isl_equalities.c: fix typo in comment
[isl.git] / isl_coalesce.c
blob0a04a140001335c7ab6934b491b49c22653635f2
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
14 #include "isl_seq.h"
15 #include "isl_tab.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
21 #define STATUS_CUT 4
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int *ineq, struct isl_tab *tab)
27 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
28 switch (type) {
29 case isl_ineq_error: return STATUS_ERROR;
30 case isl_ineq_redundant: return STATUS_VALID;
31 case isl_ineq_separate: return STATUS_SEPARATE;
32 case isl_ineq_cut: return STATUS_CUT;
33 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
34 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
38 /* Compute the position of the equalities of basic map "i"
39 * with respect to basic map "j".
40 * The resulting array has twice as many entries as the number
41 * of equalities corresponding to the two inequalties to which
42 * each equality corresponds.
44 static int *eq_status_in(struct isl_map *map, int i, int j,
45 struct isl_tab **tabs)
47 int k, l;
48 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
49 unsigned dim;
51 dim = isl_basic_map_total_dim(map->p[i]);
52 for (k = 0; k < map->p[i]->n_eq; ++k) {
53 for (l = 0; l < 2; ++l) {
54 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
55 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
56 if (eq[2 * k + l] == STATUS_ERROR)
57 goto error;
59 if (eq[2 * k] == STATUS_SEPARATE ||
60 eq[2 * k + 1] == STATUS_SEPARATE)
61 break;
64 return eq;
65 error:
66 free(eq);
67 return NULL;
70 /* Compute the position of the inequalities of basic map "i"
71 * with respect to basic map "j".
73 static int *ineq_status_in(struct isl_map *map, int i, int j,
74 struct isl_tab **tabs)
76 int k;
77 unsigned n_eq = map->p[i]->n_eq;
78 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
80 for (k = 0; k < map->p[i]->n_ineq; ++k) {
81 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
82 ineq[k] = STATUS_REDUNDANT;
83 continue;
85 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
86 if (ineq[k] == STATUS_ERROR)
87 goto error;
88 if (ineq[k] == STATUS_SEPARATE)
89 break;
92 return ineq;
93 error:
94 free(ineq);
95 return NULL;
98 static int any(int *con, unsigned len, int status)
100 int i;
102 for (i = 0; i < len ; ++i)
103 if (con[i] == status)
104 return 1;
105 return 0;
108 static int count(int *con, unsigned len, int status)
110 int i;
111 int c = 0;
113 for (i = 0; i < len ; ++i)
114 if (con[i] == status)
115 c++;
116 return c;
119 static int all(int *con, unsigned len, int status)
121 int i;
123 for (i = 0; i < len ; ++i) {
124 if (con[i] == STATUS_REDUNDANT)
125 continue;
126 if (con[i] != status)
127 return 0;
129 return 1;
132 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
134 isl_basic_map_free(map->p[i]);
135 isl_tab_free(tabs[i]);
137 if (i != map->n - 1) {
138 map->p[i] = map->p[map->n - 1];
139 tabs[i] = tabs[map->n - 1];
141 tabs[map->n - 1] = NULL;
142 map->n--;
145 /* Replace the pair of basic maps i and j by the basic map bounded
146 * by the valid constraints in both basic maps and the constraint
147 * in extra (if not NULL).
