1864 return i;
1866 return -1;
1869 /* Return the index of a div that corresponds to "div".
1870 * We first check if we already have such a div and if not, we create one.
1872 static int get_div(struct isl_tab *tab, struct isl_context *context,
1873 struct isl_vec *div)
1875 int d;
1876 struct isl_tab *context_tab = context->op->peek_tab(context);
1878 if (!context_tab)
1879 return -1;
1881 d = find_div(context_tab, div->el + 1, div->el[0]);
1882 if (d != -1)
1883 return d;
1885 return add_div(tab, context, div);
1888 /* Add a parametric cut to cut away the non-integral sample value
1889 * of the give row.
1890 * Let a_i be the coefficients of the constant term and the parameters
1891 * and let b_i be the coefficients of the variables or constraints
1892 * in basis of the tableau.
1893 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1895 * The cut is expressed as
1897 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1899 * If q did not already exist in the context tableau, then it is added first.
1900 * If q is in a column of the main tableau then the "+ q" can be accomplished
1901 * by setting the corresponding entry to the denominator of the constraint.
1902 * If q happens to be in a row of the main tableau, then the corresponding
1903 * row needs to be added instead (taking care of the denominators).
1904 * Note that this is very unlikely, but perhaps not entirely impossible.
1906 * The current value of the cut is known to be negative (or at least
1907 * non-positive), so row_sign is set accordingly.
1909 * Return the row of the cut or -1.
1911 static int add_parametric_cut(struct isl_tab *tab, int row,
1912 struct isl_context *context)
1914 struct isl_vec *div;
1915 int d;
1916 int i;
1917 int r;
1918 isl_int *r_row;
1919 int col;
1920 int n;
1921 unsigned off = 2 + tab->M;
1923 if (!context)
1924 return -1;
1926 div = get_row_parameter_div(tab, row);
1927 if (!div)
1928 return -1;
1930 n = tab->n_div;
1931 d = context->op->get_div(context, tab, div);
1932 if (d < 0)
1933 return -1;
1935 if (isl_tab_extend_cons(tab, 1) < 0)
1936 return -1;
1937 r = isl_tab_allocate_con(tab);
1938 if (r < 0)
1939 return -1;
1941 r_row = tab->mat->row[tab->con[r].index];
1942 isl_int_set(r_row[0], tab->mat->row[row][0]);
1943 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1944 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1945 isl_int_neg(r_row[1], r_row[1]);
1946 if (tab->M)
1947 isl_int_set_si(r_row[2], 0);
1948 for (i = 0; i < tab->n_param; ++i) {
1949 if (tab->var[i].is_row)
1950 continue;
1951 col = tab->var[i].index;
1952 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1953 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1954 tab->mat->row[row][0]);
1955 isl_int_neg(r_row[off + col], r_row[off + col]);
1957 for (i = 0; i < tab->n_div; ++i) {
1958 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1959 continue;
1960 col = tab->var[tab->n_var - tab->n_div + i].index;
1961 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1962 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1963 tab->mat->row[row][0]);
1964 isl_int_neg(r_row[off + col], r_row[off + col]);
1966 for (i = 0; i < tab->n_col; ++i) {
1967 if (tab->col_var[i] >= 0 &&
1968 (tab->col_var[i] < tab->n_param ||
1969 tab->col_var[i] >= tab->n_var - tab->n_div))
1970 continue;
1971 isl_int_fdiv_r(r_row[off + i],
1972 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1974 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1975 isl_int gcd;
1976 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1977 isl_int_init(gcd);
1978 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1979 isl_int_divexact(r_row[0], r_row[0], gcd);
1980 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1981 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1982 r_row[0], tab->mat->row[d_row] + 1,
1983 off - 1 + tab->n_col);
1984 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1985 isl_int_clear(gcd);
1986 } else {
1987 col = tab->var[tab->n_var - tab->n_div + d].index;
1988 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1991 tab->con[r].is_nonneg = 1;
1992 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1993 return -1;
1994 if (tab->row_sign)
1995 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1997 isl_vec_free(div);
1999 row = tab->con[r].index;
2001 if (d >= n && context->op->detect_equalities(context, tab) < 0)
2002 return -1;
2004 return row;
2007 /* Construct a tableau for bmap that can be used for computing
2008 * the lexicographic minimum (or maximum) of bmap.
2009 * If not NULL, then dom is the domain where the minimum
2010 * should be computed. In this case, we set up a parametric
2011 * tableau with row signs (initialized to "unknown").
2012 * If M is set, then the tableau will use a big parameter.
2013 * If max is set, then a maximum should be computed instead of a minimum.
2014 * This means that for each variable x, the tableau will contain the variable
2015 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2016 * of the variables in all constraints are negated prior to adding them
2017 * to the tableau.
2019 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2020 struct isl_basic_set *dom, unsigned M, int max)
2022 int i;
2023 struct isl_tab *tab;
2025 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2026 isl_basic_map_total_dim(bmap), M);
2027 if (!tab)
2028 return NULL;
2030 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2031 if (dom) {
2032 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2033 tab->n_div = dom->n_div;
2034 tab->row_sign = isl_calloc_array(bmap->ctx,
2035 enum isl_tab_row_sign, tab->mat->n_row);
2036 if (!tab->row_sign)
2037 goto error;
2039 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2040 if (isl_tab_mark_empty(tab) < 0)
2041 goto error;
2042 return tab;
2045 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2046 tab->var[i].is_nonneg = 1;
2047 tab->var[i].frozen = 1;
2049 for (i = 0; i < bmap->n_eq; ++i) {
2050 if (max)
2051 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2052 bmap->eq[i] + 1 + tab->n_param,
2053 tab->n_var - tab->n_param - tab->n_div);
2054 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2055 if (max)
2056 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2057 bmap->eq[i] + 1 + tab->n_param,
2058 tab->n_var - tab->n_param - tab->n_div);
2059 if (!tab || tab->empty)
2060 return tab;
2062 if (bmap->n_eq && restore_lexmin(tab) < 0)
2063 goto error;
2064 for (i = 0; i < bmap->n_ineq; ++i) {
2065 if (max)
2066 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2067 bmap->ineq[i] + 1 + tab->n_param,
2068 tab->n_var - tab->n_param - tab->n_div);
2069 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2070 if (max)
2071 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2072 bmap->ineq[i] + 1 + tab->n_param,
2073 tab->n_var - tab->n_param - tab->n_div);
2074 if (!tab || tab->empty)
2075 return tab;
2077 return tab;
2078 error:
2079 isl_tab_free(tab);
2080 return NULL;
2083 /* Given a main tableau where more than one row requires a split,
2084 * determine and return the "best" row to split on.
2086 * Given two rows in the main tableau, if the inequality corresponding
2087 * to the first row is redundant with respect to that of the second row
2088 * in the current tableau, then it is better to split on the second row,
2089 * since in the positive part, both row will be positive.
2090 * (In the negative part a pivot will have to be performed and just about
2091 * anything can happen to the sign of the other row.)
2093 * As a simple heuristic, we therefore select the row that makes the most
2094 * of the other rows redundant.
2096 * Perhaps it would also be useful to look at the number of constraints
2097 * that conflict with any given constraint.
2099 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2101 struct isl_tab_undo *snap;
2102 int split;
2103 int row;
2104 int best = -1;
2105 int best_r;
2107 if (isl_tab_extend_cons(context_tab, 2) < 0)
2108 return -1;
2110 snap = isl_tab_snap(context_tab);
2112 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2113 struct isl_tab_undo *snap2;
2114 struct isl_vec *ineq = NULL;
2115 int r = 0;
2116 int ok;
2118 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2119 continue;
2120 if (tab->row_sign[split] != isl_tab_row_any)
2121 continue;
2123 ineq = get_row_parameter_ineq(tab, split);
2124 if (!ineq)
2125 return -1;
2126 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2127 isl_vec_free(ineq);
2128 if (!ok)
2129 return -1;
2131 snap2 = isl_tab_snap(context_tab);
2133 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2134 struct isl_tab_var *var;
2136 if (row == split)
2137 continue;
2138 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2139 continue;
2140 if (tab->row_sign[row] != isl_tab_row_any)
2141 continue;
2143 ineq = get_row_parameter_ineq(tab, row);
2144 if (!ineq)
2145 return -1;
2146 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2147 isl_vec_free(ineq);
2148 if (!ok)
2149 return -1;
2150 var = &context_tab->con[context_tab->n_con - 1];
2151 if (!context_tab->empty &&
2152 !isl_tab_min_at_most_neg_one(context_tab, var))
2153 r++;
2154 if (isl_tab_rollback(context_tab, snap2) < 0)
2155 return -1;
2157 if (best == -1 || r > best_r) {
2158 best = split;
2159 best_r = r;
2161 if (isl_tab_rollback(context_tab, snap) < 0)
2162 return -1;
2165 return best;
2168 static struct isl_basic_set *context_lex_peek_basic_set(
2169 struct isl_context *context)
2171 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2172 if (!clex->tab)
2173 return NULL;
2174 return isl_tab_peek_bset(clex->tab);
2177 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2179 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2180 return clex->tab;
2183 static void context_lex_extend(struct isl_context *context, int n)
2185 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2186 if (!clex->tab)
2187 return;
2188 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2189 return;
2190 isl_tab_free(clex->tab);
2191 clex->tab = NULL;
2194 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2195 int check, int update)
2197 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2198 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2199 goto error;
2200 if (add_lexmin_eq(clex->tab, eq) < 0)
2201 goto error;
2202 if (check) {
2203 int v = tab_has_valid_sample(clex->tab, eq, 1);
2204 if (v < 0)
2205 goto error;
2206 if (!v)
2207 clex->tab = check_integer_feasible(clex->tab);
2209 if (update)
2210 clex->tab = check_samples(clex->tab, eq, 1);
2211 return;
2212 error:
2213 isl_tab_free(clex->tab);
2214 clex->tab = NULL;
2217 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2218 int check, int update)
2220 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2221 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2222 goto error;
2223 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2224 if (check) {
2225 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2226 if (v < 0)
2227 goto error;
2228 if (!v)
2229 clex->tab = check_integer_feasible(clex->tab);
2231 if (update)
2232 clex->tab = check_samples(clex->tab, ineq, 0);
2233 return;
2234 error:
2235 isl_tab_free(clex->tab);
2236 clex->tab = NULL;
2239 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2241 struct isl_context *context = (struct isl_context *)user;
2242 context_lex_add_ineq(context, ineq, 0, 0);
2243 return context->op->is_ok(context) ? 0 : -1;
2246 /* Check which signs can be obtained by "ineq" on all the currently
2247 * active sample values. See row_sign for more information.
