isl_scheduler.c: extract out isl_schedule_constraints_n_basic_map
[isl.git] / isl_scheduler.c
blobdc7b43636052cd139d75ec6bf43f209ef0895997
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
18 #include <isl/hash.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl/set.h>
25 #include <isl/union_set.h>
26 #include <isl_seq.h>
27 #include <isl_tab.h>
28 #include <isl_dim_map.h>
29 #include <isl/map_to_basic_set.h>
30 #include <isl_sort.h>
31 #include <isl_options_private.h>
32 #include <isl_tarjan.h>
33 #include <isl_morph.h>
34 #include <isl/ilp.h>
35 #include <isl_val_private.h>
38 * The scheduling algorithm implemented in this file was inspired by
39 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
40 * Parallelization and Locality Optimization in the Polyhedral Model".
43 enum isl_edge_type {
44 isl_edge_validity = 0,
45 isl_edge_first = isl_edge_validity,
46 isl_edge_coincidence,
47 isl_edge_condition,
48 isl_edge_conditional_validity,
49 isl_edge_proximity,
50 isl_edge_last = isl_edge_proximity,
51 isl_edge_local
54 /* The constraints that need to be satisfied by a schedule on "domain".
56 * "context" specifies extra constraints on the parameters.
58 * "validity" constraints map domain elements i to domain elements
59 * that should be scheduled after i. (Hard constraint)
60 * "proximity" constraints map domain elements i to domains elements
61 * that should be scheduled as early as possible after i (or before i).
62 * (Soft constraint)
64 * "condition" and "conditional_validity" constraints map possibly "tagged"
65 * domain elements i -> s to "tagged" domain elements j -> t.
66 * The elements of the "conditional_validity" constraints, but without the
67 * tags (i.e., the elements i -> j) are treated as validity constraints,
68 * except that during the construction of a tilable band,
69 * the elements of the "conditional_validity" constraints may be violated
70 * provided that all adjacent elements of the "condition" constraints
71 * are local within the band.
72 * A dependence is local within a band if domain and range are mapped
73 * to the same schedule point by the band.
75 struct isl_schedule_constraints {
76 isl_union_set *domain;
77 isl_set *context;
79 isl_union_map *constraint[isl_edge_last + 1];
82 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
83 __isl_keep isl_schedule_constraints *sc)
85 isl_ctx *ctx;
86 isl_schedule_constraints *sc_copy;
87 enum isl_edge_type i;
89 ctx = isl_union_set_get_ctx(sc->domain);
90 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
91 if (!sc_copy)
92 return NULL;
94 sc_copy->domain = isl_union_set_copy(sc->domain);
95 sc_copy->context = isl_set_copy(sc->context);
96 if (!sc_copy->domain || !sc_copy->context)
97 return isl_schedule_constraints_free(sc_copy);
99 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
100 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
101 if (!sc_copy->constraint[i])
102 return isl_schedule_constraints_free(sc_copy);
105 return sc_copy;
109 /* Construct an isl_schedule_constraints object for computing a schedule
110 * on "domain". The initial object does not impose any constraints.
112 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
113 __isl_take isl_union_set *domain)
115 isl_ctx *ctx;
116 isl_space *space;
117 isl_schedule_constraints *sc;
118 isl_union_map *empty;
119 enum isl_edge_type i;
121 if (!domain)
122 return NULL;
124 ctx = isl_union_set_get_ctx(domain);
125 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
126 if (!sc)
127 goto error;
129 space = isl_union_set_get_space(domain);
130 sc->domain = domain;
131 sc->context = isl_set_universe(isl_space_copy(space));
132 empty = isl_union_map_empty(space);
133 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
134 sc->constraint[i] = isl_union_map_copy(empty);
135 if (!sc->constraint[i])
136 sc->domain = isl_union_set_free(sc->domain);
138 isl_union_map_free(empty);
140 if (!sc->domain || !sc->context)
141 return isl_schedule_constraints_free(sc);
143 return sc;
144 error:
145 isl_union_set_free(domain);
146 return NULL;
149 /* Replace the context of "sc" by "context".
151 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context(
152 __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context)
154 if (!sc || !context)
155 goto error;
157 isl_set_free(sc->context);
158 sc->context = context;
160 return sc;
161 error:
162 isl_schedule_constraints_free(sc);
163 isl_set_free(context);
164 return NULL;
167 /* Replace the validity constraints of "sc" by "validity".
169 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
170 __isl_take isl_schedule_constraints *sc,
171 __isl_take isl_union_map *validity)
173 if (!sc || !validity)
174 goto error;
176 isl_union_map_free(sc->constraint[isl_edge_validity]);
177 sc->constraint[isl_edge_validity] = validity;
179 return sc;
180 error:
181 isl_schedule_constraints_free(sc);
182 isl_union_map_free(validity);
183 return NULL;
186 /* Replace the coincidence constraints of "sc" by "coincidence".
188 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
189 __isl_take isl_schedule_constraints *sc,
190 __isl_take isl_union_map *coincidence)
192 if (!sc || !coincidence)
193 goto error;
195 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
196 sc->constraint[isl_edge_coincidence] = coincidence;
198 return sc;
199 error:
200 isl_schedule_constraints_free(sc);
201 isl_union_map_free(coincidence);
202 return NULL;
205 /* Replace the proximity constraints of "sc" by "proximity".
207 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
208 __isl_take isl_schedule_constraints *sc,
209 __isl_take isl_union_map *proximity)
211 if (!sc || !proximity)
212 goto error;
214 isl_union_map_free(sc->constraint[isl_edge_proximity]);
215 sc->constraint[isl_edge_proximity] = proximity;
217 return sc;
218 error:
219 isl_schedule_constraints_free(sc);
220 isl_union_map_free(proximity);
221 return NULL;
224 /* Replace the conditional validity constraints of "sc" by "condition"
225 * and "validity".
227 __isl_give isl_schedule_constraints *
228 isl_schedule_constraints_set_conditional_validity(
229 __isl_take isl_schedule_constraints *sc,
230 __isl_take isl_union_map *condition,
231 __isl_take isl_union_map *validity)
233 if (!sc || !condition || !validity)
234 goto error;
236 isl_union_map_free(sc->constraint[isl_edge_condition]);
237 sc->constraint[isl_edge_condition] = condition;
238 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
239 sc->constraint[isl_edge_conditional_validity] = validity;
241 return sc;
242 error:
243 isl_schedule_constraints_free(sc);
244 isl_union_map_free(condition);
245 isl_union_map_free(validity);
246 return NULL;
249 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
250 __isl_take isl_schedule_constraints *sc)
252 enum isl_edge_type i;
254 if (!sc)
255 return NULL;
257 isl_union_set_free(sc->domain);
258 isl_set_free(sc->context);
259 for (i = isl_edge_first; i <= isl_edge_last; ++i)
260 isl_union_map_free(sc->constraint[i]);
262 free(sc);
264 return NULL;
267 isl_ctx *isl_schedule_constraints_get_ctx(
268 __isl_keep isl_schedule_constraints *sc)
270 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
273 /* Return the domain of "sc".
275 __isl_give isl_union_set *isl_schedule_constraints_get_domain(
276 __isl_keep isl_schedule_constraints *sc)
278 if (!sc)
279 return NULL;
281 return isl_union_set_copy(sc->domain);
284 /* Return the context of "sc".
286 __isl_give isl_set *isl_schedule_constraints_get_context(
287 __isl_keep isl_schedule_constraints *sc)
289 if (!sc)
290 return NULL;
292 return isl_set_copy(sc->context);
295 /* Return the validity constraints of "sc".
297 __isl_give isl_union_map *isl_schedule_constraints_get_validity(
298 __isl_keep isl_schedule_constraints *sc)
300 if (!sc)
301 return NULL;
303 return isl_union_map_copy(sc->constraint[isl_edge_validity]);
306 /* Return the coincidence constraints of "sc".
308 __isl_give isl_union_map *isl_schedule_constraints_get_coincidence(
309 __isl_keep isl_schedule_constraints *sc)
311 if (!sc)
312 return NULL;
314 return isl_union_map_copy(sc->constraint[isl_edge_coincidence]);
317 /* Return the proximity constraints of "sc".
319 __isl_give isl_union_map *isl_schedule_constraints_get_proximity(
320 __isl_keep isl_schedule_constraints *sc)
322 if (!sc)
323 return NULL;
325 return isl_union_map_copy(sc->constraint[isl_edge_proximity]);
328 /* Return the conditional validity constraints of "sc".
330 __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity(
331 __isl_keep isl_schedule_constraints *sc)
333 if (!sc)
334 return NULL;
336 return
337 isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]);
340 /* Return the conditions for the conditional validity constraints of "sc".
342 __isl_give isl_union_map *
343 isl_schedule_constraints_get_conditional_validity_condition(
344 __isl_keep isl_schedule_constraints *sc)
346 if (!sc)
347 return NULL;
349 return isl_union_map_copy(sc->constraint[isl_edge_condition]);
352 /* Can a schedule constraint of type "type" be tagged?
354 static int may_be_tagged(enum isl_edge_type type)
356 if (type == isl_edge_condition || type == isl_edge_conditional_validity)
357 return 1;
358 return 0;
361 /* Apply "umap" to the domains of the wrapped relations
362 * inside the domain and range of "c".
364 * That is, for each map of the form
366 * [D -> S] -> [E -> T]
368 * in "c", apply "umap" to D and E.
370 * D is exposed by currying the relation to
372 * D -> [S -> [E -> T]]
374 * E is exposed by doing the same to the inverse of "c".
376 static __isl_give isl_union_map *apply_factor_domain(
377 __isl_take isl_union_map *c, __isl_keep isl_union_map *umap)
379 c = isl_union_map_curry(c);
380 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
381 c = isl_union_map_uncurry(c);
383 c = isl_union_map_reverse(c);
384 c = isl_union_map_curry(c);
385 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
386 c = isl_union_map_uncurry(c);
387 c = isl_union_map_reverse(c);
389 return c;
392 /* Apply "umap" to domain and range of "c".
393 * If "tag" is set, then "c" may contain tags and then "umap"
394 * needs to be applied to the domains of the wrapped relations
395 * inside the domain and range of "c".
397 static __isl_give isl_union_map *apply(__isl_take isl_union_map *c,
398 __isl_keep isl_union_map *umap, int tag)
400 isl_union_map *t;
402 if (tag)
403 t = isl_union_map_copy(c);
404 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
405 c = isl_union_map_apply_range(c, isl_union_map_copy(umap));
406 if (!tag)
407 return c;
408 t = apply_factor_domain(t, umap);
409 c = isl_union_map_union(c, t);
410 return c;
413 /* Apply "umap" to the domain of the schedule constraints "sc".
415 * The two sides of the various schedule constraints are adjusted
416 * accordingly.
418 __isl_give isl_schedule_constraints *isl_schedule_constraints_apply(
419 __isl_take isl_schedule_constraints *sc,
420 __isl_take isl_union_map *umap)
422 enum isl_edge_type i;
424 if (!sc || !umap)
425 goto error;
427 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
428 int tag = may_be_tagged(i);
430 sc->constraint[i] = apply(sc->constraint[i], umap, tag);
431 if (!sc->constraint[i])
432 goto error;
434 sc->domain = isl_union_set_apply(sc->domain, umap);
435 if (!sc->domain)
436 return isl_schedule_constraints_free(sc);
438 return sc;
439 error:
440 isl_schedule_constraints_free(sc);
441 isl_union_map_free(umap);
442 return NULL;
445 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
447 if (!sc)
448 return;
450 fprintf(stderr, "domain: ");
451 isl_union_set_dump(sc->domain);
452 fprintf(stderr, "context: ");
453 isl_set_dump(sc->context);
454 fprintf(stderr, "validity: ");
455 isl_union_map_dump(sc->constraint[isl_edge_validity]);
456 fprintf(stderr, "proximity: ");
457 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
458 fprintf(stderr, "coincidence: ");
459 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
460 fprintf(stderr, "condition: ");
461 isl_union_map_dump(sc->constraint[isl_edge_condition]);
462 fprintf(stderr, "conditional_validity: ");
463 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
466 /* Align the parameters of the fields of "sc".
468 static __isl_give isl_schedule_constraints *
469 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
471 isl_space *space;
472 enum isl_edge_type i;
474 if (!sc)
475 return NULL;
477 space = isl_union_set_get_space(sc->domain);
478 space = isl_space_align_params(space, isl_set_get_space(sc->context));
479 for (i = isl_edge_first; i <= isl_edge_last; ++i)
480 space = isl_space_align_params(space,
481 isl_union_map_get_space(sc->constraint[i]));
483 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
484 sc->constraint[i] = isl_union_map_align_params(
485 sc->constraint[i], isl_space_copy(space));
486 if (!sc->constraint[i])
487 space = isl_space_free(space);
489 sc->context = isl_set_align_params(sc->context, isl_space_copy(space));
490 sc->domain = isl_union_set_align_params(sc->domain, space);
491 if (!sc->context || !sc->domain)
492 return isl_schedule_constraints_free(sc);
494 return sc;
497 /* Add the number of basic maps in "map" to *n.
499 static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user)
501 int *n = user;
503 *n += isl_map_n_basic_map(map);
504 isl_map_free(map);
506 return isl_stat_ok;
509 /* Return the total number of isl_basic_maps in the constraints of "sc".
510 * Return -1 on error.
512 static int isl_schedule_constraints_n_basic_map(
513 __isl_keep isl_schedule_constraints *sc)
515 enum isl_edge_type i;
516 int n = 0;
518 if (!sc)
519 return -1;
520 for (i = isl_edge_first; i <= isl_edge_last; ++i)
521 if (isl_union_map_foreach_map(sc->constraint[i],
522 &add_n_basic_map, &n) < 0)
523 return -1;
525 return n;
528 /* Return the total number of isl_maps in the constraints of "sc".
530 static int isl_schedule_constraints_n_map(
531 __isl_keep isl_schedule_constraints *sc)
533 enum isl_edge_type i;
534 int n = 0;
536 for (i = isl_edge_first; i <= isl_edge_last; ++i)
537 n += isl_union_map_n_map(sc->constraint[i]);
539 return n;
542 /* Internal information about a node that is used during the construction
543 * of a schedule.
544 * space represents the space in which the domain lives
545 * sched is a matrix representation of the schedule being constructed
546 * for this node; if compressed is set, then this schedule is
547 * defined over the compressed domain space
548 * sched_map is an isl_map representation of the same (partial) schedule
549 * sched_map may be NULL; if compressed is set, then this map
550 * is defined over the uncompressed domain space
551 * rank is the number of linearly independent rows in the linear part
552 * of sched
553 * the columns of cmap represent a change of basis for the schedule
554 * coefficients; the first rank columns span the linear part of
555 * the schedule rows
556 * cinv is the inverse of cmap.
557 * ctrans is the transpose of cmap.
558 * start is the first variable in the LP problem in the sequences that
559 * represents the schedule coefficients of this node
560 * nvar is the dimension of the domain
561 * nparam is the number of parameters or 0 if we are not constructing
562 * a parametric schedule
564 * If compressed is set, then hull represents the constraints
565 * that were used to derive the compression, while compress and
566 * decompress map the original space to the compressed space and
567 * vice versa.
569 * scc is the index of SCC (or WCC) this node belongs to
571 * "cluster" is only used inside extract_clusters and identifies
572 * the cluster of SCCs that the node belongs to.
574 * coincident contains a boolean for each of the rows of the schedule,
575 * indicating whether the corresponding scheduling dimension satisfies
576 * the coincidence constraints in the sense that the corresponding
577 * dependence distances are zero.
579 * If the schedule_treat_coalescing option is set, then
580 * "sizes" contains the sizes of the (compressed) instance set
581 * in each direction. If there is no fixed size in a given direction,
582 * then the corresponding size value is set to infinity.
583 * If the schedule_treat_coalescing option or the schedule_max_coefficient
584 * option is set, then "max" contains the maximal values for
585 * schedule coefficients of the (compressed) variables. If no bound
586 * needs to be imposed on a particular variable, then the corresponding
587 * value is negative.
589 struct isl_sched_node {
590 isl_space *space;
591 int compressed;
592 isl_set *hull;
593 isl_multi_aff *compress;
594 isl_multi_aff *decompress;
595 isl_mat *sched;
596 isl_map *sched_map;
597 int rank;
598 isl_mat *cmap;
599 isl_mat *cinv;
600 isl_mat *ctrans;
601 int start;
602 int nvar;
603 int nparam;
605 int scc;
606 int cluster;
608 int *coincident;
610 isl_multi_val *sizes;
611 isl_vec *max;
614 static int node_has_space(const void *entry, const void *val)
616 struct isl_sched_node *node = (struct isl_sched_node *)entry;
617 isl_space *dim = (isl_space *)val;
619 return isl_space_is_equal(node->space, dim);
622 static int node_scc_exactly(struct isl_sched_node *node, int scc)
624 return node->scc == scc;
627 static int node_scc_at_most(struct isl_sched_node *node, int scc)
629 return node->scc <= scc;
632 static int node_scc_at_least(struct isl_sched_node *node, int scc)
634 return node->scc >= scc;
637 /* An edge in the dependence graph. An edge may be used to
638 * ensure validity of the generated schedule, to minimize the dependence
639 * distance or both
641 * map is the dependence relation, with i -> j in the map if j depends on i
642 * tagged_condition and tagged_validity contain the union of all tagged
643 * condition or conditional validity dependence relations that
644 * specialize the dependence relation "map"; that is,
645 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
646 * or "tagged_validity", then i -> j is an element of "map".
647 * If these fields are NULL, then they represent the empty relation.
648 * src is the source node
649 * dst is the sink node
651 * types is a bit vector containing the types of this edge.
652 * validity is set if the edge is used to ensure correctness
653 * coincidence is used to enforce zero dependence distances
654 * proximity is set if the edge is used to minimize dependence distances
655 * condition is set if the edge represents a condition
656 * for a conditional validity schedule constraint
657 * local can only be set for condition edges and indicates that
658 * the dependence distance over the edge should be zero
659 * conditional_validity is set if the edge is used to conditionally
660 * ensure correctness
662 * For validity edges, start and end mark the sequence of inequality
663 * constraints in the LP problem that encode the validity constraint
664 * corresponding to this edge.
666 * During clustering, an edge may be marked "no_merge" if it should
667 * not be used to merge clusters.
668 * The weight is also only used during clustering and it is
669 * an indication of how many schedule dimensions on either side
670 * of the schedule constraints can be aligned.
671 * If the weight is negative, then this means that this edge was postponed
672 * by has_bounded_distances or any_no_merge. The original weight can
673 * be retrieved by adding 1 + graph->max_weight, with "graph"
674 * the graph containing this edge.
676 struct isl_sched_edge {
677 isl_map *map;
678 isl_union_map *tagged_condition;
679 isl_union_map *tagged_validity;
681 struct isl_sched_node *src;
682 struct isl_sched_node *dst;
684 unsigned types;
686 int start;
687 int end;
689 int no_merge;
690 int weight;
693 /* Is "edge" marked as being of type "type"?
695 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
697 return ISL_FL_ISSET(edge->types, 1 << type);
700 /* Mark "edge" as being of type "type".
702 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
704 ISL_FL_SET(edge->types, 1 << type);
707 /* No longer mark "edge" as being of type "type"?
709 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
711 ISL_FL_CLR(edge->types, 1 << type);
714 /* Is "edge" marked as a validity edge?
716 static int is_validity(struct isl_sched_edge *edge)
718 return is_type(edge, isl_edge_validity);
721 /* Mark "edge" as a validity edge.
723 static void set_validity(struct isl_sched_edge *edge)
725 set_type(edge, isl_edge_validity);
728 /* Is "edge" marked as a proximity edge?
730 static int is_proximity(struct isl_sched_edge *edge)
732 return is_type(edge, isl_edge_proximity);
735 /* Is "edge" marked as a local edge?
737 static int is_local(struct isl_sched_edge *edge)
739 return is_type(edge, isl_edge_local);
742 /* Mark "edge" as a local edge.
744 static void set_local(struct isl_sched_edge *edge)
746 set_type(edge, isl_edge_local);
749 /* No longer mark "edge" as a local edge.
751 static void clear_local(struct isl_sched_edge *edge)
753 clear_type(edge, isl_edge_local);
756 /* Is "edge" marked as a coincidence edge?
758 static int is_coincidence(struct isl_sched_edge *edge)
760 return is_type(edge, isl_edge_coincidence);
763 /* Is "edge" marked as a condition edge?
765 static int is_condition(struct isl_sched_edge *edge)
767 return is_type(edge, isl_edge_condition);
770 /* Is "edge" marked as a conditional validity edge?
772 static int is_conditional_validity(struct isl_sched_edge *edge)
774 return is_type(edge, isl_edge_conditional_validity);
777 /* Internal information about the dependence graph used during
778 * the construction of the schedule.
780 * intra_hmap is a cache, mapping dependence relations to their dual,
781 * for dependences from a node to itself
782 * inter_hmap is a cache, mapping dependence relations to their dual,
783 * for dependences between distinct nodes
784 * if compression is involved then the key for these maps
785 * is the original, uncompressed dependence relation, while
786 * the value is the dual of the compressed dependence relation.
788 * n is the number of nodes
789 * node is the list of nodes
790 * maxvar is the maximal number of variables over all nodes
791 * max_row is the allocated number of rows in the schedule
792 * n_row is the current (maximal) number of linearly independent
793 * rows in the node schedules
794 * n_total_row is the current number of rows in the node schedules
795 * band_start is the starting row in the node schedules of the current band
796 * root is set if this graph is the original dependence graph,
797 * without any splitting
799 * sorted contains a list of node indices sorted according to the
800 * SCC to which a node belongs
802 * n_edge is the number of edges
803 * edge is the list of edges
804 * max_edge contains the maximal number of edges of each type;
805 * in particular, it contains the number of edges in the inital graph.
806 * edge_table contains pointers into the edge array, hashed on the source
807 * and sink spaces; there is one such table for each type;
808 * a given edge may be referenced from more than one table
809 * if the corresponding relation appears in more than one of the
810 * sets of dependences; however, for each type there is only
811 * a single edge between a given pair of source and sink space
812 * in the entire graph
814 * node_table contains pointers into the node array, hashed on the space
816 * region contains a list of variable sequences that should be non-trivial
818 * lp contains the (I)LP problem used to obtain new schedule rows
820 * src_scc and dst_scc are the source and sink SCCs of an edge with
821 * conflicting constraints
823 * scc represents the number of components
824 * weak is set if the components are weakly connected
826 * max_weight is used during clustering and represents the maximal
827 * weight of the relevant proximity edges.
829 struct isl_sched_graph {
830 isl_map_to_basic_set *intra_hmap;
831 isl_map_to_basic_set *inter_hmap;
833 struct isl_sched_node *node;
834 int n;
835 int maxvar;
836 int max_row;
837 int n_row;
839 int *sorted;
841 int n_total_row;
842 int band_start;
844 int root;
846 struct isl_sched_edge *edge;
847 int n_edge;
848 int max_edge[isl_edge_last + 1];
849 struct isl_hash_table *edge_table[isl_edge_last + 1];
851 struct isl_hash_table *node_table;
852 struct isl_region *region;
854 isl_basic_set *lp;
856 int src_scc;
857 int dst_scc;
859 int scc;
860 int weak;
862 int max_weight;
865 /* Initialize node_table based on the list of nodes.
867 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
869 int i;
871 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
872 if (!graph->node_table)
873 return -1;
875 for (i = 0; i < graph->n; ++i) {
876 struct isl_hash_table_entry *entry;
877 uint32_t hash;
879 hash = isl_space_get_hash(graph->node[i].space);
880 entry = isl_hash_table_find(ctx, graph->node_table, hash,
881 &node_has_space,
882 graph->node[i].space, 1);
883 if (!entry)
884 return -1;
885 entry->data = &graph->node[i];
888 return 0;
891 /* Return a pointer to the node that lives within the given space,
892 * or NULL if there is no such node.
894 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
895 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
897 struct isl_hash_table_entry *entry;
898 uint32_t hash;
900 hash = isl_space_get_hash(dim);
901 entry = isl_hash_table_find(ctx, graph->node_table, hash,
902 &node_has_space, dim, 0);
904 return entry ? entry->data : NULL;
907 static int edge_has_src_and_dst(const void *entry, const void *val)
909 const struct isl_sched_edge *edge = entry;
910 const struct isl_sched_edge *temp = val;
912 return edge->src == temp->src && edge->dst == temp->dst;
915 /* Add the given edge to graph->edge_table[type].
