isl_transitive_closure.c: isl_set_overlaps: handle NULL input
[isl.git] / isl_transitive_closure.c
blob35d47d721dacab715a474227aab0c958e779b641
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl_seq.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
25 isl_map *map2;
26 int closed;
28 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
29 closed = isl_map_is_subset(map2, map);
30 isl_map_free(map2);
32 return closed;
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
37 isl_union_map *umap2;
38 int closed;
40 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
41 isl_union_map_copy(umap));
42 closed = isl_union_map_is_subset(umap2, umap);
43 isl_union_map_free(umap2);
45 return closed;
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
55 int exactly, int length)
57 isl_space *dim;
58 struct isl_basic_map *bmap;
59 unsigned d;
60 unsigned nparam;
61 int k;
62 isl_int *c;
64 if (!map)
65 return NULL;
67 dim = isl_map_get_space(map);
68 d = isl_space_dim(dim, isl_dim_in);
69 nparam = isl_space_dim(dim, isl_dim_param);
70 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
71 if (exactly) {
72 k = isl_basic_map_alloc_equality(bmap);
73 if (k < 0)
74 goto error;
75 c = bmap->eq[k];
76 } else {
77 k = isl_basic_map_alloc_inequality(bmap);
78 if (k < 0)
79 goto error;
80 c = bmap->ineq[k];
82 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
83 isl_int_set_si(c[0], -length);
84 isl_int_set_si(c[1 + nparam + d - 1], -1);
85 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
87 bmap = isl_basic_map_finalize(bmap);
88 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
90 return map;
91 error:
92 isl_basic_map_free(bmap);
93 isl_map_free(map);
94 return NULL;
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
101 * A_1 = R
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
106 * A_1 \subset R
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
112 * one.
114 static int check_power_exactness(__isl_take isl_map *map,
115 __isl_take isl_map *app)
117 int exact;
118 isl_map *app_1;
119 isl_map *app_2;
121 map = isl_map_add_dims(map, isl_dim_in, 1);
122 map = isl_map_add_dims(map, isl_dim_out, 1);
123 map = set_path_length(map, 1, 1);
125 app_1 = set_path_length(isl_map_copy(app), 1, 1);
127 exact = isl_map_is_subset(app_1, map);
128 isl_map_free(app_1);
130 if (!exact || exact < 0) {
131 isl_map_free(app);
132 isl_map_free(map);
133 return exact;
136 app_1 = set_path_length(isl_map_copy(app), 0, 1);
137 app_2 = set_path_length(app, 0, 2);
138 app_1 = isl_map_apply_range(map, app_1);
140 exact = isl_map_is_subset(app_2, app_1);
142 isl_map_free(app_1);
143 isl_map_free(app_2);
145 return exact;
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
150 * is set).
152 * If "project" is set and if "steps" can only result in acyclic paths,
153 * then we check
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
170 int project)
172 isl_map *test;
173 int exact;
174 unsigned d;
176 if (!project)
177 return check_power_exactness(map, app);
179 d = isl_map_dim(map, isl_dim_in);
180 app = set_path_length(app, 0, 1);
181 app = isl_map_project_out(app, isl_dim_in, d, 1);
182 app = isl_map_project_out(app, isl_dim_out, d, 1);
184 app = isl_map_reset_space(app, isl_map_get_space(map));
186 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
187 test = isl_map_union(test, isl_map_copy(map));
189 exact = isl_map_is_subset(app, test);
191 isl_map_free(app);
192 isl_map_free(test);
194 isl_map_free(map);
196 return exact;
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
203 * Albert Cohen.
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
211 * That is, construct
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
219 __isl_keep isl_mat *steps)
221 int i, j, k;
222 struct isl_basic_map *path = NULL;
223 unsigned d;
224 unsigned n;
225 unsigned nparam;
227 if (!dim || !steps)
228 goto error;
230 d = isl_space_dim(dim, isl_dim_in);
231 n = steps->n_row;
232 nparam = isl_space_dim(dim, isl_dim_param);
234 path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
236 for (i = 0; i < n; ++i) {
237 k = isl_basic_map_alloc_div(path);
238 if (k < 0)
239 goto error;
240 isl_assert(steps->ctx, i == k, goto error);
241 isl_int_set_si(path->div[k][0], 0);
244 for (i = 0; i < d; ++i) {
245 k = isl_basic_map_alloc_equality(path);
246 if (k < 0)
247 goto error;
248 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
249 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
250 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
251 if (i == d - 1)
252 for (j = 0; j < n; ++j)
253 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
254 else
255 for (j = 0; j < n; ++j)
256 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
257 steps->row[j][i]);
260 for (i = 0; i < n; ++i) {
261 k = isl_basic_map_alloc_inequality(path);
262 if (k < 0)
263 goto error;
264 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
265 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
268 isl_space_free(dim);
270 path = isl_basic_map_simplify(path);
271 path = isl_basic_map_finalize(path);
272 return isl_map_from_basic_map(path);
273 error:
274 isl_space_free(dim);
275 isl_basic_map_free(path);
276 return NULL;
279 #define IMPURE 0
280 #define PURE_PARAM 1
281 #define PURE_VAR 2
282 #define MIXED 3
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
288 isl_int *c, int *div_purity)
290 unsigned d;
291 unsigned n_div;
292 unsigned nparam;
293 int i;
294 int k;
295 int empty;
297 n_div = isl_basic_set_dim(bset, isl_dim_div);
298 d = isl_basic_set_dim(bset, isl_dim_set);
299 nparam = isl_basic_set_dim(bset, isl_dim_param);
301 bset = isl_basic_set_copy(bset);
302 bset = isl_basic_set_cow(bset);
303 bset = isl_basic_set_extend_constraints(bset, 0, 1);
304 k = isl_basic_set_alloc_inequality(bset);
305 if (k < 0)
306 goto error;
307 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
308 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
309 for (i = 0; i < n_div; ++i) {
310 if (div_purity[i] != PURE_PARAM)
311 continue;
312 isl_int_set(bset->ineq[k][1 + nparam + d + i],
313 c[1 + nparam + d + i]);
315 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
316 empty = isl_basic_set_is_empty(bset);
317 isl_basic_set_free(bset);
319 return empty;
320 error:
321 isl_basic_set_free(bset);
322 return -1;
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
333 int eq)
335 unsigned d;
336 unsigned n_div;
337 unsigned nparam;
338 int empty;
339 int i;
340 int p = 0, v = 0;
342 n_div = isl_basic_set_dim(bset, isl_dim_div);
343 d = isl_basic_set_dim(bset, isl_dim_set);
344 nparam = isl_basic_set_dim(bset, isl_dim_param);
346 for (i = 0; i < n_div; ++i) {
347 if (isl_int_is_zero(c[1 + nparam + d + i]))
348 continue;
349 switch (div_purity[i]) {
350 case PURE_PARAM: p = 1; break;
351 case PURE_VAR: v = 1; break;
352 default: return IMPURE;
355 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
356 return PURE_VAR;
357 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
358 return PURE_PARAM;
360 empty = parametric_constant_never_positive(bset, c, div_purity);
361 if (eq && empty >= 0 && !empty) {
362 isl_seq_neg(c, c, 1 + nparam + d + n_div);
363 empty = parametric_constant_never_positive(bset, c, div_purity);
366 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
378 int i, j;
379 int *div_purity;
380 unsigned d;
381 unsigned n_div;
382 unsigned nparam;
384 if (!bset)
385 return NULL;
387 n_div = isl_basic_set_dim(bset, isl_dim_div);
388 d = isl_basic_set_dim(bset, isl_dim_set);
389 nparam = isl_basic_set_dim(bset, isl_dim_param);
391 div_purity = isl_alloc_array(bset->ctx, int, n_div);
392 if (n_div && !div_purity)
393 return NULL;
395 for (i = 0; i < bset->n_div; ++i) {
396 int p = 0, v = 0;
397 if (isl_int_is_zero(bset->div[i][0])) {
398 div_purity[i] = IMPURE;
399 continue;
401 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
402 p = 1;
403 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
404 v = 1;
405 for (j = 0; j < i; ++j) {
406 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
407 continue;
408 switch (div_purity[j]) {
409 case PURE_PARAM: p = 1; break;
410 case PURE_VAR: v = 1; break;
411 default: p = v = 1; break;
414 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
417 return div_purity;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
422 * mapping.
424 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
426 isl_basic_map *test = NULL;
427 isl_basic_map *id = NULL;
428 int k;
429 int is_id;
431 test = isl_basic_map_copy(path);
432 test = isl_basic_map_extend_constraints(test, 1, 0);
433 k = isl_basic_map_alloc_equality(test);
434 if (k < 0)
435 goto error;
436 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
437 isl_int_set_si(test->eq[k][pos], 1);
438 id = isl_basic_map_identity(isl_basic_map_get_space(path));
439 is_id = isl_basic_map_is_equal(test, id);
440 isl_basic_map_free(test);
441 isl_basic_map_free(id);
442 return is_id;
443 error:
444 isl_basic_map_free(test);
445 return -1;
448 /* If any of the constraints is found to be impure then this function
449 * sets *impurity to 1.
451 * If impurity is NULL then we are dealing with a non-parametric set
452 * and so the constraints are obviously PURE_VAR.