149 static int fuse(struct isl_map *map, int i, int j,
150 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
151 __isl_keep isl_mat *extra)
153 int k, l;
154 struct isl_basic_map *fused = NULL;
155 struct isl_tab *fused_tab = NULL;
156 unsigned total = isl_basic_map_total_dim(map->p[i]);
157 unsigned extra_rows = extra ? extra->n_row : 0;
159 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
160 map->p[i]->n_div,
161 map->p[i]->n_eq + map->p[j]->n_eq,
162 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
163 if (!fused)
164 goto error;
166 for (k = 0; k < map->p[i]->n_eq; ++k) {
167 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
168 eq_i[2 * k + 1] != STATUS_VALID))
169 continue;
170 l = isl_basic_map_alloc_equality(fused);
171 if (l < 0)
172 goto error;
173 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
176 for (k = 0; k < map->p[j]->n_eq; ++k) {
177 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
178 eq_j[2 * k + 1] != STATUS_VALID))
179 continue;
180 l = isl_basic_map_alloc_equality(fused);
181 if (l < 0)
182 goto error;
183 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
186 for (k = 0; k < map->p[i]->n_ineq; ++k) {
187 if (ineq_i[k] != STATUS_VALID)
188 continue;
189 l = isl_basic_map_alloc_inequality(fused);
190 if (l < 0)
191 goto error;
192 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
195 for (k = 0; k < map->p[j]->n_ineq; ++k) {
196 if (ineq_j[k] != STATUS_VALID)
197 continue;
198 l = isl_basic_map_alloc_inequality(fused);
199 if (l < 0)
200 goto error;
201 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
204 for (k = 0; k < map->p[i]->n_div; ++k) {
205 int l = isl_basic_map_alloc_div(fused);
206 if (l < 0)
207 goto error;
208 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
211 for (k = 0; k < extra_rows; ++k) {
212 l = isl_basic_map_alloc_inequality(fused);
213 if (l < 0)
214 goto error;
215 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
218 fused = isl_basic_map_gauss(fused, NULL);
219 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
220 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
221 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
222 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
224 fused_tab = isl_tab_from_basic_map(fused);
225 if (isl_tab_detect_redundant(fused_tab) < 0)
226 goto error;
228 isl_basic_map_free(map->p[i]);
229 map->p[i] = fused;
230 isl_tab_free(tabs[i]);
231 tabs[i] = fused_tab;
232 drop(map, j, tabs);
234 return 1;
235 error:
236 isl_tab_free(fused_tab);
237 isl_basic_map_free(fused);
238 return -1;
241 /* Given a pair of basic maps i and j such that all constraints are either
242 * "valid" or "cut", check if the facets corresponding to the "cut"
243 * constraints of i lie entirely within basic map j.
244 * If so, replace the pair by the basic map consisting of the valid
245 * constraints in both basic maps.
247 * To see that we are not introducing any extra points, call the
248 * two basic maps A and B and the resulting map U and let x
249 * be an element of U \setminus ( A \cup B ).
250 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
251 * violates them. Let X be the intersection of U with the opposites
252 * of these constraints. Then x \in X.
253 * The facet corresponding to c_1 contains the corresponding facet of A.
254 * This facet is entirely contained in B, so c_2 is valid on the facet.
255 * However, since it is also (part of) a facet of X, -c_2 is also valid
256 * on the facet. This means c_2 is saturated on the facet, so c_1 and
257 * c_2 must be opposites of each other, but then x could not violate
258 * both of them.
260 static int check_facets(struct isl_map *map, int i, int j,
261 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
263 int k, l;
264 struct isl_tab_undo *snap;
265 unsigned n_eq = map->p[i]->n_eq;
267 snap = isl_tab_snap(tabs[i]);
269 for (k = 0; k < map->p[i]->n_ineq; ++k) {
270 if (ineq_i[k] != STATUS_CUT)
271 continue;
272 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
273 for (l = 0; l < map->p[j]->n_ineq; ++l) {
274 int stat;
275 if (ineq_j[l] != STATUS_CUT)
276 continue;
277 stat = status_in(map->p[j]->ineq[l], tabs[i]);
278 if (stat != STATUS_VALID)
279 break;
281 if (isl_tab_rollback(tabs[i], snap) < 0)
282 return -1;
283 if (l < map->p[j]->n_ineq)
284 break;
287 if (k < map->p[i]->n_ineq)
288 /* BAD CUT PAIR */
289 return 0;
290 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
293 /* Both basic maps have at least one inequality with and adjacent
294 * (but opposite) inequality in the other basic map.
295 * Check that there are no cut constraints and that there is only
296 * a single pair of adjacent inequalities.
297 * If so, we can replace the pair by a single basic map described
298 * by all but the pair of adjacent inequalities.
299 * Any additional points introduced lie strictly between the two
300 * adjacent hyperplanes and can therefore be integral.