917 static isl_stat graph_edge_table_add(isl_ctx *ctx,
918 struct isl_sched_graph *graph, enum isl_edge_type type,
919 struct isl_sched_edge *edge)
921 struct isl_hash_table_entry *entry;
922 uint32_t hash;
924 hash = isl_hash_init();
925 hash = isl_hash_builtin(hash, edge->src);
926 hash = isl_hash_builtin(hash, edge->dst);
927 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
928 &edge_has_src_and_dst, edge, 1);
929 if (!entry)
930 return isl_stat_error;
931 entry->data = edge;
933 return isl_stat_ok;
936 /* Allocate the edge_tables based on the maximal number of edges of
937 * each type.
939 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
941 int i;
943 for (i = 0; i <= isl_edge_last; ++i) {
944 graph->edge_table[i] = isl_hash_table_alloc(ctx,
945 graph->max_edge[i]);
946 if (!graph->edge_table[i])
947 return -1;
950 return 0;
953 /* If graph->edge_table[type] contains an edge from the given source
954 * to the given destination, then return the hash table entry of this edge.
955 * Otherwise, return NULL.
957 static struct isl_hash_table_entry *graph_find_edge_entry(
958 struct isl_sched_graph *graph,
959 enum isl_edge_type type,
960 struct isl_sched_node *src, struct isl_sched_node *dst)
962 isl_ctx *ctx = isl_space_get_ctx(src->space);
963 uint32_t hash;
964 struct isl_sched_edge temp = { .src = src, .dst = dst };
966 hash = isl_hash_init();
967 hash = isl_hash_builtin(hash, temp.src);
968 hash = isl_hash_builtin(hash, temp.dst);
969 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
970 &edge_has_src_and_dst, &temp, 0);
974 /* If graph->edge_table[type] contains an edge from the given source
975 * to the given destination, then return this edge.
976 * Otherwise, return NULL.
978 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
979 enum isl_edge_type type,
980 struct isl_sched_node *src, struct isl_sched_node *dst)
982 struct isl_hash_table_entry *entry;
984 entry = graph_find_edge_entry(graph, type, src, dst);
985 if (!entry)
986 return NULL;
988 return entry->data;
991 /* Check whether the dependence graph has an edge of the given type
992 * between the given two nodes.
994 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
995 enum isl_edge_type type,
996 struct isl_sched_node *src, struct isl_sched_node *dst)
998 struct isl_sched_edge *edge;
999 isl_bool empty;
1001 edge = graph_find_edge(graph, type, src, dst);
1002 if (!edge)
1003 return 0;
1005 empty = isl_map_plain_is_empty(edge->map);
1006 if (empty < 0)
1007 return isl_bool_error;
1009 return !empty;
1012 /* Look for any edge with the same src, dst and map fields as "model".
1014 * Return the matching edge if one can be found.
1015 * Return "model" if no matching edge is found.
1016 * Return NULL on error.
1018 static struct isl_sched_edge *graph_find_matching_edge(
1019 struct isl_sched_graph *graph, struct isl_sched_edge *model)
1021 enum isl_edge_type i;
1022 struct isl_sched_edge *edge;
1024 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1025 int is_equal;
1027 edge = graph_find_edge(graph, i, model->src, model->dst);
1028 if (!edge)
1029 continue;
1030 is_equal = isl_map_plain_is_equal(model->map, edge->map);
1031 if (is_equal < 0)
1032 return NULL;
1033 if (is_equal)
1034 return edge;
1037 return model;
1040 /* Remove the given edge from all the edge_tables that refer to it.
1042 static void graph_remove_edge(struct isl_sched_graph *graph,
1043 struct isl_sched_edge *edge)
1045 isl_ctx *ctx = isl_map_get_ctx(edge->map);
1046 enum isl_edge_type i;
1048 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1049 struct isl_hash_table_entry *entry;
1051 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
1052 if (!entry)
1053 continue;
1054 if (entry->data != edge)
1055 continue;
1056 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
1060 /* Check whether the dependence graph has any edge
1061 * between the given two nodes.
1063 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
1064 struct isl_sched_node *src, struct isl_sched_node *dst)
1066 enum isl_edge_type i;
1067 isl_bool r;
1069 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1070 r = graph_has_edge(graph, i, src, dst);
1071 if (r < 0 || r)
1072 return r;
1075 return r;
1078 /* Check whether the dependence graph has a validity edge
1079 * between the given two nodes.
1081 * Conditional validity edges are essentially validity edges that
1082 * can be ignored if the corresponding condition edges are iteration private.
1083 * Here, we are only checking for the presence of validity
1084 * edges, so we need to consider the conditional validity edges too.
1085 * In particular, this function is used during the detection
1086 * of strongly connected components and we cannot ignore
1087 * conditional validity edges during this detection.
1089 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
1090 struct isl_sched_node *src, struct isl_sched_node *dst)
1092 isl_bool r;
1094 r = graph_has_edge(graph, isl_edge_validity, src, dst);
1095 if (r < 0 || r)
1096 return r;
1098 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
1101 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
1102 int n_node, int n_edge)
1104 int i;
1106 graph->n = n_node;
1107 graph->n_edge = n_edge;
1108 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
1109 graph->sorted = isl_calloc_array(ctx, int, graph->n);
1110 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
1111 graph->edge = isl_calloc_array(ctx,
1112 struct isl_sched_edge, graph->n_edge);
1114 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1115 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1117 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
1118 !graph->sorted)
1119 return -1;
1121 for(i = 0; i < graph->n; ++i)
1122 graph->sorted[i] = i;
1124 return 0;
1127 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
1129 int i;
1131 isl_map_to_basic_set_free(graph->intra_hmap);
1132 isl_map_to_basic_set_free(graph->inter_hmap);
1134 if (graph->node)
1135 for (i = 0; i < graph->n; ++i) {
1136 isl_space_free(graph->node[i].space);
1137 isl_set_free(graph->node[i].hull);
1138 isl_multi_aff_free(graph->node[i].compress);
1139 isl_multi_aff_free(graph->node[i].decompress);
1140 isl_mat_free(graph->node[i].sched);
1141 isl_map_free(graph->node[i].sched_map);
1142 isl_mat_free(graph->node[i].cmap);
1143 isl_mat_free(graph->node[i].cinv);
1144 isl_mat_free(graph->node[i].ctrans);
1145 if (graph->root)
1146 free(graph->node[i].coincident);
1147 isl_multi_val_free(graph->node[i].sizes);
1148 isl_vec_free(graph->node[i].max);
1150 free(graph->node);
1151 free(graph->sorted);
1152 if (graph->edge)
1153 for (i = 0; i < graph->n_edge; ++i) {
1154 isl_map_free(graph->edge[i].map);
1155 isl_union_map_free(graph->edge[i].tagged_condition);
1156 isl_union_map_free(graph->edge[i].tagged_validity);
1158 free(graph->edge);
1159 free(graph->region);
1160 for (i = 0; i <= isl_edge_last; ++i)
1161 isl_hash_table_free(ctx, graph->edge_table[i]);
1162 isl_hash_table_free(ctx, graph->node_table);
1163 isl_basic_set_free(graph->lp);
1166 /* For each "set" on which this function is called, increment
1167 * graph->n by one and update graph->maxvar.
1169 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
1171 struct isl_sched_graph *graph = user;
1172 int nvar = isl_set_dim(set, isl_dim_set);
1174 graph->n++;
1175 if (nvar > graph->maxvar)
1176 graph->maxvar = nvar;
1178 isl_set_free(set);
1180 return isl_stat_ok;
1183 /* Compute the number of rows that should be allocated for the schedule.
1184 * In particular, we need one row for each variable or one row
1185 * for each basic map in the dependences.
1186 * Note that it is practically impossible to exhaust both
1187 * the number of dependences and the number of variables.
1189 static isl_stat compute_max_row(struct isl_sched_graph *graph,
1190 __isl_keep isl_schedule_constraints *sc)
1192 int n_edge;
1194 graph->n = 0;
1195 graph->maxvar = 0;
1196 if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
1197 return isl_stat_error;
1198 n_edge = isl_schedule_constraints_n_basic_map(sc);
1199 if (n_edge < 0)
1200 return isl_stat_error;
1201 graph->max_row = n_edge + graph->maxvar;
1203 return isl_stat_ok;
1206 /* Does "bset" have any defining equalities for its set variables?
1208 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
1210 int i, n;
1212 if (!bset)
1213 return -1;
1215 n = isl_basic_set_dim(bset, isl_dim_set);
1216 for (i = 0; i < n; ++i) {
1217 int has;
1219 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
1220 NULL);
1221 if (has < 0 || has)
1222 return has;
1225 return 0;
1228 /* Set the entries of node->max to the value of the schedule_max_coefficient
1229 * option, if set.
1231 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
1233 int max;
1235 max = isl_options_get_schedule_max_coefficient(ctx);
1236 if (max == -1)
1237 return isl_stat_ok;
1239 node->max = isl_vec_alloc(ctx, node->nvar);
1240 node->max = isl_vec_set_si(node->max, max);
1241 if (!node->max)
1242 return isl_stat_error;
1244 return isl_stat_ok;
1247 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
1248 * option (if set) and half of the minimum of the sizes in the other
1249 * dimensions. If the minimum of the sizes is one, half of the size
1250 * is zero and this value is reset to one.
1251 * If the global minimum is unbounded (i.e., if both
1252 * the schedule_max_coefficient is not set and the sizes in the other
1253 * dimensions are unbounded), then store a negative value.
1254 * If the schedule coefficient is close to the size of the instance set
1255 * in another dimension, then the schedule may represent a loop
1256 * coalescing transformation (especially if the coefficient
1257 * in that other dimension is one). Forcing the coefficient to be
1258 * smaller than or equal to half the minimal size should avoid this
1259 * situation.
1261 static isl_stat compute_max_coefficient(isl_ctx *ctx,
1262 struct isl_sched_node *node)
1264 int max;
1265 int i, j;
1266 isl_vec *v;
1268 max = isl_options_get_schedule_max_coefficient(ctx);
1269 v = isl_vec_alloc(ctx, node->nvar);
1270 if (!v)
1271 return isl_stat_error;
1273 for (i = 0; i < node->nvar; ++i) {
1274 isl_int_set_si(v->el[i], max);
1275 isl_int_mul_si(v->el[i], v->el[i], 2);
1278 for (i = 0; i < node->nvar; ++i) {
1279 isl_val *size;
1281 size = isl_multi_val_get_val(node->sizes, i);
1282 if (!size)
1283 goto error;
1284 if (!isl_val_is_int(size)) {
1285 isl_val_free(size);
1286 continue;
1288 for (j = 0; j < node->nvar; ++j) {
1289 if (j == i)
1290 continue;
1291 if (isl_int_is_neg(v->el[j]) ||
1292 isl_int_gt(v->el[j], size->n))
1293 isl_int_set(v->el[j], size->n);
1295 isl_val_free(size);
1298 for (i = 0; i < node->nvar; ++i) {
1299 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
1300 if (isl_int_is_zero(v->el[i]))
1301 isl_int_set_si(v->el[i], 1);
1304 node->max = v;
1305 return isl_stat_ok;
1306 error:
1307 isl_vec_free(v);
1308 return isl_stat_error;
1311 /* Compute and return the size of "set" in dimension "dim".
1312 * The size is taken to be the difference in values for that variable
1313 * for fixed values of the other variables.
1314 * In particular, the variable is first isolated from the other variables
1315 * in the range of a map
1317 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
1319 * and then duplicated
1321 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
1323 * The shared variables are then projected out and the maximal value
1324 * of i_dim' - i_dim is computed.
1326 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
1328 isl_map *map;
1329 isl_local_space *ls;
1330 isl_aff *obj;
1331 isl_val *v;
1333 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
1334 map = isl_map_project_out(map, isl_dim_in, dim, 1);
1335 map = isl_map_range_product(map, isl_map_copy(map));
1336 map = isl_set_unwrap(isl_map_range(map));
1337 set = isl_map_deltas(map);
1338 ls = isl_local_space_from_space(isl_set_get_space(set));
1339 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1340 v = isl_set_max_val(set, obj);
1341 isl_aff_free(obj);
1342 isl_set_free(set);
1344 return v;
1347 /* Compute the size of the instance set "set" of "node", after compression,
1348 * as well as bounds on the corresponding coefficients, if needed.
1350 * The sizes are needed when the schedule_treat_coalescing option is set.
1351 * The bounds are needed when the schedule_treat_coalescing option or
1352 * the schedule_max_coefficient option is set.
1354 * If the schedule_treat_coalescing option is not set, then at most
1355 * the bounds need to be set and this is done in set_max_coefficient.
1356 * Otherwise, compress the domain if needed, compute the size
1357 * in each direction and store the results in node->size.
1358 * Finally, set the bounds on the coefficients based on the sizes
1359 * and the schedule_max_coefficient option in compute_max_coefficient.
1361 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
1362 __isl_take isl_set *set)
1364 int j, n;
1365 isl_multi_val *mv;
1367 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
1368 isl_set_free(set);
1369 return set_max_coefficient(ctx, node);
1372 if (node->compressed)
1373 set = isl_set_preimage_multi_aff(set,
1374 isl_multi_aff_copy(node->decompress));
1375 mv = isl_multi_val_zero(isl_set_get_space(set));
1376 n = isl_set_dim(set, isl_dim_set);
1377 for (j = 0; j < n; ++j) {
1378 isl_val *v;
1380 v = compute_size(isl_set_copy(set), j);
1381 mv = isl_multi_val_set_val(mv, j, v);
1383 node->sizes = mv;
1384 isl_set_free(set);
1385 if (!node->sizes)
1386 return isl_stat_error;
1387 return compute_max_coefficient(ctx, node);
1390 /* Add a new node to the graph representing the given instance set.
1391 * "nvar" is the (possibly compressed) number of variables and
1392 * may be smaller than then number of set variables in "set"
1393 * if "compressed" is set.
1394 * If "compressed" is set, then "hull" represents the constraints
1395 * that were used to derive the compression, while "compress" and
1396 * "decompress" map the original space to the compressed space and
1397 * vice versa.
1398 * If "compressed" is not set, then "hull", "compress" and "decompress"
1399 * should be NULL.
1401 * Compute the size of the instance set and bounds on the coefficients,
1402 * if needed.
1404 static isl_stat add_node(struct isl_sched_graph *graph,
1405 __isl_take isl_set *set, int nvar, int compressed,
1406 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
1407 __isl_take isl_multi_aff *decompress)
1409 int nparam;
1410 isl_ctx *ctx;
1411 isl_mat *sched;
1412 isl_space *space;
1413 int *coincident;
1414 struct isl_sched_node *node;
1416 if (!set)
1417 return isl_stat_error;
1419 ctx = isl_set_get_ctx(set);
1420 nparam = isl_set_dim(set, isl_dim_param);
1421 if (!ctx->opt->schedule_parametric)
1422 nparam = 0;
1423 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1424 node = &graph->node[graph->n];
1425 graph->n++;
1426 space = isl_set_get_space(set);
1427 node->space = space;
1428 node->nvar = nvar;
1429 node->nparam = nparam;
1430 node->sched = sched;
1431 node->sched_map = NULL;
1432 coincident = isl_calloc_array(ctx, int, graph->max_row);
1433 node->coincident = coincident;
1434 node->compressed = compressed;
1435 node->hull = hull;
1436 node->compress = compress;
1437 node->decompress = decompress;
1438 if (compute_sizes_and_max(ctx, node, set) < 0)
1439 return isl_stat_error;
1441 if (!space || !sched || (graph->max_row && !coincident))
1442 return isl_stat_error;
1443 if (compressed && (!hull || !compress || !decompress))
1444 return isl_stat_error;
1446 return isl_stat_ok;
1449 /* Add a new node to the graph representing the given set.
1451 * If any of the set variables is defined by an equality, then
1452 * we perform variable compression such that we can perform
1453 * the scheduling on the compressed domain.
1455 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1457 int nvar;
1458 int has_equality;
1459 isl_basic_set *hull;
1460 isl_set *hull_set;
1461 isl_morph *morph;
1462 isl_multi_aff *compress, *decompress;
1463 struct isl_sched_graph *graph = user;
1465 hull = isl_set_affine_hull(isl_set_copy(set));
1466 hull = isl_basic_set_remove_divs(hull);
1467 nvar = isl_set_dim(set, isl_dim_set);
1468 has_equality = has_any_defining_equality(hull);
1470 if (has_equality < 0)
1471 goto error;
1472 if (!has_equality) {
1473 isl_basic_set_free(hull);
1474 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1477 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
1478 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1479 compress = isl_morph_get_var_multi_aff(morph);
1480 morph = isl_morph_inverse(morph);
1481 decompress = isl_morph_get_var_multi_aff(morph);
1482 isl_morph_free(morph);
1484 hull_set = isl_set_from_basic_set(hull);
1485 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1486 error:
1487 isl_basic_set_free(hull);
1488 isl_set_free(set);
1489 return isl_stat_error;
1492 struct isl_extract_edge_data {
1493 enum isl_edge_type type;
1494 struct isl_sched_graph *graph;
1497 /* Merge edge2 into edge1, freeing the contents of edge2.
1498 * Return 0 on success and -1 on failure.
1500 * edge1 and edge2 are assumed to have the same value for the map field.
1502 static int merge_edge(struct isl_sched_edge *edge1,
1503 struct isl_sched_edge *edge2)
1505 edge1->types |= edge2->types;
1506 isl_map_free(edge2->map);
1508 if (is_condition(edge2)) {
1509 if (!edge1->tagged_condition)
1510 edge1->tagged_condition = edge2->tagged_condition;
1511 else
1512 edge1->tagged_condition =
1513 isl_union_map_union(edge1->tagged_condition,
1514 edge2->tagged_condition);
1517 if (is_conditional_validity(edge2)) {
1518 if (!edge1->tagged_validity)
1519 edge1->tagged_validity = edge2->tagged_validity;
1520 else
1521 edge1->tagged_validity =
1522 isl_union_map_union(edge1->tagged_validity,
1523 edge2->tagged_validity);
1526 if (is_condition(edge2) && !edge1->tagged_condition)
1527 return -1;
1528 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1529 return -1;
1531 return 0;
1534 /* Insert dummy tags in domain and range of "map".
1536 * In particular, if "map" is of the form
1538 * A -> B
1540 * then return
1542 * [A -> dummy_tag] -> [B -> dummy_tag]
1544 * where the dummy_tags are identical and equal to any dummy tags
1545 * introduced by any other call to this function.
1547 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1549 static char dummy;
1550 isl_ctx *ctx;
1551 isl_id *id;
1552 isl_space *space;
1553 isl_set *domain, *range;
1555 ctx = isl_map_get_ctx(map);
1557 id = isl_id_alloc(ctx, NULL, &dummy);
1558 space = isl_space_params(isl_map_get_space(map));
1559 space = isl_space_set_from_params(space);
1560 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1561 space = isl_space_map_from_set(space);
1563 domain = isl_map_wrap(map);
1564 range = isl_map_wrap(isl_map_universe(space));
1565 map = isl_map_from_domain_and_range(domain, range);
1566 map = isl_map_zip(map);
1568 return map;
1571 /* Given that at least one of "src" or "dst" is compressed, return
1572 * a map between the spaces of these nodes restricted to the affine
1573 * hull that was used in the compression.
1575 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1576 struct isl_sched_node *dst)
1578 isl_set *dom, *ran;
1580 if (src->compressed)
1581 dom = isl_set_copy(src->hull);
1582 else
1583 dom = isl_set_universe(isl_space_copy(src->space));
1584 if (dst->compressed)
1585 ran = isl_set_copy(dst->hull);
1586 else
1587 ran = isl_set_universe(isl_space_copy(dst->space));
1589 return isl_map_from_domain_and_range(dom, ran);
1592 /* Intersect the domains of the nested relations in domain and range
1593 * of "tagged" with "map".
1595 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1596 __isl_keep isl_map *map)
1598 isl_set *set;
1600 tagged = isl_map_zip(tagged);
1601 set = isl_map_wrap(isl_map_copy(map));
1602 tagged = isl_map_intersect_domain(tagged, set);
1603 tagged = isl_map_zip(tagged);
1604 return tagged;
1607 /* Return a pointer to the node that lives in the domain space of "map"
1608 * or NULL if there is no such node.
1610 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1611 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1613 struct isl_sched_node *node;
1614 isl_space *space;
1616 space = isl_space_domain(isl_map_get_space(map));
1617 node = graph_find_node(ctx, graph, space);
1618 isl_space_free(space);
1620 return node;
1623 /* Return a pointer to the node that lives in the range space of "map"
1624 * or NULL if there is no such node.
1626 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1627 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1629 struct isl_sched_node *node;
1630 isl_space *space;
1632 space = isl_space_range(isl_map_get_space(map));
1633 node = graph_find_node(ctx, graph, space);
1634 isl_space_free(space);
1636 return node;
1639 /* Add a new edge to the graph based on the given map
1640 * and add it to data->graph->edge_table[data->type].
1641 * If a dependence relation of a given type happens to be identical
1642 * to one of the dependence relations of a type that was added before,
1643 * then we don't create a new edge, but instead mark the original edge
1644 * as also representing a dependence of the current type.
1646 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1647 * may be specified as "tagged" dependence relations. That is, "map"
1648 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1649 * the dependence on iterations and a and b are tags.
1650 * edge->map is set to the relation containing the elements i -> j,
1651 * while edge->tagged_condition and edge->tagged_validity contain
1652 * the union of all the "map" relations
1653 * for which extract_edge is called that result in the same edge->map.
1655 * If the source or the destination node is compressed, then
1656 * intersect both "map" and "tagged" with the constraints that
1657 * were used to construct the compression.
1658 * This ensures that there are no schedule constraints defined
1659 * outside of these domains, while the scheduler no longer has
1660 * any control over those outside parts.
1662 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1664 isl_ctx *ctx = isl_map_get_ctx(map);
1665 struct isl_extract_edge_data *data = user;
1666 struct isl_sched_graph *graph = data->graph;
1667 struct isl_sched_node *src, *dst;
1668 struct isl_sched_edge *edge;
1669 isl_map *tagged = NULL;
1671 if (data->type == isl_edge_condition ||
1672 data->type == isl_edge_conditional_validity) {
1673 if (isl_map_can_zip(map)) {
1674 tagged = isl_map_copy(map);
1675 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1676 } else {
1677 tagged = insert_dummy_tags(isl_map_copy(map));
1681 src = find_domain_node(ctx, graph, map);
1682 dst = find_range_node(ctx, graph, map);
1684 if (!src || !dst) {
1685 isl_map_free(map);
1686 isl_map_free(tagged);
1687 return isl_stat_ok;
1690 if (src->compressed || dst->compressed) {
1691 isl_map *hull;
1692 hull = extract_hull(src, dst);
1693 if (tagged)
1694 tagged = map_intersect_domains(tagged, hull);
1695 map = isl_map_intersect(map, hull);
1698 graph->edge[graph->n_edge].src = src;
1699 graph->edge[graph->n_edge].dst = dst;
1700 graph->edge[graph->n_edge].map = map;
1701 graph->edge[graph->n_edge].types = 0;
1702 graph->edge[graph->n_edge].tagged_condition = NULL;
1703 graph->edge[graph->n_edge].tagged_validity = NULL;
1704 set_type(&graph->edge[graph->n_edge], data->type);
1705 if (data->type == isl_edge_condition)
1706 graph->edge[graph->n_edge].tagged_condition =
1707 isl_union_map_from_map(tagged);
1708 if (data->type == isl_edge_conditional_validity)
1709 graph->edge[graph->n_edge].tagged_validity =
1710 isl_union_map_from_map(tagged);
1712 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1713 if (!edge) {
1714 graph->n_edge++;
1715 return isl_stat_error;
1717 if (edge == &graph->edge[graph->n_edge])
1718 return graph_edge_table_add(ctx, graph, data->type,
1719 &graph->edge[graph->n_edge++]);
1721 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1722 return -1;
1724 return graph_edge_table_add(ctx, graph, data->type, edge);
1727 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1729 * The context is included in the domain before the nodes of
1730 * the graphs are extracted in order to be able to exploit
1731 * any possible additional equalities.
1732 * Note that this intersection is only performed locally here.