454 static __isl_give isl_basic_map *add_delta_constraints(
455 __isl_take isl_basic_map *path,
456 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
457 unsigned d, int *div_purity, int eq, int *impurity)
459 int i, k;
460 int n = eq ? delta->n_eq : delta->n_ineq;
461 isl_int **delta_c = eq ? delta->eq : delta->ineq;
462 unsigned n_div;
464 n_div = isl_basic_set_dim(delta, isl_dim_div);
466 for (i = 0; i < n; ++i) {
467 isl_int *path_c;
468 int p = PURE_VAR;
469 if (impurity)
470 p = purity(delta, delta_c[i], div_purity, eq);
471 if (p < 0)
472 goto error;
473 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
474 *impurity = 1;
475 if (p == IMPURE)
476 continue;
477 if (eq && p != MIXED) {
478 k = isl_basic_map_alloc_equality(path);
479 if (k < 0)
480 goto error;
481 path_c = path->eq[k];
482 } else {
483 k = isl_basic_map_alloc_inequality(path);
484 if (k < 0)
485 goto error;
486 path_c = path->ineq[k];
488 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
489 if (p == PURE_VAR) {
490 isl_seq_cpy(path_c + off,
491 delta_c[i] + 1 + nparam, d);
492 isl_int_set(path_c[off + d], delta_c[i][0]);
493 } else if (p == PURE_PARAM) {
494 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
495 } else {
496 isl_seq_cpy(path_c + off,
497 delta_c[i] + 1 + nparam, d);
498 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
500 isl_seq_cpy(path_c + off - n_div,
501 delta_c[i] + 1 + nparam + d, n_div);
504 return path;
505 error:
506 isl_basic_map_free(path);
507 return NULL;
510 /* Given a set of offsets "delta", construct a relation of the
511 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
512 * is an overapproximation of the relations that
513 * maps an element x to any element that can be reached
514 * by taking a non-negative number of steps along any of
515 * the elements in "delta".
516 * That is, construct an approximation of
518 * { [x] -> [y] : exists f \in \delta, k \in Z :
519 * y = x + k [f, 1] and k >= 0 }
521 * For any element in this relation, the number of steps taken
522 * is equal to the difference in the final coordinates.
524 * In particular, let delta be defined as
526 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
527 * C x + C'p + c >= 0 and
528 * D x + D'p + d >= 0 }
530 * where the constraints C x + C'p + c >= 0 are such that the parametric
531 * constant term of each constraint j, "C_j x + C'_j p + c_j",
532 * can never attain positive values, then the relation is constructed as
534 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
535 * A f + k a >= 0 and B p + b >= 0 and
536 * C f + C'p + c >= 0 and k >= 1 }
537 * union { [x] -> [x] }
539 * If the zero-length paths happen to correspond exactly to the identity
540 * mapping, then we return
542 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
543 * A f + k a >= 0 and B p + b >= 0 and
544 * C f + C'p + c >= 0 and k >= 0 }
546 * instead.
548 * Existentially quantified variables in \delta are handled by
549 * classifying them as independent of the parameters, purely
550 * parameter dependent and others. Constraints containing
551 * any of the other existentially quantified variables are removed.
552 * This is safe, but leads to an additional overapproximation.
554 * If there are any impure constraints, then we also eliminate
555 * the parameters from \delta, resulting in a set
557 * \delta' = { [x] : E x + e >= 0 }
559 * and add the constraints
561 * E f + k e >= 0
563 * to the constructed relation.
565 static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
566 __isl_take isl_basic_set *delta)
568 isl_basic_map *path = NULL;
569 unsigned d;
570 unsigned n_div;
571 unsigned nparam;
572 unsigned off;
573 int i, k;
574 int is_id;
575 int *div_purity = NULL;
576 int impurity = 0;
578 if (!delta)
579 goto error;
580 n_div = isl_basic_set_dim(delta, isl_dim_div);
581 d = isl_basic_set_dim(delta, isl_dim_set);
582 nparam = isl_basic_set_dim(delta, isl_dim_param);
583 path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
584 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
585 off = 1 + nparam + 2 * (d + 1) + n_div;
587 for (i = 0; i < n_div + d + 1; ++i) {
588 k = isl_basic_map_alloc_div(path);
589 if (k < 0)
590 goto error;
591 isl_int_set_si(path->div[k][0], 0);
594 for (i = 0; i < d + 1; ++i) {
595 k = isl_basic_map_alloc_equality(path);
596 if (k < 0)
597 goto error;
598 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
599 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
600 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
601 isl_int_set_si(path->eq[k][off + i], 1);
604 div_purity = get_div_purity(delta);
605 if (n_div && !div_purity)
606 goto error;
608 path = add_delta_constraints(path, delta, off, nparam, d,
609 div_purity, 1, &impurity);
610 path = add_delta_constraints(path, delta, off, nparam, d,
611 div_purity, 0, &impurity);
612 if (impurity) {
613 isl_space *dim = isl_basic_set_get_space(delta);
614 delta = isl_basic_set_project_out(delta,
615 isl_dim_param, 0, nparam);
616 delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
617 delta = isl_basic_set_reset_space(delta, dim);
618 if (!delta)
619 goto error;
620 path = isl_basic_map_extend_constraints(path, delta->n_eq,
621 delta->n_ineq + 1);
622 path = add_delta_constraints(path, delta, off, nparam, d,
623 NULL, 1, NULL);
624 path = add_delta_constraints(path, delta, off, nparam, d,
625 NULL, 0, NULL);
626 path = isl_basic_map_gauss(path, NULL);
629 is_id = empty_path_is_identity(path, off + d);
630 if (is_id < 0)
631 goto error;
633 k = isl_basic_map_alloc_inequality(path);
634 if (k < 0)
635 goto error;
636 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
637 if (!is_id)
638 isl_int_set_si(path->ineq[k][0], -1);
639 isl_int_set_si(path->ineq[k][off + d], 1);
641 free(div_purity);
642 isl_basic_set_free(delta);
643 path = isl_basic_map_finalize(path);
644 if (is_id) {
645 isl_space_free(dim);
646 return isl_map_from_basic_map(path);
648 return isl_basic_map_union(path, isl_basic_map_identity(dim));
649 error:
650 free(div_purity);
651 isl_space_free(dim);
652 isl_basic_set_free(delta);
653 isl_basic_map_free(path);
654 return NULL;
657 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
658 * construct a map that equates the parameter to the difference
659 * in the final coordinates and imposes that this difference is positive.
660 * That is, construct
662 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
664 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
665 unsigned param)
667 struct isl_basic_map *bmap;
668 unsigned d;
669 unsigned nparam;
670 int k;
672 d = isl_space_dim(dim, isl_dim_in);
673 nparam = isl_space_dim(dim, isl_dim_param);
674 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
675 k = isl_basic_map_alloc_equality(bmap);
676 if (k < 0)
677 goto error;
678 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
679 isl_int_set_si(bmap->eq[k][1 + param], -1);
680 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
681 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
683 k = isl_basic_map_alloc_inequality(bmap);
684 if (k < 0)
685 goto error;
686 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
687 isl_int_set_si(bmap->ineq[k][1 + param], 1);
688 isl_int_set_si(bmap->ineq[k][0], -1);
690 bmap = isl_basic_map_finalize(bmap);
691 return isl_map_from_basic_map(bmap);
692 error:
693 isl_basic_map_free(bmap);
694 return NULL;
697 /* Check whether "path" is acyclic, where the last coordinates of domain
698 * and range of path encode the number of steps taken.
699 * That is, check whether
701 * { d | d = y - x and (x,y) in path }
703 * does not contain any element with positive last coordinate (positive length)
704 * and zero remaining coordinates (cycle).
706 static int is_acyclic(__isl_take isl_map *path)
708 int i;
709 int acyclic;
710 unsigned dim;
711 struct isl_set *delta;
713 delta = isl_map_deltas(path);
714 dim = isl_set_dim(delta, isl_dim_set);
715 for (i = 0; i < dim; ++i) {
716 if (i == dim -1)
717 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
718 else
719 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
722 acyclic = isl_set_is_empty(delta);
723 isl_set_free(delta);
725 return acyclic;
728 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
729 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
730 * construct a map that is an overapproximation of the map
731 * that takes an element from the space D \times Z to another
732 * element from the same space, such that the first n coordinates of the
733 * difference between them is a sum of differences between images
734 * and pre-images in one of the R_i and such that the last coordinate
735 * is equal to the number of steps taken.
736 * That is, let
738 * \Delta_i = { y - x | (x, y) in R_i }
740 * then the constructed map is an overapproximation of
742 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
743 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
745 * The elements of the singleton \Delta_i's are collected as the
746 * rows of the steps matrix. For all these \Delta_i's together,
747 * a single path is constructed.
748 * For each of the other \Delta_i's, we compute an overapproximation
749 * of the paths along elements of \Delta_i.
750 * Since each of these paths performs an addition, composition is
751 * symmetric and we can simply compose all resulting paths in any order.
753 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
754 __isl_keep isl_map *map, int *project)
756 struct isl_mat *steps = NULL;
757 struct isl_map *path = NULL;
758 unsigned d;
759 int i, j, n;
761 if (!map)
762 goto error;
764 d = isl_map_dim(map, isl_dim_in);
766 path = isl_map_identity(isl_space_copy(dim));
768 steps = isl_mat_alloc(map->ctx, map->n, d);
769 if (!steps)
770 goto error;
772 n = 0;
773 for (i = 0; i < map->n; ++i) {
774 struct isl_basic_set *delta;
776 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
778 for (j = 0; j < d; ++j) {
779 int fixed;
781 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
782 &steps->row[n][j]);
783 if (fixed < 0) {
784 isl_basic_set_free(delta);
785 goto error;
787 if (!fixed)
788 break;
792 if (j < d) {
793 path = isl_map_apply_range(path,
794 path_along_delta(isl_space_copy(dim), delta));
795 path = isl_map_coalesce(path);
796 } else {
797 isl_basic_set_free(delta);
798 ++n;
802 if (n > 0) {
803 steps->n_row = n;
804 path = isl_map_apply_range(path,
805 path_along_steps(isl_space_copy(dim), steps));
808 if (project && *project) {
809 *project = is_acyclic(isl_map_copy(path));
810 if (*project < 0)
811 goto error;
814 isl_space_free(dim);
815 isl_mat_free(steps);
816 return path;
817 error:
818 isl_space_free(dim);
819 isl_mat_free(steps);
820 isl_map_free(path);
821 return NULL;
824 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
826 isl_set *i;
827 int no_overlap;
829 if (!set1 || !set2)
830 return -1;
832 if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set,
833 set2->dim, isl_dim_set))
834 return 0;
836 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
837 no_overlap = isl_set_is_empty(i);
838 isl_set_free(i);
840 return no_overlap < 0 ? -1 : !no_overlap;
843 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
844 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
845 * construct a map that is an overapproximation of the map
846 * that takes an element from the dom R \times Z to an
847 * element from ran R \times Z, such that the first n coordinates of the
848 * difference between them is a sum of differences between images
849 * and pre-images in one of the R_i and such that the last coordinate
850 * is equal to the number of steps taken.