2249 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2250 int strict)
2252 int i;
2253 int sgn;
2254 isl_int tmp;
2255 enum isl_tab_row_sign res = isl_tab_row_unknown;
2257 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2258 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2259 return isl_tab_row_unknown);
2261 isl_int_init(tmp);
2262 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2263 isl_seq_inner_product(tab->samples->row[i], ineq,
2264 1 + tab->n_var, &tmp);
2265 sgn = isl_int_sgn(tmp);
2266 if (sgn > 0 || (sgn == 0 && strict)) {
2267 if (res == isl_tab_row_unknown)
2268 res = isl_tab_row_pos;
2269 if (res == isl_tab_row_neg)
2270 res = isl_tab_row_any;
2272 if (sgn < 0) {
2273 if (res == isl_tab_row_unknown)
2274 res = isl_tab_row_neg;
2275 if (res == isl_tab_row_pos)
2276 res = isl_tab_row_any;
2278 if (res == isl_tab_row_any)
2279 break;
2281 isl_int_clear(tmp);
2283 return res;
2286 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2287 isl_int *ineq, int strict)
2289 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2290 return tab_ineq_sign(clex->tab, ineq, strict);
2293 /* Check whether "ineq" can be added to the tableau without rendering
2294 * it infeasible.
2296 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2298 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2299 struct isl_tab_undo *snap;
2300 int feasible;
2302 if (!clex->tab)
2303 return -1;
2305 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2306 return -1;
2308 snap = isl_tab_snap(clex->tab);
2309 if (isl_tab_push_basis(clex->tab) < 0)
2310 return -1;
2311 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2312 clex->tab = check_integer_feasible(clex->tab);
2313 if (!clex->tab)
2314 return -1;
2315 feasible = !clex->tab->empty;
2316 if (isl_tab_rollback(clex->tab, snap) < 0)
2317 return -1;
2319 return feasible;
2322 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2323 struct isl_vec *div)
2325 return get_div(tab, context, div);
2328 /* Add a div specified by "div" to the context tableau and return
2329 * 1 if the div is obviously non-negative.
2330 * context_tab_add_div will always return 1, because all variables
2331 * in a isl_context_lex tableau are non-negative.
2332 * However, if we are using a big parameter in the context, then this only
2333 * reflects the non-negativity of the variable used to _encode_ the
2334 * div, i.e., div' = M + div, so we can't draw any conclusions.
2336 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2338 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2339 int nonneg;
2340 nonneg = context_tab_add_div(clex->tab, div,
2341 context_lex_add_ineq_wrap, context);
2342 if (nonneg < 0)
2343 return -1;
2344 if (clex->tab->M)
2345 return 0;
2346 return nonneg;
2349 static int context_lex_detect_equalities(struct isl_context *context,
2350 struct isl_tab *tab)
2352 return 0;
2355 static int context_lex_best_split(struct isl_context *context,
2356 struct isl_tab *tab)
2358 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2359 struct isl_tab_undo *snap;
2360 int r;
2362 snap = isl_tab_snap(clex->tab);
2363 if (isl_tab_push_basis(clex->tab) < 0)
2364 return -1;
2365 r = best_split(tab, clex->tab);
2367 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2368 return -1;
2370 return r;
2373 static int context_lex_is_empty(struct isl_context *context)
2375 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2376 if (!clex->tab)
2377 return -1;
2378 return clex->tab->empty;
2381 static void *context_lex_save(struct isl_context *context)
2383 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2384 struct isl_tab_undo *snap;
2386 snap = isl_tab_snap(clex->tab);
2387 if (isl_tab_push_basis(clex->tab) < 0)
2388 return NULL;
2389 if (isl_tab_save_samples(clex->tab) < 0)
2390 return NULL;
2392 return snap;
2395 static void context_lex_restore(struct isl_context *context, void *save)
2397 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2398 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2399 isl_tab_free(clex->tab);
2400 clex->tab = NULL;
2404 static int context_lex_is_ok(struct isl_context *context)
2406 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2407 return !!clex->tab;
2410 /* For each variable in the context tableau, check if the variable can
2411 * only attain non-negative values. If so, mark the parameter as non-negative
2412 * in the main tableau. This allows for a more direct identification of some
2413 * cases of violated constraints.
2415 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2416 struct isl_tab *context_tab)
2418 int i;
2419 struct isl_tab_undo *snap;
2420 struct isl_vec *ineq = NULL;
2421 struct isl_tab_var *var;
2422 int n;
2424 if (context_tab->n_var == 0)
2425 return tab;
2427 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2428 if (!ineq)
2429 goto error;
2431 if (isl_tab_extend_cons(context_tab, 1) < 0)
2432 goto error;
2434 snap = isl_tab_snap(context_tab);
2436 n = 0;
2437 isl_seq_clr(ineq->el, ineq->size);
2438 for (i = 0; i < context_tab->n_var; ++i) {
2439 isl_int_set_si(ineq->el[1 + i], 1);
2440 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2441 goto error;
2442 var = &context_tab->con[context_tab->n_con - 1];
2443 if (!context_tab->empty &&
2444 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2445 int j = i;
2446 if (i >= tab->n_param)
2447 j = i - tab->n_param + tab->n_var - tab->n_div;
2448 tab->var[j].is_nonneg = 1;
2449 n++;
2451 isl_int_set_si(ineq->el[1 + i], 0);
2452 if (isl_tab_rollback(context_tab, snap) < 0)
2453 goto error;
2456 if (context_tab->M && n == context_tab->n_var) {
2457 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2458 context_tab->M = 0;
2461 isl_vec_free(ineq);
2462 return tab;
2463 error:
2464 isl_vec_free(ineq);
2465 isl_tab_free(tab);
2466 return NULL;
2469 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2470 struct isl_context *context, struct isl_tab *tab)
2472 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2473 struct isl_tab_undo *snap;
2475 if (!tab)
2476 return NULL;
2478 snap = isl_tab_snap(clex->tab);
2479 if (isl_tab_push_basis(clex->tab) < 0)
2480 goto error;
2482 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2484 if (isl_tab_rollback(clex->tab, snap) < 0)
2485 goto error;
2487 return tab;
2488 error:
2489 isl_tab_free(tab);
2490 return NULL;
2493 static void context_lex_invalidate(struct isl_context *context)
2495 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2496 isl_tab_free(clex->tab);
2497 clex->tab = NULL;
2500 static void context_lex_free(struct isl_context *context)
2502 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2503 isl_tab_free(clex->tab);
2504 free(clex);
2507 struct isl_context_op isl_context_lex_op = {
2508 context_lex_detect_nonnegative_parameters,
2509 context_lex_peek_basic_set,
2510 context_lex_peek_tab,
2511 context_lex_add_eq,
2512 context_lex_add_ineq,
2513 context_lex_ineq_sign,
2514 context_lex_test_ineq,
2515 context_lex_get_div,
2516 context_lex_add_div,
2517 context_lex_detect_equalities,
2518 context_lex_best_split,
2519 context_lex_is_empty,
2520 context_lex_is_ok,
2521 context_lex_save,
2522 context_lex_restore,
2523 context_lex_invalidate,
2524 context_lex_free,
2527 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2529 struct isl_tab *tab;
2531 bset = isl_basic_set_cow(bset);
2532 if (!bset)
2533 return NULL;
2534 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2535 if (!tab)
2536 goto error;
2537 if (isl_tab_track_bset(tab, bset) < 0)
2538 goto error;
2539 tab = isl_tab_init_samples(tab);
2540 return tab;
2541 error:
2542 isl_basic_set_free(bset);
2543 return NULL;
2546 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2548 struct isl_context_lex *clex;
2550 if (!dom)
2551 return NULL;
2553 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2554 if (!clex)
2555 return NULL;
2557 clex->context.op = &isl_context_lex_op;
2559 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2560 if (restore_lexmin(clex->tab) < 0)
2561 goto error;
2562 clex->tab = check_integer_feasible(clex->tab);
2563 if (!clex->tab)
2564 goto error;
2566 return &clex->context;
2567 error:
2568 clex->context.op->free(&clex->context);
2569 return NULL;
2572 struct isl_context_gbr {
2573 struct isl_context context;
2574 struct isl_tab *tab;
2575 struct isl_tab *shifted;
2576 struct isl_tab *cone;
2579 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2580 struct isl_context *context, struct isl_tab *tab)
2582 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2583 if (!tab)
2584 return NULL;
2585 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2588 static struct isl_basic_set *context_gbr_peek_basic_set(
2589 struct isl_context *context)
2591 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2592 if (!cgbr->tab)
2593 return NULL;
2594 return isl_tab_peek_bset(cgbr->tab);
2597 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2599 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2600 return cgbr->tab;
2603 /* Initialize the "shifted" tableau of the context, which
2604 * contains the constraints of the original tableau shifted
2605 * by the sum of all negative coefficients. This ensures
2606 * that any rational point in the shifted tableau can
2607 * be rounded up to yield an integer point in the original tableau.
2609 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2611 int i, j;
2612 struct isl_vec *cst;
2613 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2614 unsigned dim = isl_basic_set_total_dim(bset);
2616 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2617 if (!cst)
2618 return;
2620 for (i = 0; i < bset->n_ineq; ++i) {
2621 isl_int_set(cst->el[i], bset->ineq[i][0]);
2622 for (j = 0; j < dim; ++j) {
2623 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2624 continue;
2625 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2626 bset->ineq[i][1 + j]);
2630 cgbr->shifted = isl_tab_from_basic_set(bset);
2632 for (i = 0; i < bset->n_ineq; ++i)
2633 isl_int_set(bset->ineq[i][0], cst->el[i]);
2635 isl_vec_free(cst);
2638 /* Check if the shifted tableau is non-empty, and if so
2639 * use the sample point to construct an integer point
2640 * of the context tableau.