1734 static isl_stat graph_init(struct isl_sched_graph *graph,
1735 __isl_keep isl_schedule_constraints *sc)
1737 isl_ctx *ctx;
1738 isl_union_set *domain;
1739 struct isl_extract_edge_data data;
1740 enum isl_edge_type i;
1741 isl_stat r;
1743 if (!sc)
1744 return isl_stat_error;
1746 ctx = isl_schedule_constraints_get_ctx(sc);
1748 domain = isl_schedule_constraints_get_domain(sc);
1749 graph->n = isl_union_set_n_set(domain);
1750 isl_union_set_free(domain);
1752 if (graph_alloc(ctx, graph, graph->n,
1753 isl_schedule_constraints_n_map(sc)) < 0)
1754 return isl_stat_error;
1756 if (compute_max_row(graph, sc) < 0)
1757 return isl_stat_error;
1758 graph->root = 1;
1759 graph->n = 0;
1760 domain = isl_schedule_constraints_get_domain(sc);
1761 domain = isl_union_set_intersect_params(domain,
1762 isl_schedule_constraints_get_context(sc));
1763 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1764 isl_union_set_free(domain);
1765 if (r < 0)
1766 return isl_stat_error;
1767 if (graph_init_table(ctx, graph) < 0)
1768 return isl_stat_error;
1769 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1770 graph->max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
1771 if (graph_init_edge_tables(ctx, graph) < 0)
1772 return isl_stat_error;
1773 graph->n_edge = 0;
1774 data.graph = graph;
1775 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1776 data.type = i;
1777 if (isl_union_map_foreach_map(sc->constraint[i],
1778 &extract_edge, &data) < 0)
1779 return isl_stat_error;
1782 return isl_stat_ok;
1785 /* Check whether there is any dependence from node[j] to node[i]
1786 * or from node[i] to node[j].
1788 static isl_bool node_follows_weak(int i, int j, void *user)
1790 isl_bool f;
1791 struct isl_sched_graph *graph = user;
1793 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1794 if (f < 0 || f)
1795 return f;
1796 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1799 /* Check whether there is a (conditional) validity dependence from node[j]
1800 * to node[i], forcing node[i] to follow node[j].
1802 static isl_bool node_follows_strong(int i, int j, void *user)
1804 struct isl_sched_graph *graph = user;
1806 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1809 /* Use Tarjan's algorithm for computing the strongly connected components
1810 * in the dependence graph only considering those edges defined by "follows".
1812 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1813 isl_bool (*follows)(int i, int j, void *user))
1815 int i, n;
1816 struct isl_tarjan_graph *g = NULL;
1818 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1819 if (!g)
1820 return -1;
1822 graph->scc = 0;
1823 i = 0;
1824 n = graph->n;
1825 while (n) {
1826 while (g->order[i] != -1) {
1827 graph->node[g->order[i]].scc = graph->scc;
1828 --n;
1829 ++i;
1831 ++i;
1832 graph->scc++;
1835 isl_tarjan_graph_free(g);
1837 return 0;
1840 /* Apply Tarjan's algorithm to detect the strongly connected components
1841 * in the dependence graph.
1842 * Only consider the (conditional) validity dependences and clear "weak".
1844 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1846 graph->weak = 0;
1847 return detect_ccs(ctx, graph, &node_follows_strong);
1850 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1851 * in the dependence graph.
1852 * Consider all dependences and set "weak".
1854 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1856 graph->weak = 1;
1857 return detect_ccs(ctx, graph, &node_follows_weak);
1860 static int cmp_scc(const void *a, const void *b, void *data)
1862 struct isl_sched_graph *graph = data;
1863 const int *i1 = a;
1864 const int *i2 = b;
1866 return graph->node[*i1].scc - graph->node[*i2].scc;
1869 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1871 static int sort_sccs(struct isl_sched_graph *graph)
1873 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1876 /* Given a dependence relation R from "node" to itself,
1877 * construct the set of coefficients of valid constraints for elements
1878 * in that dependence relation.
1879 * In particular, the result contains tuples of coefficients
1880 * c_0, c_n, c_x such that
1882 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1884 * or, equivalently,
1886 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1888 * We choose here to compute the dual of delta R.
1889 * Alternatively, we could have computed the dual of R, resulting
1890 * in a set of tuples c_0, c_n, c_x, c_y, and then
1891 * plugged in (c_0, c_n, c_x, -c_x).
1893 * If "node" has been compressed, then the dependence relation
1894 * is also compressed before the set of coefficients is computed.
1896 static __isl_give isl_basic_set *intra_coefficients(
1897 struct isl_sched_graph *graph, struct isl_sched_node *node,
1898 __isl_take isl_map *map)
1900 isl_set *delta;
1901 isl_map *key;
1902 isl_basic_set *coef;
1903 isl_maybe_isl_basic_set m;
1905 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1906 if (m.valid < 0 || m.valid) {
1907 isl_map_free(map);
1908 return m.value;
1911 key = isl_map_copy(map);
1912 if (node->compressed) {
1913 map = isl_map_preimage_domain_multi_aff(map,
1914 isl_multi_aff_copy(node->decompress));
1915 map = isl_map_preimage_range_multi_aff(map,
1916 isl_multi_aff_copy(node->decompress));
1918 delta = isl_set_remove_divs(isl_map_deltas(map));
1919 coef = isl_set_coefficients(delta);
1920 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1921 isl_basic_set_copy(coef));
1923 return coef;
1926 /* Given a dependence relation R, construct the set of coefficients
1927 * of valid constraints for elements in that dependence relation.
1928 * In particular, the result contains tuples of coefficients
1929 * c_0, c_n, c_x, c_y such that
1931 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1933 * If the source or destination nodes of "edge" have been compressed,
1934 * then the dependence relation is also compressed before
1935 * the set of coefficients is computed.
1937 static __isl_give isl_basic_set *inter_coefficients(
1938 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1939 __isl_take isl_map *map)
1941 isl_set *set;
1942 isl_map *key;
1943 isl_basic_set *coef;
1944 isl_maybe_isl_basic_set m;
1946 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1947 if (m.valid < 0 || m.valid) {
1948 isl_map_free(map);
1949 return m.value;
1952 key = isl_map_copy(map);
1953 if (edge->src->compressed)
1954 map = isl_map_preimage_domain_multi_aff(map,
1955 isl_multi_aff_copy(edge->src->decompress));
1956 if (edge->dst->compressed)
1957 map = isl_map_preimage_range_multi_aff(map,
1958 isl_multi_aff_copy(edge->dst->decompress));
1959 set = isl_map_wrap(isl_map_remove_divs(map));
1960 coef = isl_set_coefficients(set);
1961 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1962 isl_basic_set_copy(coef));
1964 return coef;
1967 /* Return the position of the coefficients of the variables in
1968 * the coefficients constraints "coef".
1970 * The space of "coef" is of the form
1972 * { coefficients[[cst, params] -> S] }
1974 * Return the position of S.
1976 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1978 int offset;
1979 isl_space *space;
1981 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1982 offset = isl_space_dim(space, isl_dim_in);
1983 isl_space_free(space);
1985 return offset;
1988 /* Return the offset of the coefficients of the variables of "node"
1989 * within the (I)LP.
1991 * Within each node, the coefficients have the following order:
1992 * - c_i_0
1993 * - c_i_n (if parametric)
1994 * - positive and negative parts of c_i_x
1996 static int node_var_coef_offset(struct isl_sched_node *node)
1998 return node->start + 1 + node->nparam;
2001 /* Construct an isl_dim_map for mapping constraints on coefficients
2002 * for "node" to the corresponding positions in graph->lp.
2003 * "offset" is the offset of the coefficients for the variables
2004 * in the input constraints.
2005 * "s" is the sign of the mapping.
2007 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
2008 * The mapping produced by this function essentially plugs in
2009 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
2010 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
2011 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
2013 * The caller can extend the mapping to also map the other coefficients
2014 * (and therefore not plug in 0).
2016 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
2017 struct isl_sched_graph *graph, struct isl_sched_node *node,
2018 int offset, int s)
2020 int pos;
2021 unsigned total;
2022 isl_dim_map *dim_map;
2024 total = isl_basic_set_total_dim(graph->lp);
2025 pos = node_var_coef_offset(node);
2026 dim_map = isl_dim_map_alloc(ctx, total);
2027 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
2028 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
2030 return dim_map;
2033 /* Construct an isl_dim_map for mapping constraints on coefficients
2034 * for "src" (node i) and "dst" (node j) to the corresponding positions
2035 * in graph->lp.
2036 * "offset" is the offset of the coefficients for the variables of "src"
2037 * in the input constraints.
2038 * "s" is the sign of the mapping.
2040 * The input constraints are given in terms of the coefficients
2041 * (c_0, c_n, c_x, c_y).
2042 * The mapping produced by this function essentially plugs in
2043 * (c_j_0 - c_i_0, c_j_n - c_i_n,
2044 * c_j_x^+ - c_j_x^-, -(c_i_x^+ - c_i_x^-)) if s = 1 and
2045 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
2046 * - (c_j_x^+ - c_j_x^-), c_i_x^+ - c_i_x^-) if s = -1.
2047 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
2049 * The caller can further extend the mapping.
2051 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
2052 struct isl_sched_graph *graph, struct isl_sched_node *src,
2053 struct isl_sched_node *dst, int offset, int s)
2055 int pos;
2056 unsigned total;
2057 isl_dim_map *dim_map;
2059 total = isl_basic_set_total_dim(graph->lp);
2060 dim_map = isl_dim_map_alloc(ctx, total);
2062 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
2063 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
2064 pos = node_var_coef_offset(dst);
2065 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
2066 dst->nvar, -s);
2067 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
2068 dst->nvar, s);
2070 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
2071 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
2072 pos = node_var_coef_offset(src);
2073 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
2074 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
2076 return dim_map;
2079 /* Add constraints to graph->lp that force validity for the given
2080 * dependence from a node i to itself.
2081 * That is, add constraints that enforce
2083 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
2084 * = c_i_x (y - x) >= 0
2086 * for each (x,y) in R.
2087 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2088 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
2089 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
2090 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
2092 * Actually, we do not construct constraints for the c_i_x themselves,
2093 * but for the coefficients of c_i_x written as a linear combination
2094 * of the columns in node->cmap.
2096 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
2097 struct isl_sched_edge *edge)
2099 int offset;
2100 isl_map *map = isl_map_copy(edge->map);
2101 isl_ctx *ctx = isl_map_get_ctx(map);
2102 isl_dim_map *dim_map;
2103 isl_basic_set *coef;
2104 struct isl_sched_node *node = edge->src;
2106 coef = intra_coefficients(graph, node, map);
2108 offset = coef_var_offset(coef);
2110 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2111 offset, isl_mat_copy(node->cmap));
2112 if (!coef)
2113 return isl_stat_error;
2115 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
2116 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2117 coef->n_eq, coef->n_ineq);
2118 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2119 coef, dim_map);
2121 return isl_stat_ok;
2124 /* Add constraints to graph->lp that force validity for the given
2125 * dependence from node i to node j.
2126 * That is, add constraints that enforce
2128 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
2130 * for each (x,y) in R.
2131 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2132 * of valid constraints for R and then plug in
2133 * (c_j_0 - c_i_0, c_j_n - c_i_n, c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
2134 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
2135 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
2137 * Actually, we do not construct constraints for the c_*_x themselves,
2138 * but for the coefficients of c_*_x written as a linear combination
2139 * of the columns in node->cmap.
2141 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
2142 struct isl_sched_edge *edge)
2144 int offset;
2145 isl_map *map = isl_map_copy(edge->map);
2146 isl_ctx *ctx = isl_map_get_ctx(map);
2147 isl_dim_map *dim_map;
2148 isl_basic_set *coef;
2149 struct isl_sched_node *src = edge->src;
2150 struct isl_sched_node *dst = edge->dst;
2152 coef = inter_coefficients(graph, edge, map);
2154 offset = coef_var_offset(coef);
2156 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2157 offset, isl_mat_copy(src->cmap));
2158 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2159 offset + src->nvar, isl_mat_copy(dst->cmap));
2160 if (!coef)
2161 return isl_stat_error;
2163 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
2165 edge->start = graph->lp->n_ineq;
2166 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2167 coef->n_eq, coef->n_ineq);
2168 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2169 coef, dim_map);
2170 if (!graph->lp)
2171 return isl_stat_error;
2172 edge->end = graph->lp->n_ineq;
2174 return isl_stat_ok;
2177 /* Add constraints to graph->lp that bound the dependence distance for the given
2178 * dependence from a node i to itself.
2179 * If s = 1, we add the constraint
2181 * c_i_x (y - x) <= m_0 + m_n n
2183 * or
2185 * -c_i_x (y - x) + m_0 + m_n n >= 0
2187 * for each (x,y) in R.
2188 * If s = -1, we add the constraint
2190 * -c_i_x (y - x) <= m_0 + m_n n
2192 * or
2194 * c_i_x (y - x) + m_0 + m_n n >= 0
2196 * for each (x,y) in R.
2197 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2198 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2199 * with each coefficient (except m_0) represented as a pair of non-negative
2200 * coefficients.
2202 * Actually, we do not construct constraints for the c_i_x themselves,
2203 * but for the coefficients of c_i_x written as a linear combination
2204 * of the columns in node->cmap.
2207 * If "local" is set, then we add constraints
2209 * c_i_x (y - x) <= 0
2211 * or
2213 * -c_i_x (y - x) <= 0
2215 * instead, forcing the dependence distance to be (less than or) equal to 0.
2216 * That is, we plug in (0, 0, -s * c_i_x),
2217 * Note that dependences marked local are treated as validity constraints
2218 * by add_all_validity_constraints and therefore also have
2219 * their distances bounded by 0 from below.
2221 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2222 struct isl_sched_edge *edge, int s, int local)
2224 int offset;
2225 unsigned nparam;
2226 isl_map *map = isl_map_copy(edge->map);
2227 isl_ctx *ctx = isl_map_get_ctx(map);
2228 isl_dim_map *dim_map;
2229 isl_basic_set *coef;
2230 struct isl_sched_node *node = edge->src;
2232 coef = intra_coefficients(graph, node, map);
2234 offset = coef_var_offset(coef);
2236 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2237 offset, isl_mat_copy(node->cmap));
2238 if (!coef)
2239 return isl_stat_error;
2241 nparam = isl_space_dim(node->space, isl_dim_param);
2242 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2244 if (!local) {
2245 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2246 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2247 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2249 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2250 coef->n_eq, coef->n_ineq);
2251 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2252 coef, dim_map);
2254 return isl_stat_ok;
2257 /* Add constraints to graph->lp that bound the dependence distance for the given
2258 * dependence from node i to node j.
2259 * If s = 1, we add the constraint
2261 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2262 * <= m_0 + m_n n
2264 * or
2266 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2267 * m_0 + m_n n >= 0
2269 * for each (x,y) in R.
2270 * If s = -1, we add the constraint
2272 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2273 * <= m_0 + m_n n
2275 * or
2277 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2278 * m_0 + m_n n >= 0
2280 * for each (x,y) in R.
2281 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2282 * of valid constraints for R and then plug in
2283 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2284 * -s*c_j_x+s*c_i_x)
2285 * with each coefficient (except m_0, c_*_0 and c_*_n)
2286 * represented as a pair of non-negative coefficients.
2288 * Actually, we do not construct constraints for the c_*_x themselves,
2289 * but for the coefficients of c_*_x written as a linear combination
2290 * of the columns in node->cmap.
2293 * If "local" is set, then we add constraints
2295 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2297 * or
2299 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
2301 * instead, forcing the dependence distance to be (less than or) equal to 0.
2302 * That is, we plug in
2303 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
2304 * Note that dependences marked local are treated as validity constraints
2305 * by add_all_validity_constraints and therefore also have
2306 * their distances bounded by 0 from below.
2308 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2309 struct isl_sched_edge *edge, int s, int local)
2311 int offset;
2312 unsigned nparam;
2313 isl_map *map = isl_map_copy(edge->map);
2314 isl_ctx *ctx = isl_map_get_ctx(map);
2315 isl_dim_map *dim_map;
2316 isl_basic_set *coef;
2317 struct isl_sched_node *src = edge->src;
2318 struct isl_sched_node *dst = edge->dst;
2320 coef = inter_coefficients(graph, edge, map);
2322 offset = coef_var_offset(coef);
2324 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2325 offset, isl_mat_copy(src->cmap));
2326 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2327 offset + src->nvar, isl_mat_copy(dst->cmap));
2328 if (!coef)
2329 return isl_stat_error;
2331 nparam = isl_space_dim(src->space, isl_dim_param);
2332 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2334 if (!local) {
2335 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2336 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2337 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2340 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2341 coef->n_eq, coef->n_ineq);
2342 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2343 coef, dim_map);
2345 return isl_stat_ok;
2348 /* Add all validity constraints to graph->lp.
2350 * An edge that is forced to be local needs to have its dependence
2351 * distances equal to zero. We take care of bounding them by 0 from below
2352 * here. add_all_proximity_constraints takes care of bounding them by 0
2353 * from above.
2355 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2356 * Otherwise, we ignore them.
2358 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2359 int use_coincidence)
2361 int i;
2363 for (i = 0; i < graph->n_edge; ++i) {
2364 struct isl_sched_edge *edge= &graph->edge[i];
2365 int local;
2367 local = is_local(edge) ||
2368 (is_coincidence(edge) && use_coincidence);
2369 if (!is_validity(edge) && !local)
2370 continue;
2371 if (edge->src != edge->dst)
2372 continue;
2373 if (add_intra_validity_constraints(graph, edge) < 0)
2374 return -1;
2377 for (i = 0; i < graph->n_edge; ++i) {
2378 struct isl_sched_edge *edge = &graph->edge[i];
2379 int local;
2381 local = is_local(edge) ||
2382 (is_coincidence(edge) && use_coincidence);
2383 if (!is_validity(edge) && !local)
2384 continue;
2385 if (edge->src == edge->dst)
2386 continue;
2387 if (add_inter_validity_constraints(graph, edge) < 0)
2388 return -1;
2391 return 0;
2394 /* Add constraints to graph->lp that bound the dependence distance
2395 * for all dependence relations.
2396 * If a given proximity dependence is identical to a validity
2397 * dependence, then the dependence distance is already bounded
2398 * from below (by zero), so we only need to bound the distance
2399 * from above. (This includes the case of "local" dependences
2400 * which are treated as validity dependence by add_all_validity_constraints.)
2401 * Otherwise, we need to bound the distance both from above and from below.
2403 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2404 * Otherwise, we ignore them.
2406 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2407 int use_coincidence)
2409 int i;
2411 for (i = 0; i < graph->n_edge; ++i) {
2412 struct isl_sched_edge *edge= &graph->edge[i];
2413 int local;
2415 local = is_local(edge) ||
2416 (is_coincidence(edge) && use_coincidence);
2417 if (!is_proximity(edge) && !local)
2418 continue;
2419 if (edge->src == edge->dst &&
2420 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2421 return -1;
2422 if (edge->src != edge->dst &&
2423 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2424 return -1;
2425 if (is_validity(edge) || local)
2426 continue;
2427 if (edge->src == edge->dst &&
2428 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2429 return -1;
2430 if (edge->src != edge->dst &&
2431 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2432 return -1;
2435 return 0;
2438 /* Compute a basis for the rows in the linear part of the schedule
2439 * and extend this basis to a full basis. The remaining rows
2440 * can then be used to force linear independence from the rows
2441 * in the schedule.
2443 * In particular, given the schedule rows S, we compute
2445 * S = H Q
2446 * S U = H
2448 * with H the Hermite normal form of S. That is, all but the
2449 * first rank columns of H are zero and so each row in S is
2450 * a linear combination of the first rank rows of Q.
2451 * The matrix Q is then transposed because we will write the
2452 * coefficients of the next schedule row as a column vector s
2453 * and express this s as a linear combination s = Q c of the
2454 * computed basis.
2455 * Similarly, the matrix U is transposed such that we can
2456 * compute the coefficients c = U s from a schedule row s.
2458 static int node_update_cmap(struct isl_sched_node *node)
2460 isl_mat *H, *U, *Q;
2461 int n_row = isl_mat_rows(node->sched);
2463 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2464 1 + node->nparam, node->nvar);
2466 H = isl_mat_left_hermite(H, 0, &U, &Q);
2467 isl_mat_free(node->cmap);
2468 isl_mat_free(node->cinv);
2469 isl_mat_free(node->ctrans);
2470 node->ctrans = isl_mat_copy(Q);
2471 node->cmap = isl_mat_transpose(Q);
2472 node->cinv = isl_mat_transpose(U);
2473 node->rank = isl_mat_initial_non_zero_cols(H);
2474 isl_mat_free(H);
2476 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2477 return -1;
2478 return 0;
2481 /* Is "edge" marked as a validity or a conditional validity edge?
2483 static int is_any_validity(struct isl_sched_edge *edge)
2485 return is_validity(edge) || is_conditional_validity(edge);
2488 /* How many times should we count the constraints in "edge"?
2490 * If carry is set, then we are counting the number of
2491 * (validity or conditional validity) constraints that will be added
2492 * in setup_carry_lp and we count each edge exactly once.
2494 * Otherwise, we count as follows
2495 * validity -> 1 (>= 0)
2496 * validity+proximity -> 2 (>= 0 and upper bound)
2497 * proximity -> 2 (lower and upper bound)
2498 * local(+any) -> 2 (>= 0 and <= 0)
2500 * If an edge is only marked conditional_validity then it counts
2501 * as zero since it is only checked afterwards.
2503 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2504 * Otherwise, we ignore them.
2506 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2507 int use_coincidence)
2509 if (carry)
2510 return 1;
2511 if (is_proximity(edge) || is_local(edge))
2512 return 2;
2513 if (use_coincidence && is_coincidence(edge))
2514 return 2;
2515 if (is_validity(edge))
2516 return 1;
2517 return 0;
2520 /* Count the number of equality and inequality constraints
2521 * that will be added for the given map.
2523 * "use_coincidence" is set if we should take into account coincidence edges.
2525 static int count_map_constraints(struct isl_sched_graph *graph,
2526 struct isl_sched_edge *edge, __isl_take isl_map *map,
2527 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2529 isl_basic_set *coef;
2530 int f = edge_multiplicity(edge, carry, use_coincidence);
2532 if (f == 0) {
2533 isl_map_free(map);
2534 return 0;
2537 if (edge->src == edge->dst)
2538 coef = intra_coefficients(graph, edge->src, map);
2539 else
2540 coef = inter_coefficients(graph, edge, map);
2541 if (!coef)
2542 return -1;
2543 *n_eq += f * coef->n_eq;
2544 *n_ineq += f * coef->n_ineq;
2545 isl_basic_set_free(coef);
2547 return 0;
2550 /* Count the number of equality and inequality constraints
2551 * that will be added to the main lp problem.
2552 * We count as follows
2553 * validity -> 1 (>= 0)
2554 * validity+proximity -> 2 (>= 0 and upper bound)
2555 * proximity -> 2 (lower and upper bound)
2556 * local(+any) -> 2 (>= 0 and <= 0)
2558 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2559 * Otherwise, we ignore them.
2561 static int count_constraints(struct isl_sched_graph *graph,
2562 int *n_eq, int *n_ineq, int use_coincidence)
2564 int i;
2566 *n_eq = *n_ineq = 0;
2567 for (i = 0; i < graph->n_edge; ++i) {
2568 struct isl_sched_edge *edge= &graph->edge[i];
2569 isl_map *map = isl_map_copy(edge->map);
2571 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2572 0, use_coincidence) < 0)
2573 return -1;
2576 return 0;
2579 /* Count the number of constraints that will be added by
2580 * add_bound_constant_constraints to bound the values of the constant terms
2581 * and increment *n_eq and *n_ineq accordingly.
2583 * In practice, add_bound_constant_constraints only adds inequalities.
2585 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2586 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2588 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2589 return isl_stat_ok;
2591 *n_ineq += graph->n;
2593 return isl_stat_ok;
2596 /* Add constraints to bound the values of the constant terms in the schedule,
2597 * if requested by the user.
2599 * The maximal value of the constant terms is defined by the option
2600 * "schedule_max_constant_term".
2602 * Within each node, the coefficients have the following order:
2603 * - c_i_0
2604 * - c_i_n (if parametric)
2605 * - positive and negative parts of c_i_x
2607 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2608 struct isl_sched_graph *graph)
2610 int i, k;
2611 int max;
2612 int total;
2614 max = isl_options_get_schedule_max_constant_term(ctx);
2615 if (max == -1)
2616 return isl_stat_ok;
2618 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2620 for (i = 0; i < graph->n; ++i) {
2621 struct isl_sched_node *node = &graph->node[i];
2622 k = isl_basic_set_alloc_inequality(graph->lp);
2623 if (k < 0)
2624 return isl_stat_error;
2625 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2626 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2627 isl_int_set_si(graph->lp->ineq[k][0], max);
2630 return isl_stat_ok;
2633 /* Count the number of constraints that will be added by
2634 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2635 * accordingly.
2637 * In practice, add_bound_coefficient_constraints only adds inequalities.