302 * ____ _____
303 * / ||\ / \
304 * / || \ / \
305 * \ || \ => \ \
306 * \ || / \ /
307 * \___||_/ \_____/
309 * The test for a single pair of adjancent inequalities is important
310 * for avoiding the combination of two basic maps like the following
312 * /|
313 * / |
314 * /__|
315 * _____
316 * | |
317 * | |
318 * |___|
320 static int check_adj_ineq(struct isl_map *map, int i, int j,
321 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
323 int changed = 0;
325 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
326 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
327 /* ADJ INEQ CUT */
329 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
330 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
331 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
332 /* else ADJ INEQ TOO MANY */
334 return changed;
337 /* Check if basic map "i" contains the basic map represented
338 * by the tableau "tab".
340 static int contains(struct isl_map *map, int i, int *ineq_i,
341 struct isl_tab *tab)
343 int k, l;
344 unsigned dim;
346 dim = isl_basic_map_total_dim(map->p[i]);
347 for (k = 0; k < map->p[i]->n_eq; ++k) {
348 for (l = 0; l < 2; ++l) {
349 int stat;
350 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
351 stat = status_in(map->p[i]->eq[k], tab);
352 if (stat != STATUS_VALID)
353 return 0;
357 for (k = 0; k < map->p[i]->n_ineq; ++k) {
358 int stat;
359 if (ineq_i[k] == STATUS_REDUNDANT)
360 continue;
361 stat = status_in(map->p[i]->ineq[k], tab);
362 if (stat != STATUS_VALID)
363 return 0;
365 return 1;
368 /* Basic map "i" has an inequality "k" that is adjacent to some equality
369 * of basic map "j". All the other inequalities are valid for "j".
370 * Check if basic map "j" forms an extension of basic map "i".
372 * In particular, we relax constraint "k", compute the corresponding
373 * facet and check whether it is included in the other basic map.
374 * If so, we know that relaxing the constraint extends the basic
375 * map with exactly the other basic map (we already know that this
376 * other basic map is included in the extension, because there
377 * were no "cut" inequalities in "i") and we can replace the
378 * two basic maps by thie extension.
379 * ____ _____
380 * / || / |
381 * / || / |
382 * \ || => \ |
383 * \ || \ |
384 * \___|| \____|
386 static int is_extension(struct isl_map *map, int i, int j, int k,
387 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
389 int changed = 0;
390 int super;
391 struct isl_tab_undo *snap, *snap2;
392 unsigned n_eq = map->p[i]->n_eq;
394 snap = isl_tab_snap(tabs[i]);
395 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
396 snap2 = isl_tab_snap(tabs[i]);
397 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
398 super = contains(map, j, ineq_j, tabs[i]);
399 if (super) {
400 if (isl_tab_rollback(tabs[i], snap2) < 0)
401 return -1;
402 map->p[i] = isl_basic_map_cow(map->p[i]);
403 if (!map->p[i])
404 return -1;
405 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
406 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
407 drop(map, j, tabs);
408 changed = 1;
409 } else
410 if (isl_tab_rollback(tabs[i], snap) < 0)
411 return -1;
413 return changed;
416 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
417 * wrap the constraint around "bound" such that it includes the whole
418 * set "set" and append the resulting constraint to "wraps".
419 * "wraps" is assumed to have been pre-allocated to the appropriate size.
420 * wraps->n_row is the number of actual wrapped constraints that have
421 * been added.
422 * If any of the wrapping problems results in a constraint that is
423 * identical to "bound", then this means that "set" is unbounded in such
424 * way that no wrapping is possible. If this happens then wraps->n_row
425 * is reset to zero.