2642 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2644 struct isl_vec *sample;
2646 if (!cgbr->shifted)
2647 gbr_init_shifted(cgbr);
2648 if (!cgbr->shifted)
2649 return NULL;
2650 if (cgbr->shifted->empty)
2651 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2653 sample = isl_tab_get_sample_value(cgbr->shifted);
2654 sample = isl_vec_ceil(sample);
2656 return sample;
2659 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2661 int i;
2663 if (!bset)
2664 return NULL;
2666 for (i = 0; i < bset->n_eq; ++i)
2667 isl_int_set_si(bset->eq[i][0], 0);
2669 for (i = 0; i < bset->n_ineq; ++i)
2670 isl_int_set_si(bset->ineq[i][0], 0);
2672 return bset;
2675 static int use_shifted(struct isl_context_gbr *cgbr)
2677 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2680 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2682 struct isl_basic_set *bset;
2683 struct isl_basic_set *cone;
2685 if (isl_tab_sample_is_integer(cgbr->tab))
2686 return isl_tab_get_sample_value(cgbr->tab);
2688 if (use_shifted(cgbr)) {
2689 struct isl_vec *sample;
2691 sample = gbr_get_shifted_sample(cgbr);
2692 if (!sample || sample->size > 0)
2693 return sample;
2695 isl_vec_free(sample);
2698 if (!cgbr->cone) {
2699 bset = isl_tab_peek_bset(cgbr->tab);
2700 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2701 if (!cgbr->cone)
2702 return NULL;
2703 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2704 return NULL;
2706 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2707 return NULL;
2709 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2710 struct isl_vec *sample;
2711 struct isl_tab_undo *snap;
2713 if (cgbr->tab->basis) {
2714 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2715 isl_mat_free(cgbr->tab->basis);
2716 cgbr->tab->basis = NULL;
2718 cgbr->tab->n_zero = 0;
2719 cgbr->tab->n_unbounded = 0;
2722 snap = isl_tab_snap(cgbr->tab);
2724 sample = isl_tab_sample(cgbr->tab);
2726 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2727 isl_vec_free(sample);
2728 return NULL;
2731 return sample;
2734 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2735 cone = drop_constant_terms(cone);
2736 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2737 cone = isl_basic_set_underlying_set(cone);
2738 cone = isl_basic_set_gauss(cone, NULL);
2740 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2741 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2742 bset = isl_basic_set_underlying_set(bset);
2743 bset = isl_basic_set_gauss(bset, NULL);
2745 return isl_basic_set_sample_with_cone(bset, cone);
2748 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2750 struct isl_vec *sample;
2752 if (!cgbr->tab)
2753 return;
2755 if (cgbr->tab->empty)
2756 return;
2758 sample = gbr_get_sample(cgbr);
2759 if (!sample)
2760 goto error;
2762 if (sample->size == 0) {
2763 isl_vec_free(sample);
2764 if (isl_tab_mark_empty(cgbr->tab) < 0)
2765 goto error;
2766 return;
2769 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2771 return;
2772 error:
2773 isl_tab_free(cgbr->tab);
2774 cgbr->tab = NULL;
2777 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2779 if (!tab)
2780 return NULL;
2782 if (isl_tab_extend_cons(tab, 2) < 0)
2783 goto error;
2785 if (isl_tab_add_eq(tab, eq) < 0)
2786 goto error;
2788 return tab;
2789 error:
2790 isl_tab_free(tab);
2791 return NULL;
2794 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2795 int check, int update)
2797 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2799 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2801 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2802 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2803 goto error;
2804 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2805 goto error;
2808 if (check) {
2809 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2810 if (v < 0)
2811 goto error;
2812 if (!v)
2813 check_gbr_integer_feasible(cgbr);
2815 if (update)
2816 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2817 return;
2818 error:
2819 isl_tab_free(cgbr->tab);
2820 cgbr->tab = NULL;
2823 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2825 if (!cgbr->tab)
2826 return;
2828 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2829 goto error;
2831 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2832 goto error;
2834 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2835 int i;
2836 unsigned dim;
2837 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2839 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2840 goto error;
2842 for (i = 0; i < dim; ++i) {
2843 if (!isl_int_is_neg(ineq[1 + i]))
2844 continue;
2845 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2848 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2849 goto error;
2851 for (i = 0; i < dim; ++i) {
2852 if (!isl_int_is_neg(ineq[1 + i]))
2853 continue;
2854 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2858 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2859 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2860 goto error;
2861 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2862 goto error;
2865 return;
2866 error:
2867 isl_tab_free(cgbr->tab);
2868 cgbr->tab = NULL;
2871 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2872 int check, int update)
2874 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2876 add_gbr_ineq(cgbr, ineq);
2877 if (!cgbr->tab)
2878 return;
2880 if (check) {
2881 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2882 if (v < 0)
2883 goto error;
2884 if (!v)
2885 check_gbr_integer_feasible(cgbr);
2887 if (update)
2888 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2889 return;
2890 error:
2891 isl_tab_free(cgbr->tab);
2892 cgbr->tab = NULL;
2895 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2897 struct isl_context *context = (struct isl_context *)user;
2898 context_gbr_add_ineq(context, ineq, 0, 0);
2899 return context->op->is_ok(context) ? 0 : -1;
2902 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2903 isl_int *ineq, int strict)
2905 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2906 return tab_ineq_sign(cgbr->tab, ineq, strict);
2909 /* Check whether "ineq" can be added to the tableau without rendering
2910 * it infeasible.
2912 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2914 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2915 struct isl_tab_undo *snap;
2916 struct isl_tab_undo *shifted_snap = NULL;
2917 struct isl_tab_undo *cone_snap = NULL;
2918 int feasible;
2920 if (!cgbr->tab)
2921 return -1;
2923 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2924 return -1;
2926 snap = isl_tab_snap(cgbr->tab);
2927 if (cgbr->shifted)
2928 shifted_snap = isl_tab_snap(cgbr->shifted);
2929 if (cgbr->cone)
2930 cone_snap = isl_tab_snap(cgbr->cone);
2931 add_gbr_ineq(cgbr, ineq);
2932 check_gbr_integer_feasible(cgbr);
2933 if (!cgbr->tab)
2934 return -1;
2935 feasible = !cgbr->tab->empty;
2936 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2937 return -1;
2938 if (shifted_snap) {
2939 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2940 return -1;
2941 } else if (cgbr->shifted) {
2942 isl_tab_free(cgbr->shifted);
2943 cgbr->shifted = NULL;
2945 if (cone_snap) {
2946 if (isl_tab_rollback(cgbr->cone, cone_snap))
2947 return -1;
2948 } else if (cgbr->cone) {
2949 isl_tab_free(cgbr->cone);
2950 cgbr->cone = NULL;
2953 return feasible;
2956 /* Return the column of the last of the variables associated to
2957 * a column that has a non-zero coefficient.
2958 * This function is called in a context where only coefficients
2959 * of parameters or divs can be non-zero.
2961 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2963 int i;
2964 int col;
2966 if (tab->n_var == 0)
2967 return -1;
2969 for (i = tab->n_var - 1; i >= 0; --i) {
2970 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2971 continue;
2972 if (tab->var[i].is_row)
2973 continue;
2974 col = tab->var[i].index;
2975 if (!isl_int_is_zero(p[col]))
2976 return col;
2979 return -1;
2982 /* Look through all the recently added equalities in the context
2983 * to see if we can propagate any of them to the main tableau.
2985 * The newly added equalities in the context are encoded as pairs
2986 * of inequalities starting at inequality "first".
2988 * We tentatively add each of these equalities to the main tableau
2989 * and if this happens to result in a row with a final coefficient
2990 * that is one or negative one, we use it to kill a column
2991 * in the main tableau. Otherwise, we discard the tentatively
2992 * added row.
2994 static void propagate_equalities(struct isl_context_gbr *cgbr,
2995 struct isl_tab *tab, unsigned first)
2997 int i;
2998 struct isl_vec *eq = NULL;
3000 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
3001 if (!eq)
3002 goto error;
3004 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
3005 goto error;
3007 isl_seq_clr(eq->el + 1 + tab->n_param,
3008 tab->n_var - tab->n_param - tab->n_div);
3009 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
3010 int j;
3011 int r;
3012 struct isl_tab_undo *snap;
3013 snap = isl_tab_snap(tab);
3015 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3016 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3017 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3018 tab->n_div);
3020 r = isl_tab_add_row(tab, eq->el);
3021 if (r < 0)
3022 goto error;
3023 r = tab->con[r].index;
3024 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3025 if (j < 0 || j < tab->n_dead ||
3026 !isl_int_is_one(tab->mat->row[r][0]) ||
3027 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3028 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3029 if (isl_tab_rollback(tab, snap) < 0)
3030 goto error;
3031 continue;
3033 if (isl_tab_pivot(tab, r, j) < 0)
3034 goto error;
3035 if (isl_tab_kill_col(tab, j) < 0)
3036 goto error;
3038 if (restore_lexmin(tab) < 0)
3039 goto error;
3042 isl_vec_free(eq);
3044 return;
3045 error:
3046 isl_vec_free(eq);
3047 isl_tab_free(cgbr->tab);
3048 cgbr->tab = NULL;
3051 static int context_gbr_detect_equalities(struct isl_context *context,
3052 struct isl_tab *tab)
3054 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3055 struct isl_ctx *ctx;
3056 unsigned n_ineq;
3058 ctx = cgbr->tab->mat->ctx;
3060 if (!cgbr->cone) {
3061 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3062 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3063 if (!cgbr->cone)
3064 goto error;
3065 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3066 goto error;
3068 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3069 goto error;
3071 n_ineq = cgbr->tab->bmap->n_ineq;
3072 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3073 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3074 propagate_equalities(cgbr, tab, n_ineq);
3076 return 0;
3077 error:
3078 isl_tab_free(cgbr->tab);
3079 cgbr->tab = NULL;
3080 return -1;
3083 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3084 struct isl_vec *div)
3086 return get_div(tab, context, div);
3089 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3091 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3092 if (cgbr->cone) {
3093 int k;
3095 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3096 return -1;
3097 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3098 return -1;
3099 if (isl_tab_allocate_var(cgbr->cone) <0)
3100 return -1;
3102 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3103 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3104 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3105 if (k < 0)
3106 return -1;
3107 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3108 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3109 return -1;
3111 return context_tab_add_div(cgbr->tab, div,
3112 context_gbr_add_ineq_wrap, context);
3115 static int context_gbr_best_split(struct isl_context *context,
3116 struct isl_tab *tab)
3118 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3119 struct isl_tab_undo *snap;
3120 int r;
3122 snap = isl_tab_snap(cgbr->tab);
3123 r = best_split(tab, cgbr->tab);
3125 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3126 return -1;
3128 return r;
3131 static int context_gbr_is_empty(struct isl_context *context)
3133 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3134 if (!cgbr->tab)
3135 return -1;
3136 return cgbr->tab->empty;
3139 struct isl_gbr_tab_undo {
3140 struct isl_tab_undo *tab_snap;
3141 struct isl_tab_undo *shifted_snap;
3142 struct isl_tab_undo *cone_snap;
3145 static void *context_gbr_save(struct isl_context *context)
3147 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3148 struct isl_gbr_tab_undo *snap;
3150 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3151 if (!snap)
3152 return NULL;
3154 snap->tab_snap = isl_tab_snap(cgbr->tab);
3155 if (isl_tab_save_samples(cgbr->tab) < 0)
3156 goto error;
3158 if (cgbr->shifted)
3159 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3160 else
3161 snap->shifted_snap = NULL;
3163 if (cgbr->cone)
3164 snap->cone_snap = isl_tab_snap(cgbr->cone);
3165 else
3166 snap->cone_snap = NULL;
3168 return snap;
3169 error:
3170 free(snap);
3171 return NULL;
3174 static void context_gbr_restore(struct isl_context *context, void *save)
3176 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3177 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3178 if (!snap)
3179 goto error;
3180 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3181 isl_tab_free(cgbr->tab);
3182 cgbr->tab = NULL;
3185 if (snap->shifted_snap) {
3186 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3187 goto error;
3188 } else if (cgbr->shifted) {
3189 isl_tab_free(cgbr->shifted);
3190 cgbr->shifted = NULL;
3193 if (snap->cone_snap) {
3194 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3195 goto error;
3196 } else if (cgbr->cone) {
3197 isl_tab_free(cgbr->cone);
3198 cgbr->cone = NULL;
3201 free(snap);
3203 return;
3204 error:
3205 free(snap);
3206 isl_tab_free(cgbr->tab);
3207 cgbr->tab = NULL;
3210 static int context_gbr_is_ok(struct isl_context *context)
3212 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3213 return !!cgbr->tab;
3216 static void context_gbr_invalidate(struct isl_context *context)
3218 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3219 isl_tab_free(cgbr->tab);
3220 cgbr->tab = NULL;
3223 static void context_gbr_free(struct isl_context *context)
3225 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3226 isl_tab_free(cgbr->tab);
3227 isl_tab_free(cgbr->shifted);
3228 isl_tab_free(cgbr->cone);
3229 free(cgbr);
3232 struct isl_context_op isl_context_gbr_op = {
3233 context_gbr_detect_nonnegative_parameters,
3234 context_gbr_peek_basic_set,
3235 context_gbr_peek_tab,
3236 context_gbr_add_eq,
3237 context_gbr_add_ineq,
3238 context_gbr_ineq_sign,
3239 context_gbr_test_ineq,
3240 context_gbr_get_div,
3241 context_gbr_add_div,
3242 context_gbr_detect_equalities,
3243 context_gbr_best_split,
3244 context_gbr_is_empty,
3245 context_gbr_is_ok,
3246 context_gbr_save,
3247 context_gbr_restore,
3248 context_gbr_invalidate,
3249 context_gbr_free,
3252 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3254 struct isl_context_gbr *cgbr;
3256 if (!dom)
3257 return NULL;
3259 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3260 if (!cgbr)
3261 return NULL;
3263 cgbr->context.op = &isl_context_gbr_op;
3265 cgbr->shifted = NULL;
3266 cgbr->cone = NULL;
3267 cgbr->tab = isl_tab_from_basic_set(dom);
3268 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3269 if (!cgbr->tab)
3270 goto error;
3271 if (isl_tab_track_bset(cgbr->tab,
3272 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3273 goto error;
3274 check_gbr_integer_feasible(cgbr);
3276 return &cgbr->context;
3277 error:
3278 cgbr->context.op->free(&cgbr->context);
3279 return NULL;
3282 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3284 if (!dom)
3285 return NULL;
3287 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3288 return isl_context_lex_alloc(dom);
3289 else
3290 return isl_context_gbr_alloc(dom);
3293 /* Construct an isl_sol_map structure for accumulating the solution.