2639 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2640 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2642 int i;
2644 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2645 !isl_options_get_schedule_treat_coalescing(ctx))
2646 return 0;
2648 for (i = 0; i < graph->n; ++i)
2649 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2651 return 0;
2654 /* Add constraints to graph->lp that bound the values of
2655 * the parameter schedule coefficients of "node" to "max" and
2656 * the variable schedule coefficients to the corresponding entry
2657 * in node->max.
2658 * In either case, a negative value means that no bound needs to be imposed.
2660 * For parameter coefficients, this amounts to adding a constraint
2662 * c_n <= max
2664 * i.e.,
2666 * -c_n + max >= 0
2668 * The variables coefficients are, however, not represented directly.
2669 * Instead, the variables coefficients c_x are written as a linear
2670 * combination c_x = cmap c_z of some other coefficients c_z,
2671 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2672 * Let a_j be the elements of row i of node->cmap, then
2674 * -max_i <= c_x_i <= max_i
2676 * is encoded as
2678 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2680 * or
2682 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2683 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2685 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2686 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2688 int i, j, k;
2689 int total;
2690 isl_vec *ineq;
2692 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2694 for (j = 0; j < node->nparam; ++j) {
2695 int dim;
2697 if (max < 0)
2698 continue;
2700 k = isl_basic_set_alloc_inequality(graph->lp);
2701 if (k < 0)
2702 return isl_stat_error;
2703 dim = 1 + node->start + 1 + j;
2704 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2705 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2706 isl_int_set_si(graph->lp->ineq[k][0], max);
2709 ineq = isl_vec_alloc(ctx, 1 + total);
2710 ineq = isl_vec_clr(ineq);
2711 if (!ineq)
2712 return isl_stat_error;
2713 for (i = 0; i < node->nvar; ++i) {
2714 int pos = 1 + node_var_coef_offset(node);
2716 if (isl_int_is_neg(node->max->el[i]))
2717 continue;
2719 for (j = 0; j < node->nvar; ++j) {
2720 isl_int_set(ineq->el[pos + 2 * j],
2721 node->cmap->row[i][j]);
2722 isl_int_neg(ineq->el[pos + 2 * j + 1],
2723 node->cmap->row[i][j]);
2725 isl_int_set(ineq->el[0], node->max->el[i]);
2727 k = isl_basic_set_alloc_inequality(graph->lp);
2728 if (k < 0)
2729 goto error;
2730 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2732 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2733 k = isl_basic_set_alloc_inequality(graph->lp);
2734 if (k < 0)
2735 goto error;
2736 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2738 isl_vec_free(ineq);
2740 return isl_stat_ok;
2741 error:
2742 isl_vec_free(ineq);
2743 return isl_stat_error;
2746 /* Add constraints that bound the values of the variable and parameter
2747 * coefficients of the schedule.
2749 * The maximal value of the coefficients is defined by the option
2750 * 'schedule_max_coefficient' and the entries in node->max.
2751 * These latter entries are only set if either the schedule_max_coefficient
2752 * option or the schedule_treat_coalescing option is set.
2754 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2755 struct isl_sched_graph *graph)
2757 int i;
2758 int max;
2760 max = isl_options_get_schedule_max_coefficient(ctx);
2762 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2763 return isl_stat_ok;
2765 for (i = 0; i < graph->n; ++i) {
2766 struct isl_sched_node *node = &graph->node[i];
2768 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2769 return isl_stat_error;
2772 return isl_stat_ok;
2775 /* Add a constraint to graph->lp that equates the value at position
2776 * "sum_pos" to the sum of the "n" values starting at "first".
2778 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2779 int sum_pos, int first, int n)
2781 int i, k;
2782 int total;
2784 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2786 k = isl_basic_set_alloc_equality(graph->lp);
2787 if (k < 0)
2788 return isl_stat_error;
2789 isl_seq_clr(graph->lp->eq[k], 1 + total);
2790 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2791 for (i = 0; i < n; ++i)
2792 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2794 return isl_stat_ok;
2797 /* Add a constraint to graph->lp that equates the value at position
2798 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2800 * Within each node, the coefficients have the following order:
2801 * - c_i_0
2802 * - c_i_n (if parametric)
2803 * - positive and negative parts of c_i_x
2805 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2806 int sum_pos)
2808 int i, j, k;
2809 int total;
2811 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2813 k = isl_basic_set_alloc_equality(graph->lp);
2814 if (k < 0)
2815 return isl_stat_error;
2816 isl_seq_clr(graph->lp->eq[k], 1 + total);
2817 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2818 for (i = 0; i < graph->n; ++i) {
2819 int pos = 1 + graph->node[i].start + 1;
2821 for (j = 0; j < graph->node[i].nparam; ++j)
2822 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2825 return isl_stat_ok;
2828 /* Add a constraint to graph->lp that equates the value at position
2829 * "sum_pos" to the sum of the variable coefficients of all nodes.
2831 * Within each node, the coefficients have the following order:
2832 * - c_i_0
2833 * - c_i_n (if parametric)
2834 * - positive and negative parts of c_i_x
2836 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2837 int sum_pos)
2839 int i, j, k;
2840 int total;
2842 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2844 k = isl_basic_set_alloc_equality(graph->lp);
2845 if (k < 0)
2846 return isl_stat_error;
2847 isl_seq_clr(graph->lp->eq[k], 1 + total);
2848 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2849 for (i = 0; i < graph->n; ++i) {
2850 struct isl_sched_node *node = &graph->node[i];
2851 int pos = 1 + node_var_coef_offset(node);
2853 for (j = 0; j < 2 * node->nvar; ++j)
2854 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2857 return isl_stat_ok;
2860 /* Construct an ILP problem for finding schedule coefficients
2861 * that result in non-negative, but small dependence distances
2862 * over all dependences.
2863 * In particular, the dependence distances over proximity edges
2864 * are bounded by m_0 + m_n n and we compute schedule coefficients
2865 * with small values (preferably zero) of m_n and m_0.
2867 * All variables of the ILP are non-negative. The actual coefficients
2868 * may be negative, so each coefficient is represented as the difference
2869 * of two non-negative variables. The negative part always appears
2870 * immediately before the positive part.
2871 * Other than that, the variables have the following order
2873 * - sum of positive and negative parts of m_n coefficients
2874 * - m_0
2875 * - sum of all c_n coefficients
2876 * (unconstrained when computing non-parametric schedules)
2877 * - sum of positive and negative parts of all c_x coefficients
2878 * - positive and negative parts of m_n coefficients
2879 * - for each node
2880 * - c_i_0
2881 * - c_i_n (if parametric)
2882 * - positive and negative parts of c_i_x
2884 * The c_i_x are not represented directly, but through the columns of
2885 * node->cmap. That is, the computed values are for variable t_i_x
2886 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2888 * The constraints are those from the edges plus two or three equalities
2889 * to express the sums.
2891 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2892 * Otherwise, we ignore them.
2894 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2895 int use_coincidence)
2897 int i;
2898 unsigned nparam;
2899 unsigned total;
2900 isl_space *space;
2901 int parametric;
2902 int param_pos;
2903 int n_eq, n_ineq;
2905 parametric = ctx->opt->schedule_parametric;
2906 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2907 param_pos = 4;
2908 total = param_pos + 2 * nparam;
2909 for (i = 0; i < graph->n; ++i) {
2910 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2911 if (node_update_cmap(node) < 0)
2912 return isl_stat_error;
2913 node->start = total;
2914 total += 1 + node->nparam + 2 * node->nvar;
2917 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2918 return isl_stat_error;
2919 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2920 return isl_stat_error;
2921 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2922 return isl_stat_error;
2924 space = isl_space_set_alloc(ctx, 0, total);
2925 isl_basic_set_free(graph->lp);
2926 n_eq += 2 + parametric;
2928 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2930 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2931 return isl_stat_error;
2932 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2933 return isl_stat_error;
2934 if (add_var_sum_constraint(graph, 3) < 0)
2935 return isl_stat_error;
2936 if (add_bound_constant_constraints(ctx, graph) < 0)
2937 return isl_stat_error;
2938 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2939 return isl_stat_error;
2940 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2941 return isl_stat_error;
2942 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2943 return isl_stat_error;
2945 return isl_stat_ok;
2948 /* Analyze the conflicting constraint found by
2949 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2950 * constraint of one of the edges between distinct nodes, living, moreover
2951 * in distinct SCCs, then record the source and sink SCC as this may
2952 * be a good place to cut between SCCs.
2954 static int check_conflict(int con, void *user)
2956 int i;
2957 struct isl_sched_graph *graph = user;
2959 if (graph->src_scc >= 0)
2960 return 0;
2962 con -= graph->lp->n_eq;
2964 if (con >= graph->lp->n_ineq)
2965 return 0;
2967 for (i = 0; i < graph->n_edge; ++i) {
2968 if (!is_validity(&graph->edge[i]))
2969 continue;
2970 if (graph->edge[i].src == graph->edge[i].dst)
2971 continue;
2972 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2973 continue;
2974 if (graph->edge[i].start > con)
2975 continue;
2976 if (graph->edge[i].end <= con)
2977 continue;
2978 graph->src_scc = graph->edge[i].src->scc;
2979 graph->dst_scc = graph->edge[i].dst->scc;
2982 return 0;
2985 /* Check whether the next schedule row of the given node needs to be
2986 * non-trivial. Lower-dimensional domains may have some trivial rows,
2987 * but as soon as the number of remaining required non-trivial rows
2988 * is as large as the number or remaining rows to be computed,
2989 * all remaining rows need to be non-trivial.
2991 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2993 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2996 /* Solve the ILP problem constructed in setup_lp.
2997 * For each node such that all the remaining rows of its schedule
2998 * need to be non-trivial, we construct a non-triviality region.
2999 * This region imposes that the next row is independent of previous rows.
3000 * In particular the coefficients c_i_x are represented by t_i_x
3001 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
3002 * its first columns span the rows of the previously computed part
3003 * of the schedule. The non-triviality region enforces that at least
3004 * one of the remaining components of t_i_x is non-zero, i.e.,
3005 * that the new schedule row depends on at least one of the remaining
3006 * columns of Q.
3008 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
3010 int i;
3011 isl_vec *sol;
3012 isl_basic_set *lp;
3014 for (i = 0; i < graph->n; ++i) {
3015 struct isl_sched_node *node = &graph->node[i];
3016 int skip = node->rank;
3017 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
3018 if (needs_row(graph, node))
3019 graph->region[i].len = 2 * (node->nvar - skip);
3020 else
3021 graph->region[i].len = 0;
3023 lp = isl_basic_set_copy(graph->lp);
3024 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
3025 graph->region, &check_conflict, graph);
3026 return sol;
3029 /* Extract the coefficients for the variables of "node" from "sol".
3031 * Within each node, the coefficients have the following order:
3032 * - c_i_0
3033 * - c_i_n (if parametric)
3034 * - positive and negative parts of c_i_x
3036 * The c_i_x^- appear before their c_i_x^+ counterpart.
3038 * Return c_i_x = c_i_x^+ - c_i_x^-
3040 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
3041 __isl_keep isl_vec *sol)
3043 int i;
3044 int pos;
3045 isl_vec *csol;
3047 if (!sol)
3048 return NULL;
3049 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
3050 if (!csol)
3051 return NULL;
3053 pos = 1 + node_var_coef_offset(node);
3054 for (i = 0; i < node->nvar; ++i)
3055 isl_int_sub(csol->el[i],
3056 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3058 return csol;
3061 /* Update the schedules of all nodes based on the given solution
3062 * of the LP problem.
3063 * The new row is added to the current band.
3064 * All possibly negative coefficients are encoded as a difference
3065 * of two non-negative variables, so we need to perform the subtraction
3066 * here. Moreover, if use_cmap is set, then the solution does
3067 * not refer to the actual coefficients c_i_x, but instead to variables
3068 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
3069 * In this case, we then also need to perform this multiplication
3070 * to obtain the values of c_i_x.
3072 * If coincident is set, then the caller guarantees that the new
3073 * row satisfies the coincidence constraints.
3075 static int update_schedule(struct isl_sched_graph *graph,
3076 __isl_take isl_vec *sol, int use_cmap, int coincident)
3078 int i, j;
3079 isl_vec *csol = NULL;
3081 if (!sol)
3082 goto error;
3083 if (sol->size == 0)
3084 isl_die(sol->ctx, isl_error_internal,
3085 "no solution found", goto error);
3086 if (graph->n_total_row >= graph->max_row)
3087 isl_die(sol->ctx, isl_error_internal,
3088 "too many schedule rows", goto error);
3090 for (i = 0; i < graph->n; ++i) {
3091 struct isl_sched_node *node = &graph->node[i];
3092 int pos = node->start;
3093 int row = isl_mat_rows(node->sched);
3095 isl_vec_free(csol);
3096 csol = extract_var_coef(node, sol);
3097 if (!csol)
3098 goto error;
3100 isl_map_free(node->sched_map);
3101 node->sched_map = NULL;
3102 node->sched = isl_mat_add_rows(node->sched, 1);
3103 if (!node->sched)
3104 goto error;
3105 for (j = 0; j < 1 + node->nparam; ++j)
3106 node->sched = isl_mat_set_element(node->sched,
3107 row, j, sol->el[1 + pos + j]);
3108 if (use_cmap)
3109 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
3110 csol);
3111 if (!csol)
3112 goto error;
3113 for (j = 0; j < node->nvar; ++j)
3114 node->sched = isl_mat_set_element(node->sched,
3115 row, 1 + node->nparam + j, csol->el[j]);
3116 node->coincident[graph->n_total_row] = coincident;
3118 isl_vec_free(sol);
3119 isl_vec_free(csol);
3121 graph->n_row++;
3122 graph->n_total_row++;
3124 return 0;
3125 error:
3126 isl_vec_free(sol);
3127 isl_vec_free(csol);
3128 return -1;
3131 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3132 * and return this isl_aff.
3134 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3135 struct isl_sched_node *node, int row)
3137 int j;
3138 isl_int v;
3139 isl_aff *aff;
3141 isl_int_init(v);
3143 aff = isl_aff_zero_on_domain(ls);
3144 isl_mat_get_element(node->sched, row, 0, &v);
3145 aff = isl_aff_set_constant(aff, v);
3146 for (j = 0; j < node->nparam; ++j) {
3147 isl_mat_get_element(node->sched, row, 1 + j, &v);
3148 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3150 for (j = 0; j < node->nvar; ++j) {
3151 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
3152 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3155 isl_int_clear(v);
3157 return aff;
3160 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3161 * and return this multi_aff.
3163 * The result is defined over the uncompressed node domain.
3165 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
3166 struct isl_sched_node *node, int first, int n)
3168 int i;
3169 isl_space *space;
3170 isl_local_space *ls;
3171 isl_aff *aff;
3172 isl_multi_aff *ma;
3173 int nrow;
3175 if (!node)
3176 return NULL;
3177 nrow = isl_mat_rows(node->sched);
3178 if (node->compressed)
3179 space = isl_multi_aff_get_domain_space(node->decompress);
3180 else
3181 space = isl_space_copy(node->space);
3182 ls = isl_local_space_from_space(isl_space_copy(space));
3183 space = isl_space_from_domain(space);
3184 space = isl_space_add_dims(space, isl_dim_out, n);
3185 ma = isl_multi_aff_zero(space);
3187 for (i = first; i < first + n; ++i) {
3188 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3189 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3192 isl_local_space_free(ls);
3194 if (node->compressed)
3195 ma = isl_multi_aff_pullback_multi_aff(ma,
3196 isl_multi_aff_copy(node->compress));
3198 return ma;
3201 /* Convert node->sched into a multi_aff and return this multi_aff.
3203 * The result is defined over the uncompressed node domain.
3205 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3206 struct isl_sched_node *node)
3208 int nrow;
3210 nrow = isl_mat_rows(node->sched);
3211 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3214 /* Convert node->sched into a map and return this map.
3216 * The result is cached in node->sched_map, which needs to be released
3217 * whenever node->sched is updated.
3218 * It is defined over the uncompressed node domain.
3220 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3222 if (!node->sched_map) {
3223 isl_multi_aff *ma;
3225 ma = node_extract_schedule_multi_aff(node);
3226 node->sched_map = isl_map_from_multi_aff(ma);
3229 return isl_map_copy(node->sched_map);
3232 /* Construct a map that can be used to update a dependence relation
3233 * based on the current schedule.
3234 * That is, construct a map expressing that source and sink
3235 * are executed within the same iteration of the current schedule.
3236 * This map can then be intersected with the dependence relation.
3237 * This is not the most efficient way, but this shouldn't be a critical
3238 * operation.
3240 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3241 struct isl_sched_node *dst)
3243 isl_map *src_sched, *dst_sched;
3245 src_sched = node_extract_schedule(src);
3246 dst_sched = node_extract_schedule(dst);
3247 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3250 /* Intersect the domains of the nested relations in domain and range
3251 * of "umap" with "map".
3253 static __isl_give isl_union_map *intersect_domains(
3254 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3256 isl_union_set *uset;
3258 umap = isl_union_map_zip(umap);
3259 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3260 umap = isl_union_map_intersect_domain(umap, uset);
3261 umap = isl_union_map_zip(umap);
3262 return umap;
3265 /* Update the dependence relation of the given edge based
3266 * on the current schedule.
3267 * If the dependence is carried completely by the current schedule, then
3268 * it is removed from the edge_tables. It is kept in the list of edges
3269 * as otherwise all edge_tables would have to be recomputed.
3271 static int update_edge(struct isl_sched_graph *graph,
3272 struct isl_sched_edge *edge)
3274 int empty;
3275 isl_map *id;
3277 id = specializer(edge->src, edge->dst);
3278 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3279 if (!edge->map)
3280 goto error;
3282 if (edge->tagged_condition) {
3283 edge->tagged_condition =
3284 intersect_domains(edge->tagged_condition, id);
3285 if (!edge->tagged_condition)
3286 goto error;
3288 if (edge->tagged_validity) {
3289 edge->tagged_validity =
3290 intersect_domains(edge->tagged_validity, id);
3291 if (!edge->tagged_validity)
3292 goto error;
3295 empty = isl_map_plain_is_empty(edge->map);
3296 if (empty < 0)
3297 goto error;
3298 if (empty)
3299 graph_remove_edge(graph, edge);
3301 isl_map_free(id);
3302 return 0;
3303 error:
3304 isl_map_free(id);
3305 return -1;
3308 /* Does the domain of "umap" intersect "uset"?
3310 static int domain_intersects(__isl_keep isl_union_map *umap,
3311 __isl_keep isl_union_set *uset)
3313 int empty;
3315 umap = isl_union_map_copy(umap);
3316 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3317 empty = isl_union_map_is_empty(umap);
3318 isl_union_map_free(umap);
3320 return empty < 0 ? -1 : !empty;
3323 /* Does the range of "umap" intersect "uset"?
3325 static int range_intersects(__isl_keep isl_union_map *umap,
3326 __isl_keep isl_union_set *uset)
3328 int empty;
3330 umap = isl_union_map_copy(umap);
3331 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3332 empty = isl_union_map_is_empty(umap);
3333 isl_union_map_free(umap);
3335 return empty < 0 ? -1 : !empty;
3338 /* Are the condition dependences of "edge" local with respect to
3339 * the current schedule?
3341 * That is, are domain and range of the condition dependences mapped
3342 * to the same point?
3344 * In other words, is the condition false?
3346 static int is_condition_false(struct isl_sched_edge *edge)
3348 isl_union_map *umap;
3349 isl_map *map, *sched, *test;
3350 int empty, local;
3352 empty = isl_union_map_is_empty(edge->tagged_condition);
3353 if (empty < 0 || empty)
3354 return empty;
3356 umap = isl_union_map_copy(edge->tagged_condition);
3357 umap = isl_union_map_zip(umap);
3358 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3359 map = isl_map_from_union_map(umap);
3361 sched = node_extract_schedule(edge->src);
3362 map = isl_map_apply_domain(map, sched);
3363 sched = node_extract_schedule(edge->dst);
3364 map = isl_map_apply_range(map, sched);
3366 test = isl_map_identity(isl_map_get_space(map));
3367 local = isl_map_is_subset(map, test);
3368 isl_map_free(map);
3369 isl_map_free(test);
3371 return local;
3374 /* For each conditional validity constraint that is adjacent
3375 * to a condition with domain in condition_source or range in condition_sink,
3376 * turn it into an unconditional validity constraint.
3378 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3379 __isl_take isl_union_set *condition_source,
3380 __isl_take isl_union_set *condition_sink)
3382 int i;
3384 condition_source = isl_union_set_coalesce(condition_source);
3385 condition_sink = isl_union_set_coalesce(condition_sink);
3387 for (i = 0; i < graph->n_edge; ++i) {
3388 int adjacent;
3389 isl_union_map *validity;
3391 if (!is_conditional_validity(&graph->edge[i]))
3392 continue;
3393 if (is_validity(&graph->edge[i]))
3394 continue;
3396 validity = graph->edge[i].tagged_validity;
3397 adjacent = domain_intersects(validity, condition_sink);
3398 if (adjacent >= 0 && !adjacent)
3399 adjacent = range_intersects(validity, condition_source);
3400 if (adjacent < 0)
3401 goto error;
3402 if (!adjacent)
3403 continue;
3405 set_validity(&graph->edge[i]);
3408 isl_union_set_free(condition_source);
3409 isl_union_set_free(condition_sink);
3410 return 0;
3411 error:
3412 isl_union_set_free(condition_source);
3413 isl_union_set_free(condition_sink);
3414 return -1;
3417 /* Update the dependence relations of all edges based on the current schedule
3418 * and enforce conditional validity constraints that are adjacent
3419 * to satisfied condition constraints.
3421 * First check if any of the condition constraints are satisfied
3422 * (i.e., not local to the outer schedule) and keep track of
3423 * their domain and range.
3424 * Then update all dependence relations (which removes the non-local
3425 * constraints).
3426 * Finally, if any condition constraints turned out to be satisfied,
3427 * then turn all adjacent conditional validity constraints into
3428 * unconditional validity constraints.
3430 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3432 int i;
3433 int any = 0;
3434 isl_union_set *source, *sink;
3436 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3437 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3438 for (i = 0; i < graph->n_edge; ++i) {
3439 int local;
3440 isl_union_set *uset;
3441 isl_union_map *umap;
3443 if (!is_condition(&graph->edge[i]))
3444 continue;
3445 if (is_local(&graph->edge[i]))
3446 continue;
3447 local = is_condition_false(&graph->edge[i]);
3448 if (local < 0)
3449 goto error;
3450 if (local)
3451 continue;
3453 any = 1;
3455 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3456 uset = isl_union_map_domain(umap);
3457 source = isl_union_set_union(source, uset);
3459 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3460 uset = isl_union_map_range(umap);
3461 sink = isl_union_set_union(sink, uset);
3464 for (i = graph->n_edge - 1; i >= 0; --i) {
3465 if (update_edge(graph, &graph->edge[i]) < 0)
3466 goto error;
3469 if (any)
3470 return unconditionalize_adjacent_validity(graph, source, sink);
3472 isl_union_set_free(source);
3473 isl_union_set_free(sink);
3474 return 0;
3475 error:
3476 isl_union_set_free(source);
3477 isl_union_set_free(sink);
3478 return -1;
3481 static void next_band(struct isl_sched_graph *graph)
3483 graph->band_start = graph->n_total_row;
3486 /* Return the union of the universe domains of the nodes in "graph"
3487 * that satisfy "pred".
3489 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3490 struct isl_sched_graph *graph,
3491 int (*pred)(struct isl_sched_node *node, int data), int data)
3493 int i;
3494 isl_set *set;
3495 isl_union_set *dom;
3497 for (i = 0; i < graph->n; ++i)
3498 if (pred(&graph->node[i], data))
3499 break;
3501 if (i >= graph->n)
3502 isl_die(ctx, isl_error_internal,
3503 "empty component", return NULL);
3505 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3506 dom = isl_union_set_from_set(set);
3508 for (i = i + 1; i < graph->n; ++i) {
3509 if (!pred(&graph->node[i], data))
3510 continue;
3511 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3512 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3515 return dom;
3518 /* Return a list of unions of universe domains, where each element
3519 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3521 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3522 struct isl_sched_graph *graph)
3524 int i;
3525 isl_union_set_list *filters;
3527 filters = isl_union_set_list_alloc(ctx, graph->scc);
3528 for (i = 0; i < graph->scc; ++i) {
3529 isl_union_set *dom;
3531 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3532 filters = isl_union_set_list_add(filters, dom);
3535 return filters;
3538 /* Return a list of two unions of universe domains, one for the SCCs up
3539 * to and including graph->src_scc and another for the other SCCs.