427 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
428 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
430 int l;
431 int w;
432 unsigned total = isl_basic_map_total_dim(bmap);
434 w = wraps->n_row;
436 for (l = 0; l < bmap->n_ineq; ++l) {
437 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
438 continue;
439 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
440 continue;
441 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
442 continue;
444 isl_seq_cpy(wraps->row[w], bound, 1 + total);
445 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
446 return -1;
447 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
448 goto unbounded;
449 ++w;
451 for (l = 0; l < bmap->n_eq; ++l) {
452 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
453 continue;
454 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
455 continue;
457 isl_seq_cpy(wraps->row[w], bound, 1 + total);
458 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
459 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
460 return -1;
461 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
462 goto unbounded;
463 ++w;
465 isl_seq_cpy(wraps->row[w], bound, 1 + total);
466 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
467 return -1;
468 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
469 goto unbounded;
470 ++w;
473 wraps->n_row = w;
474 return 0;
475 unbounded:
476 wraps->n_row = 0;
477 return 0;
480 /* Check if the constraints in "wraps" from "first" until the last
481 * are all valid for the basic set represented by "tab".
482 * If not, wraps->n_row is set to zero.
484 static int check_wraps(__isl_keep isl_mat *wraps, int first,
485 struct isl_tab *tab)
487 int i;
489 for (i = first; i < wraps->n_row; ++i) {
490 enum isl_ineq_type type;
491 type = isl_tab_ineq_type(tab, wraps->row[i]);
492 if (type == isl_ineq_error)
493 return -1;
494 if (type == isl_ineq_redundant)
495 continue;
496 wraps->n_row = 0;
497 return 0;
500 return 0;
503 /* Return a set that corresponds to the non-redudant constraints
504 * (as recorded in tab) of bmap.
506 * It's important to remove the redundant constraints as some
507 * of the other constraints may have been modified after the
508 * constraints were marked redundant.
509 * In particular, a constraint may have been relaxed.
510 * Redundant constraints are ignored when a constraint is relaxed
511 * and should therefore continue to be ignored ever after.
512 * Otherwise, the relaxation might be thwarted by some of
513 * these constraints.
515 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
516 struct isl_tab *tab)
518 bmap = isl_basic_map_copy(bmap);
519 bmap = isl_basic_map_cow(bmap);
520 bmap = isl_basic_map_update_from_tab(bmap, tab);
521 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
524 /* Given a basic set i with a constraint k that is adjacent to either the
525 * whole of basic set j or a facet of basic set j, check if we can wrap
526 * both the facet corresponding to k and the facet of j (or the whole of j)
527 * around their ridges to include the other set.
528 * If so, replace the pair of basic sets by their union.
530 * All constraints of i (except k) are assumed to be valid for j.
532 * However, the constraints of j may not be valid for i and so
533 * we have to check that the wrapping constraints for j are valid for i.
535 * In the case where j has a facet adjacent to i, tab[j] is assumed
536 * to have been restricted to this facet, so that the non-redundant
537 * constraints in tab[j] are the ridges of the facet.
538 * Note that for the purpose of wrapping, it does not matter whether
539 * we wrap the ridges of i around the whole of j or just around
540 * the facet since all the other constraints are assumed to be valid for j.
541 * In practice, we wrap to include the whole of j.
542 * ____ _____
543 * / | / \
544 * / || / |
545 * \ || => \ |
546 * \ || \ |
547 * \___|| \____|
550 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
551 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
553 int changed = 0;
554 struct isl_mat *wraps = NULL;
555 struct isl_set *set_i = NULL;
556 struct isl_set *set_j = NULL;
557 struct isl_vec *bound = NULL;
558 unsigned total = isl_basic_map_total_dim(map->p[i]);
559 struct isl_tab_undo *snap;
560 int n;
562 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
563 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
564 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
565 map->p[i]->n_ineq + map->p[j]->n_ineq,
566 1 + total);
567 bound = isl_vec_alloc(map->ctx, 1 + total);
568 if (!set_i || !set_j || !wraps || !bound)
569 goto error;
571 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
572 isl_int_add_ui(bound->el[0], bound->el[0], 1);
574 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
575 wraps->n_row = 1;
577 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
578 goto error;
579 if (!wraps->n_row)
580 goto unbounded;
582 snap = isl_tab_snap(tabs[i]);
584 tabs[i] = isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k);
585 if (isl_tab_detect_redundant(tabs[i]) < 0)
586 goto error;
588 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
590 n = wraps->n_row;
591 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
592 goto error;
594 if (isl_tab_rollback(tabs[i], snap) < 0)
595 goto error;
596 if (check_wraps(wraps, n, tabs[i]) < 0)
597 goto error;
598 if (!wraps->n_row)
599 goto unbounded;
601 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
603 unbounded:
604 isl_mat_free(wraps);
606 isl_set_free(set_i);
607 isl_set_free(set_j);
609 isl_vec_free(bound);
611 return changed;
612 error:
613 isl_vec_free(bound);
614 isl_mat_free(wraps);
615 isl_set_free(set_i);
616 isl_set_free(set_j);
617 return -1;
620 /* Set the is_redundant property of the "n" constraints in "cuts",
621 * except "k" to "v".