851 * That is, let
853 * \Delta_i = { y - x | (x, y) in R_i }
855 * then the constructed map is an overapproximation of
857 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
858 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
859 * x in dom R and x + d in ran R and
860 * \sum_i k_i >= 1 }
862 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
863 __isl_keep isl_map *map, int *exact, int project)
865 struct isl_set *domain = NULL;
866 struct isl_set *range = NULL;
867 struct isl_map *app = NULL;
868 struct isl_map *path = NULL;
870 domain = isl_map_domain(isl_map_copy(map));
871 domain = isl_set_coalesce(domain);
872 range = isl_map_range(isl_map_copy(map));
873 range = isl_set_coalesce(range);
874 if (!isl_set_overlaps(domain, range)) {
875 isl_set_free(domain);
876 isl_set_free(range);
877 isl_space_free(dim);
879 map = isl_map_copy(map);
880 map = isl_map_add_dims(map, isl_dim_in, 1);
881 map = isl_map_add_dims(map, isl_dim_out, 1);
882 map = set_path_length(map, 1, 1);
883 return map;
885 app = isl_map_from_domain_and_range(domain, range);
886 app = isl_map_add_dims(app, isl_dim_in, 1);
887 app = isl_map_add_dims(app, isl_dim_out, 1);
889 path = construct_extended_path(isl_space_copy(dim), map,
890 exact && *exact ? &project : NULL);
891 app = isl_map_intersect(app, path);
893 if (exact && *exact &&
894 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
895 project)) < 0)
896 goto error;
898 isl_space_free(dim);
899 app = set_path_length(app, 0, 1);
900 return app;
901 error:
902 isl_space_free(dim);
903 isl_map_free(app);
904 return NULL;
907 /* Call construct_component and, if "project" is set, project out
908 * the final coordinates.
910 static __isl_give isl_map *construct_projected_component(
911 __isl_take isl_space *dim,
912 __isl_keep isl_map *map, int *exact, int project)
914 isl_map *app;
915 unsigned d;
917 if (!dim)
918 return NULL;
919 d = isl_space_dim(dim, isl_dim_in);
921 app = construct_component(dim, map, exact, project);
922 if (project) {
923 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
924 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
926 return app;
929 /* Compute an extended version, i.e., with path lengths, of
930 * an overapproximation of the transitive closure of "bmap"
931 * with path lengths greater than or equal to zero and with
932 * domain and range equal to "dom".
934 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
935 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
937 int project = 1;
938 isl_map *path;
939 isl_map *map;
940 isl_map *app;
942 dom = isl_set_add_dims(dom, isl_dim_set, 1);
943 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
944 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
945 path = construct_extended_path(dim, map, &project);
946 app = isl_map_intersect(app, path);
948 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
949 goto error;
951 return app;
952 error:
953 isl_map_free(app);
954 return NULL;
957 /* Check whether qc has any elements of length at least one
958 * with domain and/or range outside of dom and ran.
960 static int has_spurious_elements(__isl_keep isl_map *qc,
961 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
963 isl_set *s;
964 int subset;
965 unsigned d;
967 if (!qc || !dom || !ran)
968 return -1;
970 d = isl_map_dim(qc, isl_dim_in);
972 qc = isl_map_copy(qc);
973 qc = set_path_length(qc, 0, 1);
974 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
975 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
977 s = isl_map_domain(isl_map_copy(qc));
978 subset = isl_set_is_subset(s, dom);
979 isl_set_free(s);
980 if (subset < 0)
981 goto error;
982 if (!subset) {
983 isl_map_free(qc);
984 return 1;
987 s = isl_map_range(qc);
988 subset = isl_set_is_subset(s, ran);
989 isl_set_free(s);
991 return subset < 0 ? -1 : !subset;
992 error:
993 isl_map_free(qc);
994 return -1;
997 #define LEFT 2
998 #define RIGHT 1
1000 /* For each basic map in "map", except i, check whether it combines
1001 * with the transitive closure that is reflexive on C combines
1002 * to the left and to the right.
1004 * In particular, if
1006 * dom map_j \subseteq C
1008 * then right[j] is set to 1. Otherwise, if
1010 * ran map_i \cap dom map_j = \emptyset
1012 * then right[j] is set to 0. Otherwise, composing to the right
1013 * is impossible.
1015 * Similar, for composing to the left, we have if
1017 * ran map_j \subseteq C
1019 * then left[j] is set to 1. Otherwise, if
1021 * dom map_i \cap ran map_j = \emptyset
1023 * then left[j] is set to 0. Otherwise, composing to the left
1024 * is impossible.
1026 * The return value is or'd with LEFT if composing to the left
1027 * is possible and with RIGHT if composing to the right is possible.
1029 static int composability(__isl_keep isl_set *C, int i,
1030 isl_set **dom, isl_set **ran, int *left, int *right,
1031 __isl_keep isl_map *map)
1033 int j;
1034 int ok;
1036 ok = LEFT | RIGHT;
1037 for (j = 0; j < map->n && ok; ++j) {
1038 int overlaps, subset;
1039 if (j == i)
1040 continue;
1042 if (ok & RIGHT) {
1043 if (!dom[j])
1044 dom[j] = isl_set_from_basic_set(
1045 isl_basic_map_domain(
1046 isl_basic_map_copy(map->p[j])));
1047 if (!dom[j])
1048 return -1;
1049 overlaps = isl_set_overlaps(ran[i], dom[j]);
1050 if (overlaps < 0)
1051 return -1;
1052 if (!overlaps)
1053 right[j] = 0;
1054 else {
1055 subset = isl_set_is_subset(dom[j], C);
1056 if (subset < 0)
1057 return -1;
1058 if (subset)
1059 right[j] = 1;
1060 else
1061 ok &= ~RIGHT;
1065 if (ok & LEFT) {
1066 if (!ran[j])
1067 ran[j] = isl_set_from_basic_set(
1068 isl_basic_map_range(
1069 isl_basic_map_copy(map->p[j])));
1070 if (!ran[j])
1071 return -1;
1072 overlaps = isl_set_overlaps(dom[i], ran[j]);
1073 if (overlaps < 0)
1074 return -1;
1075 if (!overlaps)
1076 left[j] = 0;
1077 else {
1078 subset = isl_set_is_subset(ran[j], C);
1079 if (subset < 0)
1080 return -1;
1081 if (subset)
1082 left[j] = 1;
1083 else
1084 ok &= ~LEFT;
1089 return ok;
1092 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1094 map = isl_map_reset(map, isl_dim_in);
1095 map = isl_map_reset(map, isl_dim_out);
1096 return map;
1099 /* Return a map that is a union of the basic maps in "map", except i,
1100 * composed to left and right with qc based on the entries of "left"
1101 * and "right".
1103 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1104 __isl_take isl_map *qc, int *left, int *right)
1106 int j;
1107 isl_map *comp;
1109 comp = isl_map_empty(isl_map_get_space(map));
1110 for (j = 0; j < map->n; ++j) {
1111 isl_map *map_j;
1113 if (j == i)
1114 continue;
1116 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1117 map_j = anonymize(map_j);
1118 if (left && left[j])
1119 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1120 if (right && right[j])
1121 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1122 comp = isl_map_union(comp, map_j);
1125 comp = isl_map_compute_divs(comp);
1126 comp = isl_map_coalesce(comp);
1128 isl_map_free(qc);
1130 return comp;
1133 /* Compute the transitive closure of "map" incrementally by
1134 * computing
1136 * map_i^+ \cup qc^+
1138 * or
1140 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1142 * or
1144 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1146 * depending on whether left or right are NULL.
1148 static __isl_give isl_map *compute_incremental(
1149 __isl_take isl_space *dim, __isl_keep isl_map *map,
1150 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1152 isl_map *map_i;
1153 isl_map *tc;
1154 isl_map *rtc = NULL;
1156 if (!map)
1157 goto error;
1158 isl_assert(map->ctx, left || right, goto error);
1160 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1161 tc = construct_projected_component(isl_space_copy(dim), map_i,
1162 exact, 1);
1163 isl_map_free(map_i);
1165 if (*exact)
1166 qc = isl_map_transitive_closure(qc, exact);
1168 if (!*exact) {
1169 isl_space_free(dim);
1170 isl_map_free(tc);
1171 isl_map_free(qc);
1172 return isl_map_universe(isl_map_get_space(map));
1175 if (!left || !right)
1176 rtc = isl_map_union(isl_map_copy(tc),
1177 isl_map_identity(isl_map_get_space(tc)));
1178 if (!right)
1179 qc = isl_map_apply_range(rtc, qc);
1180 if (!left)
1181 qc = isl_map_apply_range(qc, rtc);
1182 qc = isl_map_union(tc, qc);
1184 isl_space_free(dim);
1186 return qc;
1187 error:
1188 isl_space_free(dim);
1189 isl_map_free(qc);
1190 return NULL;
1193 /* Given a map "map", try to find a basic map such that
1194 * map^+ can be computed as
1196 * map^+ = map_i^+ \cup
1197 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1199 * with C the simple hull of the domain and range of the input map.
1200 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1201 * and by intersecting domain and range with C.
1202 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1203 * Also, we only use the incremental computation if all the transitive
1204 * closures are exact and if the number of basic maps in the union,
1205 * after computing the integer divisions, is smaller than the number
1206 * of basic maps in the input map.