3541 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3542 struct isl_sched_graph *graph)
3544 isl_union_set *dom;
3545 isl_union_set_list *filters;
3547 filters = isl_union_set_list_alloc(ctx, 2);
3548 dom = isl_sched_graph_domain(ctx, graph,
3549 &node_scc_at_most, graph->src_scc);
3550 filters = isl_union_set_list_add(filters, dom);
3551 dom = isl_sched_graph_domain(ctx, graph,
3552 &node_scc_at_least, graph->src_scc + 1);
3553 filters = isl_union_set_list_add(filters, dom);
3555 return filters;
3558 /* Copy nodes that satisfy node_pred from the src dependence graph
3559 * to the dst dependence graph.
3561 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3562 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3564 int i;
3566 dst->n = 0;
3567 for (i = 0; i < src->n; ++i) {
3568 int j;
3570 if (!node_pred(&src->node[i], data))
3571 continue;
3573 j = dst->n;
3574 dst->node[j].space = isl_space_copy(src->node[i].space);
3575 dst->node[j].compressed = src->node[i].compressed;
3576 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3577 dst->node[j].compress =
3578 isl_multi_aff_copy(src->node[i].compress);
3579 dst->node[j].decompress =
3580 isl_multi_aff_copy(src->node[i].decompress);
3581 dst->node[j].nvar = src->node[i].nvar;
3582 dst->node[j].nparam = src->node[i].nparam;
3583 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3584 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3585 dst->node[j].coincident = src->node[i].coincident;
3586 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3587 dst->node[j].max = isl_vec_copy(src->node[i].max);
3588 dst->n++;
3590 if (!dst->node[j].space || !dst->node[j].sched)
3591 return -1;
3592 if (dst->node[j].compressed &&
3593 (!dst->node[j].hull || !dst->node[j].compress ||
3594 !dst->node[j].decompress))
3595 return -1;
3598 return 0;
3601 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3602 * to the dst dependence graph.
3603 * If the source or destination node of the edge is not in the destination
3604 * graph, then it must be a backward proximity edge and it should simply
3605 * be ignored.
3607 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3608 struct isl_sched_graph *src,
3609 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3611 int i;
3612 enum isl_edge_type t;
3614 dst->n_edge = 0;
3615 for (i = 0; i < src->n_edge; ++i) {
3616 struct isl_sched_edge *edge = &src->edge[i];
3617 isl_map *map;
3618 isl_union_map *tagged_condition;
3619 isl_union_map *tagged_validity;
3620 struct isl_sched_node *dst_src, *dst_dst;
3622 if (!edge_pred(edge, data))
3623 continue;
3625 if (isl_map_plain_is_empty(edge->map))
3626 continue;
3628 dst_src = graph_find_node(ctx, dst, edge->src->space);
3629 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3630 if (!dst_src || !dst_dst) {
3631 if (is_validity(edge) || is_conditional_validity(edge))
3632 isl_die(ctx, isl_error_internal,
3633 "backward (conditional) validity edge",
3634 return -1);
3635 continue;
3638 map = isl_map_copy(edge->map);
3639 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3640 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3642 dst->edge[dst->n_edge].src = dst_src;
3643 dst->edge[dst->n_edge].dst = dst_dst;
3644 dst->edge[dst->n_edge].map = map;
3645 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3646 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3647 dst->edge[dst->n_edge].types = edge->types;
3648 dst->n_edge++;
3650 if (edge->tagged_condition && !tagged_condition)
3651 return -1;
3652 if (edge->tagged_validity && !tagged_validity)
3653 return -1;
3655 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3656 if (edge !=
3657 graph_find_edge(src, t, edge->src, edge->dst))
3658 continue;
3659 if (graph_edge_table_add(ctx, dst, t,
3660 &dst->edge[dst->n_edge - 1]) < 0)
3661 return -1;
3665 return 0;
3668 /* Compute the maximal number of variables over all nodes.
3669 * This is the maximal number of linearly independent schedule
3670 * rows that we need to compute.
3671 * Just in case we end up in a part of the dependence graph
3672 * with only lower-dimensional domains, we make sure we will
3673 * compute the required amount of extra linearly independent rows.
3675 static int compute_maxvar(struct isl_sched_graph *graph)
3677 int i;
3679 graph->maxvar = 0;
3680 for (i = 0; i < graph->n; ++i) {
3681 struct isl_sched_node *node = &graph->node[i];
3682 int nvar;
3684 if (node_update_cmap(node) < 0)
3685 return -1;
3686 nvar = node->nvar + graph->n_row - node->rank;
3687 if (nvar > graph->maxvar)
3688 graph->maxvar = nvar;
3691 return 0;
3694 /* Extract the subgraph of "graph" that consists of the node satisfying
3695 * "node_pred" and the edges satisfying "edge_pred" and store
3696 * the result in "sub".
3698 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3699 int (*node_pred)(struct isl_sched_node *node, int data),
3700 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3701 int data, struct isl_sched_graph *sub)
3703 int i, n = 0, n_edge = 0;
3704 int t;
3706 for (i = 0; i < graph->n; ++i)
3707 if (node_pred(&graph->node[i], data))
3708 ++n;
3709 for (i = 0; i < graph->n_edge; ++i)
3710 if (edge_pred(&graph->edge[i], data))
3711 ++n_edge;
3712 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3713 return -1;
3714 if (copy_nodes(sub, graph, node_pred, data) < 0)
3715 return -1;
3716 if (graph_init_table(ctx, sub) < 0)
3717 return -1;
3718 for (t = 0; t <= isl_edge_last; ++t)
3719 sub->max_edge[t] = graph->max_edge[t];
3720 if (graph_init_edge_tables(ctx, sub) < 0)
3721 return -1;
3722 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3723 return -1;
3724 sub->n_row = graph->n_row;
3725 sub->max_row = graph->max_row;
3726 sub->n_total_row = graph->n_total_row;
3727 sub->band_start = graph->band_start;
3729 return 0;
3732 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3733 struct isl_sched_graph *graph);
3734 static __isl_give isl_schedule_node *compute_schedule_wcc(
3735 isl_schedule_node *node, struct isl_sched_graph *graph);
3737 /* Compute a schedule for a subgraph of "graph". In particular, for
3738 * the graph composed of nodes that satisfy node_pred and edges that
3739 * that satisfy edge_pred.
3740 * If the subgraph is known to consist of a single component, then wcc should
3741 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3742 * Otherwise, we call compute_schedule, which will check whether the subgraph
3743 * is connected.
3745 * The schedule is inserted at "node" and the updated schedule node
3746 * is returned.
3748 static __isl_give isl_schedule_node *compute_sub_schedule(
3749 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3750 struct isl_sched_graph *graph,
3751 int (*node_pred)(struct isl_sched_node *node, int data),
3752 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3753 int data, int wcc)
3755 struct isl_sched_graph split = { 0 };
3757 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3758 &split) < 0)
3759 goto error;
3761 if (wcc)
3762 node = compute_schedule_wcc(node, &split);
3763 else
3764 node = compute_schedule(node, &split);
3766 graph_free(ctx, &split);
3767 return node;
3768 error:
3769 graph_free(ctx, &split);
3770 return isl_schedule_node_free(node);
3773 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3775 return edge->src->scc == scc && edge->dst->scc == scc;
3778 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3780 return edge->dst->scc <= scc;
3783 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3785 return edge->src->scc >= scc;
3788 /* Reset the current band by dropping all its schedule rows.
3790 static int reset_band(struct isl_sched_graph *graph)
3792 int i;
3793 int drop;
3795 drop = graph->n_total_row - graph->band_start;
3796 graph->n_total_row -= drop;
3797 graph->n_row -= drop;
3799 for (i = 0; i < graph->n; ++i) {
3800 struct isl_sched_node *node = &graph->node[i];
3802 isl_map_free(node->sched_map);
3803 node->sched_map = NULL;
3805 node->sched = isl_mat_drop_rows(node->sched,
3806 graph->band_start, drop);
3808 if (!node->sched)
3809 return -1;
3812 return 0;
3815 /* Split the current graph into two parts and compute a schedule for each
3816 * part individually. In particular, one part consists of all SCCs up
3817 * to and including graph->src_scc, while the other part contains the other
3818 * SCCs. The split is enforced by a sequence node inserted at position "node"
3819 * in the schedule tree. Return the updated schedule node.
3820 * If either of these two parts consists of a sequence, then it is spliced
3821 * into the sequence containing the two parts.
3823 * The current band is reset. It would be possible to reuse
3824 * the previously computed rows as the first rows in the next
3825 * band, but recomputing them may result in better rows as we are looking
3826 * at a smaller part of the dependence graph.
3828 static __isl_give isl_schedule_node *compute_split_schedule(
3829 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3831 int is_seq;
3832 isl_ctx *ctx;
3833 isl_union_set_list *filters;
3835 if (!node)
3836 return NULL;
3838 if (reset_band(graph) < 0)
3839 return isl_schedule_node_free(node);
3841 next_band(graph);
3843 ctx = isl_schedule_node_get_ctx(node);
3844 filters = extract_split(ctx, graph);
3845 node = isl_schedule_node_insert_sequence(node, filters);
3846 node = isl_schedule_node_child(node, 1);
3847 node = isl_schedule_node_child(node, 0);
3849 node = compute_sub_schedule(node, ctx, graph,
3850 &node_scc_at_least, &edge_src_scc_at_least,
3851 graph->src_scc + 1, 0);
3852 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3853 node = isl_schedule_node_parent(node);
3854 node = isl_schedule_node_parent(node);
3855 if (is_seq)
3856 node = isl_schedule_node_sequence_splice_child(node, 1);
3857 node = isl_schedule_node_child(node, 0);
3858 node = isl_schedule_node_child(node, 0);
3859 node = compute_sub_schedule(node, ctx, graph,
3860 &node_scc_at_most, &edge_dst_scc_at_most,
3861 graph->src_scc, 0);
3862 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3863 node = isl_schedule_node_parent(node);
3864 node = isl_schedule_node_parent(node);
3865 if (is_seq)
3866 node = isl_schedule_node_sequence_splice_child(node, 0);
3868 return node;
3871 /* Insert a band node at position "node" in the schedule tree corresponding
3872 * to the current band in "graph". Mark the band node permutable
3873 * if "permutable" is set.
3874 * The partial schedules and the coincidence property are extracted
3875 * from the graph nodes.
3876 * Return the updated schedule node.
3878 static __isl_give isl_schedule_node *insert_current_band(
3879 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3880 int permutable)
3882 int i;
3883 int start, end, n;
3884 isl_multi_aff *ma;
3885 isl_multi_pw_aff *mpa;
3886 isl_multi_union_pw_aff *mupa;
3888 if (!node)
3889 return NULL;
3891 if (graph->n < 1)
3892 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3893 "graph should have at least one node",
3894 return isl_schedule_node_free(node));
3896 start = graph->band_start;
3897 end = graph->n_total_row;
3898 n = end - start;
3900 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3901 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3902 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3904 for (i = 1; i < graph->n; ++i) {
3905 isl_multi_union_pw_aff *mupa_i;
3907 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3908 start, n);
3909 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3910 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3911 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3913 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3915 for (i = 0; i < n; ++i)
3916 node = isl_schedule_node_band_member_set_coincident(node, i,
3917 graph->node[0].coincident[start + i]);
3918 node = isl_schedule_node_band_set_permutable(node, permutable);
3920 return node;
3923 /* Update the dependence relations based on the current schedule,
3924 * add the current band to "node" and then continue with the computation
3925 * of the next band.
3926 * Return the updated schedule node.
3928 static __isl_give isl_schedule_node *compute_next_band(
3929 __isl_take isl_schedule_node *node,
3930 struct isl_sched_graph *graph, int permutable)
3932 isl_ctx *ctx;
3934 if (!node)
3935 return NULL;
3937 ctx = isl_schedule_node_get_ctx(node);
3938 if (update_edges(ctx, graph) < 0)
3939 return isl_schedule_node_free(node);
3940 node = insert_current_band(node, graph, permutable);
3941 next_band(graph);
3943 node = isl_schedule_node_child(node, 0);
3944 node = compute_schedule(node, graph);
3945 node = isl_schedule_node_parent(node);
3947 return node;
3950 /* Add constraints to graph->lp that force the dependence "map" (which
3951 * is part of the dependence relation of "edge")
3952 * to be respected and attempt to carry it, where the edge is one from
3953 * a node j to itself. "pos" is the sequence number of the given map.
3954 * That is, add constraints that enforce
3956 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3957 * = c_j_x (y - x) >= e_i
3959 * for each (x,y) in R.
3960 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3961 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3962 * with each coefficient in c_j_x represented as a pair of non-negative
3963 * coefficients.
3965 static int add_intra_constraints(struct isl_sched_graph *graph,
3966 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3968 int offset;
3969 isl_ctx *ctx = isl_map_get_ctx(map);
3970 isl_dim_map *dim_map;
3971 isl_basic_set *coef;
3972 struct isl_sched_node *node = edge->src;
3974 coef = intra_coefficients(graph, node, map);
3975 if (!coef)
3976 return -1;
3978 offset = coef_var_offset(coef);
3979 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3980 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3981 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3982 coef->n_eq, coef->n_ineq);
3983 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3984 coef, dim_map);
3986 return 0;
3989 /* Add constraints to graph->lp that force the dependence "map" (which
3990 * is part of the dependence relation of "edge")
3991 * to be respected and attempt to carry it, where the edge is one from
3992 * node j to node k. "pos" is the sequence number of the given map.
3993 * That is, add constraints that enforce
3995 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3997 * for each (x,y) in R.
3998 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3999 * of valid constraints for R and then plug in
4000 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
4001 * with each coefficient (except e_i, c_*_0 and c_*_n)
4002 * represented as a pair of non-negative coefficients.
4004 static int add_inter_constraints(struct isl_sched_graph *graph,
4005 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
4007 int offset;
4008 isl_ctx *ctx = isl_map_get_ctx(map);
4009 isl_dim_map *dim_map;
4010 isl_basic_set *coef;
4011 struct isl_sched_node *src = edge->src;
4012 struct isl_sched_node *dst = edge->dst;
4014 coef = inter_coefficients(graph, edge, map);
4015 if (!coef)
4016 return -1;
4018 offset = coef_var_offset(coef);
4019 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
4020 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
4021 graph->lp = isl_basic_set_extend_constraints(graph->lp,
4022 coef->n_eq, coef->n_ineq);
4023 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
4024 coef, dim_map);
4026 return 0;
4029 /* Add constraints to graph->lp that force all (conditional) validity
4030 * dependences to be respected and attempt to carry them.
4032 static int add_all_constraints(struct isl_sched_graph *graph)
4034 int i, j;
4035 int pos;
4037 pos = 0;
4038 for (i = 0; i < graph->n_edge; ++i) {
4039 struct isl_sched_edge *edge= &graph->edge[i];
4041 if (!is_any_validity(edge))
4042 continue;
4044 for (j = 0; j < edge->map->n; ++j) {
4045 isl_basic_map *bmap;
4046 isl_map *map;
4048 bmap = isl_basic_map_copy(edge->map->p[j]);
4049 map = isl_map_from_basic_map(bmap);
4051 if (edge->src == edge->dst &&
4052 add_intra_constraints(graph, edge, map, pos) < 0)
4053 return -1;
4054 if (edge->src != edge->dst &&
4055 add_inter_constraints(graph, edge, map, pos) < 0)
4056 return -1;
4057 ++pos;
4061 return 0;
4064 /* Count the number of equality and inequality constraints
4065 * that will be added to the carry_lp problem.
4066 * We count each edge exactly once.
4068 static int count_all_constraints(struct isl_sched_graph *graph,
4069 int *n_eq, int *n_ineq)
4071 int i, j;
4073 *n_eq = *n_ineq = 0;
4074 for (i = 0; i < graph->n_edge; ++i) {
4075 struct isl_sched_edge *edge= &graph->edge[i];
4077 if (!is_any_validity(edge))
4078 continue;
4080 for (j = 0; j < edge->map->n; ++j) {
4081 isl_basic_map *bmap;
4082 isl_map *map;
4084 bmap = isl_basic_map_copy(edge->map->p[j]);
4085 map = isl_map_from_basic_map(bmap);
4087 if (count_map_constraints(graph, edge, map,
4088 n_eq, n_ineq, 1, 0) < 0)
4089 return -1;
4093 return 0;
4096 /* Construct an LP problem for finding schedule coefficients
4097 * such that the schedule carries as many dependences as possible.
4098 * In particular, for each dependence i, we bound the dependence distance
4099 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4100 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4101 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4102 * Note that if the dependence relation is a union of basic maps,
4103 * then we have to consider each basic map individually as it may only
4104 * be possible to carry the dependences expressed by some of those
4105 * basic maps and not all of them.
4106 * Below, we consider each of those basic maps as a separate "edge".
4108 * All variables of the LP are non-negative. The actual coefficients
4109 * may be negative, so each coefficient is represented as the difference
4110 * of two non-negative variables. The negative part always appears
4111 * immediately before the positive part.
4112 * Other than that, the variables have the following order
4114 * - sum of (1 - e_i) over all edges
4115 * - sum of all c_n coefficients
4116 * (unconstrained when computing non-parametric schedules)
4117 * - sum of positive and negative parts of all c_x coefficients
4118 * - for each edge
4119 * - e_i
4120 * - for each node
4121 * - c_i_0
4122 * - c_i_n (if parametric)
4123 * - positive and negative parts of c_i_x
4125 * The constraints are those from the (validity) edges plus three equalities
4126 * to express the sums and n_edge inequalities to express e_i <= 1.
4128 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
4130 int i;
4131 int k;
4132 isl_space *dim;
4133 unsigned total;
4134 int n_eq, n_ineq;
4135 int n_edge;
4137 n_edge = 0;
4138 for (i = 0; i < graph->n_edge; ++i)
4139 n_edge += graph->edge[i].map->n;
4141 total = 3 + n_edge;
4142 for (i = 0; i < graph->n; ++i) {
4143 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4144 node->start = total;
4145 total += 1 + node->nparam + 2 * node->nvar;
4148 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
4149 return isl_stat_error;
4151 dim = isl_space_set_alloc(ctx, 0, total);
4152 isl_basic_set_free(graph->lp);
4153 n_eq += 3;
4154 n_ineq += n_edge;
4155 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4156 graph->lp = isl_basic_set_set_rational(graph->lp);
4158 k = isl_basic_set_alloc_equality(graph->lp);
4159 if (k < 0)
4160 return isl_stat_error;
4161 isl_seq_clr(graph->lp->eq[k], 1 + total);
4162 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4163 isl_int_set_si(graph->lp->eq[k][1], 1);
4164 for (i = 0; i < n_edge; ++i)
4165 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4167 if (add_param_sum_constraint(graph, 1) < 0)
4168 return isl_stat_error;
4169 if (add_var_sum_constraint(graph, 2) < 0)
4170 return isl_stat_error;
4172 for (i = 0; i < n_edge; ++i) {
4173 k = isl_basic_set_alloc_inequality(graph->lp);
4174 if (k < 0)
4175 return isl_stat_error;
4176 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4177 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4178 isl_int_set_si(graph->lp->ineq[k][0], 1);
4181 if (add_all_constraints(graph) < 0)
4182 return isl_stat_error;
4184 return isl_stat_ok;
4187 static __isl_give isl_schedule_node *compute_component_schedule(
4188 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4189 int wcc);
4191 /* Comparison function for sorting the statements based on
4192 * the corresponding value in "r".
4194 static int smaller_value(const void *a, const void *b, void *data)
4196 isl_vec *r = data;
4197 const int *i1 = a;
4198 const int *i2 = b;
4200 return isl_int_cmp(r->el[*i1], r->el[*i2]);
4203 /* If the schedule_split_scaled option is set and if the linear
4204 * parts of the scheduling rows for all nodes in the graphs have
4205 * a non-trivial common divisor, then split off the remainder of the
4206 * constant term modulo this common divisor from the linear part.
4207 * Otherwise, insert a band node directly and continue with
4208 * the construction of the schedule.
4210 * If a non-trivial common divisor is found, then
4211 * the linear part is reduced and the remainder is enforced
4212 * by a sequence node with the children placed in the order
4213 * of this remainder.
4214 * In particular, we assign an scc index based on the remainder and
4215 * then rely on compute_component_schedule to insert the sequence and
4216 * to continue the schedule construction on each part.
4218 static __isl_give isl_schedule_node *split_scaled(
4219 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4221 int i;
4222 int row;
4223 int scc;
4224 isl_ctx *ctx;
4225 isl_int gcd, gcd_i;
4226 isl_vec *r;
4227 int *order;
4229 if (!node)
4230 return NULL;
4232 ctx = isl_schedule_node_get_ctx(node);
4233 if (!ctx->opt->schedule_split_scaled)
4234 return compute_next_band(node, graph, 0);
4235 if (graph->n <= 1)
4236 return compute_next_band(node, graph, 0);
4238 isl_int_init(gcd);
4239 isl_int_init(gcd_i);
4241 isl_int_set_si(gcd, 0);
4243 row = isl_mat_rows(graph->node[0].sched) - 1;
4245 for (i = 0; i < graph->n; ++i) {
4246 struct isl_sched_node *node = &graph->node[i];
4247 int cols = isl_mat_cols(node->sched);
4249 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4250 isl_int_gcd(gcd, gcd, gcd_i);
4253 isl_int_clear(gcd_i);
4255 if (isl_int_cmp_si(gcd, 1) <= 0) {
4256 isl_int_clear(gcd);
4257 return compute_next_band(node, graph, 0);
4260 r = isl_vec_alloc(ctx, graph->n);
4261 order = isl_calloc_array(ctx, int, graph->n);
4262 if (!r || !order)
4263 goto error;
4265 for (i = 0; i < graph->n; ++i) {
4266 struct isl_sched_node *node = &graph->node[i];
4268 order[i] = i;
4269 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
4270 isl_int_fdiv_q(node->sched->row[row][0],
4271 node->sched->row[row][0], gcd);
4272 isl_int_mul(node->sched->row[row][0],
4273 node->sched->row[row][0], gcd);
4274 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4275 if (!node->sched)
4276 goto error;
4279 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
4280 goto error;
4282 scc = 0;
4283 for (i = 0; i < graph->n; ++i) {
4284 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
4285 ++scc;
4286 graph->node[order[i]].scc = scc;
4288 graph->scc = ++scc;
4289 graph->weak = 0;
4291 isl_int_clear(gcd);
4292 isl_vec_free(r);
4293 free(order);
4295 if (update_edges(ctx, graph) < 0)
4296 return isl_schedule_node_free(node);
4297 node = insert_current_band(node, graph, 0);
4298 next_band(graph);
4300 node = isl_schedule_node_child(node, 0);
4301 node = compute_component_schedule(node, graph, 0);
4302 node = isl_schedule_node_parent(node);
4304 return node;
4305 error:
4306 isl_vec_free(r);
4307 free(order);
4308 isl_int_clear(gcd);
4309 return isl_schedule_node_free(node);
4312 /* Is the schedule row "sol" trivial on node "node"?
4313 * That is, is the solution zero on the dimensions orthogonal to
4314 * the previously found solutions?
4315 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4317 * Each coefficient is represented as the difference between
4318 * two non-negative values in "sol". "sol" has been computed
4319 * in terms of the original iterators (i.e., without use of cmap).
4320 * We construct the schedule row s and write it as a linear
4321 * combination of (linear combinations of) previously computed schedule rows.
4322 * s = Q c or c = U s.
4323 * If the final entries of c are all zero, then the solution is trivial.
4325 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4327 int trivial;
4328 isl_vec *node_sol;
4330 if (!sol)
4331 return -1;
4332 if (node->nvar == node->rank)
4333 return 0;
4335 node_sol = extract_var_coef(node, sol);
4336 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
4337 if (!node_sol)
4338 return -1;
4340 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
4341 node->nvar - node->rank) == -1;
4343 isl_vec_free(node_sol);
4345 return trivial;
4348 /* Is the schedule row "sol" trivial on any node where it should
4349 * not be trivial?
4350 * "sol" has been computed in terms of the original iterators
4351 * (i.e., without use of cmap).
4352 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4354 static int is_any_trivial(struct isl_sched_graph *graph,
4355 __isl_keep isl_vec *sol)
4357 int i;
4359 for (i = 0; i < graph->n; ++i) {
4360 struct isl_sched_node *node = &graph->node[i];
4361 int trivial;
4363 if (!needs_row(graph, node))
4364 continue;
4365 trivial = is_trivial(node, sol);
4366 if (trivial < 0 || trivial)
4367 return trivial;
4370 return 0;
4373 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4374 * If so, return the position of the coalesced dimension.
4375 * Otherwise, return node->nvar or -1 on error.