622 * This is a fairly tricky operation as it bypasses isl_tab.c.
623 * The reason we want to temporarily mark some constraints redundant
624 * is that we want to ignore them in add_wraps.
626 * Initially all cut constraints are non-redundant, but the
627 * selection of a facet right before the call to this function
628 * may have made some of them redundant.
629 * Likewise, the same constraints are marked non-redundant
630 * in the second call to this function, before they are officially
631 * made non-redundant again in the subsequent rollback.
633 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
634 int *cuts, int n, int k, int v)
636 int l;
638 for (l = 0; l < n; ++l) {
639 if (l == k)
640 continue;
641 tab->con[n_eq + cuts[l]].is_redundant = v;
645 /* Given a pair of basic maps i and j such that j stick out
646 * of i at n cut constraints, each time by at most one,
647 * try to compute wrapping constraints and replace the two
648 * basic maps by a single basic map.
649 * The other constraints of i are assumed to be valid for j.
651 * The facets of i corresponding to the cut constraints are
652 * wrapped around their ridges, except those ridges determined
653 * by any of the other cut constraints.
654 * The intersections of cut constraints need to be ignored
655 * as the result of wrapping on cur constraint around another
656 * would result in a constraint cutting the union.
657 * In each case, the facets are wrapped to include the union
658 * of the two basic maps.
660 * The pieces of j that lie at an offset of exactly one from
661 * one of the cut constraints of i are wrapped around their edges.
662 * Here, there is no need to ignore intersections because we
663 * are wrapping around the union of the two basic maps.
665 * If any wrapping fails, i.e., if we cannot wrap to touch
666 * the union, then we give up.
667 * Otherwise, the pair of basic maps is replaced by their union.
669 static int wrap_in_facets(struct isl_map *map, int i, int j,
670 int *cuts, int n, struct isl_tab **tabs,
671 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
673 int changed = 0;
674 isl_mat *wraps = NULL;
675 isl_set *set = NULL;
676 isl_vec *bound = NULL;
677 unsigned total = isl_basic_map_total_dim(map->p[i]);
678 int max_wrap;
679 int k;
680 struct isl_tab_undo *snap_i, *snap_j;
682 if (isl_tab_extend_cons(tabs[j], 1) < 0)
683 goto error;
685 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
686 map->p[i]->n_ineq + map->p[j]->n_ineq;
687 max_wrap *= n;
689 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
690 set_from_updated_bmap(map->p[j], tabs[j]));
691 wraps = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
692 bound = isl_vec_alloc(map->ctx, 1 + total);
693 if (!set || !wraps || !bound)
694 goto error;
696 snap_i = isl_tab_snap(tabs[i]);
697 snap_j = isl_tab_snap(tabs[j]);
699 wraps->n_row = 0;
701 for (k = 0; k < n; ++k) {
702 tabs[i] = isl_tab_select_facet(tabs[i],
703 map->p[i]->n_eq + cuts[k]);
704 if (isl_tab_detect_redundant(tabs[i]) < 0)
705 goto error;
706 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
708 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
709 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set) < 0)
710 goto error;
712 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
713 if (isl_tab_rollback(tabs[i], snap_i) < 0)
714 goto error;
716 if (!wraps->n_row)
717 break;
719 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
720 isl_int_add_ui(bound->el[0], bound->el[0], 1);
721 tabs[j] = isl_tab_add_eq(tabs[j], bound->el);
722 if (isl_tab_detect_redundant(tabs[j]) < 0)
723 goto error;
725 if (!tabs[j]->empty &&
726 add_wraps(wraps, map->p[j], tabs[j], bound->el, set) < 0)
727 goto error;
729 if (isl_tab_rollback(tabs[j], snap_j) < 0)
730 goto error;
732 if (!wraps->n_row)
733 break;
736 if (k == n)
737 changed = fuse(map, i, j, tabs,
738 eq_i, ineq_i, eq_j, ineq_j, wraps);
740 isl_vec_free(bound);
741 isl_mat_free(wraps);
742 isl_set_free(set);
744 return changed;
745 error:
746 isl_vec_free(bound);
747 isl_mat_free(wraps);
748 isl_set_free(set);
749 return -1;
752 /* Given two basic sets i and j such that i has not cut equalities,
753 * check if relaxing all the cut inequalities of i by one turns
754 * them into valid constraint for j and check if we can wrap in
755 * the bits that are sticking out.
