isl_map_{domain,range}_product: remove possible obvious duplicates
[isl.git] / isl_ast_codegen.c
blob89e23a57e4fd19ac1856a3c9d64beed5aaefea26
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <limits.h>
14 #include <isl/aff.h>
15 #include <isl/set.h>
16 #include <isl/ilp.h>
17 #include <isl/union_map.h>
18 #include <isl_sort.h>
19 #include <isl_tarjan.h>
20 #include <isl_ast_private.h>
21 #include <isl_ast_build_expr.h>
22 #include <isl_ast_build_private.h>
23 #include <isl_ast_graft_private.h>
25 /* Data used in generate_domain.
27 * "build" is the input build.
28 * "list" collects the results.
30 struct isl_generate_domain_data {
31 isl_ast_build *build;
33 isl_ast_graft_list *list;
36 static __isl_give isl_ast_graft_list *generate_next_level(
37 __isl_take isl_union_map *executed,
38 __isl_take isl_ast_build *build);
39 static __isl_give isl_ast_graft_list *generate_code(
40 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
41 int internal);
43 /* Generate an AST for a single domain based on
44 * the (non single valued) inverse schedule "executed".
46 * We extend the schedule with the iteration domain
47 * and continue generating through a call to generate_code.
49 * In particular, if executed has the form
51 * S -> D
53 * then we continue generating code on
55 * [S -> D] -> D
57 * The extended inverse schedule is clearly single valued
58 * ensuring that the nested generate_code will not reach this function,
59 * but will instead create calls to all elements of D that need
60 * to be executed from the current schedule domain.
62 static int generate_non_single_valued(__isl_take isl_map *executed,
63 struct isl_generate_domain_data *data)
65 isl_map *identity;
66 isl_ast_build *build;
67 isl_ast_graft_list *list;
69 build = isl_ast_build_copy(data->build);
71 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
72 executed = isl_map_domain_product(executed, identity);
73 build = isl_ast_build_set_single_valued(build, 1);
75 list = generate_code(isl_union_map_from_map(executed), build, 1);
77 data->list = isl_ast_graft_list_concat(data->list, list);
79 return 0;
82 /* Call the at_each_domain callback, if requested by the user,
83 * after recording the current inverse schedule in the build.
85 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
86 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
88 if (!graft || !build)
89 return isl_ast_graft_free(graft);
90 if (!build->at_each_domain)
91 return graft;
93 build = isl_ast_build_copy(build);
94 build = isl_ast_build_set_executed(build,
95 isl_union_map_from_map(isl_map_copy(executed)));
96 if (!build)
97 return isl_ast_graft_free(graft);
99 graft->node = build->at_each_domain(graft->node,
100 build, build->at_each_domain_user);
101 isl_ast_build_free(build);
103 if (!graft->node)
104 graft = isl_ast_graft_free(graft);
106 return graft;
109 /* Generate an AST for a single domain based on
110 * the inverse schedule "executed" and add it to data->list.
112 * If there is more than one domain element associated to the current
113 * schedule "time", then we need to continue the generation process
114 * in generate_non_single_valued.
115 * Note that the inverse schedule being single-valued may depend
116 * on constraints that are only available in the original context
117 * domain specified by the user. We therefore first introduce
118 * some of the constraints of data->build->domain. In particular,
119 * we intersect with a single-disjunct approximation of this set.
120 * We perform this approximation to avoid further splitting up
121 * the executed relation, possibly introducing a disjunctive guard
122 * on the statement.
124 * On the other hand, we only perform the test after having taken the gist
125 * of the domain as the resulting map is the one from which the call
126 * expression is constructed. Using this map to construct the call
127 * expression usually yields simpler results.
128 * Because we perform the single-valuedness test on the gisted map,
129 * we may in rare cases fail to recognize that the inverse schedule
130 * is single-valued. This becomes problematic if this happens
131 * from the recursive call through generate_non_single_valued
132 * as we would then end up in an infinite recursion.
133 * We therefore check if we are inside a call to generate_non_single_valued
134 * and revert to the ungisted map if the gisted map turns out not to be
135 * single-valued.
137 * Otherwise, we generate a call expression for the single executed
138 * domain element and put a guard around it based on the (simplified)
139 * domain of "executed".
141 * At this stage, any pending constraints in the build can no longer
142 * be simplified with respect to any enforced constraints since
143 * the call node does not have any enforced constraints.
144 * We therefore turn all pending constraints into guards
145 * (after simplifying them with respect to the already generated
146 * constraints) and add them to both the generated constraints
147 * and the guard of the constructed graft. This guard will ensure
148 * that the constraints are effectively generated.
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
153 static int generate_domain(__isl_take isl_map *executed, void *user)
155 struct isl_generate_domain_data *data = user;
156 isl_ast_build *build;
157 isl_ast_graft *graft;
158 isl_ast_graft_list *list;
159 isl_set *guard, *domain;
160 isl_map *map = NULL;
161 int empty, sv;
163 domain = isl_ast_build_get_domain(data->build);
164 domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
165 executed = isl_map_intersect_domain(executed, domain);
166 empty = isl_map_is_empty(executed);
167 if (empty < 0)
168 goto error;
169 if (empty) {
170 isl_map_free(executed);
171 return 0;
174 executed = isl_map_coalesce(executed);
175 map = isl_map_copy(executed);
176 map = isl_ast_build_compute_gist_map_domain(data->build, map);
177 sv = isl_map_is_single_valued(map);
178 if (sv < 0)
179 goto error;
180 if (!sv) {
181 isl_map_free(map);
182 if (data->build->single_valued)
183 map = isl_map_copy(executed);
184 else
185 return generate_non_single_valued(executed, data);
187 guard = isl_map_domain(isl_map_copy(map));
188 guard = isl_set_compute_divs(guard);
189 guard = isl_set_intersect(guard,
190 isl_ast_build_get_pending(data->build));
191 guard = isl_set_coalesce(guard);
192 guard = isl_ast_build_specialize(data->build, guard);
193 guard = isl_set_gist(guard, isl_ast_build_get_generated(data->build));
195 build = isl_ast_build_copy(data->build);
196 build = isl_ast_build_replace_pending_by_guard(build,
197 isl_set_copy(guard));
198 graft = isl_ast_graft_alloc_domain(map, build);
199 graft = at_each_domain(graft, executed, build);
200 isl_ast_build_free(build);
201 isl_map_free(executed);
202 graft = isl_ast_graft_add_guard(graft, guard, data->build);
204 list = isl_ast_graft_list_from_ast_graft(graft);
205 data->list = isl_ast_graft_list_concat(data->list, list);
207 return 0;
208 error:
209 isl_map_free(map);
210 isl_map_free(executed);
211 return -1;
214 /* Call build->create_leaf to a create "leaf" node in the AST,
215 * encapsulate the result in an isl_ast_graft and return the result
216 * as a 1-element list.
218 * Note that the node returned by the user may be an entire tree.
220 * Since the node itself cannot enforce any constraints, we turn
221 * all pending constraints into guards and add them to the resulting
222 * graft to ensure that they will be generated.
224 * Before we pass control to the user, we first clear some information
225 * from the build that is (presumbably) only meaningful
226 * for the current code generation.
227 * This includes the create_leaf callback itself, so we make a copy
228 * of the build first.
230 static __isl_give isl_ast_graft_list *call_create_leaf(
231 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
233 isl_set *guard;
234 isl_ast_node *node;
235 isl_ast_graft *graft;
236 isl_ast_build *user_build;
238 guard = isl_ast_build_get_pending(build);
239 user_build = isl_ast_build_copy(build);
240 user_build = isl_ast_build_replace_pending_by_guard(user_build,
241 isl_set_copy(guard));
242 user_build = isl_ast_build_set_executed(user_build, executed);
243 user_build = isl_ast_build_clear_local_info(user_build);
244 if (!user_build)
245 node = NULL;
246 else
247 node = build->create_leaf(user_build, build->create_leaf_user);
248 graft = isl_ast_graft_alloc(node, build);
249 graft = isl_ast_graft_add_guard(graft, guard, build);
250 isl_ast_build_free(build);
251 return isl_ast_graft_list_from_ast_graft(graft);
254 /* Generate an AST after having handled the complete schedule
255 * of this call to the code generator.