4377 * In particular, look for pairs of coefficients c_i and c_j such that
4378 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
4379 * If any such pair is found, then return i.
4380 * If size_i is infinity, then no check on c_i needs to be performed.
4382 static int find_node_coalescing(struct isl_sched_node *node,
4383 __isl_keep isl_vec *sol)
4385 int i, j;
4386 isl_int max;
4387 isl_vec *csol;
4389 if (node->nvar <= 1)
4390 return node->nvar;
4392 csol = extract_var_coef(node, sol);
4393 if (!csol)
4394 return -1;
4395 isl_int_init(max);
4396 for (i = 0; i < node->nvar; ++i) {
4397 isl_val *v;
4399 if (isl_int_is_zero(csol->el[i]))
4400 continue;
4401 v = isl_multi_val_get_val(node->sizes, i);
4402 if (!v)
4403 goto error;
4404 if (!isl_val_is_int(v)) {
4405 isl_val_free(v);
4406 continue;
4408 isl_int_mul(max, v->n, csol->el[i]);
4409 isl_val_free(v);
4411 for (j = 0; j < node->nvar; ++j) {
4412 if (j == i)
4413 continue;
4414 if (isl_int_abs_ge(csol->el[j], max))
4415 break;
4417 if (j < node->nvar)
4418 break;
4421 isl_int_clear(max);
4422 isl_vec_free(csol);
4423 return i;
4424 error:
4425 isl_int_clear(max);
4426 isl_vec_free(csol);
4427 return -1;
4430 /* Force the schedule coefficient at position "pos" of "node" to be zero
4431 * in "tl".
4432 * The coefficient is encoded as the difference between two non-negative
4433 * variables. Force these two variables to have the same value.
4435 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4436 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4438 int dim;
4439 isl_ctx *ctx;
4440 isl_vec *eq;
4442 ctx = isl_space_get_ctx(node->space);
4443 dim = isl_tab_lexmin_dim(tl);
4444 if (dim < 0)
4445 return isl_tab_lexmin_free(tl);
4446 eq = isl_vec_alloc(ctx, 1 + dim);
4447 eq = isl_vec_clr(eq);
4448 if (!eq)
4449 return isl_tab_lexmin_free(tl);
4451 pos = 1 + node_var_coef_offset(node) + 2 * pos;
4452 isl_int_set_si(eq->el[pos], 1);
4453 isl_int_set_si(eq->el[pos + 1], -1);
4454 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4455 isl_vec_free(eq);
4457 return tl;
4460 /* Return the lexicographically smallest rational point in the basic set
4461 * from which "tl" was constructed, double checking that this input set
4462 * was not empty.
4464 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4466 isl_vec *sol;
4468 sol = isl_tab_lexmin_get_solution(tl);
4469 if (!sol)
4470 return NULL;
4471 if (sol->size == 0)
4472 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4473 "error in schedule construction",
4474 return isl_vec_free(sol));
4475 return sol;
4478 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4479 * carry any of the "n_edge" groups of dependences?
4480 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4481 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4482 * by the edge are carried by the solution.
4483 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4484 * one of those is carried.
4486 * Note that despite the fact that the problem is solved using a rational
4487 * solver, the solution is guaranteed to be integral.
4488 * Specifically, the dependence distance lower bounds e_i (and therefore
4489 * also their sum) are integers. See Lemma 5 of [1].
4491 * Any potential denominator of the sum is cleared by this function.
4492 * The denominator is not relevant for any of the other elements
4493 * in the solution.
4495 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4496 * Problem, Part II: Multi-Dimensional Time.
4497 * In Intl. Journal of Parallel Programming, 1992.
4499 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4501 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4502 isl_int_set_si(sol->el[0], 1);
4503 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4506 /* Return the lexicographically smallest rational point in "lp",
4507 * assuming that all variables are non-negative and performing some
4508 * additional sanity checks.
4509 * In particular, "lp" should not be empty by construction.
4510 * Double check that this is the case.
4511 * Also, check that dependences are carried for at least one of
4512 * the "n_edge" edges.
4514 * If the computed schedule performs loop coalescing on a given node,
4515 * i.e., if it is of the form
4517 * c_i i + c_j j + ...
4519 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4520 * to cut out this solution. Repeat this process until no more loop
4521 * coalescing occurs or until no more dependences can be carried.
4522 * In the latter case, revert to the previously computed solution.
4524 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4525 __isl_take isl_basic_set *lp, int n_edge)
4527 int i, pos;
4528 isl_ctx *ctx;
4529 isl_tab_lexmin *tl;
4530 isl_vec *sol, *prev = NULL;
4531 int treat_coalescing;
4533 if (!lp)
4534 return NULL;
4535 ctx = isl_basic_set_get_ctx(lp);
4536 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4537 tl = isl_tab_lexmin_from_basic_set(lp);
4539 do {
4540 sol = non_empty_solution(tl);
4541 if (!sol)
4542 goto error;
4544 if (!carries_dependences(sol, n_edge)) {
4545 if (!prev)
4546 isl_die(ctx, isl_error_unknown,
4547 "unable to carry dependences",
4548 goto error);
4549 isl_vec_free(sol);
4550 sol = prev;
4551 break;
4553 prev = isl_vec_free(prev);
4554 if (!treat_coalescing)
4555 break;
4556 for (i = 0; i < graph->n; ++i) {
4557 struct isl_sched_node *node = &graph->node[i];
4559 pos = find_node_coalescing(node, sol);
4560 if (pos < 0)
4561 goto error;
4562 if (pos < node->nvar)
4563 break;
4565 if (i < graph->n) {
4566 prev = sol;
4567 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4569 } while (i < graph->n);
4571 isl_tab_lexmin_free(tl);
4573 return sol;
4574 error:
4575 isl_tab_lexmin_free(tl);
4576 isl_vec_free(prev);
4577 isl_vec_free(sol);
4578 return NULL;
4581 /* Construct a schedule row for each node such that as many dependences
4582 * as possible are carried and then continue with the next band.
4584 * If the computed schedule row turns out to be trivial on one or
4585 * more nodes where it should not be trivial, then we throw it away
4586 * and try again on each component separately.
4588 * If there is only one component, then we accept the schedule row anyway,
4589 * but we do not consider it as a complete row and therefore do not
4590 * increment graph->n_row. Note that the ranks of the nodes that
4591 * do get a non-trivial schedule part will get updated regardless and
4592 * graph->maxvar is computed based on these ranks. The test for
4593 * whether more schedule rows are required in compute_schedule_wcc
4594 * is therefore not affected.
4596 * Insert a band corresponding to the schedule row at position "node"
4597 * of the schedule tree and continue with the construction of the schedule.
4598 * This insertion and the continued construction is performed by split_scaled
4599 * after optionally checking for non-trivial common divisors.
4601 static __isl_give isl_schedule_node *carry_dependences(
4602 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4604 int i;
4605 int n_edge;
4606 int trivial;
4607 isl_ctx *ctx;
4608 isl_vec *sol;
4609 isl_basic_set *lp;
4611 if (!node)
4612 return NULL;
4614 n_edge = 0;
4615 for (i = 0; i < graph->n_edge; ++i)
4616 n_edge += graph->edge[i].map->n;
4618 ctx = isl_schedule_node_get_ctx(node);
4619 if (setup_carry_lp(ctx, graph) < 0)
4620 return isl_schedule_node_free(node);
4622 lp = isl_basic_set_copy(graph->lp);
4623 sol = non_neg_lexmin(graph, lp, n_edge);
4624 if (!sol)
4625 return isl_schedule_node_free(node);
4627 trivial = is_any_trivial(graph, sol);
4628 if (trivial < 0) {
4629 sol = isl_vec_free(sol);
4630 } else if (trivial && graph->scc > 1) {
4631 isl_vec_free(sol);
4632 return compute_component_schedule(node, graph, 1);
4635 if (update_schedule(graph, sol, 0, 0) < 0)
4636 return isl_schedule_node_free(node);
4637 if (trivial)
4638 graph->n_row--;
4640 return split_scaled(node, graph);
4643 /* Topologically sort statements mapped to the same schedule iteration
4644 * and add insert a sequence node in front of "node"
4645 * corresponding to this order.
4646 * If "initialized" is set, then it may be assumed that compute_maxvar
4647 * has been called on the current band. Otherwise, call
4648 * compute_maxvar if and before carry_dependences gets called.
4650 * If it turns out to be impossible to sort the statements apart,
4651 * because different dependences impose different orderings
4652 * on the statements, then we extend the schedule such that
4653 * it carries at least one more dependence.
4655 static __isl_give isl_schedule_node *sort_statements(
4656 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4657 int initialized)
4659 isl_ctx *ctx;
4660 isl_union_set_list *filters;
4662 if (!node)
4663 return NULL;
4665 ctx = isl_schedule_node_get_ctx(node);
4666 if (graph->n < 1)
4667 isl_die(ctx, isl_error_internal,
4668 "graph should have at least one node",
4669 return isl_schedule_node_free(node));
4671 if (graph->n == 1)
4672 return node;
4674 if (update_edges(ctx, graph) < 0)
4675 return isl_schedule_node_free(node);
4677 if (graph->n_edge == 0)
4678 return node;
4680 if (detect_sccs(ctx, graph) < 0)
4681 return isl_schedule_node_free(node);
4683 next_band(graph);
4684 if (graph->scc < graph->n) {
4685 if (!initialized && compute_maxvar(graph) < 0)
4686 return isl_schedule_node_free(node);
4687 return carry_dependences(node, graph);
4690 filters = extract_sccs(ctx, graph);
4691 node = isl_schedule_node_insert_sequence(node, filters);
4693 return node;
4696 /* Are there any (non-empty) (conditional) validity edges in the graph?
4698 static int has_validity_edges(struct isl_sched_graph *graph)
4700 int i;
4702 for (i = 0; i < graph->n_edge; ++i) {
4703 int empty;
4705 empty = isl_map_plain_is_empty(graph->edge[i].map);
4706 if (empty < 0)
4707 return -1;
4708 if (empty)
4709 continue;
4710 if (is_any_validity(&graph->edge[i]))
4711 return 1;
4714 return 0;
4717 /* Should we apply a Feautrier step?
4718 * That is, did the user request the Feautrier algorithm and are
4719 * there any validity dependences (left)?
4721 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4723 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4724 return 0;
4726 return has_validity_edges(graph);
4729 /* Compute a schedule for a connected dependence graph using Feautrier's
4730 * multi-dimensional scheduling algorithm and return the updated schedule node.
4732 * The original algorithm is described in [1].
4733 * The main idea is to minimize the number of scheduling dimensions, by
4734 * trying to satisfy as many dependences as possible per scheduling dimension.
4736 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4737 * Problem, Part II: Multi-Dimensional Time.
4738 * In Intl. Journal of Parallel Programming, 1992.
4740 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4741 isl_schedule_node *node, struct isl_sched_graph *graph)
4743 return carry_dependences(node, graph);
4746 /* Turn off the "local" bit on all (condition) edges.
4748 static void clear_local_edges(struct isl_sched_graph *graph)
4750 int i;
4752 for (i = 0; i < graph->n_edge; ++i)
4753 if (is_condition(&graph->edge[i]))
4754 clear_local(&graph->edge[i]);
4757 /* Does "graph" have both condition and conditional validity edges?
4759 static int need_condition_check(struct isl_sched_graph *graph)
4761 int i;
4762 int any_condition = 0;
4763 int any_conditional_validity = 0;
4765 for (i = 0; i < graph->n_edge; ++i) {
4766 if (is_condition(&graph->edge[i]))
4767 any_condition = 1;
4768 if (is_conditional_validity(&graph->edge[i]))
4769 any_conditional_validity = 1;
4772 return any_condition && any_conditional_validity;
4775 /* Does "graph" contain any coincidence edge?
4777 static int has_any_coincidence(struct isl_sched_graph *graph)
4779 int i;
4781 for (i = 0; i < graph->n_edge; ++i)
4782 if (is_coincidence(&graph->edge[i]))
4783 return 1;
4785 return 0;
4788 /* Extract the final schedule row as a map with the iteration domain
4789 * of "node" as domain.
4791 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4793 isl_local_space *ls;
4794 isl_aff *aff;
4795 int row;
4797 row = isl_mat_rows(node->sched) - 1;
4798 ls = isl_local_space_from_space(isl_space_copy(node->space));
4799 aff = extract_schedule_row(ls, node, row);
4800 return isl_map_from_aff(aff);
4803 /* Is the conditional validity dependence in the edge with index "edge_index"
4804 * violated by the latest (i.e., final) row of the schedule?
4805 * That is, is i scheduled after j
4806 * for any conditional validity dependence i -> j?
4808 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4810 isl_map *src_sched, *dst_sched, *map;
4811 struct isl_sched_edge *edge = &graph->edge[edge_index];
4812 int empty;
4814 src_sched = final_row(edge->src);
4815 dst_sched = final_row(edge->dst);
4816 map = isl_map_copy(edge->map);
4817 map = isl_map_apply_domain(map, src_sched);
4818 map = isl_map_apply_range(map, dst_sched);
4819 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4820 empty = isl_map_is_empty(map);
4821 isl_map_free(map);
4823 if (empty < 0)
4824 return -1;
4826 return !empty;
4829 /* Does "graph" have any satisfied condition edges that
4830 * are adjacent to the conditional validity constraint with
4831 * domain "conditional_source" and range "conditional_sink"?
4833 * A satisfied condition is one that is not local.
4834 * If a condition was forced to be local already (i.e., marked as local)
4835 * then there is no need to check if it is in fact local.
4837 * Additionally, mark all adjacent condition edges found as local.
4839 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4840 __isl_keep isl_union_set *conditional_source,
4841 __isl_keep isl_union_set *conditional_sink)
4843 int i;
4844 int any = 0;
4846 for (i = 0; i < graph->n_edge; ++i) {
4847 int adjacent, local;
4848 isl_union_map *condition;
4850 if (!is_condition(&graph->edge[i]))
4851 continue;
4852 if (is_local(&graph->edge[i]))
4853 continue;
4855 condition = graph->edge[i].tagged_condition;
4856 adjacent = domain_intersects(condition, conditional_sink);
4857 if (adjacent >= 0 && !adjacent)
4858 adjacent = range_intersects(condition,
4859 conditional_source);
4860 if (adjacent < 0)
4861 return -1;
4862 if (!adjacent)
4863 continue;
4865 set_local(&graph->edge[i]);
4867 local = is_condition_false(&graph->edge[i]);
4868 if (local < 0)
4869 return -1;
4870 if (!local)
4871 any = 1;
4874 return any;
4877 /* Are there any violated conditional validity dependences with
4878 * adjacent condition dependences that are not local with respect
4879 * to the current schedule?
4880 * That is, is the conditional validity constraint violated?
4882 * Additionally, mark all those adjacent condition dependences as local.
4883 * We also mark those adjacent condition dependences that were not marked
4884 * as local before, but just happened to be local already. This ensures
4885 * that they remain local if the schedule is recomputed.
4887 * We first collect domain and range of all violated conditional validity
4888 * dependences and then check if there are any adjacent non-local
4889 * condition dependences.
4891 static int has_violated_conditional_constraint(isl_ctx *ctx,
4892 struct isl_sched_graph *graph)
4894 int i;
4895 int any = 0;
4896 isl_union_set *source, *sink;
4898 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4899 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4900 for (i = 0; i < graph->n_edge; ++i) {
4901 isl_union_set *uset;
4902 isl_union_map *umap;
4903 int violated;
4905 if (!is_conditional_validity(&graph->edge[i]))
4906 continue;
4908 violated = is_violated(graph, i);
4909 if (violated < 0)
4910 goto error;
4911 if (!violated)
4912 continue;
4914 any = 1;
4916 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4917 uset = isl_union_map_domain(umap);
4918 source = isl_union_set_union(source, uset);
4919 source = isl_union_set_coalesce(source);
4921 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4922 uset = isl_union_map_range(umap);
4923 sink = isl_union_set_union(sink, uset);
4924 sink = isl_union_set_coalesce(sink);
4927 if (any)
4928 any = has_adjacent_true_conditions(graph, source, sink);
4930 isl_union_set_free(source);
4931 isl_union_set_free(sink);
4932 return any;
4933 error:
4934 isl_union_set_free(source);
4935 isl_union_set_free(sink);
4936 return -1;
4939 /* Examine the current band (the rows between graph->band_start and
4940 * graph->n_total_row), deciding whether to drop it or add it to "node"
4941 * and then continue with the computation of the next band, if any.
4942 * If "initialized" is set, then it may be assumed that compute_maxvar
4943 * has been called on the current band. Otherwise, call
4944 * compute_maxvar if and before carry_dependences gets called.
4946 * The caller keeps looking for a new row as long as
4947 * graph->n_row < graph->maxvar. If the latest attempt to find
4948 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4949 * then we either
4950 * - split between SCCs and start over (assuming we found an interesting
4951 * pair of SCCs between which to split)
4952 * - continue with the next band (assuming the current band has at least
4953 * one row)
4954 * - try to carry as many dependences as possible and continue with the next
4955 * band
4956 * In each case, we first insert a band node in the schedule tree
4957 * if any rows have been computed.
4959 * If the caller managed to complete the schedule, we insert a band node
4960 * (if any schedule rows were computed) and we finish off by topologically
4961 * sorting the statements based on the remaining dependences.
4963 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4964 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4965 int initialized)
4967 int insert;
4969 if (!node)
4970 return NULL;
4972 if (graph->n_row < graph->maxvar) {
4973 isl_ctx *ctx;
4974 int empty = graph->n_total_row == graph->band_start;
4976 ctx = isl_schedule_node_get_ctx(node);
4977 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4978 return compute_next_band(node, graph, 1);
4979 if (graph->src_scc >= 0)
4980 return compute_split_schedule(node, graph);
4981 if (!empty)
4982 return compute_next_band(node, graph, 1);
4983 if (!initialized && compute_maxvar(graph) < 0)
4984 return isl_schedule_node_free(node);
4985 return carry_dependences(node, graph);
4988 insert = graph->n_total_row > graph->band_start;
4989 if (insert) {
4990 node = insert_current_band(node, graph, 1);
4991 node = isl_schedule_node_child(node, 0);
4993 node = sort_statements(node, graph, initialized);
4994 if (insert)
4995 node = isl_schedule_node_parent(node);
4997 return node;
5000 /* Construct a band of schedule rows for a connected dependence graph.
5001 * The caller is responsible for determining the strongly connected
5002 * components and calling compute_maxvar first.
5004 * We try to find a sequence of as many schedule rows as possible that result
5005 * in non-negative dependence distances (independent of the previous rows
5006 * in the sequence, i.e., such that the sequence is tilable), with as
5007 * many of the initial rows as possible satisfying the coincidence constraints.
5008 * The computation stops if we can't find any more rows or if we have found
5009 * all the rows we wanted to find.
5011 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5012 * outermost dimension to satisfy the coincidence constraints. If this
5013 * turns out to be impossible, we fall back on the general scheme above
5014 * and try to carry as many dependences as possible.
5016 * If "graph" contains both condition and conditional validity dependences,
5017 * then we need to check that that the conditional schedule constraint
5018 * is satisfied, i.e., there are no violated conditional validity dependences
5019 * that are adjacent to any non-local condition dependences.
5020 * If there are, then we mark all those adjacent condition dependences
5021 * as local and recompute the current band. Those dependences that
5022 * are marked local will then be forced to be local.
5023 * The initial computation is performed with no dependences marked as local.
5024 * If we are lucky, then there will be no violated conditional validity
5025 * dependences adjacent to any non-local condition dependences.
5026 * Otherwise, we mark some additional condition dependences as local and
5027 * recompute. We continue this process until there are no violations left or
5028 * until we are no longer able to compute a schedule.
5029 * Since there are only a finite number of dependences,
5030 * there will only be a finite number of iterations.
5032 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5033 struct isl_sched_graph *graph)
5035 int has_coincidence;
5036 int use_coincidence;
5037 int force_coincidence = 0;
5038 int check_conditional;
5040 if (sort_sccs(graph) < 0)
5041 return isl_stat_error;
5043 clear_local_edges(graph);
5044 check_conditional = need_condition_check(graph);
5045 has_coincidence = has_any_coincidence(graph);
5047 if (ctx->opt->schedule_outer_coincidence)
5048 force_coincidence = 1;
5050 use_coincidence = has_coincidence;
5051 while (graph->n_row < graph->maxvar) {
5052 isl_vec *sol;
5053 int violated;
5054 int coincident;
5056 graph->src_scc = -1;
5057 graph->dst_scc = -1;
5059 if (setup_lp(ctx, graph, use_coincidence) < 0)
5060 return isl_stat_error;
5061 sol = solve_lp(graph);
5062 if (!sol)
5063 return isl_stat_error;
5064 if (sol->size == 0) {
5065 int empty = graph->n_total_row == graph->band_start;
5067 isl_vec_free(sol);
5068 if (use_coincidence && (!force_coincidence || !empty)) {
5069 use_coincidence = 0;
5070 continue;
5072 return isl_stat_ok;
5074 coincident = !has_coincidence || use_coincidence;
5075 if (update_schedule(graph, sol, 1, coincident) < 0)
5076 return isl_stat_error;
5078 if (!check_conditional)
5079 continue;
5080 violated = has_violated_conditional_constraint(ctx, graph);
5081 if (violated < 0)
5082 return isl_stat_error;
5083 if (!violated)
5084 continue;
5085 if (reset_band(graph) < 0)
5086 return isl_stat_error;
5087 use_coincidence = has_coincidence;
5090 return isl_stat_ok;
5093 /* Compute a schedule for a connected dependence graph by considering
5094 * the graph as a whole and return the updated schedule node.
5096 * The actual schedule rows of the current band are computed by
5097 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5098 * care of integrating the band into "node" and continuing
5099 * the computation.
5101 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5102 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5104 isl_ctx *ctx;
5106 if (!node)
5107 return NULL;
5109 ctx = isl_schedule_node_get_ctx(node);
5110 if (compute_schedule_wcc_band(ctx, graph) < 0)
5111 return isl_schedule_node_free(node);
5113 return compute_schedule_finish_band(node, graph, 1);
5116 /* Clustering information used by compute_schedule_wcc_clustering.
5118 * "n" is the number of SCCs in the original dependence graph
5119 * "scc" is an array of "n" elements, each representing an SCC
5120 * of the original dependence graph. All entries in the same cluster
5121 * have the same number of schedule rows.
5122 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5123 * where each cluster is represented by the index of the first SCC
5124 * in the cluster. Initially, each SCC belongs to a cluster containing
5125 * only that SCC.
5127 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5128 * track of which SCCs need to be merged.
5130 * "cluster" contains the merged clusters of SCCs after the clustering
5131 * has completed.
5133 * "scc_node" is a temporary data structure used inside copy_partial.
5134 * For each SCC, it keeps track of the number of nodes in the SCC
5135 * that have already been copied.
5137 struct isl_clustering {
5138 int n;
5139 struct isl_sched_graph *scc;
5140 struct isl_sched_graph *cluster;
5141 int *scc_cluster;
5142 int *scc_node;
5143 int *scc_in_merge;
5146 /* Initialize the clustering data structure "c" from "graph".
5148 * In particular, allocate memory, extract the SCCs from "graph"
5149 * into c->scc, initialize scc_cluster and construct
5150 * a band of schedule rows for each SCC.
5151 * Within each SCC, there is only one SCC by definition.
5152 * Each SCC initially belongs to a cluster containing only that SCC.
5154 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5155 struct isl_sched_graph *graph)
5157 int i;
5159 c->n = graph->scc;
5160 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5161 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5162 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5163 c->scc_node = isl_calloc_array(ctx, int, c->n);
5164 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5165 if (!c->scc || !c->cluster ||
5166 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5167 return isl_stat_error;
5169 for (i = 0; i < c->n; ++i) {
5170 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5171 &edge_scc_exactly, i, &c->scc[i]) < 0)
5172 return isl_stat_error;
5173 c->scc[i].scc = 1;
5174 if (compute_maxvar(&c->scc[i]) < 0)
5175 return isl_stat_error;
5176 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5177 return isl_stat_error;
5178 c->scc_cluster[i] = i;
5181 return isl_stat_ok;
5184 /* Free all memory allocated for "c".
5186 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5188 int i;
5190 if (c->scc)
5191 for (i = 0; i < c->n; ++i)
5192 graph_free(ctx, &c->scc[i]);
5193 free(c->scc);
5194 if (c->cluster)
5195 for (i = 0; i < c->n; ++i)
5196 graph_free(ctx, &c->cluster[i]);
5197 free(c->cluster);
5198 free(c->scc_cluster);
5199 free(c->scc_node);
5200 free(c->scc_in_merge);
5203 /* Should we refrain from merging the cluster in "graph" with
5204 * any other cluster?