756 * If so, replace the pair by their union.
758 * We first check if all relaxed cut inequalities of i are valid for j
759 * and then try to wrap in the intersections of the relaxed cut inequalities
760 * with j.
762 * During this wrapping, we consider the points of j that lie at a distance
763 * of exactly 1 from i. In particular, we ignore the points that lie in
764 * between this lower-dimensional space and the basic map i.
765 * We can therefore only apply this to integer maps.
766 * ____ _____
767 * / ___|_ / \
768 * / | | / |
769 * \ | | => \ |
770 * \|____| \ |
771 * \___| \____/
773 * _____ ______
774 * | ____|_ | \
775 * | | | | |
776 * | | | => | |
777 * |_| | | |
778 * |_____| \______|
780 * _______
781 * | |
782 * | |\ |
783 * | | \ |
784 * | | \ |
785 * | | \|
786 * | | \
787 * | |_____\
788 * | |
789 * |_______|
791 * Wrapping can fail if the result of wrapping one of the facets
792 * around its edges does not produce any new facet constraint.
793 * In particular, this happens when we try to wrap in unbounded sets.
795 * _______________________________________________________________________
797 * | ___
798 * | | |
799 * |_| |_________________________________________________________________
800 * |___|
802 * The following is not an acceptable result of coalescing the above two
803 * sets as it includes extra integer points.
804 * _______________________________________________________________________
806 * |
807 * |
809 * \______________________________________________________________________
811 static int can_wrap_in_set(struct isl_map *map, int i, int j,
812 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
814 int changed = 0;
815 int k, l, m;
816 unsigned total = isl_basic_map_total_dim(map->p[i]);
817 struct isl_tab_undo *snap;
818 int n;
819 int *cuts = NULL;
821 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
822 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
823 return 0;
825 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
826 if (n == 0)
827 return 0;
829 cuts = isl_alloc_array(map->ctx, int, n);
830 if (!cuts)
831 return -1;
833 for (k = 0, m = 0; m < n; ++k) {
834 enum isl_ineq_type type;
836 if (ineq_i[k] != STATUS_CUT)
837 continue;
839 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
840 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
841 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
842 if (type == isl_ineq_error)
843 goto error;
844 if (type != isl_ineq_redundant)
845 break;
846 cuts[m] = k;
847 ++m;
850 if (m == n)
851 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
852 eq_i, ineq_i, eq_j, ineq_j);
854 free(cuts);
856 return changed;
857 error:
858 free(cuts);
859 return -1;
862 /* Check if either i or j has a single cut constraint that can
863 * be used to wrap in (a facet of) the other basic set.
864 * if so, replace the pair by their union.
866 static int check_wrap(struct isl_map *map, int i, int j,
867 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
869 int changed = 0;
871 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
872 changed = can_wrap_in_set(map, i, j, tabs,
873 eq_i, ineq_i, eq_j, ineq_j);
874 if (changed)
875 return changed;
877 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
878 changed = can_wrap_in_set(map, j, i, tabs,
879 eq_j, ineq_j, eq_i, ineq_i);
880 return changed;
883 /* At least one of the basic maps has an equality that is adjacent
884 * to inequality. Make sure that only one of the basic maps has
885 * such an equality and that the other basic map has exactly one
886 * inequality adjacent to an equality.