257 * If the user has specified a create_leaf callback, control
258 * is passed to the user in call_create_leaf.
260 * Otherwise, we generate one or more calls for each individual
261 * domain in generate_domain.
263 static __isl_give isl_ast_graft_list *generate_inner_level(
264 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
266 isl_ctx *ctx;
267 struct isl_generate_domain_data data = { build };
269 if (!build || !executed)
270 goto error;
272 if (build->create_leaf)
273 return call_create_leaf(executed, build);
275 ctx = isl_union_map_get_ctx(executed);
276 data.list = isl_ast_graft_list_alloc(ctx, 0);
277 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
278 data.list = isl_ast_graft_list_free(data.list);
280 if (0)
281 error: data.list = NULL;
282 isl_ast_build_free(build);
283 isl_union_map_free(executed);
284 return data.list;
287 /* Call the before_each_for callback, if requested by the user.
289 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
290 __isl_keep isl_ast_build *build)
292 isl_id *id;
294 if (!node || !build)
295 return isl_ast_node_free(node);
296 if (!build->before_each_for)
297 return node;
298 id = build->before_each_for(build, build->before_each_for_user);
299 node = isl_ast_node_set_annotation(node, id);
300 return node;
303 /* Call the after_each_for callback, if requested by the user.
305 static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft,
306 __isl_keep isl_ast_build *build)
308 if (!graft || !build)
309 return isl_ast_graft_free(graft);
310 if (!build->after_each_for)
311 return graft;
312 graft->node = build->after_each_for(graft->node, build,
313 build->after_each_for_user);
314 if (!graft->node)
315 return isl_ast_graft_free(graft);
316 return graft;
319 /* Plug in all the know values of the current and outer dimensions
320 * in the domain of "executed". In principle, we only need to plug
321 * in the known value of the current dimension since the values of
322 * outer dimensions have been plugged in already.
323 * However, it turns out to be easier to just plug in all known values.
325 static __isl_give isl_union_map *plug_in_values(
326 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
328 return isl_ast_build_substitute_values_union_map_domain(build,
329 executed);
332 /* Check if the constraint "c" is a lower bound on dimension "pos",
333 * an upper bound, or independent of dimension "pos".
335 static int constraint_type(isl_constraint *c, int pos)
337 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
338 return 1;
339 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
340 return 2;
341 return 0;
344 /* Compare the types of the constraints "a" and "b",
345 * resulting in constraints that are independent of "depth"
346 * to be sorted before the lower bounds on "depth", which in
347 * turn are sorted before the upper bounds on "depth".
349 static int cmp_constraint(__isl_keep isl_constraint *a,
350 __isl_keep isl_constraint *b, void *user)
352 int *depth = user;
353 int t1 = constraint_type(a, *depth);
354 int t2 = constraint_type(b, *depth);
356 return t1 - t2;
359 /* Extract a lower bound on dimension "pos" from constraint "c".
361 * If the constraint is of the form
363 * a x + f(...) >= 0
365 * then we essentially return
367 * l = ceil(-f(...)/a)
369 * However, if the current dimension is strided, then we need to make
370 * sure that the lower bound we construct is of the form
372 * f + s a
374 * with f the offset and s the stride.
375 * We therefore compute
377 * f + s * ceil((l - f)/s)
379 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
380 int pos, __isl_keep isl_ast_build *build)
382 isl_aff *aff;
384 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
385 aff = isl_aff_ceil(aff);
387 if (isl_ast_build_has_stride(build, pos)) {
388 isl_aff *offset;
389 isl_val *stride;
391 offset = isl_ast_build_get_offset(build, pos);
392 stride = isl_ast_build_get_stride(build, pos);
394 aff = isl_aff_sub(aff, isl_aff_copy(offset));
395 aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
396 aff = isl_aff_ceil(aff);
397 aff = isl_aff_scale_val(aff, stride);
398 aff = isl_aff_add(aff, offset);
401 aff = isl_ast_build_compute_gist_aff(build, aff);
403 return aff;
406 /* Return the exact lower bound (or upper bound if "upper" is set)
407 * of "domain" as a piecewise affine expression.
409 * If we are computing a lower bound (of a strided dimension), then
410 * we need to make sure it is of the form
412 * f + s a
414 * where f is the offset and s is the stride.
415 * We therefore need to include the stride constraint before computing
416 * the minimum.
418 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
419 __isl_keep isl_ast_build *build, int upper)
421 isl_set *stride;
422 isl_map *it_map;
423 isl_pw_aff *pa;
424 isl_pw_multi_aff *pma;
426 domain = isl_set_copy(domain);
427 if (!upper) {
428 stride = isl_ast_build_get_stride_constraint(build);
429 domain = isl_set_intersect(domain, stride);
431 it_map = isl_ast_build_map_to_iterator(build, domain);
432 if (upper)
433 pma = isl_map_lexmax_pw_multi_aff(it_map);
434 else
435 pma = isl_map_lexmin_pw_multi_aff(it_map);
436 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
437 isl_pw_multi_aff_free(pma);
438 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
439 pa = isl_pw_aff_coalesce(pa);
441 return pa;
444 /* Extract a lower bound on dimension "pos" from each constraint
445 * in "constraints" and return the list of lower bounds.
446 * If "constraints" has zero elements, then we extract a lower bound
447 * from "domain" instead.
449 static __isl_give isl_pw_aff_list *lower_bounds(
450 __isl_keep isl_constraint_list *constraints, int pos,
451 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
453 isl_ctx *ctx;
454 isl_pw_aff_list *list;
455 int i, n;
457 if (!build)
458 return NULL;
460 n = isl_constraint_list_n_constraint(constraints);
461 if (n == 0) {
462 isl_pw_aff *pa;
463 pa = exact_bound(domain, build, 0);
464 return isl_pw_aff_list_from_pw_aff(pa);
467 ctx = isl_ast_build_get_ctx(build);
468 list = isl_pw_aff_list_alloc(ctx,n);
470 for (i = 0; i < n; ++i) {
471 isl_aff *aff;
472 isl_constraint *c;
474 c = isl_constraint_list_get_constraint(constraints, i);
475 aff = lower_bound(c, pos, build);
476 isl_constraint_free(c);
477 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
480 return list;
483 /* Extract an upper bound on dimension "pos" from each constraint
484 * in "constraints" and return the list of upper bounds.
485 * If "constraints" has zero elements, then we extract an upper bound
486 * from "domain" instead.
488 static __isl_give isl_pw_aff_list *upper_bounds(
489 __isl_keep isl_constraint_list *constraints, int pos,
490 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
492 isl_ctx *ctx;
493 isl_pw_aff_list *list;
494 int i, n;
496 n = isl_constraint_list_n_constraint(constraints);
497 if (n == 0) {
498 isl_pw_aff *pa;
499 pa = exact_bound(domain, build, 1);
500 return isl_pw_aff_list_from_pw_aff(pa);
503 ctx = isl_ast_build_get_ctx(build);
504 list = isl_pw_aff_list_alloc(ctx,n);
506 for (i = 0; i < n; ++i) {
507 isl_aff *aff;
508 isl_constraint *c;
510 c = isl_constraint_list_get_constraint(constraints, i);
511 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
512 isl_constraint_free(c);
513 aff = isl_aff_floor(aff);
514 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
517 return list;
520 /* Callback for sorting the isl_pw_aff_list passed to reduce_list.