1208 static int incemental_on_entire_domain(__isl_keep isl_space *dim,
1209 __isl_keep isl_map *map,
1210 isl_set **dom, isl_set **ran, int *left, int *right,
1211 __isl_give isl_map **res)
1213 int i;
1214 isl_set *C;
1215 unsigned d;
1217 *res = NULL;
1219 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1220 isl_map_range(isl_map_copy(map)));
1221 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1222 if (!C)
1223 return -1;
1224 if (C->n != 1) {
1225 isl_set_free(C);
1226 return 0;
1229 d = isl_map_dim(map, isl_dim_in);
1231 for (i = 0; i < map->n; ++i) {
1232 isl_map *qc;
1233 int exact_i, spurious;
1234 int j;
1235 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1236 isl_basic_map_copy(map->p[i])));
1237 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1238 isl_basic_map_copy(map->p[i])));
1239 qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
1240 map->p[i], &exact_i);
1241 if (!qc)
1242 goto error;
1243 if (!exact_i) {
1244 isl_map_free(qc);
1245 continue;
1247 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1248 if (spurious) {
1249 isl_map_free(qc);
1250 if (spurious < 0)
1251 goto error;
1252 continue;
1254 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1255 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1256 qc = isl_map_compute_divs(qc);
1257 for (j = 0; j < map->n; ++j)
1258 left[j] = right[j] = 1;
1259 qc = compose(map, i, qc, left, right);
1260 if (!qc)
1261 goto error;
1262 if (qc->n >= map->n) {
1263 isl_map_free(qc);
1264 continue;
1266 *res = compute_incremental(isl_space_copy(dim), map, i, qc,
1267 left, right, &exact_i);
1268 if (!*res)
1269 goto error;
1270 if (exact_i)
1271 break;
1272 isl_map_free(*res);
1273 *res = NULL;
1276 isl_set_free(C);
1278 return *res != NULL;
1279 error:
1280 isl_set_free(C);
1281 return -1;
1284 /* Try and compute the transitive closure of "map" as
1286 * map^+ = map_i^+ \cup
1287 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1289 * with C either the simple hull of the domain and range of the entire
1290 * map or the simple hull of domain and range of map_i.
1292 static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
1293 __isl_keep isl_map *map, int *exact, int project)
1295 int i;
1296 isl_set **dom = NULL;
1297 isl_set **ran = NULL;
1298 int *left = NULL;
1299 int *right = NULL;
1300 isl_set *C;
1301 unsigned d;
1302 isl_map *res = NULL;
1304 if (!project)
1305 return construct_projected_component(dim, map, exact, project);
1307 if (!map)
1308 goto error;
1309 if (map->n <= 1)
1310 return construct_projected_component(dim, map, exact, project);
1312 d = isl_map_dim(map, isl_dim_in);
1314 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1315 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1316 left = isl_calloc_array(map->ctx, int, map->n);
1317 right = isl_calloc_array(map->ctx, int, map->n);
1318 if (!ran || !dom || !left || !right)
1319 goto error;
1321 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1322 goto error;
1324 for (i = 0; !res && i < map->n; ++i) {
1325 isl_map *qc;
1326 int exact_i, spurious, comp;
1327 if (!dom[i])
1328 dom[i] = isl_set_from_basic_set(
1329 isl_basic_map_domain(
1330 isl_basic_map_copy(map->p[i])));
1331 if (!dom[i])
1332 goto error;
1333 if (!ran[i])
1334 ran[i] = isl_set_from_basic_set(
1335 isl_basic_map_range(
1336 isl_basic_map_copy(map->p[i])));
1337 if (!ran[i])
1338 goto error;
1339 C = isl_set_union(isl_set_copy(dom[i]),
1340 isl_set_copy(ran[i]));
1341 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1342 if (!C)
1343 goto error;
1344 if (C->n != 1) {
1345 isl_set_free(C);
1346 continue;
1348 comp = composability(C, i, dom, ran, left, right, map);
1349 if (!comp || comp < 0) {
1350 isl_set_free(C);
1351 if (comp < 0)
1352 goto error;
1353 continue;
1355 qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
1356 if (!qc)
1357 goto error;
1358 if (!exact_i) {
1359 isl_map_free(qc);
1360 continue;
1362 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1363 if (spurious) {
1364 isl_map_free(qc);
1365 if (spurious < 0)
1366 goto error;
1367 continue;
1369 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1370 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1371 qc = isl_map_compute_divs(qc);
1372 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1373 (comp & RIGHT) ? right : NULL);
1374 if (!qc)
1375 goto error;
1376 if (qc->n >= map->n) {
1377 isl_map_free(qc);
1378 continue;
1380 res = compute_incremental(isl_space_copy(dim), map, i, qc,
1381 (comp & LEFT) ? left : NULL,
1382 (comp & RIGHT) ? right : NULL, &exact_i);
1383 if (!res)
1384 goto error;
1385 if (exact_i)
1386 break;
1387 isl_map_free(res);
1388 res = NULL;
1391 for (i = 0; i < map->n; ++i) {
1392 isl_set_free(dom[i]);
1393 isl_set_free(ran[i]);
1395 free(dom);
1396 free(ran);
1397 free(left);
1398 free(right);
1400 if (res) {
1401 isl_space_free(dim);
1402 return res;
1405 return construct_projected_component(dim, map, exact, project);
1406 error:
1407 if (dom)
1408 for (i = 0; i < map->n; ++i)
1409 isl_set_free(dom[i]);
1410 free(dom);
1411 if (ran)
1412 for (i = 0; i < map->n; ++i)
1413 isl_set_free(ran[i]);
1414 free(ran);
1415 free(left);
1416 free(right);
1417 isl_space_free(dim);
1418 return NULL;
1421 /* Given an array of sets "set", add "dom" at position "pos"
1422 * and search for elements at earlier positions that overlap with "dom".
1423 * If any can be found, then merge all of them, together with "dom", into
1424 * a single set and assign the union to the first in the array,
1425 * which becomes the new group leader for all groups involved in the merge.
1426 * During the search, we only consider group leaders, i.e., those with
1427 * group[i] = i, as the other sets have already been combined
1428 * with one of the group leaders.
1430 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1432 int i;
1434 group[pos] = pos;
1435 set[pos] = isl_set_copy(dom);
1437 for (i = pos - 1; i >= 0; --i) {
1438 int o;
1440 if (group[i] != i)
1441 continue;
1443 o = isl_set_overlaps(set[i], dom);
1444 if (o < 0)
1445 goto error;
1446 if (!o)
1447 continue;
1449 set[i] = isl_set_union(set[i], set[group[pos]]);
1450 set[group[pos]] = NULL;
1451 if (!set[i])
1452 goto error;
1453 group[group[pos]] = i;
1454 group[pos] = i;
1457 isl_set_free(dom);
1458 return 0;
1459 error:
1460 isl_set_free(dom);
1461 return -1;
1464 /* Replace each entry in the n by n grid of maps by the cross product
1465 * with the relation { [i] -> [i + 1] }.
1467 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1469 int i, j, k;
1470 isl_space *dim;
1471 isl_basic_map *bstep;
1472 isl_map *step;
1473 unsigned nparam;
1475 if (!map)
1476 return -1;
1478 dim = isl_map_get_space(map);
1479 nparam = isl_space_dim(dim, isl_dim_param);
1480 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1481 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1482 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1483 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1484 bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
1485 k = isl_basic_map_alloc_equality(bstep);
1486 if (k < 0) {
1487 isl_basic_map_free(bstep);
1488 return -1;
1490 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1491 isl_int_set_si(bstep->eq[k][0], 1);
1492 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1493 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1494 bstep = isl_basic_map_finalize(bstep);
1495 step = isl_map_from_basic_map(bstep);
1497 for (i = 0; i < n; ++i)
1498 for (j = 0; j < n; ++j)
1499 grid[i][j] = isl_map_product(grid[i][j],
1500 isl_map_copy(step));
1502 isl_map_free(step);
1504 return 0;
1507 /* The core of the Floyd-Warshall algorithm.
1508 * Updates the given n x x matrix of relations in place.
1510 * The algorithm iterates over all vertices. In each step, the whole
1511 * matrix is updated to include all paths that go to the current vertex,
1512 * possibly stay there a while (including passing through earlier vertices)
1513 * and then come back. At the start of each iteration, the diagonal
1514 * element corresponding to the current vertex is replaced by its
1515 * transitive closure to account for all indirect paths that stay
1516 * in the current vertex.
1518 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1520 int r, p, q;
1522 for (r = 0; r < n; ++r) {
1523 int r_exact;
1524 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1525 (exact && *exact) ? &r_exact : NULL);
1526 if (exact && *exact && !r_exact)
1527 *exact = 0;
1529 for (p = 0; p < n; ++p)
1530 for (q = 0; q < n; ++q) {
1531 isl_map *loop;
1532 if (p == r && q == r)
1533 continue;
1534 loop = isl_map_apply_range(
1535 isl_map_copy(grid[p][r]),
1536 isl_map_copy(grid[r][q]));
1537 grid[p][q] = isl_map_union(grid[p][q], loop);
1538 loop = isl_map_apply_range(
1539 isl_map_copy(grid[p][r]),
1540 isl_map_apply_range(
1541 isl_map_copy(grid[r][r]),
1542 isl_map_copy(grid[r][q])));
1543 grid[p][q] = isl_map_union(grid[p][q], loop);
1544 grid[p][q] = isl_map_coalesce(grid[p][q]);
1549 /* Given a partition of the domains and ranges of the basic maps in "map",
1550 * apply the Floyd-Warshall algorithm with the elements in the partition
1551 * as vertices.
1553 * In particular, there are "n" elements in the partition and "group" is
1554 * an array of length 2 * map->n with entries in [0,n-1].
1556 * We first construct a matrix of relations based on the partition information,
1557 * apply Floyd-Warshall on this matrix of relations and then take the
1558 * union of all entries in the matrix as the final result.