887 * We call the basic map that has the inequality "i" and the basic
888 * map that has the equality "j".
889 * If "i" has any "cut" (in)equality, then relaxing the inequality
890 * by one would not result in a basic map that contains the other
891 * basic map.
893 static int check_adj_eq(struct isl_map *map, int i, int j,
894 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
896 int changed = 0;
897 int k;
899 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
900 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
901 /* ADJ EQ TOO MANY */
902 return 0;
904 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
905 return check_adj_eq(map, j, i, tabs,
906 eq_j, ineq_j, eq_i, ineq_i);
908 /* j has an equality adjacent to an inequality in i */
910 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
911 return 0;
912 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
913 /* ADJ EQ CUT */
914 return 0;
915 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
916 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
917 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
918 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
919 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
920 /* ADJ EQ TOO MANY */
921 return 0;
923 for (k = 0; k < map->p[i]->n_ineq ; ++k)
924 if (ineq_i[k] == STATUS_ADJ_EQ)
925 break;
927 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
928 if (changed)
929 return changed;
931 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
933 return changed;
936 /* Check if the union of the given pair of basic maps
937 * can be represented by a single basic map.
938 * If so, replace the pair by the single basic map and return 1.
939 * Otherwise, return 0;
941 * We first check the effect of each constraint of one basic map
942 * on the other basic map.
943 * The constraint may be
944 * redundant the constraint is redundant in its own
945 * basic map and should be ignore and removed
946 * in the end
947 * valid all (integer) points of the other basic map
948 * satisfy the constraint
949 * separate no (integer) point of the other basic map
950 * satisfies the constraint
951 * cut some but not all points of the other basic map
952 * satisfy the constraint
953 * adj_eq the given constraint is adjacent (on the outside)
954 * to an equality of the other basic map
955 * adj_ineq the given constraint is adjacent (on the outside)
956 * to an inequality of the other basic map
958 * We consider six cases in which we can replace the pair by a single
959 * basic map. We ignore all "redundant" constraints.
961 * 1. all constraints of one basic map are valid
962 * => the other basic map is a subset and can be removed
964 * 2. all constraints of both basic maps are either "valid" or "cut"
965 * and the facets corresponding to the "cut" constraints
966 * of one of the basic maps lies entirely inside the other basic map
967 * => the pair can be replaced by a basic map consisting
968 * of the valid constraints in both basic maps
970 * 3. there is a single pair of adjacent inequalities
971 * (all other constraints are "valid")
972 * => the pair can be replaced by a basic map consisting
973 * of the valid constraints in both basic maps
975 * 4. there is a single adjacent pair of an inequality and an equality,
976 * the other constraints of the basic map containing the inequality are
977 * "valid". Moreover, if the inequality the basic map is relaxed
978 * and then turned into an equality, then resulting facet lies
979 * entirely inside the other basic map
980 * => the pair can be replaced by the basic map containing
981 * the inequality, with the inequality relaxed.
983 * 5. there is a single adjacent pair of an inequality and an equality,
984 * the other constraints of the basic map containing the inequality are
985 * "valid". Moreover, the facets corresponding to both
986 * the inequality and the equality can be wrapped around their
987 * ridges to include the other basic map
988 * => the pair can be replaced by a basic map consisting
989 * of the valid constraints in both basic maps together
990 * with all wrapping constraints
992 * 6. one of the basic maps extends beyond the other by at most one.
993 * Moreover, the facets corresponding to the cut constraints and
994 * the pieces of the other basic map at offset one from these cut
995 * constraints can be wrapped around their ridges to include
996 * the unione of the two basic maps
997 * => the pair can be replaced by a basic map consisting
998 * of the valid constraints in both basic maps together
999 * with all wrapping constraints
1001 * Throughout the computation, we maintain a collection of tableaus
1002 * corresponding to the basic maps. When the basic maps are dropped
1003 * or combined, the tableaus are modified accordingly.