522 static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b,
523 void *user)
525 return isl_pw_aff_plain_cmp(a, b);
528 /* Return an isl_ast_expr that performs the reduction of type "type"
529 * on AST expressions corresponding to the elements in "list".
531 * The list is assumed to contain at least one element.
532 * If the list contains exactly one element, then the returned isl_ast_expr
533 * simply computes that affine expression.
534 * If the list contains more than one element, then we sort it
535 * using a fairly abitrary but hopefully reasonably stable order.
537 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
538 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
540 int i, n;
541 isl_ctx *ctx;
542 isl_ast_expr *expr;
544 if (!list)
545 return NULL;
547 n = isl_pw_aff_list_n_pw_aff(list);
549 if (n == 1)
550 return isl_ast_build_expr_from_pw_aff_internal(build,
551 isl_pw_aff_list_get_pw_aff(list, 0));
553 ctx = isl_pw_aff_list_get_ctx(list);
554 expr = isl_ast_expr_alloc_op(ctx, type, n);
555 if (!expr)
556 return NULL;
558 list = isl_pw_aff_list_copy(list);
559 list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
560 if (!list)
561 return isl_ast_expr_free(expr);
563 for (i = 0; i < n; ++i) {
564 isl_ast_expr *expr_i;
566 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
567 isl_pw_aff_list_get_pw_aff(list, i));
568 if (!expr_i)
569 goto error;
570 expr->u.op.args[i] = expr_i;
573 isl_pw_aff_list_free(list);
574 return expr;
575 error:
576 isl_pw_aff_list_free(list);
577 isl_ast_expr_free(expr);
578 return NULL;
581 /* Add guards implied by the "generated constraints",
582 * but not (necessarily) enforced by the generated AST to "guard".
583 * In particular, if there is any stride constraints,
584 * then add the guard implied by those constraints.
585 * If we have generated a degenerate loop, then add the guard
586 * implied by "bounds" on the outer dimensions, i.e., the guard
587 * that ensures that the single value actually exists.
589 static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard,
590 int degenerate, __isl_keep isl_basic_set *bounds,
591 __isl_keep isl_ast_build *build)
593 int depth, has_stride;
594 isl_set *dom;
596 depth = isl_ast_build_get_depth(build);
597 has_stride = isl_ast_build_has_stride(build, depth);
598 if (!has_stride && !degenerate)
599 return guard;
601 if (degenerate) {
602 bounds = isl_basic_set_copy(bounds);
603 bounds = isl_basic_set_drop_constraints_not_involving_dims(
604 bounds, isl_dim_set, depth, 1);
605 dom = isl_set_from_basic_set(bounds);
606 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
607 dom = isl_ast_build_compute_gist(build, dom);
608 guard = isl_set_intersect(guard, dom);
611 if (has_stride) {
612 dom = isl_ast_build_get_stride_constraint(build);
613 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
614 dom = isl_ast_build_compute_gist(build, dom);
615 guard = isl_set_intersect(guard, dom);
618 return guard;
621 /* Update "graft" based on "sub_build" for the degenerate case.
623 * "build" is the build in which graft->node was created
624 * "sub_build" contains information about the current level itself,
625 * including the single value attained.
627 * We set the initialization part of the for loop to the single
628 * value attained by the current dimension.
629 * The increment and condition are not strictly needed as the are known
630 * to be "1" and "iterator <= value" respectively.
632 static __isl_give isl_ast_graft *refine_degenerate(
633 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build,
634 __isl_keep isl_ast_build *sub_build)
636 isl_pw_aff *value;
638 if (!graft || !sub_build)
639 return isl_ast_graft_free(graft);
641 value = isl_pw_aff_copy(sub_build->value);
643 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
644 value);
645 if (!graft->node->u.f.init)
646 return isl_ast_graft_free(graft);
648 return graft;
651 /* Return the intersection of constraints in "list" as a set.
653 static __isl_give isl_set *intersect_constraints(
654 __isl_keep isl_constraint_list *list)
656 int i, n;
657 isl_basic_set *bset;
659 n = isl_constraint_list_n_constraint(list);
660 if (n < 1)
661 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
662 "expecting at least one constraint", return NULL);
664 bset = isl_basic_set_from_constraint(
665 isl_constraint_list_get_constraint(list, 0));
666 for (i = 1; i < n; ++i) {
667 isl_basic_set *bset_i;
669 bset_i = isl_basic_set_from_constraint(
670 isl_constraint_list_get_constraint(list, i));
671 bset = isl_basic_set_intersect(bset, bset_i);
674 return isl_set_from_basic_set(bset);
677 /* Compute the constraints on the outer dimensions enforced by
678 * graft->node and add those constraints to graft->enforced,
679 * in case the upper bound is expressed as a set "upper".
681 * In particular, if l(...) is a lower bound in "lower", and
683 * -a i + f(...) >= 0 or a i <= f(...)
685 * is an upper bound ocnstraint on the current dimension i,
686 * then the for loop enforces the constraint
688 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
690 * We therefore simply take each lower bound in turn, plug it into
691 * the upper bounds and compute the intersection over all lower bounds.
693 * If a lower bound is a rational expression, then
694 * isl_basic_set_preimage_multi_aff will force this rational
695 * expression to have only integer values. However, the loop
696 * itself does not enforce this integrality constraint. We therefore
697 * use the ceil of the lower bounds instead of the lower bounds themselves.
698 * Other constraints will make sure that the for loop is only executed
699 * when each of the lower bounds attains an integral value.
700 * In particular, potentially rational values only occur in
701 * lower_bound if the offset is a (seemingly) rational expression,
702 * but then outer conditions will make sure that this rational expression
703 * only attains integer values.
705 static __isl_give isl_ast_graft *set_enforced_from_set(
706 __isl_take isl_ast_graft *graft,
707 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
709 isl_space *space;
710 isl_basic_set *enforced;
711 isl_pw_multi_aff *pma;
712 int i, n;
714 if (!graft || !lower)
715 return isl_ast_graft_free(graft);
717 space = isl_set_get_space(upper);
718 enforced = isl_basic_set_universe(isl_space_copy(space));
720 space = isl_space_map_from_set(space);
721 pma = isl_pw_multi_aff_identity(space);
723 n = isl_pw_aff_list_n_pw_aff(lower);
724 for (i = 0; i < n; ++i) {
725 isl_pw_aff *pa;
726 isl_set *enforced_i;
727 isl_basic_set *hull;
728 isl_pw_multi_aff *pma_i;
730 pa = isl_pw_aff_list_get_pw_aff(lower, i);
731 pa = isl_pw_aff_ceil(pa);
732 pma_i = isl_pw_multi_aff_copy(pma);
733 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
734 enforced_i = isl_set_copy(upper);
735 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
736 hull = isl_set_simple_hull(enforced_i);
737 enforced = isl_basic_set_intersect(enforced, hull);
740 isl_pw_multi_aff_free(pma);
742 graft = isl_ast_graft_enforce(graft, enforced);
744 return graft;
747 /* Compute the constraints on the outer dimensions enforced by
748 * graft->node and add those constraints to graft->enforced,
749 * in case the upper bound is expressed as
750 * a list of affine expressions "upper".
752 * The enforced condition is that each lower bound expression is less
753 * than or equal to each upper bound expression.
755 static __isl_give isl_ast_graft *set_enforced_from_list(
756 __isl_take isl_ast_graft *graft,
757 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
759 isl_set *cond;
760 isl_basic_set *enforced;
762 lower = isl_pw_aff_list_copy(lower);
763 upper = isl_pw_aff_list_copy(upper);
764 cond = isl_pw_aff_list_le_set(lower, upper);
765 enforced = isl_set_simple_hull(cond);
766 graft = isl_ast_graft_enforce(graft, enforced);
768 return graft;
771 /* Does "aff" have a negative constant term?