1560 * If we are actually computing the power instead of the transitive closure,
1561 * i.e., when "project" is not set, then the result should have the
1562 * path lengths encoded as the difference between an extra pair of
1563 * coordinates. We therefore apply the nested transitive closures
1564 * to relations that include these lengths. In particular, we replace
1565 * the input relation by the cross product with the unit length relation
1566 * { [i] -> [i + 1] }.
1568 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
1569 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1571 int i, j, k;
1572 isl_map ***grid = NULL;
1573 isl_map *app;
1575 if (!map)
1576 goto error;
1578 if (n == 1) {
1579 free(group);
1580 return incremental_closure(dim, map, exact, project);
1583 grid = isl_calloc_array(map->ctx, isl_map **, n);
1584 if (!grid)
1585 goto error;
1586 for (i = 0; i < n; ++i) {
1587 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1588 if (!grid[i])
1589 goto error;
1590 for (j = 0; j < n; ++j)
1591 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1594 for (k = 0; k < map->n; ++k) {
1595 i = group[2 * k];
1596 j = group[2 * k + 1];
1597 grid[i][j] = isl_map_union(grid[i][j],
1598 isl_map_from_basic_map(
1599 isl_basic_map_copy(map->p[k])));
1602 if (!project && add_length(map, grid, n) < 0)
1603 goto error;
1605 floyd_warshall_iterate(grid, n, exact);
1607 app = isl_map_empty(isl_map_get_space(map));
1609 for (i = 0; i < n; ++i) {
1610 for (j = 0; j < n; ++j)
1611 app = isl_map_union(app, grid[i][j]);
1612 free(grid[i]);
1614 free(grid);
1616 free(group);
1617 isl_space_free(dim);
1619 return app;
1620 error:
1621 if (grid)
1622 for (i = 0; i < n; ++i) {
1623 if (!grid[i])
1624 continue;
1625 for (j = 0; j < n; ++j)
1626 isl_map_free(grid[i][j]);
1627 free(grid[i]);
1629 free(grid);
1630 free(group);
1631 isl_space_free(dim);
1632 return NULL;
1635 /* Partition the domains and ranges of the n basic relations in list
1636 * into disjoint cells.
1638 * To find the partition, we simply consider all of the domains
1639 * and ranges in turn and combine those that overlap.
1640 * "set" contains the partition elements and "group" indicates
1641 * to which partition element a given domain or range belongs.
1642 * The domain of basic map i corresponds to element 2 * i in these arrays,
1643 * while the domain corresponds to element 2 * i + 1.
1644 * During the construction group[k] is either equal to k,
1645 * in which case set[k] contains the union of all the domains and
1646 * ranges in the corresponding group, or is equal to some l < k,
1647 * with l another domain or range in the same group.
1649 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1650 isl_set ***set, int *n_group)
1652 int i;
1653 int *group = NULL;
1654 int g;
1656 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1657 group = isl_alloc_array(ctx, int, 2 * n);
1659 if (!*set || !group)
1660 goto error;
1662 for (i = 0; i < n; ++i) {
1663 isl_set *dom;
1664 dom = isl_set_from_basic_set(isl_basic_map_domain(
1665 isl_basic_map_copy(list[i])));
1666 if (merge(*set, group, dom, 2 * i) < 0)
1667 goto error;
1668 dom = isl_set_from_basic_set(isl_basic_map_range(
1669 isl_basic_map_copy(list[i])));
1670 if (merge(*set, group, dom, 2 * i + 1) < 0)
1671 goto error;
1674 g = 0;
1675 for (i = 0; i < 2 * n; ++i)
1676 if (group[i] == i) {
1677 if (g != i) {
1678 (*set)[g] = (*set)[i];
1679 (*set)[i] = NULL;
1681 group[i] = g++;
1682 } else
1683 group[i] = group[group[i]];
1685 *n_group = g;
1687 return group;
1688 error:
1689 if (*set) {
1690 for (i = 0; i < 2 * n; ++i)
1691 isl_set_free((*set)[i]);
1692 free(*set);
1693 *set = NULL;
1695 free(group);
1696 return NULL;
1699 /* Check if the domains and ranges of the basic maps in "map" can
1700 * be partitioned, and if so, apply Floyd-Warshall on the elements
1701 * of the partition. Note that we also apply this algorithm
1702 * if we want to compute the power, i.e., when "project" is not set.
1703 * However, the results are unlikely to be exact since the recursive
1704 * calls inside the Floyd-Warshall algorithm typically result in
1705 * non-linear path lengths quite quickly.
1707 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
1708 __isl_keep isl_map *map, int *exact, int project)
1710 int i;
1711 isl_set **set = NULL;
1712 int *group = NULL;
1713 int n;
1715 if (!map)
1716 goto error;
1717 if (map->n <= 1)
1718 return incremental_closure(dim, map, exact, project);
1720 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1721 if (!group)
1722 goto error;
1724 for (i = 0; i < 2 * map->n; ++i)
1725 isl_set_free(set[i]);
1727 free(set);
1729 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1730 error:
1731 isl_space_free(dim);
1732 return NULL;
1735 /* Structure for representing the nodes of the graph of which
1736 * strongly connected components are being computed.
1738 * list contains the actual nodes
1739 * check_closed is set if we may have used the fact that
1740 * a pair of basic maps can be interchanged
1742 struct isl_tc_follows_data {
1743 isl_basic_map **list;
1744 int check_closed;
1747 /* Check whether in the computation of the transitive closure
1748 * "list[i]" (R_1) should follow (or be part of the same component as)
1749 * "list[j]" (R_2).
1751 * That is check whether
1753 * R_1 \circ R_2
1755 * is a subset of
1757 * R_2 \circ R_1
1759 * If so, then there is no reason for R_1 to immediately follow R_2
1760 * in any path.
1762 * *check_closed is set if the subset relation holds while
1763 * R_1 \circ R_2 is not empty.
1765 static int basic_map_follows(int i, int j, void *user)
1767 struct isl_tc_follows_data *data = user;
1768 struct isl_map *map12 = NULL;
1769 struct isl_map *map21 = NULL;
1770 int subset;
1772 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1773 data->list[j]->dim, isl_dim_out))
1774 return 0;
1776 map21 = isl_map_from_basic_map(
1777 isl_basic_map_apply_range(
1778 isl_basic_map_copy(data->list[j]),
1779 isl_basic_map_copy(data->list[i])));
1780 subset = isl_map_is_empty(map21);
1781 if (subset < 0)
1782 goto error;
1783 if (subset) {
1784 isl_map_free(map21);
1785 return 0;
1788 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1789 data->list[i]->dim, isl_dim_out) ||
1790 !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in,
1791 data->list[j]->dim, isl_dim_out)) {
1792 isl_map_free(map21);
1793 return 1;
1796 map12 = isl_map_from_basic_map(
1797 isl_basic_map_apply_range(
1798 isl_basic_map_copy(data->list[i]),
1799 isl_basic_map_copy(data->list[j])));
1801 subset = isl_map_is_subset(map21, map12);
1803 isl_map_free(map12);
1804 isl_map_free(map21);
1806 if (subset)
1807 data->check_closed = 1;
1809 return subset < 0 ? -1 : !subset;
1810 error:
1811 isl_map_free(map21);
1812 return -1;
1815 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1816 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1817 * construct a map that is an overapproximation of the map
1818 * that takes an element from the dom R \times Z to an
1819 * element from ran R \times Z, such that the first n coordinates of the
1820 * difference between them is a sum of differences between images
1821 * and pre-images in one of the R_i and such that the last coordinate
1822 * is equal to the number of steps taken.
1823 * If "project" is set, then these final coordinates are not included,
1824 * i.e., a relation of type Z^n -> Z^n is returned.
1825 * That is, let
1827 * \Delta_i = { y - x | (x, y) in R_i }
1829 * then the constructed map is an overapproximation of
1831 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1832 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1833 * x in dom R and x + d in ran R }
1835 * or
1837 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1838 * d = (\sum_i k_i \delta_i) and
1839 * x in dom R and x + d in ran R }
1841 * if "project" is set.
1843 * We first split the map into strongly connected components, perform
1844 * the above on each component and then join the results in the correct
1845 * order, at each join also taking in the union of both arguments
1846 * to allow for paths that do not go through one of the two arguments.
1848 static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
1849 __isl_keep isl_map *map, int *exact, int project)
1851 int i, n, c;
1852 struct isl_map *path = NULL;
1853 struct isl_tc_follows_data data;
1854 struct isl_tarjan_graph *g = NULL;
1855 int *orig_exact;
1856 int local_exact;
1858 if (!map)
1859 goto error;
1860 if (map->n <= 1)
1861 return floyd_warshall(dim, map, exact, project);
1863 data.list = map->p;
1864 data.check_closed = 0;
1865 g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1866 if (!g)
1867 goto error;
1869 orig_exact = exact;
1870 if (data.check_closed && !exact)
1871 exact = &local_exact;
1873 c = 0;
1874 i = 0;
1875 n = map->n;
1876 if (project)
1877 path = isl_map_empty(isl_map_get_space(map));
1878 else
1879 path = isl_map_empty(isl_space_copy(dim));
1880 path = anonymize(path);
1881 while (n) {
1882 struct isl_map *comp;
1883 isl_map *path_comp, *path_comb;
1884 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1885 while (g->order[i] != -1) {
1886 comp = isl_map_add_basic_map(comp,
1887 isl_basic_map_copy(map->p[g->order[i]]));
1888 --n;
1889 ++i;
1891 path_comp = floyd_warshall(isl_space_copy(dim),
1892 comp, exact, project);
1893 path_comp = anonymize(path_comp);
1894 path_comb = isl_map_apply_range(isl_map_copy(path),
1895 isl_map_copy(path_comp));
1896 path = isl_map_union(path, path_comp);
1897 path = isl_map_union(path, path_comb);
1898 isl_map_free(comp);
1899 ++i;
1900 ++c;
1903 if (c > 1 && data.check_closed && !*exact) {
1904 int closed;
1906 closed = isl_map_is_transitively_closed(path);
1907 if (closed < 0)
1908 goto error;
1909 if (!closed) {
1910 isl_tarjan_graph_free(g);
1911 isl_map_free(path);
1912 return floyd_warshall(dim, map, orig_exact, project);
1916 isl_tarjan_graph_free(g);
1917 isl_space_free(dim);
1919 return path;
1920 error:
1921 isl_tarjan_graph_free(g);
1922 isl_space_free(dim);
1923 isl_map_free(path);
1924 return NULL;
1927 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1928 * construct a map that is an overapproximation of the map
1929 * that takes an element from the space D to another
1930 * element from the same space, such that the difference between
1931 * them is a strictly positive sum of differences between images
1932 * and pre-images in one of the R_i.