3294 * If track_empty is set, then we also keep track of the parts
3295 * of the context where there is no solution.
3296 * If max is set, then we are solving a maximization, rather than
3297 * a minimization problem, which means that the variables in the
3298 * tableau have value "M - x" rather than "M + x".
3300 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3301 struct isl_basic_set *dom, int track_empty, int max)
3303 struct isl_sol_map *sol_map = NULL;
3305 if (!bmap)
3306 goto error;
3308 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3309 if (!sol_map)
3310 goto error;
3312 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3313 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3314 sol_map->sol.dec_level.sol = &sol_map->sol;
3315 sol_map->sol.max = max;
3316 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3317 sol_map->sol.add = &sol_map_add_wrap;
3318 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3319 sol_map->sol.free = &sol_map_free_wrap;
3320 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3321 ISL_MAP_DISJOINT);
3322 if (!sol_map->map)
3323 goto error;
3325 sol_map->sol.context = isl_context_alloc(dom);
3326 if (!sol_map->sol.context)
3327 goto error;
3329 if (track_empty) {
3330 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3331 1, ISL_SET_DISJOINT);
3332 if (!sol_map->empty)
3333 goto error;
3336 isl_basic_set_free(dom);
3337 return sol_map;
3338 error:
3339 isl_basic_set_free(dom);
3340 sol_map_free(sol_map);
3341 return NULL;
3344 /* Check whether all coefficients of (non-parameter) variables
3345 * are non-positive, meaning that no pivots can be performed on the row.
3347 static int is_critical(struct isl_tab *tab, int row)
3349 int j;
3350 unsigned off = 2 + tab->M;
3352 for (j = tab->n_dead; j < tab->n_col; ++j) {
3353 if (tab->col_var[j] >= 0 &&
3354 (tab->col_var[j] < tab->n_param ||
3355 tab->col_var[j] >= tab->n_var - tab->n_div))
3356 continue;
3358 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3359 return 0;
3362 return 1;
3365 /* Check whether the inequality represented by vec is strict over the integers,
3366 * i.e., there are no integer values satisfying the constraint with
3367 * equality. This happens if the gcd of the coefficients is not a divisor
3368 * of the constant term. If so, scale the constraint down by the gcd
3369 * of the coefficients.
3371 static int is_strict(struct isl_vec *vec)
3373 isl_int gcd;
3374 int strict = 0;
3376 isl_int_init(gcd);
3377 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3378 if (!isl_int_is_one(gcd)) {
3379 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3380 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3381 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3383 isl_int_clear(gcd);
3385 return strict;
3388 /* Determine the sign of the given row of the main tableau.
3389 * The result is one of
3390 * isl_tab_row_pos: always non-negative; no pivot needed
3391 * isl_tab_row_neg: always non-positive; pivot
3392 * isl_tab_row_any: can be both positive and negative; split
3394 * We first handle some simple cases
3395 * - the row sign may be known already
3396 * - the row may be obviously non-negative
3397 * - the parametric constant may be equal to that of another row
3398 * for which we know the sign. This sign will be either "pos" or
3399 * "any". If it had been "neg" then we would have pivoted before.
3401 * If none of these cases hold, we check the value of the row for each
3402 * of the currently active samples. Based on the signs of these values
3403 * we make an initial determination of the sign of the row.
3405 * all zero -> unk(nown)
3406 * all non-negative -> pos
3407 * all non-positive -> neg
3408 * both negative and positive -> all
3410 * If we end up with "all", we are done.
3411 * Otherwise, we perform a check for positive and/or negative
3412 * values as follows.
3414 * samples neg unk pos
3415 * <0 ? Y N Y N
3416 * pos any pos
3417 * >0 ? Y N Y N
3418 * any neg any neg
3420 * There is no special sign for "zero", because we can usually treat zero
3421 * as either non-negative or non-positive, whatever works out best.
3422 * However, if the row is "critical", meaning that pivoting is impossible
3423 * then we don't want to limp zero with the non-positive case, because
3424 * then we we would lose the solution for those values of the parameters
3425 * where the value of the row is zero. Instead, we treat 0 as non-negative
3426 * ensuring a split if the row can attain both zero and negative values.
3427 * The same happens when the original constraint was one that could not
3428 * be satisfied with equality by any integer values of the parameters.
3429 * In this case, we normalize the constraint, but then a value of zero
3430 * for the normalized constraint is actually a positive value for the
3431 * original constraint, so again we need to treat zero as non-negative.
3432 * In both these cases, we have the following decision tree instead:
3434 * all non-negative -> pos
3435 * all negative -> neg
3436 * both negative and non-negative -> all
3438 * samples neg pos
3439 * <0 ? Y N
3440 * any pos
3441 * >=0 ? Y N
3442 * any neg
3444 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3445 struct isl_sol *sol, int row)
3447 struct isl_vec *ineq = NULL;
3448 enum isl_tab_row_sign res = isl_tab_row_unknown;
3449 int critical;
3450 int strict;
3451 int row2;
3453 if (tab->row_sign[row] != isl_tab_row_unknown)
3454 return tab->row_sign[row];
3455 if (is_obviously_nonneg(tab, row))
3456 return isl_tab_row_pos;
3457 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3458 if (tab->row_sign[row2] == isl_tab_row_unknown)
3459 continue;
3460 if (identical_parameter_line(tab, row, row2))
3461 return tab->row_sign[row2];
3464 critical = is_critical(tab, row);
3466 ineq = get_row_parameter_ineq(tab, row);
3467 if (!ineq)
3468 goto error;
3470 strict = is_strict(ineq);
3472 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3473 critical || strict);
3475 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3476 /* test for negative values */
3477 int feasible;
3478 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3479 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3481 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3482 if (feasible < 0)
3483 goto error;
3484 if (!feasible)
3485 res = isl_tab_row_pos;
3486 else
3487 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3488 : isl_tab_row_any;
3489 if (res == isl_tab_row_neg) {
3490 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3491 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3495 if (res == isl_tab_row_neg) {
3496 /* test for positive values */
3497 int feasible;
3498 if (!critical && !strict)
3499 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3501 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3502 if (feasible < 0)
3503 goto error;
3504 if (feasible)
3505 res = isl_tab_row_any;
3508 isl_vec_free(ineq);
3509 return res;
3510 error:
3511 isl_vec_free(ineq);
3512 return isl_tab_row_unknown;
3515 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3517 /* Find solutions for values of the parameters that satisfy the given
3518 * inequality.
3520 * We currently take a snapshot of the context tableau that is reset
3521 * when we return from this function, while we make a copy of the main
3522 * tableau, leaving the original main tableau untouched.
3523 * These are fairly arbitrary choices. Making a copy also of the context
3524 * tableau would obviate the need to undo any changes made to it later,
3525 * while taking a snapshot of the main tableau could reduce memory usage.
3526 * If we were to switch to taking a snapshot of the main tableau,
3527 * we would have to keep in mind that we need to save the row signs
3528 * and that we need to do this before saving the current basis
3529 * such that the basis has been restore before we restore the row signs.
3531 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3533 void *saved;
3535 if (!sol->context)
3536 goto error;
3537 saved = sol->context->op->save(sol->context);
3539 tab = isl_tab_dup(tab);
3540 if (!tab)
3541 goto error;
3543 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3545 find_solutions(sol, tab);
3547 if (!sol->error)
3548 sol->context->op->restore(sol->context, saved);
3549 return;
3550 error:
3551 sol->error = 1;
3554 /* Record the absence of solutions for those values of the parameters
3555 * that do not satisfy the given inequality with equality.