773 static int aff_constant_is_negative(__isl_take isl_set *set,
774 __isl_take isl_aff *aff, void *user)
776 int *neg = user;
777 isl_val *v;
779 v = isl_aff_get_constant_val(aff);
780 *neg = isl_val_is_neg(v);
781 isl_val_free(v);
782 isl_set_free(set);
783 isl_aff_free(aff);
785 return *neg ? 0 : -1;
788 /* Does "pa" have a negative constant term over its entire domain?
790 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
792 int r;
793 int *neg = user;
795 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
796 isl_pw_aff_free(pa);
798 return *neg ? 0 : -1;
801 /* Does each element in "list" have a negative constant term?
803 * The callback terminates the iteration as soon an element has been
804 * found that does not have a negative constant term.
806 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
808 int neg = 1;
810 if (isl_pw_aff_list_foreach(list,
811 &pw_aff_constant_is_negative, &neg) < 0 && neg)
812 return -1;
814 return neg;
817 /* Add 1 to each of the elements in "list", where each of these elements
818 * is defined over the internal schedule space of "build".
820 static __isl_give isl_pw_aff_list *list_add_one(
821 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
823 int i, n;
824 isl_space *space;
825 isl_aff *aff;
826 isl_pw_aff *one;
828 space = isl_ast_build_get_space(build, 1);
829 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
830 aff = isl_aff_add_constant_si(aff, 1);
831 one = isl_pw_aff_from_aff(aff);
833 n = isl_pw_aff_list_n_pw_aff(list);
834 for (i = 0; i < n; ++i) {
835 isl_pw_aff *pa;
836 pa = isl_pw_aff_list_get_pw_aff(list, i);
837 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
838 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
841 isl_pw_aff_free(one);
843 return list;
846 /* Set the condition part of the for node graft->node in case
847 * the upper bound is represented as a list of piecewise affine expressions.
849 * In particular, set the condition to
851 * iterator <= min(list of upper bounds)
853 * If each of the upper bounds has a negative constant term, then
854 * set the condition to
856 * iterator < min(list of (upper bound + 1)s)
859 static __isl_give isl_ast_graft *set_for_cond_from_list(
860 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
861 __isl_keep isl_ast_build *build)
863 int neg;
864 isl_ast_expr *bound, *iterator, *cond;
865 enum isl_ast_op_type type = isl_ast_op_le;
867 if (!graft || !list)
868 return isl_ast_graft_free(graft);
870 neg = list_constant_is_negative(list);
871 if (neg < 0)
872 return isl_ast_graft_free(graft);
873 list = isl_pw_aff_list_copy(list);
874 if (neg) {
875 list = list_add_one(list, build);
876 type = isl_ast_op_lt;
879 bound = reduce_list(isl_ast_op_min, list, build);
880 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
881 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
882 graft->node->u.f.cond = cond;
884 isl_pw_aff_list_free(list);
885 if (!graft->node->u.f.cond)
886 return isl_ast_graft_free(graft);
887 return graft;
890 /* Set the condition part of the for node graft->node in case
891 * the upper bound is represented as a set.
893 static __isl_give isl_ast_graft *set_for_cond_from_set(
894 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
895 __isl_keep isl_ast_build *build)
897 isl_ast_expr *cond;
899 if (!graft)
900 return NULL;
902 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
903 graft->node->u.f.cond = cond;
904 if (!graft->node->u.f.cond)
905 return isl_ast_graft_free(graft);
906 return graft;
909 /* Construct an isl_ast_expr for the increment (i.e., stride) of
910 * the current dimension.
912 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
914 int depth;
915 isl_val *v;
916 isl_ctx *ctx;
918 if (!build)
919 return NULL;
920 ctx = isl_ast_build_get_ctx(build);
921 depth = isl_ast_build_get_depth(build);
923 if (!isl_ast_build_has_stride(build, depth))
924 return isl_ast_expr_alloc_int_si(ctx, 1);
926 v = isl_ast_build_get_stride(build, depth);
927 return isl_ast_expr_from_val(v);
930 /* Should we express the loop condition as
932 * iterator <= min(list of upper bounds)
934 * or as a conjunction of constraints?
936 * The first is constructed from a list of upper bounds.
937 * The second is constructed from a set.
939 * If there are no upper bounds in "constraints", then this could mean
940 * that "domain" simply doesn't have an upper bound or that we didn't
941 * pick any upper bound. In the first case, we want to generate the
942 * loop condition as a(n empty) conjunction of constraints
943 * In the second case, we will compute
944 * a single upper bound from "domain" and so we use the list form.
946 * If there are upper bounds in "constraints",
947 * then we use the list form iff the atomic_upper_bound option is set.
949 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
950 __isl_keep isl_set *domain, int depth)
952 if (n_upper > 0)
953 return isl_options_get_ast_build_atomic_upper_bound(ctx);
954 else
955 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
958 /* Fill in the expressions of the for node in graft->node.
960 * In particular,
961 * - set the initialization part of the loop to the maximum of the lower bounds
962 * - extract the increment from the stride of the current dimension
963 * - construct the for condition either based on a list of upper bounds
964 * or on a set of upper bound constraints.
966 static __isl_give isl_ast_graft *set_for_node_expressions(
967 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
968 int use_list, __isl_keep isl_pw_aff_list *upper_list,
969 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
971 isl_ast_node *node;
973 if (!graft)
974 return NULL;
976 build = isl_ast_build_copy(build);
978 node = graft->node;
979 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
980 node->u.f.inc = for_inc(build);
982 if (use_list)
983 graft = set_for_cond_from_list(graft, upper_list, build);
984 else
985 graft = set_for_cond_from_set(graft, upper_set, build);
987 isl_ast_build_free(build);
989 if (!node->u.f.iterator || !node->u.f.init ||
990 !node->u.f.cond || !node->u.f.inc)
991 return isl_ast_graft_free(graft);
993 return graft;
996 /* Update "graft" based on "bounds" and "domain" for the generic,
997 * non-degenerate, case.
999 * "c_lower" and "c_upper" contain the lower and upper bounds
1000 * that the loop node should express.
1001 * "domain" is the subset of the intersection of the constraints
1002 * for which some code is executed.
1004 * There may be zero lower bounds or zero upper bounds in "constraints"
1005 * in case the list of constraints was created
1006 * based on the atomic option or based on separation with explicit bounds.
1007 * In that case, we use "domain" to derive lower and/or upper bounds.
1009 * We first compute a list of one or more lower bounds.
1011 * Then we decide if we want to express the condition as
1013 * iterator <= min(list of upper bounds)
1015 * or as a conjunction of constraints.
1017 * The set of enforced constraints is then computed either based on
1018 * a list of upper bounds or on a set of upper bound constraints.
1019 * We do not compute any enforced constraints if we were forced
1020 * to compute a lower or upper bound using exact_bound. The domains
1021 * of the resulting expressions may imply some bounds on outer dimensions
1022 * that we do not want to appear in the enforced constraints since
1023 * they are not actually enforced by the corresponding code.
1025 * Finally, we fill in the expressions of the for node.