1933 * The number of differences in the sum is equated to parameter "param".
1934 * That is, let
1936 * \Delta_i = { y - x | (x, y) in R_i }
1938 * then the constructed map is an overapproximation of
1940 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1941 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1942 * or
1944 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1945 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1947 * if "project" is set.
1949 * If "project" is not set, then
1950 * we construct an extended mapping with an extra coordinate
1951 * that indicates the number of steps taken. In particular,
1952 * the difference in the last coordinate is equal to the number
1953 * of steps taken to move from a domain element to the corresponding
1954 * image element(s).
1956 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1957 int *exact, int project)
1959 struct isl_map *app = NULL;
1960 isl_space *dim = NULL;
1961 unsigned d;
1963 if (!map)
1964 return NULL;
1966 dim = isl_map_get_space(map);
1968 d = isl_space_dim(dim, isl_dim_in);
1969 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1970 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1972 app = construct_power_components(isl_space_copy(dim), map,
1973 exact, project);
1975 isl_space_free(dim);
1977 return app;
1980 /* Compute the positive powers of "map", or an overapproximation.
1981 * If the result is exact, then *exact is set to 1.
1983 * If project is set, then we are actually interested in the transitive
1984 * closure, so we can use a more relaxed exactness check.
1985 * The lengths of the paths are also projected out instead of being
1986 * encoded as the difference between an extra pair of final coordinates.
1988 static __isl_give isl_map *map_power(__isl_take isl_map *map,
1989 int *exact, int project)
1991 struct isl_map *app = NULL;
1993 if (exact)
1994 *exact = 1;
1996 if (!map)
1997 return NULL;
1999 isl_assert(map->ctx,
2000 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2001 goto error);
2003 app = construct_power(map, exact, project);
2005 isl_map_free(map);
2006 return app;
2007 error:
2008 isl_map_free(map);
2009 isl_map_free(app);
2010 return NULL;
2013 /* Compute the positive powers of "map", or an overapproximation.
2014 * The result maps the exponent to a nested copy of the corresponding power.
2015 * If the result is exact, then *exact is set to 1.
2016 * map_power constructs an extended relation with the path lengths
2017 * encoded as the difference between the final coordinates.
2018 * In the final step, this difference is equated to an extra parameter
2019 * and made positive. The extra coordinates are subsequently projected out
2020 * and the parameter is turned into the domain of the result.
2022 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2024 isl_space *target_dim;
2025 isl_space *dim;
2026 isl_map *diff;
2027 unsigned d;
2028 unsigned param;
2030 if (!map)
2031 return NULL;
2033 d = isl_map_dim(map, isl_dim_in);
2034 param = isl_map_dim(map, isl_dim_param);
2036 map = isl_map_compute_divs(map);
2037 map = isl_map_coalesce(map);
2039 if (isl_map_plain_is_empty(map)) {
2040 map = isl_map_from_range(isl_map_wrap(map));
2041 map = isl_map_add_dims(map, isl_dim_in, 1);
2042 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2043 return map;
2046 target_dim = isl_map_get_space(map);
2047 target_dim = isl_space_from_range(isl_space_wrap(target_dim));
2048 target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
2049 target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
2051 map = map_power(map, exact, 0);
2053 map = isl_map_add_dims(map, isl_dim_param, 1);
2054 dim = isl_map_get_space(map);
2055 diff = equate_parameter_to_length(dim, param);
2056 map = isl_map_intersect(map, diff);
2057 map = isl_map_project_out(map, isl_dim_in, d, 1);
2058 map = isl_map_project_out(map, isl_dim_out, d, 1);
2059 map = isl_map_from_range(isl_map_wrap(map));
2060 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2062 map = isl_map_reset_space(map, target_dim);
2064 return map;
2067 /* Compute a relation that maps each element in the range of the input
2068 * relation to the lengths of all paths composed of edges in the input
2069 * relation that end up in the given range element.
2070 * The result may be an overapproximation, in which case *exact is set to 0.
2071 * The resulting relation is very similar to the power relation.
2072 * The difference are that the domain has been projected out, the
2073 * range has become the domain and the exponent is the range instead
2074 * of a parameter.
2076 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2077 int *exact)
2079 isl_space *dim;
2080 isl_map *diff;
2081 unsigned d;
2082 unsigned param;
2084 if (!map)
2085 return NULL;
2087 d = isl_map_dim(map, isl_dim_in);
2088 param = isl_map_dim(map, isl_dim_param);
2090 map = isl_map_compute_divs(map);
2091 map = isl_map_coalesce(map);
2093 if (isl_map_plain_is_empty(map)) {
2094 if (exact)
2095 *exact = 1;
2096 map = isl_map_project_out(map, isl_dim_out, 0, d);
2097 map = isl_map_add_dims(map, isl_dim_out, 1);
2098 return map;
2101 map = map_power(map, exact, 0);
2103 map = isl_map_add_dims(map, isl_dim_param, 1);
2104 dim = isl_map_get_space(map);
2105 diff = equate_parameter_to_length(dim, param);
2106 map = isl_map_intersect(map, diff);
2107 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2108 map = isl_map_project_out(map, isl_dim_out, d, 1);
2109 map = isl_map_reverse(map);
2110 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2112 return map;
2115 /* Check whether equality i of bset is a pure stride constraint
2116 * on a single dimensions, i.e., of the form
2118 * v = k e
2120 * with k a constant and e an existentially quantified variable.
2122 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2124 unsigned nparam;
2125 unsigned d;
2126 unsigned n_div;
2127 int pos1;
2128 int pos2;
2130 if (!bset)
2131 return -1;
2133 if (!isl_int_is_zero(bset->eq[i][0]))
2134 return 0;
2136 nparam = isl_basic_set_dim(bset, isl_dim_param);
2137 d = isl_basic_set_dim(bset, isl_dim_set);
2138 n_div = isl_basic_set_dim(bset, isl_dim_div);
2140 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2141 return 0;
2142 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2143 if (pos1 == -1)
2144 return 0;
2145 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2146 d - pos1 - 1) != -1)
2147 return 0;
2149 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2150 if (pos2 == -1)
2151 return 0;
2152 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2153 n_div - pos2 - 1) != -1)
2154 return 0;
2155 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2156 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2157 return 0;
2159 return 1;
2162 /* Given a map, compute the smallest superset of this map that is of the form
2164 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2166 * (where p ranges over the (non-parametric) dimensions),
2167 * compute the transitive closure of this map, i.e.,
2169 * { i -> j : exists k > 0:
2170 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2172 * and intersect domain and range of this transitive closure with
2173 * the given domain and range.
2175 * If with_id is set, then try to include as much of the identity mapping
2176 * as possible, by computing
2178 * { i -> j : exists k >= 0:
2179 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2181 * instead (i.e., allow k = 0).
2183 * In practice, we compute the difference set
2185 * delta = { j - i | i -> j in map },
2187 * look for stride constraint on the individual dimensions and compute
2188 * (constant) lower and upper bounds for each individual dimension,
2189 * adding a constraint for each bound not equal to infinity.