3557 static void no_sol_in_strict(struct isl_sol *sol,
3558 struct isl_tab *tab, struct isl_vec *ineq)
3560 int empty;
3561 void *saved;
3563 if (!sol->context || sol->error)
3564 goto error;
3565 saved = sol->context->op->save(sol->context);
3567 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3569 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3570 if (!sol->context)
3571 goto error;
3573 empty = tab->empty;
3574 tab->empty = 1;
3575 sol_add(sol, tab);
3576 tab->empty = empty;
3578 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3580 sol->context->op->restore(sol->context, saved);
3581 return;
3582 error:
3583 sol->error = 1;
3586 /* Compute the lexicographic minimum of the set represented by the main
3587 * tableau "tab" within the context "sol->context_tab".
3588 * On entry the sample value of the main tableau is lexicographically
3589 * less than or equal to this lexicographic minimum.
3590 * Pivots are performed until a feasible point is found, which is then
3591 * necessarily equal to the minimum, or until the tableau is found to
3592 * be infeasible. Some pivots may need to be performed for only some
3593 * feasible values of the context tableau. If so, the context tableau
3594 * is split into a part where the pivot is needed and a part where it is not.
3596 * Whenever we enter the main loop, the main tableau is such that no
3597 * "obvious" pivots need to be performed on it, where "obvious" means
3598 * that the given row can be seen to be negative without looking at
3599 * the context tableau. In particular, for non-parametric problems,
3600 * no pivots need to be performed on the main tableau.
3601 * The caller of find_solutions is responsible for making this property
3602 * hold prior to the first iteration of the loop, while restore_lexmin
3603 * is called before every other iteration.
3605 * Inside the main loop, we first examine the signs of the rows of
3606 * the main tableau within the context of the context tableau.
3607 * If we find a row that is always non-positive for all values of
3608 * the parameters satisfying the context tableau and negative for at
3609 * least one value of the parameters, we perform the appropriate pivot
3610 * and start over. An exception is the case where no pivot can be
3611 * performed on the row. In this case, we require that the sign of
3612 * the row is negative for all values of the parameters (rather than just
3613 * non-positive). This special case is handled inside row_sign, which
3614 * will say that the row can have any sign if it determines that it can
3615 * attain both negative and zero values.
3617 * If we can't find a row that always requires a pivot, but we can find
3618 * one or more rows that require a pivot for some values of the parameters
3619 * (i.e., the row can attain both positive and negative signs), then we split
3620 * the context tableau into two parts, one where we force the sign to be
3621 * non-negative and one where we force is to be negative.
3622 * The non-negative part is handled by a recursive call (through find_in_pos).
3623 * Upon returning from this call, we continue with the negative part and
3624 * perform the required pivot.
3626 * If no such rows can be found, all rows are non-negative and we have
3627 * found a (rational) feasible point. If we only wanted a rational point
3628 * then we are done.
3629 * Otherwise, we check if all values of the sample point of the tableau
3630 * are integral for the variables. If so, we have found the minimal
3631 * integral point and we are done.
3632 * If the sample point is not integral, then we need to make a distinction
3633 * based on whether the constant term is non-integral or the coefficients
3634 * of the parameters. Furthermore, in order to decide how to handle
3635 * the non-integrality, we also need to know whether the coefficients
3636 * of the other columns in the tableau are integral. This leads
3637 * to the following table. The first two rows do not correspond
3638 * to a non-integral sample point and are only mentioned for completeness.
3640 * constant parameters other
3642 * int int int |
3643 * int int rat | -> no problem
3645 * rat int int -> fail
3647 * rat int rat -> cut
3649 * int rat rat |
3650 * rat rat rat | -> parametric cut
3652 * int rat int |
3653 * rat rat int | -> split context
3655 * If the parametric constant is completely integral, then there is nothing
3656 * to be done. If the constant term is non-integral, but all the other
3657 * coefficient are integral, then there is nothing that can be done
3658 * and the tableau has no integral solution.
3659 * If, on the other hand, one or more of the other columns have rational
3660 * coefficients, but the parameter coefficients are all integral, then
3661 * we can perform a regular (non-parametric) cut.
3662 * Finally, if there is any parameter coefficient that is non-integral,
3663 * then we need to involve the context tableau. There are two cases here.
3664 * If at least one other column has a rational coefficient, then we
3665 * can perform a parametric cut in the main tableau by adding a new
3666 * integer division in the context tableau.
3667 * If all other columns have integral coefficients, then we need to
3668 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3669 * is always integral. We do this by introducing an integer division
3670 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3671 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3672 * Since q is expressed in the tableau as
3673 * c + \sum a_i y_i - m q >= 0
3674 * -c - \sum a_i y_i + m q + m - 1 >= 0
3675 * it is sufficient to add the inequality
3676 * -c - \sum a_i y_i + m q >= 0
3677 * In the part of the context where this inequality does not hold, the
3678 * main tableau is marked as being empty.
3680 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3682 struct isl_context *context;
3683 int r;
3685 if (!tab || sol->error)
3686 goto error;
3688 context = sol->context;
3690 if (tab->empty)
3691 goto done;
3692 if (context->op->is_empty(context))
3693 goto done;
3695 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3696 int flags;
3697 int row;
3698 enum isl_tab_row_sign sgn;
3699 int split = -1;
3700 int n_split = 0;
3702 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3703 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3704 continue;
3705 sgn = row_sign(tab, sol, row);
3706 if (!sgn)
3707 goto error;
3708 tab->row_sign[row] = sgn;
3709 if (sgn == isl_tab_row_any)
3710 n_split++;
3711 if (sgn == isl_tab_row_any && split == -1)
3712 split = row;
3713 if (sgn == isl_tab_row_neg)
3714 break;
3716 if (row < tab->n_row)
3717 continue;
3718 if (split != -1) {
3719 struct isl_vec *ineq;
3720 if (n_split != 1)
3721 split = context->op->best_split(context, tab);
3722 if (split < 0)
3723 goto error;
3724 ineq = get_row_parameter_ineq(tab, split);
3725 if (!ineq)
3726 goto error;
3727 is_strict(ineq);
3728 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3729 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3730 continue;
3731 if (tab->row_sign[row] == isl_tab_row_any)
3732 tab->row_sign[row] = isl_tab_row_unknown;
3734 tab->row_sign[split] = isl_tab_row_pos;
3735 sol_inc_level(sol);
3736 find_in_pos(sol, tab, ineq->el);
3737 tab->row_sign[split] = isl_tab_row_neg;
3738 row = split;
3739 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3740 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3741 if (!sol->error)
3742 context->op->add_ineq(context, ineq->el, 0, 1);
3743 isl_vec_free(ineq);
3744 if (sol->error)
3745 goto error;
3746 continue;
3748 if (tab->rational)
3749 break;
3750 row = first_non_integer_row(tab, &flags);
3751 if (row < 0)
3752 break;
3753 if (ISL_FL_ISSET(flags, I_PAR)) {
3754 if (ISL_FL_ISSET(flags, I_VAR)) {
3755 if (isl_tab_mark_empty(tab) < 0)
3756 goto error;
3757 break;
3759 row = add_cut(tab, row);
3760 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3761 struct isl_vec *div;
3762 struct isl_vec *ineq;
3763 int d;
3764 div = get_row_split_div(tab, row);
3765 if (!div)
3766 goto error;
3767 d = context->op->get_div(context, tab, div);
3768 isl_vec_free(div);
3769 if (d < 0)
3770 goto error;
3771 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3772 if (!ineq)
3773 goto error;
3774 sol_inc_level(sol);
3775 no_sol_in_strict(sol, tab, ineq);
3776 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3777 context->op->add_ineq(context, ineq->el, 1, 1);
3778 isl_vec_free(ineq);
3779 if (sol->error || !context->op->is_ok(context))
3780 goto error;
3781 tab = set_row_cst_to_div(tab, row, d);
3782 if (context->op->is_empty(context))
3783 break;
3784 } else
3785 row = add_parametric_cut(tab, row, context);
3786 if (row < 0)
3787 goto error;
3789 if (r < 0)
3790 goto error;
3791 done:
3792 sol_add(sol, tab);
3793 isl_tab_free(tab);
3794 return;
3795 error:
3796 isl_tab_free(tab);
3797 sol->error = 1;
3800 /* Compute the lexicographic minimum of the set represented by the main
3801 * tableau "tab" within the context "sol->context_tab".
3803 * As a preprocessing step, we first transfer all the purely parametric
3804 * equalities from the main tableau to the context tableau, i.e.,
3805 * parameters that have been pivoted to a row.
3806 * These equalities are ignored by the main algorithm, because the
3807 * corresponding rows may not be marked as being non-negative.
3808 * In parts of the context where the added equality does not hold,
3809 * the main tableau is marked as being empty.
3811 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3813 int row;
3815 if (!tab)
3816 goto error;
3818 sol->level = 0;
3820 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3821 int p;
3822 struct isl_vec *eq;
3824 if (tab->row_var[row] < 0)
3825 continue;
3826 if (tab->row_var[row] >= tab->n_param &&
3827 tab->row_var[row] < tab->n_var - tab->n_div)
3828 continue;
3829 if (tab->row_var[row] < tab->n_param)
3830 p = tab->row_var[row];
3831 else
3832 p = tab->row_var[row]
3833 + tab->n_param - (tab->n_var - tab->n_div);
3835 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3836 if (!eq)
3837 goto error;
3838 get_row_parameter_line(tab, row, eq->el);
3839 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3840 eq = isl_vec_normalize(eq);
3842 sol_inc_level(sol);
3843 no_sol_in_strict(sol, tab, eq);
3845 isl_seq_neg(eq->el, eq->el, eq->size);
3846 sol_inc_level(sol);
3847 no_sol_in_strict(sol, tab, eq);
3848 isl_seq_neg(eq->el, eq->el, eq->size);
3850 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3852 isl_vec_free(eq);
3854 if (isl_tab_mark_redundant(tab, row) < 0)
3855 goto error;
3857 if (sol->context->op->is_empty(sol->context))
3858 break;
3860 row = tab->n_redundant - 1;
3863 find_solutions(sol, tab);
3865 sol->level = 0;
3866 sol_pop(sol);
3868 return;
3869 error:
3870 isl_tab_free(tab);
3871 sol->error = 1;
3874 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3875 struct isl_tab *tab)
3877 find_solutions_main(&sol_map->sol, tab);
3880 /* Check if integer division "div" of "dom" also occurs in "bmap".
3881 * If so, return its position within the divs.
3882 * If not, return -1.