1027 static __isl_give isl_ast_graft *refine_generic_bounds(
1028 __isl_take isl_ast_graft *graft,
1029 __isl_take isl_constraint_list *c_lower,
1030 __isl_take isl_constraint_list *c_upper,
1031 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1033 int depth;
1034 isl_ctx *ctx;
1035 isl_pw_aff_list *lower;
1036 int use_list;
1037 isl_set *upper_set = NULL;
1038 isl_pw_aff_list *upper_list = NULL;
1039 int n_lower, n_upper;
1041 if (!graft || !c_lower || !c_upper || !build)
1042 goto error;
1044 depth = isl_ast_build_get_depth(build);
1045 ctx = isl_ast_graft_get_ctx(graft);
1047 n_lower = isl_constraint_list_n_constraint(c_lower);
1048 n_upper = isl_constraint_list_n_constraint(c_upper);
1050 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1052 lower = lower_bounds(c_lower, depth, domain, build);
1054 if (use_list)
1055 upper_list = upper_bounds(c_upper, depth, domain, build);
1056 else if (n_upper > 0)
1057 upper_set = intersect_constraints(c_upper);
1058 else
1059 upper_set = isl_set_universe(isl_set_get_space(domain));
1061 if (n_lower == 0 || n_upper == 0)
1063 else if (use_list)
1064 graft = set_enforced_from_list(graft, lower, upper_list);
1065 else
1066 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1068 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1069 upper_set, build);
1071 isl_pw_aff_list_free(lower);
1072 isl_pw_aff_list_free(upper_list);
1073 isl_set_free(upper_set);
1074 isl_constraint_list_free(c_lower);
1075 isl_constraint_list_free(c_upper);
1077 return graft;
1078 error:
1079 isl_constraint_list_free(c_lower);
1080 isl_constraint_list_free(c_upper);
1081 return isl_ast_graft_free(graft);
1084 /* Internal data structure used inside count_constraints to keep
1085 * track of the number of constraints that are independent of dimension "pos",
1086 * the lower bounds in "pos" and the upper bounds in "pos".
1088 struct isl_ast_count_constraints_data {
1089 int pos;
1091 int n_indep;
1092 int n_lower;
1093 int n_upper;
1096 /* Increment data->n_indep, data->lower or data->upper depending
1097 * on whether "c" is independenct of dimensions data->pos,
1098 * a lower bound or an upper bound.
1100 static int count_constraints(__isl_take isl_constraint *c, void *user)
1102 struct isl_ast_count_constraints_data *data = user;
1104 if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1105 data->n_lower++;
1106 else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1107 data->n_upper++;
1108 else
1109 data->n_indep++;
1111 isl_constraint_free(c);
1113 return 0;
1116 /* Update "graft" based on "bounds" and "domain" for the generic,
1117 * non-degenerate, case.
1119 * "list" respresent the list of bounds that need to be encoded by
1120 * the for loop. Only the constraints that involve the iterator
1121 * are relevant here. The other constraints are taken care of by
1122 * the caller and are included in the generated constraints of "build".
1123 * "domain" is the subset of the intersection of the constraints
1124 * for which some code is executed.
1125 * "build" is the build in which graft->node was created.
1127 * We separate lower bounds, upper bounds and constraints that
1128 * are independent of the loop iterator.
1130 * The actual for loop bounds are generated in refine_generic_bounds.
1132 static __isl_give isl_ast_graft *refine_generic_split(
1133 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1134 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1136 struct isl_ast_count_constraints_data data;
1137 isl_constraint_list *lower;
1138 isl_constraint_list *upper;
1140 if (!list)
1141 return isl_ast_graft_free(graft);
1143 data.pos = isl_ast_build_get_depth(build);
1145 list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1146 if (!list)
1147 return isl_ast_graft_free(graft);
1149 data.n_indep = data.n_lower = data.n_upper = 0;
1150 if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1151 isl_constraint_list_free(list);
1152 return isl_ast_graft_free(graft);
1155 lower = isl_constraint_list_drop(list, 0, data.n_indep);
1156 upper = isl_constraint_list_copy(lower);
1157 lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1158 upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1160 return refine_generic_bounds(graft, lower, upper, domain, build);
1163 /* Update "graft" based on "bounds" and "domain" for the generic,
1164 * non-degenerate, case.
1166 * "bounds" respresent the bounds that need to be encoded by
1167 * the for loop (or a guard around the for loop).
1168 * "domain" is the subset of "bounds" for which some code is executed.
1169 * "build" is the build in which graft->node was created.
1171 * We break up "bounds" into a list of constraints and continue with
1172 * refine_generic_split.
1174 static __isl_give isl_ast_graft *refine_generic(
1175 __isl_take isl_ast_graft *graft,
1176 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1177 __isl_keep isl_ast_build *build)
1179 isl_constraint_list *list;
1181 if (!build || !graft)
1182 return isl_ast_graft_free(graft);
1184 list = isl_basic_set_get_constraint_list(bounds);
1186 graft = refine_generic_split(graft, list, domain, build);
1188 return graft;
1191 /* Create a for node for the current level.
1193 * Mark the for node degenerate if "degenerate" is set.
1195 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1196 int degenerate)
1198 int depth;
1199 isl_id *id;
1200 isl_ast_node *node;
1202 if (!build)
1203 return NULL;
1205 depth = isl_ast_build_get_depth(build);
1206 id = isl_ast_build_get_iterator_id(build, depth);
1207 node = isl_ast_node_alloc_for(id);
1208 if (degenerate)
1209 node = isl_ast_node_for_mark_degenerate(node);
1211 return node;
1214 /* If the ast_build_exploit_nested_bounds option is set, then return
1215 * the constraints enforced by all elements in "list".
1216 * Otherwise, return the universe.
1218 static __isl_give isl_basic_set *extract_shared_enforced(
1219 __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build)
1221 isl_ctx *ctx;
1222 isl_space *space;
1224 if (!list)
1225 return NULL;
1227 ctx = isl_ast_graft_list_get_ctx(list);
1228 if (isl_options_get_ast_build_exploit_nested_bounds(ctx))
1229 return isl_ast_graft_list_extract_shared_enforced(list, build);
1231 space = isl_ast_build_get_space(build, 1);
1232 return isl_basic_set_universe(space);
1235 /* Return the pending constraints of "build" that are not already taken
1236 * care of (by a combination of "enforced" and the generated constraints
1237 * of "build").
1239 static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build,
1240 __isl_keep isl_basic_set *enforced)
1242 isl_set *guard, *context;
1244 guard = isl_ast_build_get_pending(build);
1245 context = isl_set_from_basic_set(isl_basic_set_copy(enforced));
1246 context = isl_set_intersect(context,
1247 isl_ast_build_get_generated(build));
1248 return isl_set_gist(guard, context);
1251 /* Create an AST node for the current dimension based on
1252 * the schedule domain "bounds" and return the node encapsulated
1253 * in an isl_ast_graft.
1255 * "executed" is the current inverse schedule, taking into account
1256 * the bounds in "bounds"
1257 * "domain" is the domain of "executed", with inner dimensions projected out.
1258 * It may be a strict subset of "bounds" in case "bounds" was created
1259 * based on the atomic option or based on separation with explicit bounds.
1261 * "domain" may satisfy additional equalities that result
1262 * from intersecting "executed" with "bounds" in add_node.
1263 * It may also satisfy some global constraints that were dropped out because
1264 * we performed separation with explicit bounds.
1265 * The very first step is then to copy these constraints to "bounds".
1267 * Since we may be calling before_each_for and after_each_for
1268 * callbacks, we record the current inverse schedule in the build.
1270 * We consider three builds,
1271 * "build" is the one in which the current level is created,
1272 * "body_build" is the build in which the next level is created,
1273 * "sub_build" is essentially the same as "body_build", except that
1274 * the depth has not been increased yet.
1276 * "build" already contains information (in strides and offsets)
1277 * about the strides at the current level, but this information is not
1278 * reflected in the build->domain.
1279 * We first add this information and the "bounds" to the sub_build->domain.
1280 * isl_ast_build_set_loop_bounds adds the stride information and
1281 * checks whether the current dimension attains
1282 * only a single value and whether this single value can be represented using
1283 * a single affine expression.
1284 * In the first case, the current level is considered "degenerate".
1285 * In the second, sub-case, the current level is considered "eliminated".
1286 * Eliminated levels don't need to be reflected in the AST since we can
1287 * simply plug in the affine expression. For degenerate, but non-eliminated,
1288 * levels, we do introduce a for node, but mark is as degenerate so that
1289 * it can be printed as an assignment of the single value to the loop
1290 * "iterator".