2191 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2192 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2194 int i;
2195 int k;
2196 unsigned d;
2197 unsigned nparam;
2198 unsigned total;
2199 isl_space *dim;
2200 isl_set *delta;
2201 isl_map *app = NULL;
2202 isl_basic_set *aff = NULL;
2203 isl_basic_map *bmap = NULL;
2204 isl_vec *obj = NULL;
2205 isl_int opt;
2207 isl_int_init(opt);
2209 delta = isl_map_deltas(isl_map_copy(map));
2211 aff = isl_set_affine_hull(isl_set_copy(delta));
2212 if (!aff)
2213 goto error;
2214 dim = isl_map_get_space(map);
2215 d = isl_space_dim(dim, isl_dim_in);
2216 nparam = isl_space_dim(dim, isl_dim_param);
2217 total = isl_space_dim(dim, isl_dim_all);
2218 bmap = isl_basic_map_alloc_space(dim,
2219 aff->n_div + 1, aff->n_div, 2 * d + 1);
2220 for (i = 0; i < aff->n_div + 1; ++i) {
2221 k = isl_basic_map_alloc_div(bmap);
2222 if (k < 0)
2223 goto error;
2224 isl_int_set_si(bmap->div[k][0], 0);
2226 for (i = 0; i < aff->n_eq; ++i) {
2227 if (!is_eq_stride(aff, i))
2228 continue;
2229 k = isl_basic_map_alloc_equality(bmap);
2230 if (k < 0)
2231 goto error;
2232 isl_seq_clr(bmap->eq[k], 1 + nparam);
2233 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2234 aff->eq[i] + 1 + nparam, d);
2235 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2236 aff->eq[i] + 1 + nparam, d);
2237 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2238 aff->eq[i] + 1 + nparam + d, aff->n_div);
2239 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2241 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2242 if (!obj)
2243 goto error;
2244 isl_seq_clr(obj->el, 1 + nparam + d);
2245 for (i = 0; i < d; ++ i) {
2246 enum isl_lp_result res;
2248 isl_int_set_si(obj->el[1 + nparam + i], 1);
2250 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2251 NULL, NULL);
2252 if (res == isl_lp_error)
2253 goto error;
2254 if (res == isl_lp_ok) {
2255 k = isl_basic_map_alloc_inequality(bmap);
2256 if (k < 0)
2257 goto error;
2258 isl_seq_clr(bmap->ineq[k],
2259 1 + nparam + 2 * d + bmap->n_div);
2260 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2261 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2262 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2265 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2266 NULL, NULL);
2267 if (res == isl_lp_error)
2268 goto error;
2269 if (res == isl_lp_ok) {
2270 k = isl_basic_map_alloc_inequality(bmap);
2271 if (k < 0)
2272 goto error;
2273 isl_seq_clr(bmap->ineq[k],
2274 1 + nparam + 2 * d + bmap->n_div);
2275 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2276 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2277 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2280 isl_int_set_si(obj->el[1 + nparam + i], 0);
2282 k = isl_basic_map_alloc_inequality(bmap);
2283 if (k < 0)
2284 goto error;
2285 isl_seq_clr(bmap->ineq[k],
2286 1 + nparam + 2 * d + bmap->n_div);
2287 if (!with_id)
2288 isl_int_set_si(bmap->ineq[k][0], -1);
2289 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2291 app = isl_map_from_domain_and_range(dom, ran);
2293 isl_vec_free(obj);
2294 isl_basic_set_free(aff);
2295 isl_map_free(map);
2296 bmap = isl_basic_map_finalize(bmap);
2297 isl_set_free(delta);
2298 isl_int_clear(opt);
2300 map = isl_map_from_basic_map(bmap);
2301 map = isl_map_intersect(map, app);
2303 return map;
2304 error:
2305 isl_vec_free(obj);
2306 isl_basic_map_free(bmap);
2307 isl_basic_set_free(aff);
2308 isl_set_free(dom);
2309 isl_set_free(ran);
2310 isl_map_free(map);
2311 isl_set_free(delta);
2312 isl_int_clear(opt);
2313 return NULL;
2316 /* Given a map, compute the smallest superset of this map that is of the form
2318 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2320 * (where p ranges over the (non-parametric) dimensions),
2321 * compute the transitive closure of this map, i.e.,
2323 * { i -> j : exists k > 0:
2324 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2326 * and intersect domain and range of this transitive closure with
2327 * domain and range of the original map.
2329 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2331 isl_set *domain;
2332 isl_set *range;
2334 domain = isl_map_domain(isl_map_copy(map));
2335 domain = isl_set_coalesce(domain);
2336 range = isl_map_range(isl_map_copy(map));
2337 range = isl_set_coalesce(range);
2339 return box_closure_on_domain(map, domain, range, 0);
2342 /* Given a map, compute the smallest superset of this map that is of the form
2344 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2346 * (where p ranges over the (non-parametric) dimensions),
2347 * compute the transitive and partially reflexive closure of this map, i.e.,
2349 * { i -> j : exists k >= 0:
2350 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2352 * and intersect domain and range of this transitive closure with
2353 * the given domain.
2355 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2356 __isl_take isl_set *dom)
2358 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2361 /* Check whether app is the transitive closure of map.
2362 * In particular, check that app is acyclic and, if so,
2363 * check that
2365 * app \subset (map \cup (map \circ app))
2367 static int check_exactness_omega(__isl_keep isl_map *map,
2368 __isl_keep isl_map *app)
2370 isl_set *delta;
2371 int i;
2372 int is_empty, is_exact;
2373 unsigned d;
2374 isl_map *test;
2376 delta = isl_map_deltas(isl_map_copy(app));
2377 d = isl_set_dim(delta, isl_dim_set);
2378 for (i = 0; i < d; ++i)
2379 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2380 is_empty = isl_set_is_empty(delta);
2381 isl_set_free(delta);
2382 if (is_empty < 0)
2383 return -1;
2384 if (!is_empty)
2385 return 0;
2387 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2388 test = isl_map_union(test, isl_map_copy(map));
2389 is_exact = isl_map_is_subset(app, test);
2390 isl_map_free(test);
2392 return is_exact;
2395 /* Check if basic map M_i can be combined with all the other
2396 * basic maps such that
2398 * (\cup_j M_j)^+
2400 * can be computed as
2402 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2404 * In particular, check if we can compute a compact representation
2405 * of
2407 * M_i^* \circ M_j \circ M_i^*
2409 * for each j != i.
2410 * Let M_i^? be an extension of M_i^+ that allows paths
2411 * of length zero, i.e., the result of box_closure(., 1).
2412 * The criterion, as proposed by Kelly et al., is that
2413 * id = M_i^? - M_i^+ can be represented as a basic map
2414 * and that
2416 * id \circ M_j \circ id = M_j
2418 * for each j != i.
2420 * If this function returns 1, then tc and qc are set to
2421 * M_i^+ and M_i^?, respectively.
2423 static int can_be_split_off(__isl_keep isl_map *map, int i,
2424 __isl_give isl_map **tc, __isl_give isl_map **qc)
2426 isl_map *map_i, *id = NULL;
2427 int j = -1;
2428 isl_set *C;
2430 *tc = NULL;
2431 *qc = NULL;
2433 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2434 isl_map_range(isl_map_copy(map)));
2435 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2436 if (!C)
2437 goto error;
2439 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2440 *tc = box_closure(isl_map_copy(map_i));
2441 *qc = box_closure_with_identity(map_i, C);
2442 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2444 if (!id || !*qc)
2445 goto error;
2446 if (id->n != 1 || (*qc)->n != 1)
2447 goto done;
2449 for (j = 0; j < map->n; ++j) {
2450 isl_map *map_j, *test;
2451 int is_ok;
2453 if (i == j)
2454 continue;
2455 map_j = isl_map_from_basic_map(
2456 isl_basic_map_copy(map->p[j]));
2457 test = isl_map_apply_range(isl_map_copy(id),
2458 isl_map_copy(map_j));
2459 test = isl_map_apply_range(test, isl_map_copy(id));
2460 is_ok = isl_map_is_equal(test, map_j);
2461 isl_map_free(map_j);
2462 isl_map_free(test);
2463 if (is_ok < 0)
2464 goto error;
2465 if (!is_ok)
2466 break;
2469 done:
2470 isl_map_free(id);
2471 if (j == map->n)
2472 return 1;
2474 isl_map_free(*qc);
2475 isl_map_free(*tc);
2476 *qc = NULL;
2477 *tc = NULL;
2479 return 0;
2480 error:
2481 isl_map_free(id);
2482 isl_map_free(*qc);
2483 isl_map_free(*tc);
2484 *qc = NULL;
2485 *tc = NULL;
2486 return -1;
2489 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2490 int *exact)
2492 isl_map *app;
2494 app = box_closure(isl_map_copy(map));
2495 if (exact)
2496 *exact = check_exactness_omega(map, app);
2498 isl_map_free(map);
2499 return app;
2502 /* Compute an overapproximation of the transitive closure of "map"
2503 * using a variation of the algorithm from
2504 * "Transitive Closure of Infinite Graphs and its Applications"
2505 * by Kelly et al.
2507 * We first check whether we can can split of any basic map M_i and
2508 * compute
2510 * (\cup_j M_j)^+
2512 * as
2514 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2516 * using a recursive call on the remaining map.
2518 * If not, we simply call box_closure on the whole map.
2520 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2521 int *exact)
2523 int i, j;
2524 int exact_i;
2525 isl_map *app;
2527 if (!map)
2528 return NULL;
2529 if (map->n == 1)
2530 return box_closure_with_check(map, exact);
2532 for (i = 0; i < map->n; ++i) {
2533 int ok;
2534 isl_map *qc, *tc;
2535 ok = can_be_split_off(map, i, &tc, &qc);
2536 if (ok < 0)
2537 goto error;
2538 if (!ok)
2539 continue;
2541 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2543 for (j = 0; j < map->n; ++j) {
2544 if (j == i)
2545 continue;
2546 app = isl_map_add_basic_map(app,
2547 isl_basic_map_copy(map->p[j]));
2550 app = isl_map_apply_range(isl_map_copy(qc), app);
2551 app = isl_map_apply_range(app, qc);
2553 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2554 exact_i = check_exactness_omega(map, app);
2555 if (exact_i == 1) {
2556 if (exact)
2557 *exact = exact_i;
2558 isl_map_free(map);
2559 return app;
2561 isl_map_free(app);
2562 if (exact_i < 0)
2563 goto error;
2566 return box_closure_with_check(map, exact);
2567 error:
2568 isl_map_free(map);
2569 return NULL;
2572 /* Compute the transitive closure of "map", or an overapproximation.
2573 * If the result is exact, then *exact is set to 1.
2574 * Simply use map_power to compute the powers of map, but tell
2575 * it to project out the lengths of the paths instead of equating
2576 * the length to a parameter.
2578 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2579 int *exact)
2581 isl_space *target_dim;
2582 int closed;
2584 if (!map)
2585 goto error;
2587 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2588 return transitive_closure_omega(map, exact);
2590 map = isl_map_compute_divs(map);
2591 map = isl_map_coalesce(map);
2592 closed = isl_map_is_transitively_closed(map);
2593 if (closed < 0)
2594 goto error;
2595 if (closed) {
2596 if (exact)
2597 *exact = 1;
2598 return map;
2601 target_dim = isl_map_get_space(map);
2602 map = map_power(map, exact, 1);
2603 map = isl_map_reset_space(map, target_dim);
2605 return map;
2606 error:
2607 isl_map_free(map);
2608 return NULL;
2611 static int inc_count(__isl_take isl_map *map, void *user)
2613 int *n = user;
2615 *n += map->n;
2617 isl_map_free(map);
2619 return 0;
2622 static int collect_basic_map(__isl_take isl_map *map, void *user)
2624 int i;
2625 isl_basic_map ***next = user;
2627 for (i = 0; i < map->n; ++i) {
2628 **next = isl_basic_map_copy(map->p[i]);
2629 if (!**next)
2630 goto error;
2631 (*next)++;
2634 isl_map_free(map);
2635 return 0;
2636 error:
2637 isl_map_free(map);
2638 return -1;
2641 /* Perform Floyd-Warshall on the given list of basic relations.