5205 * In particular, is its current schedule band empty and incomplete.
5207 static int bad_cluster(struct isl_sched_graph *graph)
5209 return graph->n_row < graph->maxvar &&
5210 graph->n_total_row == graph->band_start;
5213 /* Return the index of an edge in "graph" that can be used to merge
5214 * two clusters in "c".
5215 * Return graph->n_edge if no such edge can be found.
5216 * Return -1 on error.
5218 * In particular, return a proximity edge between two clusters
5219 * that is not marked "no_merge" and such that neither of the
5220 * two clusters has an incomplete, empty band.
5222 * If there are multiple such edges, then try and find the most
5223 * appropriate edge to use for merging. In particular, pick the edge
5224 * with the greatest weight. If there are multiple of those,
5225 * then pick one with the shortest distance between
5226 * the two cluster representatives.
5228 static int find_proximity(struct isl_sched_graph *graph,
5229 struct isl_clustering *c)
5231 int i, best = graph->n_edge, best_dist, best_weight;
5233 for (i = 0; i < graph->n_edge; ++i) {
5234 struct isl_sched_edge *edge = &graph->edge[i];
5235 int dist, weight;
5237 if (!is_proximity(edge))
5238 continue;
5239 if (edge->no_merge)
5240 continue;
5241 if (bad_cluster(&c->scc[edge->src->scc]) ||
5242 bad_cluster(&c->scc[edge->dst->scc]))
5243 continue;
5244 dist = c->scc_cluster[edge->dst->scc] -
5245 c->scc_cluster[edge->src->scc];
5246 if (dist == 0)
5247 continue;
5248 weight = edge->weight;
5249 if (best < graph->n_edge) {
5250 if (best_weight > weight)
5251 continue;
5252 if (best_weight == weight && best_dist <= dist)
5253 continue;
5255 best = i;
5256 best_dist = dist;
5257 best_weight = weight;
5260 return best;
5263 /* Internal data structure used in mark_merge_sccs.
5265 * "graph" is the dependence graph in which a strongly connected
5266 * component is constructed.
5267 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5268 * "src" and "dst" are the indices of the nodes that are being merged.
5270 struct isl_mark_merge_sccs_data {
5271 struct isl_sched_graph *graph;
5272 int *scc_cluster;
5273 int src;
5274 int dst;
5277 /* Check whether the cluster containing node "i" depends on the cluster
5278 * containing node "j". If "i" and "j" belong to the same cluster,
5279 * then they are taken to depend on each other to ensure that
5280 * the resulting strongly connected component consists of complete
5281 * clusters. Furthermore, if "i" and "j" are the two nodes that
5282 * are being merged, then they are taken to depend on each other as well.
5283 * Otherwise, check if there is a (conditional) validity dependence
5284 * from node[j] to node[i], forcing node[i] to follow node[j].
5286 static isl_bool cluster_follows(int i, int j, void *user)
5288 struct isl_mark_merge_sccs_data *data = user;
5289 struct isl_sched_graph *graph = data->graph;
5290 int *scc_cluster = data->scc_cluster;
5292 if (data->src == i && data->dst == j)
5293 return isl_bool_true;
5294 if (data->src == j && data->dst == i)
5295 return isl_bool_true;
5296 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5297 return isl_bool_true;
5299 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5302 /* Mark all SCCs that belong to either of the two clusters in "c"
5303 * connected by the edge in "graph" with index "edge", or to any
5304 * of the intermediate clusters.
5305 * The marking is recorded in c->scc_in_merge.
5307 * The given edge has been selected for merging two clusters,
5308 * meaning that there is at least a proximity edge between the two nodes.
5309 * However, there may also be (indirect) validity dependences
5310 * between the two nodes. When merging the two clusters, all clusters
5311 * containing one or more of the intermediate nodes along the
5312 * indirect validity dependences need to be merged in as well.
5314 * First collect all such nodes by computing the strongly connected
5315 * component (SCC) containing the two nodes connected by the edge, where
5316 * the two nodes are considered to depend on each other to make
5317 * sure they end up in the same SCC. Similarly, each node is considered
5318 * to depend on every other node in the same cluster to ensure
5319 * that the SCC consists of complete clusters.
5321 * Then the original SCCs that contain any of these nodes are marked
5322 * in c->scc_in_merge.
5324 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5325 int edge, struct isl_clustering *c)
5327 struct isl_mark_merge_sccs_data data;
5328 struct isl_tarjan_graph *g;
5329 int i;
5331 for (i = 0; i < c->n; ++i)
5332 c->scc_in_merge[i] = 0;
5334 data.graph = graph;
5335 data.scc_cluster = c->scc_cluster;
5336 data.src = graph->edge[edge].src - graph->node;
5337 data.dst = graph->edge[edge].dst - graph->node;
5339 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5340 &cluster_follows, &data);
5341 if (!g)
5342 goto error;
5344 i = g->op;
5345 if (i < 3)
5346 isl_die(ctx, isl_error_internal,
5347 "expecting at least two nodes in component",
5348 goto error);
5349 if (g->order[--i] != -1)
5350 isl_die(ctx, isl_error_internal,
5351 "expecting end of component marker", goto error);
5353 for (--i; i >= 0 && g->order[i] != -1; --i) {
5354 int scc = graph->node[g->order[i]].scc;
5355 c->scc_in_merge[scc] = 1;
5358 isl_tarjan_graph_free(g);
5359 return isl_stat_ok;
5360 error:
5361 isl_tarjan_graph_free(g);
5362 return isl_stat_error;
5365 /* Construct the identifier "cluster_i".
5367 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5369 char name[40];
5371 snprintf(name, sizeof(name), "cluster_%d", i);
5372 return isl_id_alloc(ctx, name, NULL);
5375 /* Construct the space of the cluster with index "i" containing
5376 * the strongly connected component "scc".
5378 * In particular, construct a space called cluster_i with dimension equal
5379 * to the number of schedule rows in the current band of "scc".
5381 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5383 int nvar;
5384 isl_space *space;
5385 isl_id *id;
5387 nvar = scc->n_total_row - scc->band_start;
5388 space = isl_space_copy(scc->node[0].space);
5389 space = isl_space_params(space);
5390 space = isl_space_set_from_params(space);
5391 space = isl_space_add_dims(space, isl_dim_set, nvar);
5392 id = cluster_id(isl_space_get_ctx(space), i);
5393 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5395 return space;
5398 /* Collect the domain of the graph for merging clusters.
5400 * In particular, for each cluster with first SCC "i", construct
5401 * a set in the space called cluster_i with dimension equal
5402 * to the number of schedule rows in the current band of the cluster.
5404 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5405 struct isl_sched_graph *graph, struct isl_clustering *c)
5407 int i;
5408 isl_space *space;
5409 isl_union_set *domain;
5411 space = isl_space_params_alloc(ctx, 0);
5412 domain = isl_union_set_empty(space);
5414 for (i = 0; i < graph->scc; ++i) {
5415 isl_space *space;
5417 if (!c->scc_in_merge[i])
5418 continue;
5419 if (c->scc_cluster[i] != i)
5420 continue;
5421 space = cluster_space(&c->scc[i], i);
5422 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5425 return domain;
5428 /* Construct a map from the original instances to the corresponding
5429 * cluster instance in the current bands of the clusters in "c".
5431 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5432 struct isl_sched_graph *graph, struct isl_clustering *c)
5434 int i, j;
5435 isl_space *space;
5436 isl_union_map *cluster_map;
5438 space = isl_space_params_alloc(ctx, 0);
5439 cluster_map = isl_union_map_empty(space);
5440 for (i = 0; i < graph->scc; ++i) {
5441 int start, n;
5442 isl_id *id;
5444 if (!c->scc_in_merge[i])
5445 continue;
5447 id = cluster_id(ctx, c->scc_cluster[i]);
5448 start = c->scc[i].band_start;
5449 n = c->scc[i].n_total_row - start;
5450 for (j = 0; j < c->scc[i].n; ++j) {
5451 isl_multi_aff *ma;
5452 isl_map *map;
5453 struct isl_sched_node *node = &c->scc[i].node[j];
5455 ma = node_extract_partial_schedule_multi_aff(node,
5456 start, n);
5457 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5458 isl_id_copy(id));
5459 map = isl_map_from_multi_aff(ma);
5460 cluster_map = isl_union_map_add_map(cluster_map, map);
5462 isl_id_free(id);
5465 return cluster_map;
5468 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5469 * that are not isl_edge_condition or isl_edge_conditional_validity.
5471 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5472 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5473 __isl_take isl_schedule_constraints *sc)
5475 enum isl_edge_type t;
5477 if (!sc)
5478 return NULL;
5480 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5481 if (t == isl_edge_condition ||
5482 t == isl_edge_conditional_validity)
5483 continue;
5484 if (!is_type(edge, t))
5485 continue;
5486 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
5487 isl_union_map_copy(umap));
5488 if (!sc->constraint[t])
5489 return isl_schedule_constraints_free(sc);
5492 return sc;
5495 /* Add schedule constraints of types isl_edge_condition and
5496 * isl_edge_conditional_validity to "sc" by applying "umap" to
5497 * the domains of the wrapped relations in domain and range
5498 * of the corresponding tagged constraints of "edge".
5500 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5501 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5502 __isl_take isl_schedule_constraints *sc)
5504 enum isl_edge_type t;
5505 isl_union_map *tagged;
5507 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5508 if (!is_type(edge, t))
5509 continue;
5510 if (t == isl_edge_condition)
5511 tagged = isl_union_map_copy(edge->tagged_condition);
5512 else
5513 tagged = isl_union_map_copy(edge->tagged_validity);
5514 tagged = isl_union_map_zip(tagged);
5515 tagged = isl_union_map_apply_domain(tagged,
5516 isl_union_map_copy(umap));
5517 tagged = isl_union_map_zip(tagged);
5518 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
5519 tagged);
5520 if (!sc->constraint[t])
5521 return isl_schedule_constraints_free(sc);
5524 return sc;
5527 /* Given a mapping "cluster_map" from the original instances to
5528 * the cluster instances, add schedule constraints on the clusters
5529 * to "sc" corresponding to the original constraints represented by "edge".
5531 * For non-tagged dependence constraints, the cluster constraints
5532 * are obtained by applying "cluster_map" to the edge->map.
5534 * For tagged dependence constraints, "cluster_map" needs to be applied
5535 * to the domains of the wrapped relations in domain and range
5536 * of the tagged dependence constraints. Pick out the mappings
5537 * from these domains from "cluster_map" and construct their product.
5538 * This mapping can then be applied to the pair of domains.
5540 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5541 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5542 __isl_take isl_schedule_constraints *sc)
5544 isl_union_map *umap;
5545 isl_space *space;
5546 isl_union_set *uset;
5547 isl_union_map *umap1, *umap2;
5549 if (!sc)
5550 return NULL;
5552 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5553 umap = isl_union_map_apply_domain(umap,
5554 isl_union_map_copy(cluster_map));
5555 umap = isl_union_map_apply_range(umap,
5556 isl_union_map_copy(cluster_map));
5557 sc = add_non_conditional_constraints(edge, umap, sc);
5558 isl_union_map_free(umap);
5560 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5561 return sc;
5563 space = isl_space_domain(isl_map_get_space(edge->map));
5564 uset = isl_union_set_from_set(isl_set_universe(space));
5565 umap1 = isl_union_map_copy(cluster_map);
5566 umap1 = isl_union_map_intersect_domain(umap1, uset);
5567 space = isl_space_range(isl_map_get_space(edge->map));
5568 uset = isl_union_set_from_set(isl_set_universe(space));
5569 umap2 = isl_union_map_copy(cluster_map);
5570 umap2 = isl_union_map_intersect_domain(umap2, uset);
5571 umap = isl_union_map_product(umap1, umap2);
5573 sc = add_conditional_constraints(edge, umap, sc);
5575 isl_union_map_free(umap);
5576 return sc;
5579 /* Given a mapping "cluster_map" from the original instances to
5580 * the cluster instances, add schedule constraints on the clusters
5581 * to "sc" corresponding to all edges in "graph" between nodes that
5582 * belong to SCCs that are marked for merging in "scc_in_merge".
5584 static __isl_give isl_schedule_constraints *collect_constraints(
5585 struct isl_sched_graph *graph, int *scc_in_merge,
5586 __isl_keep isl_union_map *cluster_map,
5587 __isl_take isl_schedule_constraints *sc)
5589 int i;
5591 for (i = 0; i < graph->n_edge; ++i) {
5592 struct isl_sched_edge *edge = &graph->edge[i];
5594 if (!scc_in_merge[edge->src->scc])
5595 continue;
5596 if (!scc_in_merge[edge->dst->scc])
5597 continue;
5598 sc = collect_edge_constraints(edge, cluster_map, sc);
5601 return sc;
5604 /* Construct a dependence graph for scheduling clusters with respect
5605 * to each other and store the result in "merge_graph".
5606 * In particular, the nodes of the graph correspond to the schedule
5607 * dimensions of the current bands of those clusters that have been
5608 * marked for merging in "c".
5610 * First construct an isl_schedule_constraints object for this domain
5611 * by transforming the edges in "graph" to the domain.
5612 * Then initialize a dependence graph for scheduling from these
5613 * constraints.
5615 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5616 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5618 isl_union_set *domain;
5619 isl_union_map *cluster_map;
5620 isl_schedule_constraints *sc;
5621 isl_stat r;
5623 domain = collect_domain(ctx, graph, c);
5624 sc = isl_schedule_constraints_on_domain(domain);
5625 if (!sc)
5626 return isl_stat_error;
5627 cluster_map = collect_cluster_map(ctx, graph, c);
5628 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5629 isl_union_map_free(cluster_map);
5631 r = graph_init(merge_graph, sc);
5633 isl_schedule_constraints_free(sc);
5635 return r;
5638 /* Compute the maximal number of remaining schedule rows that still need
5639 * to be computed for the nodes that belong to clusters with the maximal
5640 * dimension for the current band (i.e., the band that is to be merged).
5641 * Only clusters that are about to be merged are considered.
5642 * "maxvar" is the maximal dimension for the current band.
5643 * "c" contains information about the clusters.
5645 * Return the maximal number of remaining schedule rows or -1 on error.
5647 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5649 int i, j;
5650 int max_slack;
5652 max_slack = 0;
5653 for (i = 0; i < c->n; ++i) {
5654 int nvar;
5655 struct isl_sched_graph *scc;
5657 if (!c->scc_in_merge[i])
5658 continue;
5659 scc = &c->scc[i];
5660 nvar = scc->n_total_row - scc->band_start;
5661 if (nvar != maxvar)
5662 continue;
5663 for (j = 0; j < scc->n; ++j) {
5664 struct isl_sched_node *node = &scc->node[j];
5665 int slack;
5667 if (node_update_cmap(node) < 0)
5668 return -1;
5669 slack = node->nvar - node->rank;
5670 if (slack > max_slack)
5671 max_slack = slack;
5675 return max_slack;
5678 /* If there are any clusters where the dimension of the current band
5679 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5680 * if there are any nodes in such a cluster where the number
5681 * of remaining schedule rows that still need to be computed
5682 * is greater than "max_slack", then return the smallest current band
5683 * dimension of all these clusters. Otherwise return the original value
5684 * of "maxvar". Return -1 in case of any error.
5685 * Only clusters that are about to be merged are considered.
5686 * "c" contains information about the clusters.
5688 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5689 struct isl_clustering *c)
5691 int i, j;
5693 for (i = 0; i < c->n; ++i) {
5694 int nvar;
5695 struct isl_sched_graph *scc;
5697 if (!c->scc_in_merge[i])
5698 continue;
5699 scc = &c->scc[i];
5700 nvar = scc->n_total_row - scc->band_start;
5701 if (nvar >= maxvar)
5702 continue;
5703 for (j = 0; j < scc->n; ++j) {
5704 struct isl_sched_node *node = &scc->node[j];
5705 int slack;
5707 if (node_update_cmap(node) < 0)
5708 return -1;
5709 slack = node->nvar - node->rank;
5710 if (slack > max_slack) {
5711 maxvar = nvar;
5712 break;
5717 return maxvar;
5720 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5721 * that still need to be computed. In particular, if there is a node
5722 * in a cluster where the dimension of the current band is smaller
5723 * than merge_graph->maxvar, but the number of remaining schedule rows
5724 * is greater than that of any node in a cluster with the maximal
5725 * dimension for the current band (i.e., merge_graph->maxvar),
5726 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5727 * of those clusters. Without this adjustment, the total number of
5728 * schedule dimensions would be increased, resulting in a skewed view
5729 * of the number of coincident dimensions.
5730 * "c" contains information about the clusters.
5732 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5733 * then there is no point in attempting any merge since it will be rejected
5734 * anyway. Set merge_graph->maxvar to zero in such cases.
5736 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5737 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5739 int max_slack, maxvar;
5741 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5742 if (max_slack < 0)
5743 return isl_stat_error;
5744 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5745 if (maxvar < 0)
5746 return isl_stat_error;
5748 if (maxvar < merge_graph->maxvar) {
5749 if (isl_options_get_schedule_maximize_band_depth(ctx))
5750 merge_graph->maxvar = 0;
5751 else
5752 merge_graph->maxvar = maxvar;
5755 return isl_stat_ok;
5758 /* Return the number of coincident dimensions in the current band of "graph",
5759 * where the nodes of "graph" are assumed to be scheduled by a single band.
5761 static int get_n_coincident(struct isl_sched_graph *graph)
5763 int i;
5765 for (i = graph->band_start; i < graph->n_total_row; ++i)
5766 if (!graph->node[0].coincident[i])
5767 break;
5769 return i - graph->band_start;
5772 /* Should the clusters be merged based on the cluster schedule
5773 * in the current (and only) band of "merge_graph", given that
5774 * coincidence should be maximized?
5776 * If the number of coincident schedule dimensions in the merged band
5777 * would be less than the maximal number of coincident schedule dimensions
5778 * in any of the merged clusters, then the clusters should not be merged.
5780 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5781 struct isl_sched_graph *merge_graph)
5783 int i;
5784 int n_coincident;
5785 int max_coincident;
5787 max_coincident = 0;
5788 for (i = 0; i < c->n; ++i) {
5789 if (!c->scc_in_merge[i])
5790 continue;
5791 n_coincident = get_n_coincident(&c->scc[i]);
5792 if (n_coincident > max_coincident)
5793 max_coincident = n_coincident;
5796 n_coincident = get_n_coincident(merge_graph);
5798 return n_coincident >= max_coincident;
5801 /* Return the transformation on "node" expressed by the current (and only)
5802 * band of "merge_graph" applied to the clusters in "c".
5804 * First find the representation of "node" in its SCC in "c" and
5805 * extract the transformation expressed by the current band.
5806 * Then extract the transformation applied by "merge_graph"
5807 * to the cluster to which this SCC belongs.
5808 * Combine the two to obtain the complete transformation on the node.
5810 * Note that the range of the first transformation is an anonymous space,
5811 * while the domain of the second is named "cluster_X". The range
5812 * of the former therefore needs to be adjusted before the two
5813 * can be combined.
5815 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5816 struct isl_sched_node *node, struct isl_clustering *c,
5817 struct isl_sched_graph *merge_graph)
5819 struct isl_sched_node *scc_node, *cluster_node;
5820 int start, n;
5821 isl_id *id;
5822 isl_space *space;
5823 isl_multi_aff *ma, *ma2;
5825 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5826 start = c->scc[node->scc].band_start;
5827 n = c->scc[node->scc].n_total_row - start;
5828 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5829 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5830 cluster_node = graph_find_node(ctx, merge_graph, space);
5831 if (space && !cluster_node)
5832 isl_die(ctx, isl_error_internal, "unable to find cluster",
5833 space = isl_space_free(space));
5834 id = isl_space_get_tuple_id(space, isl_dim_set);
5835 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5836 isl_space_free(space);
5837 n = merge_graph->n_total_row;
5838 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5839 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5841 return isl_map_from_multi_aff(ma);
5844 /* Give a set of distances "set", are they bounded by a small constant
5845 * in direction "pos"?
5846 * In practice, check if they are bounded by 2 by checking that there
5847 * are no elements with a value greater than or equal to 3 or
5848 * smaller than or equal to -3.
5850 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5852 isl_bool bounded;
5853 isl_set *test;
5855 if (!set)
5856 return isl_bool_error;
5858 test = isl_set_copy(set);
5859 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5860 bounded = isl_set_is_empty(test);
5861 isl_set_free(test);
5863 if (bounded < 0 || !bounded)
5864 return bounded;
5866 test = isl_set_copy(set);
5867 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5868 bounded = isl_set_is_empty(test);
5869 isl_set_free(test);
5871 return bounded;
5874 /* Does the set "set" have a fixed (but possible parametric) value
5875 * at dimension "pos"?
5877 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5879 int n;
5880 isl_bool single;
5882 if (!set)
5883 return isl_bool_error;
5884 set = isl_set_copy(set);
5885 n = isl_set_dim(set, isl_dim_set);
5886 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5887 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5888 single = isl_set_is_singleton(set);
5889 isl_set_free(set);
5891 return single;
5894 /* Does "map" have a fixed (but possible parametric) value
5895 * at dimension "pos" of either its domain or its range?
5897 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5899 isl_set *set;
5900 isl_bool single;
5902 set = isl_map_domain(isl_map_copy(map));
5903 single = has_single_value(set, pos);
5904 isl_set_free(set);
5906 if (single < 0 || single)
5907 return single;
5909 set = isl_map_range(isl_map_copy(map));
5910 single = has_single_value(set, pos);
5911 isl_set_free(set);
5913 return single;
5916 /* Does the edge "edge" from "graph" have bounded dependence distances
5917 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5919 * Extract the complete transformations of the source and destination
5920 * nodes of the edge, apply them to the edge constraints and
5921 * compute the differences. Finally, check if these differences are bounded
5922 * in each direction.
5924 * If the dimension of the band is greater than the number of
5925 * dimensions that can be expected to be optimized by the edge
5926 * (based on its weight), then also allow the differences to be unbounded
5927 * in the remaining dimensions, but only if either the source or
5928 * the destination has a fixed value in that direction.
5929 * This allows a statement that produces values that are used by
5930 * several instances of another statement to be merged with that
5931 * other statement.
5932 * However, merging such clusters will introduce an inherently
5933 * large proximity distance inside the merged cluster, meaning
5934 * that proximity distances will no longer be optimized in
5935 * subsequent merges. These merges are therefore only allowed
5936 * after all other possible merges have been tried.
5937 * The first time such a merge is encountered, the weight of the edge
5938 * is replaced by a negative weight. The second time (i.e., after
5939 * all merges over edges with a non-negative weight have been tried),
5940 * the merge is allowed.
5942 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5943 struct isl_sched_graph *graph, struct isl_clustering *c,
5944 struct isl_sched_graph *merge_graph)
5946 int i, n, n_slack;
5947 isl_bool bounded;
5948 isl_map *map, *t;
5949 isl_set *dist;
5951 map = isl_map_copy(edge->map);
5952 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5953 map = isl_map_apply_domain(map, t);
5954 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5955 map = isl_map_apply_range(map, t);
5956 dist = isl_map_deltas(isl_map_copy(map));
5958 bounded = isl_bool_true;
5959 n = isl_set_dim(dist, isl_dim_set);
5960 n_slack = n - edge->weight;
5961 if (edge->weight < 0)
5962 n_slack -= graph->max_weight + 1;
5963 for (i = 0; i < n; ++i) {
5964 isl_bool bounded_i, singular_i;
5966 bounded_i = distance_is_bounded(dist, i);
5967 if (bounded_i < 0)
5968 goto error;
5969 if (bounded_i)
5970 continue;
5971 if (edge->weight >= 0)
5972 bounded = isl_bool_false;
5973 n_slack--;
5974 if (n_slack < 0)
5975 break;
5976 singular_i = has_singular_src_or_dst(map, i);
5977 if (singular_i < 0)
5978 goto error;
5979 if (singular_i)
5980 continue;
5981 bounded = isl_bool_false;
5982 break;
5984 if (!bounded && i >= n && edge->weight >= 0)
5985 edge->weight -= graph->max_weight + 1;
5986 isl_map_free(map);
5987 isl_set_free(dist);
5989 return bounded;
5990 error:
5991 isl_map_free(map);
5992 isl_set_free(dist);
5993 return isl_bool_error;
5996 /* Should the clusters be merged based on the cluster schedule
5997 * in the current (and only) band of "merge_graph"?
5998 * "graph" is the original dependence graph, while "c" records
5999 * which SCCs are involved in the latest merge.