1292 * If the current level is eliminated, we explicitly plug in the value
1293 * for the current level found by isl_ast_build_set_loop_bounds in the
1294 * inverse schedule. This ensures that if we are working on a slice
1295 * of the domain based on information available in the inverse schedule
1296 * and the build domain, that then this information is also reflected
1297 * in the inverse schedule. This operation also eliminates the current
1298 * dimension from the inverse schedule making sure no inner dimensions depend
1299 * on the current dimension. Otherwise, we create a for node, marking
1300 * it degenerate if appropriate. The initial for node is still incomplete
1301 * and will be completed in either refine_degenerate or refine_generic.
1303 * We then generate a sequence of grafts for the next level,
1304 * create a surrounding graft for the current level and insert
1305 * the for node we created (if the current level is not eliminated).
1306 * Before creating a graft for the current level, we first extract
1307 * hoistable constraints from the child guards and combine them
1308 * with the pending constraints in the build. These constraints
1309 * are used to simplify the child guards and then added to the guard
1310 * of the current graft to ensure that they will be generated.
1311 * If the hoisted guard is a disjunction, then we use it directly
1312 * to gist the guards on the children before intersect it with the
1313 * pending constraints. We do so because this disjunction is typically
1314 * identical to the guards on the children such that these guards
1315 * can be effectively removed completely. After the intersection,
1316 * the gist operation would have a harder time figuring this out.
1318 * Finally, we set the bounds of the for loop in either
1319 * refine_degenerate or refine_generic.
1320 * We do so in a context where the pending constraints of the build
1321 * have been replaced by the guard of the current graft.
1323 static __isl_give isl_ast_graft *create_node_scaled(
1324 __isl_take isl_union_map *executed,
1325 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1326 __isl_take isl_ast_build *build)
1328 int depth;
1329 int degenerate, eliminated;
1330 isl_basic_set *hull;
1331 isl_basic_set *enforced;
1332 isl_set *guard, *hoisted;
1333 isl_ast_node *node = NULL;
1334 isl_ast_graft *graft;
1335 isl_ast_graft_list *children;
1336 isl_ast_build *sub_build;
1337 isl_ast_build *body_build;
1339 domain = isl_ast_build_eliminate_divs(build, domain);
1340 domain = isl_set_detect_equalities(domain);
1341 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1342 bounds = isl_basic_set_intersect(bounds, hull);
1343 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1345 depth = isl_ast_build_get_depth(build);
1346 sub_build = isl_ast_build_copy(build);
1347 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1348 isl_basic_set_copy(bounds));
1349 degenerate = isl_ast_build_has_value(sub_build);
1350 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1351 if (degenerate < 0 || eliminated < 0)
1352 executed = isl_union_map_free(executed);
1353 if (eliminated)
1354 executed = plug_in_values(executed, sub_build);
1355 else
1356 node = create_for(build, degenerate);
1358 body_build = isl_ast_build_copy(sub_build);
1359 body_build = isl_ast_build_increase_depth(body_build);
1360 if (!eliminated)
1361 node = before_each_for(node, body_build);
1362 children = generate_next_level(executed,
1363 isl_ast_build_copy(body_build));
1365 enforced = extract_shared_enforced(children, build);
1366 guard = extract_pending(sub_build, enforced);
1367 hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build);
1368 if (isl_set_n_basic_set(hoisted) > 1)
1369 children = isl_ast_graft_list_gist_guards(children,
1370 isl_set_copy(hoisted));
1371 guard = isl_set_intersect(guard, hoisted);
1372 if (!eliminated)
1373 guard = add_implied_guards(guard, degenerate, bounds, build);
1375 graft = isl_ast_graft_alloc_from_children(children,
1376 isl_set_copy(guard), enforced, build, sub_build);
1378 if (!degenerate)
1379 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1380 if (!eliminated) {
1381 isl_ast_build *for_build;
1383 graft = isl_ast_graft_insert_for(graft, node);
1384 for_build = isl_ast_build_copy(build);
1385 for_build = isl_ast_build_replace_pending_by_guard(for_build,
1386 isl_set_copy(guard));
1387 if (degenerate)
1388 graft = refine_degenerate(graft, for_build, sub_build);
1389 else
1390 graft = refine_generic(graft, bounds,
1391 domain, for_build);
1392 isl_ast_build_free(for_build);
1394 isl_set_free(guard);
1395 if (!eliminated)
1396 graft = after_each_for(graft, body_build);
1398 isl_ast_build_free(body_build);
1399 isl_ast_build_free(sub_build);
1400 isl_ast_build_free(build);
1401 isl_basic_set_free(bounds);
1402 isl_set_free(domain);
1404 return graft;
1407 /* Internal data structure for checking if all constraints involving
1408 * the input dimension "depth" are such that the other coefficients
1409 * are multiples of "m", reducing "m" if they are not.
1410 * If "m" is reduced all the way down to "1", then the check has failed
1411 * and we break out of the iteration.
1413 struct isl_check_scaled_data {
1414 int depth;
1415 isl_val *m;
1418 /* If constraint "c" involves the input dimension data->depth,
1419 * then make sure that all the other coefficients are multiples of data->m,
1420 * reducing data->m if needed.
1421 * Break out of the iteration if data->m has become equal to "1".
1423 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1425 struct isl_check_scaled_data *data = user;
1426 int i, j, n;
1427 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1428 isl_dim_div };
1430 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1431 isl_constraint_free(c);
1432 return 0;
1435 for (i = 0; i < 4; ++i) {
1436 n = isl_constraint_dim(c, t[i]);
1437 for (j = 0; j < n; ++j) {
1438 isl_val *d;
1440 if (t[i] == isl_dim_in && j == data->depth)
1441 continue;
1442 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1443 continue;
1444 d = isl_constraint_get_coefficient_val(c, t[i], j);
1445 data->m = isl_val_gcd(data->m, d);
1446 if (isl_val_is_one(data->m))
1447 break;
1449 if (j < n)
1450 break;
1453 isl_constraint_free(c);
1455 return i < 4 ? -1 : 0;
1458 /* For each constraint of "bmap" that involves the input dimension data->depth,
1459 * make sure that all the other coefficients are multiples of data->m,
1460 * reducing data->m if needed.
1461 * Break out of the iteration if data->m has become equal to "1".
1463 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1465 int r;
1467 r = isl_basic_map_foreach_constraint(bmap,
1468 &constraint_check_scaled, user);
1469 isl_basic_map_free(bmap);
1471 return r;
1474 /* For each constraint of "map" that involves the input dimension data->depth,
1475 * make sure that all the other coefficients are multiples of data->m,
1476 * reducing data->m if needed.
1477 * Break out of the iteration if data->m has become equal to "1".
1479 static int map_check_scaled(__isl_take isl_map *map, void *user)
1481 int r;
1483 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1484 isl_map_free(map);
1486 return r;
1489 /* Create an AST node for the current dimension based on
1490 * the schedule domain "bounds" and return the node encapsulated
1491 * in an isl_ast_graft.
1493 * "executed" is the current inverse schedule, taking into account
1494 * the bounds in "bounds"
1495 * "domain" is the domain of "executed", with inner dimensions projected out.
1498 * Before moving on to the actual AST node construction in create_node_scaled,
1499 * we first check if the current dimension is strided and if we can scale
1500 * down this stride. Note that we only do this if the ast_build_scale_strides
1501 * option is set.
1503 * In particular, let the current dimension take on values
1505 * f + s a
1507 * with a an integer. We check if we can find an integer m that (obviously)
1508 * divides both f and s.
1510 * If so, we check if the current dimension only appears in constraints
1511 * where the coefficients of the other variables are multiples of m.
1512 * We perform this extra check to avoid the risk of introducing
1513 * divisions by scaling down the current dimension.
1515 * If so, we scale the current dimension down by a factor of m.