2642 * The basic relations may live in different dimensions,
2643 * but basic relations that get assigned to the diagonal of the
2644 * grid have domains and ranges of the same dimension and so
2645 * the standard algorithm can be used because the nested transitive
2646 * closures are only applied to diagonal elements and because all
2647 * compositions are peformed on relations with compatible domains and ranges.
2649 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2650 __isl_keep isl_basic_map **list, int n, int *exact)
2652 int i, j, k;
2653 int n_group;
2654 int *group = NULL;
2655 isl_set **set = NULL;
2656 isl_map ***grid = NULL;
2657 isl_union_map *app;
2659 group = setup_groups(ctx, list, n, &set, &n_group);
2660 if (!group)
2661 goto error;
2663 grid = isl_calloc_array(ctx, isl_map **, n_group);
2664 if (!grid)
2665 goto error;
2666 for (i = 0; i < n_group; ++i) {
2667 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2668 if (!grid[i])
2669 goto error;
2670 for (j = 0; j < n_group; ++j) {
2671 isl_space *dim1, *dim2, *dim;
2672 dim1 = isl_space_reverse(isl_set_get_space(set[i]));
2673 dim2 = isl_set_get_space(set[j]);
2674 dim = isl_space_join(dim1, dim2);
2675 grid[i][j] = isl_map_empty(dim);
2679 for (k = 0; k < n; ++k) {
2680 i = group[2 * k];
2681 j = group[2 * k + 1];
2682 grid[i][j] = isl_map_union(grid[i][j],
2683 isl_map_from_basic_map(
2684 isl_basic_map_copy(list[k])));
2687 floyd_warshall_iterate(grid, n_group, exact);
2689 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2691 for (i = 0; i < n_group; ++i) {
2692 for (j = 0; j < n_group; ++j)
2693 app = isl_union_map_add_map(app, grid[i][j]);
2694 free(grid[i]);
2696 free(grid);
2698 for (i = 0; i < 2 * n; ++i)
2699 isl_set_free(set[i]);
2700 free(set);
2702 free(group);
2703 return app;
2704 error:
2705 if (grid)
2706 for (i = 0; i < n_group; ++i) {
2707 if (!grid[i])
2708 continue;
2709 for (j = 0; j < n_group; ++j)
2710 isl_map_free(grid[i][j]);
2711 free(grid[i]);
2713 free(grid);
2714 if (set) {
2715 for (i = 0; i < 2 * n; ++i)
2716 isl_set_free(set[i]);
2717 free(set);
2719 free(group);
2720 return NULL;
2723 /* Perform Floyd-Warshall on the given union relation.
2724 * The implementation is very similar to that for non-unions.
2725 * The main difference is that it is applied unconditionally.
2726 * We first extract a list of basic maps from the union map
2727 * and then perform the algorithm on this list.
2729 static __isl_give isl_union_map *union_floyd_warshall(
2730 __isl_take isl_union_map *umap, int *exact)
2732 int i, n;
2733 isl_ctx *ctx;
2734 isl_basic_map **list = NULL;
2735 isl_basic_map **next;
2736 isl_union_map *res;
2738 n = 0;
2739 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2740 goto error;
2742 ctx = isl_union_map_get_ctx(umap);
2743 list = isl_calloc_array(ctx, isl_basic_map *, n);
2744 if (!list)
2745 goto error;
2747 next = list;
2748 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2749 goto error;
2751 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2753 if (list) {
2754 for (i = 0; i < n; ++i)
2755 isl_basic_map_free(list[i]);
2756 free(list);
2759 isl_union_map_free(umap);
2760 return res;
2761 error:
2762 if (list) {
2763 for (i = 0; i < n; ++i)
2764 isl_basic_map_free(list[i]);
2765 free(list);
2767 isl_union_map_free(umap);
2768 return NULL;
2771 /* Decompose the give union relation into strongly connected components.
2772 * The implementation is essentially the same as that of
2773 * construct_power_components with the major difference that all
2774 * operations are performed on union maps.
2776 static __isl_give isl_union_map *union_components(
2777 __isl_take isl_union_map *umap, int *exact)
2779 int i;
2780 int n;
2781 isl_ctx *ctx;
2782 isl_basic_map **list = NULL;
2783 isl_basic_map **next;
2784 isl_union_map *path = NULL;
2785 struct isl_tc_follows_data data;
2786 struct isl_tarjan_graph *g = NULL;
2787 int c, l;
2788 int recheck = 0;
2790 n = 0;
2791 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2792 goto error;
2794 if (n == 0)
2795 return umap;
2796 if (n <= 1)
2797 return union_floyd_warshall(umap, exact);
2799 ctx = isl_union_map_get_ctx(umap);
2800 list = isl_calloc_array(ctx, isl_basic_map *, n);
2801 if (!list)
2802 goto error;
2804 next = list;
2805 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2806 goto error;
2808 data.list = list;
2809 data.check_closed = 0;
2810 g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2811 if (!g)
2812 goto error;
2814 c = 0;
2815 i = 0;
2816 l = n;
2817 path = isl_union_map_empty(isl_union_map_get_space(umap));
2818 while (l) {
2819 isl_union_map *comp;
2820 isl_union_map *path_comp, *path_comb;
2821 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2822 while (g->order[i] != -1) {
2823 comp = isl_union_map_add_map(comp,
2824 isl_map_from_basic_map(
2825 isl_basic_map_copy(list[g->order[i]])));
2826 --l;
2827 ++i;
2829 path_comp = union_floyd_warshall(comp, exact);
2830 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2831 isl_union_map_copy(path_comp));
2832 path = isl_union_map_union(path, path_comp);
2833 path = isl_union_map_union(path, path_comb);
2834 ++i;
2835 ++c;
2838 if (c > 1 && data.check_closed && !*exact) {
2839 int closed;
2841 closed = isl_union_map_is_transitively_closed(path);
2842 if (closed < 0)
2843 goto error;
2844 recheck = !closed;
2847 isl_tarjan_graph_free(g);
2849 for (i = 0; i < n; ++i)
2850 isl_basic_map_free(list[i]);
2851 free(list);
2853 if (recheck) {
2854 isl_union_map_free(path);
2855 return union_floyd_warshall(umap, exact);
2858 isl_union_map_free(umap);
2860 return path;
2861 error:
2862 isl_tarjan_graph_free(g);
2863 if (list) {
2864 for (i = 0; i < n; ++i)
2865 isl_basic_map_free(list[i]);
2866 free(list);
2868 isl_union_map_free(umap);
2869 isl_union_map_free(path);
2870 return NULL;
2873 /* Compute the transitive closure of "umap", or an overapproximation.
2874 * If the result is exact, then *exact is set to 1.
2876 __isl_give isl_union_map *isl_union_map_transitive_closure(
2877 __isl_take isl_union_map *umap, int *exact)
2879 int closed;
2881 if (!umap)
2882 return NULL;
2884 if (exact)
2885 *exact = 1;
2887 umap = isl_union_map_compute_divs(umap);
2888 umap = isl_union_map_coalesce(umap);
2889 closed = isl_union_map_is_transitively_closed(umap);
2890 if (closed < 0)
2891 goto error;
2892 if (closed)
2893 return umap;
2894 umap = union_components(umap, exact);
2895 return umap;
2896 error:
2897 isl_union_map_free(umap);
2898 return NULL;
2901 struct isl_union_power {
2902 isl_union_map *pow;
2903 int *exact;
2906 static int power(__isl_take isl_map *map, void *user)
2908 struct isl_union_power *up = user;
2910 map = isl_map_power(map, up->exact);
2911 up->pow = isl_union_map_from_map(map);
2913 return -1;
2916 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2918 static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
2920 int k;
2921 isl_basic_map *bmap;
2923 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2924 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2925 bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
2926 k = isl_basic_map_alloc_equality(bmap);
2927 if (k < 0)
2928 goto error;
2929 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
2930 isl_int_set_si(bmap->eq[k][0], 1);
2931 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
2932 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
2933 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2934 error:
2935 isl_basic_map_free(bmap);
2936 return NULL;
2939 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2941 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
2943 isl_basic_map *bmap;
2945 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2946 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2947 bmap = isl_basic_map_universe(dim);
2948 bmap = isl_basic_map_deltas_map(bmap);
2950 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2953 /* Compute the positive powers of "map", or an overapproximation.
2954 * The result maps the exponent to a nested copy of the corresponding power.
2955 * If the result is exact, then *exact is set to 1.
2957 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2958 int *exact)
2960 int n;
2961 isl_union_map *inc;
2962 isl_union_map *dm;
2964 if (!umap)
2965 return NULL;
2966 n = isl_union_map_n_map(umap);
2967 if (n == 0)
2968 return umap;
2969 if (n == 1) {
2970 struct isl_union_power up = { NULL, exact };
2971 isl_union_map_foreach_map(umap, &power, &up);
2972 isl_union_map_free(umap);
2973 return up.pow;
2975 inc = increment(isl_union_map_get_space(umap));
2976 umap = isl_union_map_product(inc, umap);
2977 umap = isl_union_map_transitive_closure(umap, exact);
2978 umap = isl_union_map_zip(umap);
2979 dm = deltas_map(isl_union_map_get_space(umap));
2980 umap = isl_union_map_apply_domain(umap, dm);
2982 return umap;
2985 #undef TYPE
2986 #define TYPE isl_map
2987 #include "isl_power_templ.c"
2989 #undef TYPE
2990 #define TYPE isl_union_map
2991 #include "isl_power_templ.c"