3884 static int find_context_div(struct isl_basic_map *bmap,
3885 struct isl_basic_set *dom, unsigned div)
3887 int i;
3888 unsigned b_dim = isl_dim_total(bmap->dim);
3889 unsigned d_dim = isl_dim_total(dom->dim);
3891 if (isl_int_is_zero(dom->div[div][0]))
3892 return -1;
3893 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3894 return -1;
3896 for (i = 0; i < bmap->n_div; ++i) {
3897 if (isl_int_is_zero(bmap->div[i][0]))
3898 continue;
3899 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3900 (b_dim - d_dim) + bmap->n_div) != -1)
3901 continue;
3902 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3903 return i;
3905 return -1;
3908 /* The correspondence between the variables in the main tableau,
3909 * the context tableau, and the input map and domain is as follows.
3910 * The first n_param and the last n_div variables of the main tableau
3911 * form the variables of the context tableau.
3912 * In the basic map, these n_param variables correspond to the
3913 * parameters and the input dimensions. In the domain, they correspond
3914 * to the parameters and the set dimensions.
3915 * The n_div variables correspond to the integer divisions in the domain.
3916 * To ensure that everything lines up, we may need to copy some of the
3917 * integer divisions of the domain to the map. These have to be placed
3918 * in the same order as those in the context and they have to be placed
3919 * after any other integer divisions that the map may have.
3920 * This function performs the required reordering.
3922 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3923 struct isl_basic_set *dom)
3925 int i;
3926 int common = 0;
3927 int other;
3929 for (i = 0; i < dom->n_div; ++i)
3930 if (find_context_div(bmap, dom, i) != -1)
3931 common++;
3932 other = bmap->n_div - common;
3933 if (dom->n_div - common > 0) {
3934 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3935 dom->n_div - common, 0, 0);
3936 if (!bmap)
3937 return NULL;
3939 for (i = 0; i < dom->n_div; ++i) {
3940 int pos = find_context_div(bmap, dom, i);
3941 if (pos < 0) {
3942 pos = isl_basic_map_alloc_div(bmap);
3943 if (pos < 0)
3944 goto error;
3945 isl_int_set_si(bmap->div[pos][0], 0);
3947 if (pos != other + i)
3948 isl_basic_map_swap_div(bmap, pos, other + i);
3950 return bmap;
3951 error:
3952 isl_basic_map_free(bmap);
3953 return NULL;
3956 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3957 * some obvious symmetries.
3959 * We make sure the divs in the domain are properly ordered,
3960 * because they will be added one by one in the given order
3961 * during the construction of the solution map.
3963 static __isl_give isl_map *basic_map_partial_lexopt_base(
3964 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3965 __isl_give isl_set **empty, int max)
3967 isl_map *result = NULL;
3968 struct isl_tab *tab;
3969 struct isl_sol_map *sol_map = NULL;
3970 struct isl_context *context;
3972 if (dom->n_div) {
3973 dom = isl_basic_set_order_divs(dom);
3974 bmap = align_context_divs(bmap, dom);
3976 sol_map = sol_map_init(bmap, dom, !!empty, max);
3977 if (!sol_map)
3978 goto error;
3980 context = sol_map->sol.context;
3981 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
3982 /* nothing */;
3983 else if (isl_basic_map_plain_is_empty(bmap))
3984 sol_map_add_empty_if_needed(sol_map,
3985 isl_basic_set_copy(context->op->peek_basic_set(context)));
3986 else {
3987 tab = tab_for_lexmin(bmap,
3988 context->op->peek_basic_set(context), 1, max);
3989 tab = context->op->detect_nonnegative_parameters(context, tab);
3990 sol_map_find_solutions(sol_map, tab);
3992 if (sol_map->sol.error)
3993 goto error;
3995 result = isl_map_copy(sol_map->map);
3996 if (empty)
3997 *empty = isl_set_copy(sol_map->empty);
3998 sol_free(&sol_map->sol);
3999 isl_basic_map_free(bmap);
4000 return result;
4001 error:
4002 sol_free(&sol_map->sol);
4003 isl_basic_map_free(bmap);
4004 return NULL;
4007 /* Structure used during detection of parallel constraints.
4008 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4009 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4010 * val: the coefficients of the output variables
4012 struct isl_constraint_equal_info {
4013 isl_basic_map *bmap;
4014 unsigned n_in;
4015 unsigned n_out;
4016 isl_int *val;
4019 /* Check whether the coefficients of the output variables
4020 * of the constraint in "entry" are equal to info->val.
4022 static int constraint_equal(const void *entry, const void *val)
4024 isl_int **row = (isl_int **)entry;
4025 const struct isl_constraint_equal_info *info = val;
4027 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4030 /* Check whether "bmap" has a pair of constraints that have
4031 * the same coefficients for the output variables.
4032 * Note that the coefficients of the existentially quantified
4033 * variables need to be zero since the existentially quantified
4034 * of the result are usually not the same as those of the input.
4035 * the isl_dim_out and isl_dim_div dimensions.
4036 * If so, return 1 and return the row indices of the two constraints
4037 * in *first and *second.
4039 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4040 int *first, int *second)
4042 int i;
4043 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4044 struct isl_hash_table *table = NULL;
4045 struct isl_hash_table_entry *entry;
4046 struct isl_constraint_equal_info info;
4047 unsigned n_out;
4048 unsigned n_div;
4050 ctx = isl_basic_map_get_ctx(bmap);
4051 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4052 if (!table)
4053 goto error;
4055 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4056 isl_basic_map_dim(bmap, isl_dim_in);
4057 info.bmap = bmap;
4058 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4059 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4060 info.n_out = n_out + n_div;
4061 for (i = 0; i < bmap->n_ineq; ++i) {
4062 uint32_t hash;
4064 info.val = bmap->ineq[i] + 1 + info.n_in;
4065 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4066 continue;
4067 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4068 continue;
4069 hash = isl_seq_get_hash(info.val, info.n_out);
4070 entry = isl_hash_table_find(ctx, table, hash,
4071 constraint_equal, &info, 1);
4072 if (!entry)
4073 goto error;
4074 if (entry->data)
4075 break;
4076 entry->data = &bmap->ineq[i];
4079 if (i < bmap->n_ineq) {
4080 *first = ((isl_int **)entry->data) - bmap->ineq;
4081 *second = i;
4084 isl_hash_table_free(ctx, table);
4086 return i < bmap->n_ineq;
4087 error:
4088 isl_hash_table_free(ctx, table);
4089 return -1;
4092 /* Given a set of upper bounds on the last "input" variable m,
4093 * construct a set that assigns the minimal upper bound to m, i.e.,
4094 * construct a set that divides the space into cells where one
4095 * of the upper bounds is smaller than all the others and assign
4096 * this upper bound to m.
4098 * In particular, if there are n bounds b_i, then the result
4099 * consists of n basic sets, each one of the form
4101 * m = b_i
4102 * b_i <= b_j for j > i
4103 * b_i < b_j for j < i
4105 static __isl_give isl_set *set_minimum(__isl_take isl_dim *dim,
4106 __isl_take isl_mat *var)
4108 int i, j, k;
4109 isl_basic_set *bset = NULL;
4110 isl_ctx *ctx;
4111 isl_set *set = NULL;
4113 if (!dim || !var)
4114 goto error;
4116 ctx = isl_dim_get_ctx(dim);
4117 set = isl_set_alloc_dim(isl_dim_copy(dim),
4118 var->n_row, ISL_SET_DISJOINT);
4120 for (i = 0; i < var->n_row; ++i) {
4121 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0,
4122 1, var->n_row - 1);
4123 k = isl_basic_set_alloc_equality(bset);
4124 if (k < 0)
4125 goto error;
4126 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4127 isl_int_set_si(bset->eq[k][var->n_col], -1);
4128 for (j = 0; j < var->n_row; ++j) {
4129 if (j == i)
4130 continue;
4131 k = isl_basic_set_alloc_inequality(bset);
4132 if (k < 0)
4133 goto error;
4134 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4135 ctx->negone, var->row[i],
4136 var->n_col);
4137 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4138 if (j < i)
4139 isl_int_sub_ui(bset->ineq[k][0],
4140 bset->ineq[k][0], 1);
4142 bset = isl_basic_set_finalize(bset);
4143 set = isl_set_add_basic_set(set, bset);
4146 isl_dim_free(dim);
4147 isl_mat_free(var);
4148 return set;
4149 error:
4150 isl_basic_set_free(bset);
4151 isl_set_free(set);
4152 isl_dim_free(dim);
4153 isl_mat_free(var);
4154 return NULL;
4157 /* Given that the last input variable of "bmap" represents the minimum
4158 * of the bounds in "cst", check whether we need to split the domain
4159 * based on which bound attains the minimum.
4161 * A split is needed when the minimum appears in an integer division
4162 * or in an equality. Otherwise, it is only needed if it appears in
4163 * an upper bound that is different from the upper bounds on which it
4164 * is defined.
4166 static int need_split_map(__isl_keep isl_basic_map *bmap,
4167 __isl_keep isl_mat *cst)
4169 int i, j;
4170 unsigned total;
4171 unsigned pos;
4173 pos = cst->n_col - 1;
4174 total = isl_basic_map_dim(bmap, isl_dim_all);
4176 for (i = 0; i < bmap->n_div; ++i)
4177 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4178 return 1;
4180 for (i = 0; i < bmap->n_eq; ++i)
4181 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4182 return 1;
4184 for (i = 0; i < bmap->n_ineq; ++i) {
4185 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4186 continue;
4187 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4188 return 1;
4189 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4190 total - pos - 1) >= 0)
4191 return 1;
4193 for (j = 0; j < cst->n_row; ++j)
4194 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4195 break;
4196 if (j >= cst->n_row)
4197 return 1;
4200 return 0;
4203 static int need_split_set(__isl_keep isl_basic_set *bset,
4204 __isl_keep isl_mat *cst)
4206 return need_split_map((isl_basic_map *)bset, cst);
4209 /* Given a set of which the last set variable is the minimum
4210 * of the bounds in "cst", split each basic set in the set
4211 * in pieces where one of the bounds is (strictly) smaller than the others.
4212 * This subdivision is given in "min_expr".
4213 * The variable is subsequently projected out.
4215 * We only do the split when it is needed.
4216 * For example if the last input variable m = min(a,b) and the only
4217 * constraints in the given basic set are lower bounds on m,
4218 * i.e., l <= m = min(a,b), then we can simply project out m
4219 * to obtain l <= a and l <= b, without having to split on whether
4220 * m is equal to a or b.