1005 static int coalesce_pair(struct isl_map *map, int i, int j,
1006 struct isl_tab **tabs)
1008 int changed = 0;
1009 int *eq_i = NULL;
1010 int *eq_j = NULL;
1011 int *ineq_i = NULL;
1012 int *ineq_j = NULL;
1014 eq_i = eq_status_in(map, i, j, tabs);
1015 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1016 goto error;
1017 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1018 goto done;
1020 eq_j = eq_status_in(map, j, i, tabs);
1021 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1022 goto error;
1023 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1024 goto done;
1026 ineq_i = ineq_status_in(map, i, j, tabs);
1027 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1028 goto error;
1029 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1030 goto done;
1032 ineq_j = ineq_status_in(map, j, i, tabs);
1033 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1034 goto error;
1035 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1036 goto done;
1038 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1039 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1040 drop(map, j, tabs);
1041 changed = 1;
1042 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1043 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1044 drop(map, i, tabs);
1045 changed = 1;
1046 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
1047 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1048 /* ADJ EQ PAIR */
1049 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1050 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1051 changed = check_adj_eq(map, i, j, tabs,
1052 eq_i, ineq_i, eq_j, ineq_j);
1053 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1054 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1055 /* Can't happen */
1056 /* BAD ADJ INEQ */
1057 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1058 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1059 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1060 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1061 changed = check_adj_ineq(map, i, j, tabs,
1062 ineq_i, ineq_j);
1063 } else {
1064 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1065 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1066 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1067 if (!changed)
1068 changed = check_wrap(map, i, j, tabs,
1069 eq_i, ineq_i, eq_j, ineq_j);
1072 done:
1073 free(eq_i);
1074 free(eq_j);
1075 free(ineq_i);
1076 free(ineq_j);
1077 return changed;
1078 error:
1079 free(eq_i);
1080 free(eq_j);
1081 free(ineq_i);
1082 free(ineq_j);
1083 return -1;
1086 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1088 int i, j;
1090 for (i = map->n - 2; i >= 0; --i)
1091 restart:
1092 for (j = i + 1; j < map->n; ++j) {
1093 int changed;
1094 changed = coalesce_pair(map, i, j, tabs);
1095 if (changed < 0)
1096 goto error;
1097 if (changed)
1098 goto restart;
1100 return map;
1101 error:
1102 isl_map_free(map);
1103 return NULL;
1106 /* For each pair of basic maps in the map, check if the union of the two
1107 * can be represented by a single basic map.
1108 * If so, replace the pair by the single basic map and start over.
1110 struct isl_map *isl_map_coalesce(struct isl_map *map)
1112 int i;
1113 unsigned n;
1114 struct isl_tab **tabs = NULL;
1116 if (!map)
1117 return NULL;
1119 if (map->n <= 1)
1120 return map;
1122 map = isl_map_align_divs(map);
1124 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1125 if (!tabs)
1126 goto error;
1128 n = map->n;
1129 for (i = 0; i < map->n; ++i) {
1130 tabs[i] = isl_tab_from_basic_map(map->p[i]);
1131 if (!tabs[i])
1132 goto error;
1133 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1134 tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
1135 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1136 if (isl_tab_detect_redundant(tabs[i]) < 0)
1137 goto error;
1139 for (i = map->n - 1; i >= 0; --i)
1140 if (tabs[i]->empty)
1141 drop(map, i, tabs);
1143 map = coalesce(map, tabs);
1145 if (map)
1146 for (i = 0; i < map->n; ++i) {
1147 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1148 tabs[i]);
1149 map->p[i] = isl_basic_map_finalize(map->p[i]);
1150 if (!map->p[i])
1151 goto error;
1152 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1153 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1156 for (i = 0; i < n; ++i)
1157 isl_tab_free(tabs[i]);
1159 free(tabs);
1161 return map;
1162 error:
1163 if (tabs)
1164 for (i = 0; i < n; ++i)
1165 isl_tab_free(tabs[i]);
1166 free(tabs);
1167 return NULL;
1170 /* For each pair of basic sets in the set, check if the union of the two
1171 * can be represented by a single basic set.
1172 * If so, replace the pair by the single basic set and start over.
1174 struct isl_set *isl_set_coalesce(struct isl_set *set)
1176 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);