1516 * That is, we plug in
1518 * i = m i' (1)
1520 * Note that in principle we could always scale down strided loops
1521 * by plugging in
1523 * i = f + s i'
1525 * but this may result in i' taking on larger values than the original i,
1526 * due to the shift by "f".
1527 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1529 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1530 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1531 __isl_take isl_ast_build *build)
1533 struct isl_check_scaled_data data;
1534 isl_ctx *ctx;
1535 isl_aff *offset;
1536 isl_val *d;
1538 ctx = isl_ast_build_get_ctx(build);
1539 if (!isl_options_get_ast_build_scale_strides(ctx))
1540 return create_node_scaled(executed, bounds, domain, build);
1542 data.depth = isl_ast_build_get_depth(build);
1543 if (!isl_ast_build_has_stride(build, data.depth))
1544 return create_node_scaled(executed, bounds, domain, build);
1546 offset = isl_ast_build_get_offset(build, data.depth);
1547 data.m = isl_ast_build_get_stride(build, data.depth);
1548 if (!data.m)
1549 offset = isl_aff_free(offset);
1550 offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
1551 d = isl_aff_get_denominator_val(offset);
1552 if (!d)
1553 executed = isl_union_map_free(executed);
1555 if (executed && isl_val_is_divisible_by(data.m, d))
1556 data.m = isl_val_div(data.m, d);
1557 else {
1558 data.m = isl_val_set_si(data.m, 1);
1559 isl_val_free(d);
1562 if (!isl_val_is_one(data.m)) {
1563 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1564 &data) < 0 &&
1565 !isl_val_is_one(data.m))
1566 executed = isl_union_map_free(executed);
1569 if (!isl_val_is_one(data.m)) {
1570 isl_space *space;
1571 isl_multi_aff *ma;
1572 isl_aff *aff;
1573 isl_map *map;
1574 isl_union_map *umap;
1576 space = isl_ast_build_get_space(build, 1);
1577 space = isl_space_map_from_set(space);
1578 ma = isl_multi_aff_identity(space);
1579 aff = isl_multi_aff_get_aff(ma, data.depth);
1580 aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
1581 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1583 bounds = isl_basic_set_preimage_multi_aff(bounds,
1584 isl_multi_aff_copy(ma));
1585 domain = isl_set_preimage_multi_aff(domain,
1586 isl_multi_aff_copy(ma));
1587 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1588 umap = isl_union_map_from_map(map);
1589 executed = isl_union_map_apply_domain(executed,
1590 isl_union_map_copy(umap));
1591 build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
1592 umap);
1594 isl_aff_free(offset);
1595 isl_val_free(data.m);
1597 return create_node_scaled(executed, bounds, domain, build);
1600 /* Add the basic set to the list that "user" points to.
1602 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1604 isl_basic_set_list **list = user;
1606 *list = isl_basic_set_list_add(*list, bset);
1608 return 0;
1611 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1613 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1614 __isl_take isl_set *set)
1616 int n;
1617 isl_ctx *ctx;
1618 isl_basic_set_list *list;
1620 if (!set)
1621 return NULL;
1623 ctx = isl_set_get_ctx(set);
1625 n = isl_set_n_basic_set(set);
1626 list = isl_basic_set_list_alloc(ctx, n);
1627 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1628 list = isl_basic_set_list_free(list);
1630 isl_set_free(set);
1631 return list;
1634 /* Generate code for the schedule domain "bounds"
1635 * and add the result to "list".
1637 * We mainly detect strides here and check if the bounds do not
1638 * conflict with the current build domain
1639 * and then pass over control to create_node.
1641 * "bounds" reflects the bounds on the current dimension and possibly
1642 * some extra conditions on outer dimensions.
1643 * It does not, however, include any divs involving the current dimension,
1644 * so it does not capture any stride constraints.
1645 * We therefore need to compute that part of the schedule domain that
1646 * intersects with "bounds" and derive the strides from the result.
1648 static __isl_give isl_ast_graft_list *add_node(
1649 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1650 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1652 isl_ast_graft *graft;
1653 isl_set *domain = NULL;
1654 isl_union_set *uset;
1655 int empty, disjoint;
1657 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1658 executed = isl_union_map_intersect_domain(executed, uset);
1659 empty = isl_union_map_is_empty(executed);
1660 if (empty < 0)
1661 goto error;
1662 if (empty)
1663 goto done;
1665 uset = isl_union_map_domain(isl_union_map_copy(executed));
1666 domain = isl_set_from_union_set(uset);
1667 domain = isl_ast_build_specialize(build, domain);
1669 domain = isl_set_compute_divs(domain);
1670 domain = isl_ast_build_eliminate_inner(build, domain);
1671 disjoint = isl_set_is_disjoint(domain, build->domain);
1672 if (disjoint < 0)
1673 goto error;
1674 if (disjoint)
1675 goto done;
1677 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1679 graft = create_node(executed, bounds, domain,
1680 isl_ast_build_copy(build));
1681 list = isl_ast_graft_list_add(list, graft);
1682 isl_ast_build_free(build);
1683 return list;
1684 error:
1685 list = isl_ast_graft_list_free(list);
1686 done:
1687 isl_set_free(domain);
1688 isl_basic_set_free(bounds);
1689 isl_union_map_free(executed);
1690 isl_ast_build_free(build);
1691 return list;
1694 /* Does any element of i follow or coincide with any element of j
1695 * at the current depth for equal values of the outer dimensions?
1697 static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
1698 __isl_keep isl_basic_set *j, void *user)
1700 int depth = *(int *) user;
1701 isl_basic_map *test;
1702 int empty;
1703 int l;
1705 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1706 isl_basic_set_copy(j));
1707 for (l = 0; l < depth; ++l)
1708 test = isl_basic_map_equate(test, isl_dim_in, l,
1709 isl_dim_out, l);
1710 test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1711 isl_dim_out, depth);
1712 empty = isl_basic_map_is_empty(test);
1713 isl_basic_map_free(test);
1715 return empty < 0 ? -1 : !empty;
1718 /* Split up each element of "list" into a part that is related to "bset"
1719 * according to "gt" and a part that is not.
1720 * Return a list that consist of "bset" and all the pieces.
1722 static __isl_give isl_basic_set_list *add_split_on(
1723 __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1724 __isl_keep isl_basic_map *gt)
1726 int i, n;
1727 isl_basic_set_list *res;
1729 if (!list)
1730 bset = isl_basic_set_free(bset);
1732 gt = isl_basic_map_copy(gt);
1733 gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1734 n = isl_basic_set_list_n_basic_set(list);
1735 res = isl_basic_set_list_from_basic_set(bset);
1736 for (i = 0; res && i < n; ++i) {
1737 isl_basic_set *bset;
1738 isl_set *set1, *set2;
1739 isl_basic_map *bmap;
1740 int empty;
1742 bset = isl_basic_set_list_get_basic_set(list, i);
1743 bmap = isl_basic_map_copy(gt);
1744 bmap = isl_basic_map_intersect_range(bmap, bset);
1745 bset = isl_basic_map_range(bmap);
1746 empty = isl_basic_set_is_empty(bset);
1747 if (empty < 0)
1748 res = isl_basic_set_list_free(res);
1749 if (empty) {
1750 isl_basic_set_free(bset);
1751 bset = isl_basic_set_list_get_basic_set(list, i);
1752 res = isl_basic_set_list_add(res, bset);
1753 continue;
1756 res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1757 set1 = isl_set_from_basic_set(bset);
1758 bset = isl_basic_set_list_get_basic_set(list, i);
1759 set2 = isl_set_from_basic_set(bset);
1760 set1 = isl_set_subtract(set2, set1);
1761 set1 = isl_set_make_disjoint(set1);
1763 res = isl_basic_set_list_concat(res,
1764 isl_basic_set_list_from_set(set1));
1766 isl_basic_map_free(gt);
1767 isl_basic_set_list_free(list);
1768 return res;
1771 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1772 __isl_keep isl_basic_set_list *domain_list,
1773 __isl_keep isl_union_map *executed,
1774 __isl_keep isl_ast_build *build);
1776 /* Internal data structure for add_nodes.