4222 static __isl_give isl_set *split(__isl_take isl_set *empty,
4223 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4225 int n_in;
4226 int i;
4227 isl_dim *dim;
4228 isl_set *res;
4230 if (!empty || !min_expr || !cst)
4231 goto error;
4233 n_in = isl_set_dim(empty, isl_dim_set);
4234 dim = isl_set_get_dim(empty);
4235 dim = isl_dim_drop(dim, isl_dim_set, n_in - 1, 1);
4236 res = isl_set_empty(dim);
4238 for (i = 0; i < empty->n; ++i) {
4239 isl_set *set;
4241 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4242 if (need_split_set(empty->p[i], cst))
4243 set = isl_set_intersect(set, isl_set_copy(min_expr));
4244 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4246 res = isl_set_union_disjoint(res, set);
4249 isl_set_free(empty);
4250 isl_set_free(min_expr);
4251 isl_mat_free(cst);
4252 return res;
4253 error:
4254 isl_set_free(empty);
4255 isl_set_free(min_expr);
4256 isl_mat_free(cst);
4257 return NULL;
4260 /* Given a map of which the last input variable is the minimum
4261 * of the bounds in "cst", split each basic set in the set
4262 * in pieces where one of the bounds is (strictly) smaller than the others.
4263 * This subdivision is given in "min_expr".
4264 * The variable is subsequently projected out.
4266 * The implementation is essentially the same as that of "split".
4268 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4269 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4271 int n_in;
4272 int i;
4273 isl_dim *dim;
4274 isl_map *res;
4276 if (!opt || !min_expr || !cst)
4277 goto error;
4279 n_in = isl_map_dim(opt, isl_dim_in);
4280 dim = isl_map_get_dim(opt);
4281 dim = isl_dim_drop(dim, isl_dim_in, n_in - 1, 1);
4282 res = isl_map_empty(dim);
4284 for (i = 0; i < opt->n; ++i) {
4285 isl_map *map;
4287 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4288 if (need_split_map(opt->p[i], cst))
4289 map = isl_map_intersect_domain(map,
4290 isl_set_copy(min_expr));
4291 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4293 res = isl_map_union_disjoint(res, map);
4296 isl_map_free(opt);
4297 isl_set_free(min_expr);
4298 isl_mat_free(cst);
4299 return res;
4300 error:
4301 isl_map_free(opt);
4302 isl_set_free(min_expr);
4303 isl_mat_free(cst);
4304 return NULL;
4307 static __isl_give isl_map *basic_map_partial_lexopt(
4308 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4309 __isl_give isl_set **empty, int max);
4311 /* Given a basic map with at least two parallel constraints (as found
4312 * by the function parallel_constraints), first look for more constraints
4313 * parallel to the two constraint and replace the found list of parallel
4314 * constraints by a single constraint with as "input" part the minimum
4315 * of the input parts of the list of constraints. Then, recursively call
4316 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4317 * and plug in the definition of the minimum in the result.
4319 * More specifically, given a set of constraints
4321 * a x + b_i(p) >= 0
4323 * Replace this set by a single constraint
4325 * a x + u >= 0
4327 * with u a new parameter with constraints
4329 * u <= b_i(p)
4331 * Any solution to the new system is also a solution for the original system
4332 * since
4334 * a x >= -u >= -b_i(p)
4336 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4337 * therefore be plugged into the solution.
4339 static __isl_give isl_map *basic_map_partial_lexopt_symm(
4340 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4341 __isl_give isl_set **empty, int max, int first, int second)
4343 int i, n, k;
4344 int *list = NULL;
4345 unsigned n_in, n_out, n_div;
4346 isl_ctx *ctx;
4347 isl_vec *var = NULL;
4348 isl_mat *cst = NULL;
4349 isl_map *opt;
4350 isl_set *min_expr;
4351 isl_dim *map_dim, *set_dim;
4353 map_dim = isl_basic_map_get_dim(bmap);
4354 set_dim = empty ? isl_basic_set_get_dim(dom) : NULL;
4356 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4357 isl_basic_map_dim(bmap, isl_dim_in);
4358 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4360 ctx = isl_basic_map_get_ctx(bmap);
4361 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4362 var = isl_vec_alloc(ctx, n_out);
4363 if (!list || !var)
4364 goto error;
4366 list[0] = first;
4367 list[1] = second;
4368 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4369 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4370 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4371 list[n++] = i;
4374 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4375 if (!cst)
4376 goto error;
4378 for (i = 0; i < n; ++i)
4379 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4381 bmap = isl_basic_map_cow(bmap);
4382 if (!bmap)
4383 goto error;
4384 for (i = n - 1; i >= 0; --i)
4385 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4386 goto error;
4388 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4389 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4390 k = isl_basic_map_alloc_inequality(bmap);
4391 if (k < 0)
4392 goto error;
4393 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4394 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4395 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4396 bmap = isl_basic_map_finalize(bmap);
4398 n_div = isl_basic_set_dim(dom, isl_dim_div);
4399 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4400 dom = isl_basic_set_extend_constraints(dom, 0, n);
4401 for (i = 0; i < n; ++i) {
4402 k = isl_basic_set_alloc_inequality(dom);
4403 if (k < 0)
4404 goto error;
4405 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4406 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4407 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4410 min_expr = set_minimum(isl_basic_set_get_dim(dom), isl_mat_copy(cst));
4412 isl_vec_free(var);
4413 free(list);
4415 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4417 if (empty) {
4418 *empty = split(*empty,
4419 isl_set_copy(min_expr), isl_mat_copy(cst));
4420 *empty = isl_set_reset_dim(*empty, set_dim);
4423 opt = split_domain(opt, min_expr, cst);
4424 opt = isl_map_reset_dim(opt, map_dim);
4426 return opt;
4427 error:
4428 isl_dim_free(map_dim);
4429 isl_dim_free(set_dim);
4430 isl_mat_free(cst);
4431 isl_vec_free(var);
4432 free(list);
4433 isl_basic_set_free(dom);
4434 isl_basic_map_free(bmap);
4435 return NULL;
4438 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4439 * equalities and removing redundant constraints.
4441 * We first check if there are any parallel constraints (left).
4442 * If not, we are in the base case.
4443 * If there are parallel constraints, we replace them by a single
4444 * constraint in basic_map_partial_lexopt_symm and then call
4445 * this function recursively to look for more parallel constraints.
4447 static __isl_give isl_map *basic_map_partial_lexopt(
4448 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4449 __isl_give isl_set **empty, int max)
4451 int par = 0;
4452 int first, second;
4454 if (!bmap)
4455 goto error;
4457 if (bmap->ctx->opt->pip_symmetry)
4458 par = parallel_constraints(bmap, &first, &second);
4459 if (par < 0)
4460 goto error;
4461 if (!par)
4462 return basic_map_partial_lexopt_base(bmap, dom, empty, max);
4464 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4465 first, second);
4466 error:
4467 isl_basic_set_free(dom);
4468 isl_basic_map_free(bmap);
4469 return NULL;
4472 /* Compute the lexicographic minimum (or maximum if "max" is set)
4473 * of "bmap" over the domain "dom" and return the result as a map.
4474 * If "empty" is not NULL, then *empty is assigned a set that
4475 * contains those parts of the domain where there is no solution.
4476 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4477 * then we compute the rational optimum. Otherwise, we compute
4478 * the integral optimum.
4480 * We perform some preprocessing. As the PILP solver does not
4481 * handle implicit equalities very well, we first make sure all
4482 * the equalities are explicitly available.
4484 * We also add context constraints to the basic map and remove
4485 * redundant constraints. This is only needed because of the
4486 * way we handle simple symmetries. In particular, we currently look
4487 * for symmetries on the constraints, before we set up the main tableau.
4488 * It is then no good to look for symmetries on possibly redundant constraints.
4490 struct isl_map *isl_tab_basic_map_partial_lexopt(
4491 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4492 struct isl_set **empty, int max)
4494 if (empty)
4495 *empty = NULL;
4496 if (!bmap || !dom)
4497 goto error;
4499 isl_assert(bmap->ctx,
4500 isl_basic_map_compatible_domain(bmap, dom), goto error);
4502 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4503 return basic_map_partial_lexopt(bmap, dom, empty, max);
4505 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4506 bmap = isl_basic_map_detect_equalities(bmap);
4507 bmap = isl_basic_map_remove_redundancies(bmap);
4509 return basic_map_partial_lexopt(bmap, dom, empty, max);
4510 error:
4511 isl_basic_set_free(dom);
4512 isl_basic_map_free(bmap);
4513 return NULL;
4516 struct isl_sol_for {
4517 struct isl_sol sol;
4518 int (*fn)(__isl_take isl_basic_set *dom,
4519 __isl_take isl_mat *map, void *user);
4520 void *user;
4523 static void sol_for_free(struct isl_sol_for *sol_for)
4525 if (sol_for->sol.context)
4526 sol_for->sol.context->op->free(sol_for->sol.context);
4527 free(sol_for);
4530 static void sol_for_free_wrap(struct isl_sol *sol)
4532 sol_for_free((struct isl_sol_for *)sol);
4535 /* Add the solution identified by the tableau and the context tableau.
4537 * See documentation of sol_add for more details.
4539 * Instead of constructing a basic map, this function calls a user
4540 * defined function with the current context as a basic set and
4541 * an affine matrix representing the relation between the input and output.
4542 * The number of rows in this matrix is equal to one plus the number
4543 * of output variables. The number of columns is equal to one plus
4544 * the total dimension of the context, i.e., the number of parameters,
4545 * input variables and divs. Since some of the columns in the matrix
4546 * may refer to the divs, the basic set is not simplified.
4547 * (Simplification may reorder or remove divs.)