6001 * In particular, is there at least one proximity constraint
6002 * that is optimized by the merge?
6004 * A proximity constraint is considered to be optimized
6005 * if the dependence distances are small.
6007 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6008 struct isl_sched_graph *graph, struct isl_clustering *c,
6009 struct isl_sched_graph *merge_graph)
6011 int i;
6013 for (i = 0; i < graph->n_edge; ++i) {
6014 struct isl_sched_edge *edge = &graph->edge[i];
6015 isl_bool bounded;
6017 if (!is_proximity(edge))
6018 continue;
6019 if (!c->scc_in_merge[edge->src->scc])
6020 continue;
6021 if (!c->scc_in_merge[edge->dst->scc])
6022 continue;
6023 if (c->scc_cluster[edge->dst->scc] ==
6024 c->scc_cluster[edge->src->scc])
6025 continue;
6026 bounded = has_bounded_distances(ctx, edge, graph, c,
6027 merge_graph);
6028 if (bounded < 0 || bounded)
6029 return bounded;
6032 return isl_bool_false;
6035 /* Should the clusters be merged based on the cluster schedule
6036 * in the current (and only) band of "merge_graph"?
6037 * "graph" is the original dependence graph, while "c" records
6038 * which SCCs are involved in the latest merge.
6040 * If the current band is empty, then the clusters should not be merged.
6042 * If the band depth should be maximized and the merge schedule
6043 * is incomplete (meaning that the dimension of some of the schedule
6044 * bands in the original schedule will be reduced), then the clusters
6045 * should not be merged.
6047 * If the schedule_maximize_coincidence option is set, then check that
6048 * the number of coincident schedule dimensions is not reduced.
6050 * Finally, only allow the merge if at least one proximity
6051 * constraint is optimized.
6053 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6054 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6056 if (merge_graph->n_total_row == merge_graph->band_start)
6057 return isl_bool_false;
6059 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6060 merge_graph->n_total_row < merge_graph->maxvar)
6061 return isl_bool_false;
6063 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6064 isl_bool ok;
6066 ok = ok_to_merge_coincident(c, merge_graph);
6067 if (ok < 0 || !ok)
6068 return ok;
6071 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6074 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6075 * of the schedule in "node" and return the result.
6077 * That is, essentially compute
6079 * T * N(first:first+n-1)
6081 * taking into account the constant term and the parameter coefficients
6082 * in "t_node".
6084 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6085 struct isl_sched_node *t_node, struct isl_sched_node *node,
6086 int first, int n)
6088 int i, j;
6089 isl_mat *t;
6090 int n_row, n_col, n_param, n_var;
6092 n_param = node->nparam;
6093 n_var = node->nvar;
6094 n_row = isl_mat_rows(t_node->sched);
6095 n_col = isl_mat_cols(node->sched);
6096 t = isl_mat_alloc(ctx, n_row, n_col);
6097 if (!t)
6098 return NULL;
6099 for (i = 0; i < n_row; ++i) {
6100 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6101 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6102 for (j = 0; j < n; ++j)
6103 isl_seq_addmul(t->row[i],
6104 t_node->sched->row[i][1 + n_param + j],
6105 node->sched->row[first + j],
6106 1 + n_param + n_var);
6108 return t;
6111 /* Apply the cluster schedule in "t_node" to the current band
6112 * schedule of the nodes in "graph".
6114 * In particular, replace the rows starting at band_start
6115 * by the result of applying the cluster schedule in "t_node"
6116 * to the original rows.
6118 * The coincidence of the schedule is determined by the coincidence
6119 * of the cluster schedule.
6121 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6122 struct isl_sched_node *t_node)
6124 int i, j;
6125 int n_new;
6126 int start, n;
6128 start = graph->band_start;
6129 n = graph->n_total_row - start;
6131 n_new = isl_mat_rows(t_node->sched);
6132 for (i = 0; i < graph->n; ++i) {
6133 struct isl_sched_node *node = &graph->node[i];
6134 isl_mat *t;
6136 t = node_transformation(ctx, t_node, node, start, n);
6137 node->sched = isl_mat_drop_rows(node->sched, start, n);
6138 node->sched = isl_mat_concat(node->sched, t);
6139 node->sched_map = isl_map_free(node->sched_map);
6140 if (!node->sched)
6141 return isl_stat_error;
6142 for (j = 0; j < n_new; ++j)
6143 node->coincident[start + j] = t_node->coincident[j];
6145 graph->n_total_row -= n;
6146 graph->n_row -= n;
6147 graph->n_total_row += n_new;
6148 graph->n_row += n_new;
6150 return isl_stat_ok;
6153 /* Merge the clusters marked for merging in "c" into a single
6154 * cluster using the cluster schedule in the current band of "merge_graph".
6155 * The representative SCC for the new cluster is the SCC with
6156 * the smallest index.
6158 * The current band schedule of each SCC in the new cluster is obtained
6159 * by applying the schedule of the corresponding original cluster
6160 * to the original band schedule.
6161 * All SCCs in the new cluster have the same number of schedule rows.
6163 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6164 struct isl_sched_graph *merge_graph)
6166 int i;
6167 int cluster = -1;
6168 isl_space *space;
6170 for (i = 0; i < c->n; ++i) {
6171 struct isl_sched_node *node;
6173 if (!c->scc_in_merge[i])
6174 continue;
6175 if (cluster < 0)
6176 cluster = i;
6177 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6178 if (!space)
6179 return isl_stat_error;
6180 node = graph_find_node(ctx, merge_graph, space);
6181 isl_space_free(space);
6182 if (!node)
6183 isl_die(ctx, isl_error_internal,
6184 "unable to find cluster",
6185 return isl_stat_error);
6186 if (transform(ctx, &c->scc[i], node) < 0)
6187 return isl_stat_error;
6188 c->scc_cluster[i] = cluster;
6191 return isl_stat_ok;
6194 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6195 * by scheduling the current cluster bands with respect to each other.
6197 * Construct a dependence graph with a space for each cluster and
6198 * with the coordinates of each space corresponding to the schedule
6199 * dimensions of the current band of that cluster.
6200 * Construct a cluster schedule in this cluster dependence graph and
6201 * apply it to the current cluster bands if it is applicable
6202 * according to ok_to_merge.
6204 * If the number of remaining schedule dimensions in a cluster
6205 * with a non-maximal current schedule dimension is greater than
6206 * the number of remaining schedule dimensions in clusters
6207 * with a maximal current schedule dimension, then restrict
6208 * the number of rows to be computed in the cluster schedule
6209 * to the minimal such non-maximal current schedule dimension.
6210 * Do this by adjusting merge_graph.maxvar.
6212 * Return isl_bool_true if the clusters have effectively been merged
6213 * into a single cluster.
6215 * Note that since the standard scheduling algorithm minimizes the maximal
6216 * distance over proximity constraints, the proximity constraints between
6217 * the merged clusters may not be optimized any further than what is
6218 * sufficient to bring the distances within the limits of the internal
6219 * proximity constraints inside the individual clusters.
6220 * It may therefore make sense to perform an additional translation step
6221 * to bring the clusters closer to each other, while maintaining
6222 * the linear part of the merging schedule found using the standard
6223 * scheduling algorithm.
6225 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6226 struct isl_clustering *c)
6228 struct isl_sched_graph merge_graph = { 0 };
6229 isl_bool merged;
6231 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6232 goto error;
6234 if (compute_maxvar(&merge_graph) < 0)
6235 goto error;
6236 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6237 goto error;
6238 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6239 goto error;
6240 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6241 if (merged && merge(ctx, c, &merge_graph) < 0)
6242 goto error;
6244 graph_free(ctx, &merge_graph);
6245 return merged;
6246 error:
6247 graph_free(ctx, &merge_graph);
6248 return isl_bool_error;
6251 /* Is there any edge marked "no_merge" between two SCCs that are
6252 * about to be merged (i.e., that are set in "scc_in_merge")?
6253 * "merge_edge" is the proximity edge along which the clusters of SCCs
6254 * are going to be merged.
6256 * If there is any edge between two SCCs with a negative weight,
6257 * while the weight of "merge_edge" is non-negative, then this
6258 * means that the edge was postponed. "merge_edge" should then
6259 * also be postponed since merging along the edge with negative weight should
6260 * be postponed until all edges with non-negative weight have been tried.
6261 * Replace the weight of "merge_edge" by a negative weight as well and
6262 * tell the caller not to attempt a merge.
6264 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6265 struct isl_sched_edge *merge_edge)
6267 int i;
6269 for (i = 0; i < graph->n_edge; ++i) {
6270 struct isl_sched_edge *edge = &graph->edge[i];
6272 if (!scc_in_merge[edge->src->scc])
6273 continue;
6274 if (!scc_in_merge[edge->dst->scc])
6275 continue;
6276 if (edge->no_merge)
6277 return 1;
6278 if (merge_edge->weight >= 0 && edge->weight < 0) {
6279 merge_edge->weight -= graph->max_weight + 1;
6280 return 1;
6284 return 0;
6287 /* Merge the two clusters in "c" connected by the edge in "graph"
6288 * with index "edge" into a single cluster.
6289 * If it turns out to be impossible to merge these two clusters,
6290 * then mark the edge as "no_merge" such that it will not be
6291 * considered again.
6293 * First mark all SCCs that need to be merged. This includes the SCCs
6294 * in the two clusters, but it may also include the SCCs
6295 * of intermediate clusters.
6296 * If there is already a no_merge edge between any pair of such SCCs,
6297 * then simply mark the current edge as no_merge as well.
6298 * Likewise, if any of those edges was postponed by has_bounded_distances,
6299 * then postpone the current edge as well.
6300 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6301 * if the clusters did not end up getting merged, unless the non-merge
6302 * is due to the fact that the edge was postponed. This postponement
6303 * can be recognized by a change in weight (from non-negative to negative).
6305 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6306 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6308 isl_bool merged;
6309 int edge_weight = graph->edge[edge].weight;
6311 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6312 return isl_stat_error;
6314 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6315 merged = isl_bool_false;
6316 else
6317 merged = try_merge(ctx, graph, c);
6318 if (merged < 0)
6319 return isl_stat_error;
6320 if (!merged && edge_weight == graph->edge[edge].weight)
6321 graph->edge[edge].no_merge = 1;
6323 return isl_stat_ok;
6326 /* Does "node" belong to the cluster identified by "cluster"?
6328 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6330 return node->cluster == cluster;
6333 /* Does "edge" connect two nodes belonging to the cluster
6334 * identified by "cluster"?
6336 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6338 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6341 /* Swap the schedule of "node1" and "node2".
6342 * Both nodes have been derived from the same node in a common parent graph.
6343 * Since the "coincident" field is shared with that node
6344 * in the parent graph, there is no need to also swap this field.
6346 static void swap_sched(struct isl_sched_node *node1,
6347 struct isl_sched_node *node2)
6349 isl_mat *sched;
6350 isl_map *sched_map;
6352 sched = node1->sched;
6353 node1->sched = node2->sched;
6354 node2->sched = sched;
6356 sched_map = node1->sched_map;
6357 node1->sched_map = node2->sched_map;
6358 node2->sched_map = sched_map;
6361 /* Copy the current band schedule from the SCCs that form the cluster
6362 * with index "pos" to the actual cluster at position "pos".
6363 * By construction, the index of the first SCC that belongs to the cluster
6364 * is also "pos".
6366 * The order of the nodes inside both the SCCs and the cluster
6367 * is assumed to be same as the order in the original "graph".
6369 * Since the SCC graphs will no longer be used after this function,
6370 * the schedules are actually swapped rather than copied.
6372 static isl_stat copy_partial(struct isl_sched_graph *graph,
6373 struct isl_clustering *c, int pos)
6375 int i, j;
6377 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6378 c->cluster[pos].n_row = c->scc[pos].n_row;
6379 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6380 j = 0;
6381 for (i = 0; i < graph->n; ++i) {
6382 int k;
6383 int s;
6385 if (graph->node[i].cluster != pos)
6386 continue;
6387 s = graph->node[i].scc;
6388 k = c->scc_node[s]++;
6389 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6390 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6391 c->cluster[pos].maxvar = c->scc[s].maxvar;
6392 ++j;
6395 return isl_stat_ok;
6398 /* Is there a (conditional) validity dependence from node[j] to node[i],
6399 * forcing node[i] to follow node[j] or do the nodes belong to the same
6400 * cluster?
6402 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6404 struct isl_sched_graph *graph = user;
6406 if (graph->node[i].cluster == graph->node[j].cluster)
6407 return isl_bool_true;
6408 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6411 /* Extract the merged clusters of SCCs in "graph", sort them, and
6412 * store them in c->clusters. Update c->scc_cluster accordingly.
6414 * First keep track of the cluster containing the SCC to which a node
6415 * belongs in the node itself.
6416 * Then extract the clusters into c->clusters, copying the current
6417 * band schedule from the SCCs that belong to the cluster.
6418 * Do this only once per cluster.
6420 * Finally, topologically sort the clusters and update c->scc_cluster
6421 * to match the new scc numbering. While the SCCs were originally
6422 * sorted already, some SCCs that depend on some other SCCs may
6423 * have been merged with SCCs that appear before these other SCCs.
6424 * A reordering may therefore be required.
6426 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6427 struct isl_clustering *c)
6429 int i;
6431 for (i = 0; i < graph->n; ++i)
6432 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6434 for (i = 0; i < graph->scc; ++i) {
6435 if (c->scc_cluster[i] != i)
6436 continue;
6437 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6438 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6439 return isl_stat_error;
6440 c->cluster[i].src_scc = -1;
6441 c->cluster[i].dst_scc = -1;
6442 if (copy_partial(graph, c, i) < 0)
6443 return isl_stat_error;
6446 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6447 return isl_stat_error;
6448 for (i = 0; i < graph->n; ++i)
6449 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6451 return isl_stat_ok;
6454 /* Compute weights on the proximity edges of "graph" that can
6455 * be used by find_proximity to find the most appropriate
6456 * proximity edge to use to merge two clusters in "c".
6457 * The weights are also used by has_bounded_distances to determine
6458 * whether the merge should be allowed.
6459 * Store the maximum of the computed weights in graph->max_weight.
6461 * The computed weight is a measure for the number of remaining schedule
6462 * dimensions that can still be completely aligned.
6463 * In particular, compute the number of equalities between
6464 * input dimensions and output dimensions in the proximity constraints.
6465 * The directions that are already handled by outer schedule bands
6466 * are projected out prior to determining this number.
6468 * Edges that will never be considered by find_proximity are ignored.
6470 static isl_stat compute_weights(struct isl_sched_graph *graph,
6471 struct isl_clustering *c)
6473 int i;
6475 graph->max_weight = 0;
6477 for (i = 0; i < graph->n_edge; ++i) {
6478 struct isl_sched_edge *edge = &graph->edge[i];
6479 struct isl_sched_node *src = edge->src;
6480 struct isl_sched_node *dst = edge->dst;
6481 isl_basic_map *hull;
6482 int n_in, n_out;
6484 if (!is_proximity(edge))
6485 continue;
6486 if (bad_cluster(&c->scc[edge->src->scc]) ||
6487 bad_cluster(&c->scc[edge->dst->scc]))
6488 continue;
6489 if (c->scc_cluster[edge->dst->scc] ==
6490 c->scc_cluster[edge->src->scc])
6491 continue;
6493 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6494 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6495 isl_mat_copy(src->ctrans));
6496 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6497 isl_mat_copy(dst->ctrans));
6498 hull = isl_basic_map_project_out(hull,
6499 isl_dim_in, 0, src->rank);
6500 hull = isl_basic_map_project_out(hull,
6501 isl_dim_out, 0, dst->rank);
6502 hull = isl_basic_map_remove_divs(hull);
6503 n_in = isl_basic_map_dim(hull, isl_dim_in);
6504 n_out = isl_basic_map_dim(hull, isl_dim_out);
6505 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6506 isl_dim_in, 0, n_in);
6507 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6508 isl_dim_out, 0, n_out);
6509 if (!hull)
6510 return isl_stat_error;
6511 edge->weight = hull->n_eq;
6512 isl_basic_map_free(hull);
6514 if (edge->weight > graph->max_weight)
6515 graph->max_weight = edge->weight;
6518 return isl_stat_ok;
6521 /* Call compute_schedule_finish_band on each of the clusters in "c"
6522 * in their topological order. This order is determined by the scc
6523 * fields of the nodes in "graph".
6524 * Combine the results in a sequence expressing the topological order.
6526 * If there is only one cluster left, then there is no need to introduce
6527 * a sequence node. Also, in this case, the cluster necessarily contains
6528 * the SCC at position 0 in the original graph and is therefore also
6529 * stored in the first cluster of "c".
6531 static __isl_give isl_schedule_node *finish_bands_clustering(
6532 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6533 struct isl_clustering *c)
6535 int i;
6536 isl_ctx *ctx;
6537 isl_union_set_list *filters;
6539 if (graph->scc == 1)
6540 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6542 ctx = isl_schedule_node_get_ctx(node);
6544 filters = extract_sccs(ctx, graph);
6545 node = isl_schedule_node_insert_sequence(node, filters);
6547 for (i = 0; i < graph->scc; ++i) {
6548 int j = c->scc_cluster[i];
6549 node = isl_schedule_node_child(node, i);
6550 node = isl_schedule_node_child(node, 0);
6551 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6552 node = isl_schedule_node_parent(node);
6553 node = isl_schedule_node_parent(node);
6556 return node;
6559 /* Compute a schedule for a connected dependence graph by first considering
6560 * each strongly connected component (SCC) in the graph separately and then
6561 * incrementally combining them into clusters.
6562 * Return the updated schedule node.
6564 * Initially, each cluster consists of a single SCC, each with its
6565 * own band schedule. The algorithm then tries to merge pairs
6566 * of clusters along a proximity edge until no more suitable
6567 * proximity edges can be found. During this merging, the schedule
6568 * is maintained in the individual SCCs.
6569 * After the merging is completed, the full resulting clusters
6570 * are extracted and in finish_bands_clustering,
6571 * compute_schedule_finish_band is called on each of them to integrate
6572 * the band into "node" and to continue the computation.
6574 * compute_weights initializes the weights that are used by find_proximity.
6576 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6577 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6579 isl_ctx *ctx;
6580 struct isl_clustering c;
6581 int i;
6583 ctx = isl_schedule_node_get_ctx(node);
6585 if (clustering_init(ctx, &c, graph) < 0)
6586 goto error;
6588 if (compute_weights(graph, &c) < 0)
6589 goto error;
6591 for (;;) {
6592 i = find_proximity(graph, &c);
6593 if (i < 0)
6594 goto error;
6595 if (i >= graph->n_edge)
6596 break;
6597 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6598 goto error;
6601 if (extract_clusters(ctx, graph, &c) < 0)
6602 goto error;
6604 node = finish_bands_clustering(node, graph, &c);
6606 clustering_free(ctx, &c);
6607 return node;
6608 error:
6609 clustering_free(ctx, &c);
6610 return isl_schedule_node_free(node);
6613 /* Compute a schedule for a connected dependence graph and return
6614 * the updated schedule node.
6616 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6617 * as many validity dependences as possible. When all validity dependences
6618 * are satisfied we extend the schedule to a full-dimensional schedule.
6620 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6621 * depending on whether the user has selected the option to try and
6622 * compute a schedule for the entire (weakly connected) component first.
6623 * If there is only a single strongly connected component (SCC), then
6624 * there is no point in trying to combine SCCs
6625 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6626 * is called instead.
6628 static __isl_give isl_schedule_node *compute_schedule_wcc(
6629 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6631 isl_ctx *ctx;
6633 if (!node)
6634 return NULL;
6636 ctx = isl_schedule_node_get_ctx(node);
6637 if (detect_sccs(ctx, graph) < 0)
6638 return isl_schedule_node_free(node);
6640 if (compute_maxvar(graph) < 0)
6641 return isl_schedule_node_free(node);
6643 if (need_feautrier_step(ctx, graph))
6644 return compute_schedule_wcc_feautrier(node, graph);
6646 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6647 return compute_schedule_wcc_whole(node, graph);
6648 else
6649 return compute_schedule_wcc_clustering(node, graph);
6652 /* Compute a schedule for each group of nodes identified by node->scc
6653 * separately and then combine them in a sequence node (or as set node
6654 * if graph->weak is set) inserted at position "node" of the schedule tree.
6655 * Return the updated schedule node.
6657 * If "wcc" is set then each of the groups belongs to a single
6658 * weakly connected component in the dependence graph so that
6659 * there is no need for compute_sub_schedule to look for weakly
6660 * connected components.
6662 static __isl_give isl_schedule_node *compute_component_schedule(
6663 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6664 int wcc)
6666 int component;
6667 isl_ctx *ctx;
6668 isl_union_set_list *filters;
6670 if (!node)
6671 return NULL;
6672 ctx = isl_schedule_node_get_ctx(node);
6674 filters = extract_sccs(ctx, graph);
6675 if (graph->weak)
6676 node = isl_schedule_node_insert_set(node, filters);
6677 else
6678 node = isl_schedule_node_insert_sequence(node, filters);
6680 for (component = 0; component < graph->scc; ++component) {
6681 node = isl_schedule_node_child(node, component);
6682 node = isl_schedule_node_child(node, 0);
6683 node = compute_sub_schedule(node, ctx, graph,
6684 &node_scc_exactly,
6685 &edge_scc_exactly, component, wcc);
6686 node = isl_schedule_node_parent(node);
6687 node = isl_schedule_node_parent(node);
6690 return node;
6693 /* Compute a schedule for the given dependence graph and insert it at "node".
6694 * Return the updated schedule node.
6696 * We first check if the graph is connected (through validity and conditional
6697 * validity dependences) and, if not, compute a schedule
6698 * for each component separately.
6699 * If the schedule_serialize_sccs option is set, then we check for strongly
6700 * connected components instead and compute a separate schedule for
6701 * each such strongly connected component.
6703 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6704 struct isl_sched_graph *graph)
6706 isl_ctx *ctx;
6708 if (!node)
6709 return NULL;
6711 ctx = isl_schedule_node_get_ctx(node);
6712 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6713 if (detect_sccs(ctx, graph) < 0)
6714 return isl_schedule_node_free(node);
6715 } else {
6716 if (detect_wccs(ctx, graph) < 0)
6717 return isl_schedule_node_free(node);
6720 if (graph->scc > 1)
6721 return compute_component_schedule(node, graph, 1);
6723 return compute_schedule_wcc(node, graph);
6726 /* Compute a schedule on sc->domain that respects the given schedule
6727 * constraints.
6729 * In particular, the schedule respects all the validity dependences.
6730 * If the default isl scheduling algorithm is used, it tries to minimize
6731 * the dependence distances over the proximity dependences.
6732 * If Feautrier's scheduling algorithm is used, the proximity dependence
6733 * distances are only minimized during the extension to a full-dimensional
6734 * schedule.
6736 * If there are any condition and conditional validity dependences,
6737 * then the conditional validity dependences may be violated inside
6738 * a tilable band, provided they have no adjacent non-local
6739 * condition dependences.
6741 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6742 __isl_take isl_schedule_constraints *sc)
6744 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6745 struct isl_sched_graph graph = { 0 };
6746 isl_schedule *sched;
6747 isl_schedule_node *node;
6748 isl_union_set *domain;
6750 sc = isl_schedule_constraints_align_params(sc);
6752 domain = isl_schedule_constraints_get_domain(sc);
6753 if (isl_union_set_n_set(domain) == 0) {
6754 isl_schedule_constraints_free(sc);
6755 return isl_schedule_from_domain(domain);
6758 if (graph_init(&graph, sc) < 0)
6759 domain = isl_union_set_free(domain);
6761 node = isl_schedule_node_from_domain(domain);
6762 node = isl_schedule_node_child(node, 0);
6763 if (graph.n > 0)
6764 node = compute_schedule(node, &graph);
6765 sched = isl_schedule_node_get_schedule(node);
6766 isl_schedule_node_free(node);
6768 graph_free(ctx, &graph);
6769 isl_schedule_constraints_free(sc);
6771 return sched;
6774 /* Compute a schedule for the given union of domains that respects
6775 * all the validity dependences and minimizes
6776 * the dependence distances over the proximity dependences.
6778 * This function is kept for backward compatibility.
6780 __isl_give isl_schedule *isl_union_set_compute_schedule(
6781 __isl_take isl_union_set *domain,
6782 __isl_take isl_union_map *validity,
6783 __isl_take isl_union_map *proximity)
6785 isl_schedule_constraints *sc;
6787 sc = isl_schedule_constraints_on_domain(domain);
6788 sc = isl_schedule_constraints_set_validity(sc, validity);
6789 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6791 return isl_schedule_constraints_compute_schedule(sc);