4549 static void sol_for_add(struct isl_sol_for *sol,
4550 struct isl_basic_set *dom, struct isl_mat *M)
4552 if (sol->sol.error || !dom || !M)
4553 goto error;
4555 dom = isl_basic_set_finalize(dom);
4557 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4558 goto error;
4560 isl_basic_set_free(dom);
4561 isl_mat_free(M);
4562 return;
4563 error:
4564 isl_basic_set_free(dom);
4565 isl_mat_free(M);
4566 sol->sol.error = 1;
4569 static void sol_for_add_wrap(struct isl_sol *sol,
4570 struct isl_basic_set *dom, struct isl_mat *M)
4572 sol_for_add((struct isl_sol_for *)sol, dom, M);
4575 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4576 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4577 void *user),
4578 void *user)
4580 struct isl_sol_for *sol_for = NULL;
4581 struct isl_dim *dom_dim;
4582 struct isl_basic_set *dom = NULL;
4584 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4585 if (!sol_for)
4586 goto error;
4588 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4589 dom = isl_basic_set_universe(dom_dim);
4591 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4592 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4593 sol_for->sol.dec_level.sol = &sol_for->sol;
4594 sol_for->fn = fn;
4595 sol_for->user = user;
4596 sol_for->sol.max = max;
4597 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4598 sol_for->sol.add = &sol_for_add_wrap;
4599 sol_for->sol.add_empty = NULL;
4600 sol_for->sol.free = &sol_for_free_wrap;
4602 sol_for->sol.context = isl_context_alloc(dom);
4603 if (!sol_for->sol.context)
4604 goto error;
4606 isl_basic_set_free(dom);
4607 return sol_for;
4608 error:
4609 isl_basic_set_free(dom);
4610 sol_for_free(sol_for);
4611 return NULL;
4614 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4615 struct isl_tab *tab)
4617 find_solutions_main(&sol_for->sol, tab);
4620 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4621 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4622 void *user),
4623 void *user)
4625 struct isl_sol_for *sol_for = NULL;
4627 bmap = isl_basic_map_copy(bmap);
4628 if (!bmap)
4629 return -1;
4631 bmap = isl_basic_map_detect_equalities(bmap);
4632 sol_for = sol_for_init(bmap, max, fn, user);
4634 if (isl_basic_map_plain_is_empty(bmap))
4635 /* nothing */;
4636 else {
4637 struct isl_tab *tab;
4638 struct isl_context *context = sol_for->sol.context;
4639 tab = tab_for_lexmin(bmap,
4640 context->op->peek_basic_set(context), 1, max);
4641 tab = context->op->detect_nonnegative_parameters(context, tab);
4642 sol_for_find_solutions(sol_for, tab);
4643 if (sol_for->sol.error)
4644 goto error;
4647 sol_free(&sol_for->sol);
4648 isl_basic_map_free(bmap);
4649 return 0;
4650 error:
4651 sol_free(&sol_for->sol);
4652 isl_basic_map_free(bmap);
4653 return -1;
4656 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4657 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4658 void *user),
4659 void *user)
4661 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4664 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4665 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4666 void *user),
4667 void *user)
4669 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);
4672 /* Check if the given sequence of len variables starting at pos
4673 * represents a trivial (i.e., zero) solution.
4674 * The variables are assumed to be non-negative and to come in pairs,
4675 * with each pair representing a variable of unrestricted sign.
4676 * The solution is trivial if each such pair in the sequence consists
4677 * of two identical values, meaning that the variable being represented
4678 * has value zero.
4680 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4682 int i;
4684 if (len == 0)
4685 return 0;
4687 for (i = 0; i < len; i += 2) {
4688 int neg_row;
4689 int pos_row;
4691 neg_row = tab->var[pos + i].is_row ?
4692 tab->var[pos + i].index : -1;
4693 pos_row = tab->var[pos + i + 1].is_row ?
4694 tab->var[pos + i + 1].index : -1;
4696 if ((neg_row < 0 ||
4697 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4698 (pos_row < 0 ||
4699 isl_int_is_zero(tab->mat->row[pos_row][1])))
4700 continue;
4702 if (neg_row < 0 || pos_row < 0)
4703 return 0;
4704 if (isl_int_ne(tab->mat->row[neg_row][1],
4705 tab->mat->row[pos_row][1]))
4706 return 0;
4709 return 1;
4712 /* Return the index of the first trivial region or -1 if all regions
4713 * are non-trivial.
4715 static int first_trivial_region(struct isl_tab *tab,
4716 int n_region, struct isl_region *region)
4718 int i;
4720 for (i = 0; i < n_region; ++i) {
4721 if (region_is_trivial(tab, region[i].pos, region[i].len))
4722 return i;
4725 return -1;
4728 /* Check if the solution is optimal, i.e., whether the first
4729 * n_op entries are zero.
4731 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4733 int i;
4735 for (i = 0; i < n_op; ++i)
4736 if (!isl_int_is_zero(sol->el[1 + i]))
4737 return 0;
4738 return 1;
4741 /* Add constraints to "tab" that ensure that any solution is significantly
4742 * better that that represented by "sol". That is, find the first
4743 * relevant (within first n_op) non-zero coefficient and force it (along
4744 * with all previous coefficients) to be zero.
4745 * If the solution is already optimal (all relevant coefficients are zero),
4746 * then just mark the table as empty.
4748 static int force_better_solution(struct isl_tab *tab,
4749 __isl_keep isl_vec *sol, int n_op)
4751 int i;
4752 isl_ctx *ctx;
4753 isl_vec *v = NULL;
4755 if (!sol)
4756 return -1;
4758 for (i = 0; i < n_op; ++i)
4759 if (!isl_int_is_zero(sol->el[1 + i]))
4760 break;
4762 if (i == n_op) {
4763 if (isl_tab_mark_empty(tab) < 0)
4764 return -1;
4765 return 0;
4768 ctx = isl_vec_get_ctx(sol);
4769 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4770 if (!v)
4771 return -1;
4773 for (; i >= 0; --i) {
4774 v = isl_vec_clr(v);
4775 isl_int_set_si(v->el[1 + i], -1);
4776 if (add_lexmin_eq(tab, v->el) < 0)
4777 goto error;
4780 isl_vec_free(v);
4781 return 0;
4782 error:
4783 isl_vec_free(v);
4784 return -1;
4787 struct isl_trivial {
4788 int update;
4789 int region;
4790 int side;
4791 struct isl_tab_undo *snap;
4794 /* Return the lexicographically smallest non-trivial solution of the
4795 * given ILP problem.
4797 * All variables are assumed to be non-negative.
4799 * n_op is the number of initial coordinates to optimize.
4800 * That is, once a solution has been found, we will only continue looking
4801 * for solution that result in significantly better values for those
4802 * initial coordinates. That is, we only continue looking for solutions
4803 * that increase the number of initial zeros in this sequence.
4805 * A solution is non-trivial, if it is non-trivial on each of the
4806 * specified regions. Each region represents a sequence of pairs
4807 * of variables. A solution is non-trivial on such a region if
4808 * at least one of these pairs consists of different values, i.e.,
4809 * such that the non-negative variable represented by the pair is non-zero.
4811 * Whenever a conflict is encountered, all constraints involved are
4812 * reported to the caller through a call to "conflict".
4814 * We perform a simple branch-and-bound backtracking search.
4815 * Each level in the search represents initially trivial region that is forced
4816 * to be non-trivial.
4817 * At each level we consider n cases, where n is the length of the region.
4818 * In terms of the n/2 variables of unrestricted signs being encoded by
4819 * the region, we consider the cases
4820 * x_0 >= 1
4821 * x_0 <= -1
4822 * x_0 = 0 and x_1 >= 1
4823 * x_0 = 0 and x_1 <= -1
4824 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4825 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4826 * ...
4827 * The cases are considered in this order, assuming that each pair
4828 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4829 * That is, x_0 >= 1 is enforced by adding the constraint
4830 * x_0_b - x_0_a >= 1
4832 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4833 __isl_take isl_basic_set *bset, int n_op, int n_region,
4834 struct isl_region *region,
4835 int (*conflict)(int con, void *user), void *user)
4837 int i, j;
4838 int r;
4839 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4840 isl_vec *v = NULL;
4841 isl_vec *sol = isl_vec_alloc(ctx, 0);
4842 struct isl_tab *tab;
4843 struct isl_trivial *triv = NULL;
4844 int level, init;
4846 tab = tab_for_lexmin(isl_basic_map_from_range(bset), NULL, 0, 0);
4847 if (!tab)
4848 goto error;
4849 tab->conflict = conflict;
4850 tab->conflict_user = user;
4852 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4853 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
4854 if (!v || !triv)
4855 goto error;
4857 level = 0;
4858 init = 1;
4860 while (level >= 0) {
4861 int side, base;
4863 if (init) {
4864 tab = cut_to_integer_lexmin(tab);
4865 if (!tab)
4866 goto error;
4867 if (tab->empty)
4868 goto backtrack;
4869 r = first_trivial_region(tab, n_region, region);
4870 if (r < 0) {
4871 for (i = 0; i < level; ++i)
4872 triv[i].update = 1;
4873 isl_vec_free(sol);
4874 sol = isl_tab_get_sample_value(tab);
4875 if (!sol)
4876 goto error;
4877 if (is_optimal(sol, n_op))
4878 break;
4879 goto backtrack;
4881 if (level >= n_region)
4882 isl_die(ctx, isl_error_internal,
4883 "nesting level too deep", goto error);
4884 if (isl_tab_extend_cons(tab,
4885 2 * region[r].len + 2 * n_op) < 0)
4886 goto error;
4887 triv[level].region = r;
4888 triv[level].side = 0;
4891 r = triv[level].region;
4892 side = triv[level].side;
4893 base = 2 * (side/2);
4895 if (side >= region[r].len) {
4896 backtrack:
4897 level--;
4898 init = 0;
4899 if (level >= 0)
4900 if (isl_tab_rollback(tab, triv[level].snap) < 0)
4901 goto error;
4902 continue;
4905 if (triv[level].update) {
4906 if (force_better_solution(tab, sol, n_op) < 0)
4907 goto error;
4908 triv[level].update = 0;
4911 if (side == base && base >= 2) {
4912 for (j = base - 2; j < base; ++j) {
4913 v = isl_vec_clr(v);
4914 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
4915 if (add_lexmin_eq(tab, v->el) < 0)
4916 goto error;
4920 triv[level].snap = isl_tab_snap(tab);
4921 if (isl_tab_push_basis(tab) < 0)
4922 goto error;
4924 v = isl_vec_clr(v);
4925 isl_int_set_si(v->el[0], -1);
4926 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
4927 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
4928 tab = add_lexmin_ineq(tab, v->el);
4930 triv[level].side++;
4931 level++;
4932 init = 1;
4935 free(triv);
4936 isl_vec_free(v);
4937 isl_tab_free(tab);
4938 isl_basic_set_free(bset);
4940 return sol;
4941 error:
4942 free(triv);
4943 isl_vec_free(v);
4944 isl_tab_free(tab);
4945 isl_basic_set_free(bset);
4946 isl_vec_free(sol);
4947 return NULL;
4950 /* Return the lexicographically smallest rational point in "bset",
4951 * assuming that all variables are non-negative.
4952 * If "bset" is empty, then return a zero-length vector.
4954 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
4955 __isl_take isl_basic_set *bset)
4957 struct isl_tab *tab;
4958 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4959 isl_vec *sol;
4961 tab = tab_for_lexmin(isl_basic_map_from_range(bset), NULL, 0, 0);
4962 if (!tab)
4963 goto error;
4964 if (tab->empty)
4965 sol = isl_vec_alloc(ctx, 0);
4966 else
4967 sol = isl_tab_get_sample_value(tab);
4968 isl_tab_free(tab);
4969 isl_basic_set_free(bset);
4970 return sol;
4971 error:
4972 isl_tab_free(tab);
4973 isl_basic_set_free(bset);
4974 return NULL;