1778 * "executed" and "build" are extra arguments to be passed to add_node.
1779 * "list" collects the results.
1781 struct isl_add_nodes_data {
1782 isl_union_map *executed;
1783 isl_ast_build *build;
1785 isl_ast_graft_list *list;
1788 /* Generate code for the schedule domains in "scc"
1789 * and add the results to "list".
1791 * The domains in "scc" form a strongly connected component in the ordering.
1792 * If the number of domains in "scc" is larger than 1, then this means
1793 * that we cannot determine a valid ordering for the domains in the component.
1794 * This should be fairly rare because the individual domains
1795 * have been made disjoint first.
1796 * The problem is that the domains may be integrally disjoint but not
1797 * rationally disjoint. For example, we may have domains
1799 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1801 * These two domains have an empty intersection, but their rational
1802 * relaxations do intersect. It is impossible to order these domains
1803 * in the second dimension because the first should be ordered before
1804 * the second for outer dimension equal to 0, while it should be ordered
1805 * after for outer dimension equal to 1.
1807 * This may happen in particular in case of unrolling since the domain
1808 * of each slice is replaced by its simple hull.
1810 * For each basic set i in "scc" and for each of the following basic sets j,
1811 * we split off that part of the basic set i that shares the outer dimensions
1812 * with j and lies before j in the current dimension.
1813 * We collect all the pieces in a new list that replaces "scc".
1815 * While the elements in "scc" should be disjoint, we double-check
1816 * this property to avoid running into an infinite recursion in case
1817 * they intersect due to some internal error.
1819 static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1821 struct isl_add_nodes_data *data = user;
1822 int i, n, depth;
1823 isl_basic_set *bset, *first;
1824 isl_basic_set_list *list;
1825 isl_space *space;
1826 isl_basic_map *gt;
1828 n = isl_basic_set_list_n_basic_set(scc);
1829 bset = isl_basic_set_list_get_basic_set(scc, 0);
1830 if (n == 1) {
1831 isl_basic_set_list_free(scc);
1832 data->list = add_node(data->list,
1833 isl_union_map_copy(data->executed), bset,
1834 isl_ast_build_copy(data->build));
1835 return data->list ? 0 : -1;
1838 depth = isl_ast_build_get_depth(data->build);
1839 space = isl_basic_set_get_space(bset);
1840 space = isl_space_map_from_set(space);
1841 gt = isl_basic_map_universe(space);
1842 for (i = 0; i < depth; ++i)
1843 gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
1844 gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
1846 first = isl_basic_set_copy(bset);
1847 list = isl_basic_set_list_from_basic_set(bset);
1848 for (i = 1; i < n; ++i) {
1849 int disjoint;
1851 bset = isl_basic_set_list_get_basic_set(scc, i);
1853 disjoint = isl_basic_set_is_disjoint(bset, first);
1854 if (disjoint < 0)
1855 list = isl_basic_set_list_free(list);
1856 else if (!disjoint)
1857 isl_die(isl_basic_set_list_get_ctx(scc),
1858 isl_error_internal,
1859 "basic sets in scc are assumed to be disjoint",
1860 list = isl_basic_set_list_free(list));
1862 list = add_split_on(list, bset, gt);
1864 isl_basic_set_free(first);
1865 isl_basic_map_free(gt);
1866 isl_basic_set_list_free(scc);
1867 scc = list;
1868 data->list = isl_ast_graft_list_concat(data->list,
1869 generate_sorted_domains(scc, data->executed, data->build));
1870 isl_basic_set_list_free(scc);
1872 return data->list ? 0 : -1;
1875 /* Sort the domains in "domain_list" according to the execution order
1876 * at the current depth (for equal values of the outer dimensions),
1877 * generate code for each of them, collecting the results in a list.
1878 * If no code is generated (because the intersection of the inverse schedule
1879 * with the domains turns out to be empty), then an empty list is returned.
1881 * The caller is responsible for ensuring that the basic sets in "domain_list"
1882 * are pair-wise disjoint. It can, however, in principle happen that
1883 * two basic sets should be ordered one way for one value of the outer
1884 * dimensions and the other way for some other value of the outer dimensions.
1885 * We therefore play safe and look for strongly connected components.
1886 * The function add_nodes takes care of handling non-trivial components.
1888 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1889 __isl_keep isl_basic_set_list *domain_list,
1890 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1892 isl_ctx *ctx;
1893 struct isl_add_nodes_data data;
1894 int depth;
1895 int n;
1897 if (!domain_list)
1898 return NULL;
1900 ctx = isl_basic_set_list_get_ctx(domain_list);
1901 n = isl_basic_set_list_n_basic_set(domain_list);
1902 data.list = isl_ast_graft_list_alloc(ctx, n);
1903 if (n == 0)
1904 return data.list;
1905 if (n == 1)
1906 return add_node(data.list, isl_union_map_copy(executed),
1907 isl_basic_set_list_get_basic_set(domain_list, 0),
1908 isl_ast_build_copy(build));
1910 depth = isl_ast_build_get_depth(build);
1911 data.executed = executed;
1912 data.build = build;
1913 if (isl_basic_set_list_foreach_scc(domain_list,
1914 &domain_follows_at_depth, &depth,
1915 &add_nodes, &data) < 0)
1916 data.list = isl_ast_graft_list_free(data.list);
1918 return data.list;
1921 /* Do i and j share any values for the outer dimensions?
1923 static int shared_outer(__isl_keep isl_basic_set *i,
1924 __isl_keep isl_basic_set *j, void *user)
1926 int depth = *(int *) user;
1927 isl_basic_map *test;
1928 int empty;
1929 int l;
1931 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1932 isl_basic_set_copy(j));
1933 for (l = 0; l < depth; ++l)
1934 test = isl_basic_map_equate(test, isl_dim_in, l,
1935 isl_dim_out, l);
1936 empty = isl_basic_map_is_empty(test);
1937 isl_basic_map_free(test);
1939 return empty < 0 ? -1 : !empty;
1942 /* Internal data structure for generate_sorted_domains_wrap.
1944 * "n" is the total number of basic sets
1945 * "executed" and "build" are extra arguments to be passed
1946 * to generate_sorted_domains.
1948 * "single" is set to 1 by generate_sorted_domains_wrap if there
1949 * is only a single component.
1950 * "list" collects the results.
1952 struct isl_ast_generate_parallel_domains_data {
1953 int n;
1954 isl_union_map *executed;
1955 isl_ast_build *build;
1957 int single;
1958 isl_ast_graft_list *list;
1961 /* Call generate_sorted_domains on "scc", fuse the result into a list
1962 * with either zero or one graft and collect the these single element
1963 * lists into data->list.
1965 * If there is only one component, i.e., if the number of basic sets
1966 * in the current component is equal to the total number of basic sets,
1967 * then data->single is set to 1 and the result of generate_sorted_domains
1968 * is not fused.
1970 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
1971 void *user)
1973 struct isl_ast_generate_parallel_domains_data *data = user;
1974 isl_ast_graft_list *list;
1976 list = generate_sorted_domains(scc, data->executed, data->build);
1977 data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
1978 if (!data->single)
1979 list = isl_ast_graft_list_fuse(list, data->build);
1980 if (!data->list)
1981 data->list = list;
1982 else
1983 data->list = isl_ast_graft_list_concat(data->list, list);
1985 isl_basic_set_list_free(scc);
1986 if (!data->list)
1987 return -1;
1989 return 0;
1992 /* Look for any (weakly connected) components in the "domain_list"
1993 * of domains that share some values of the outer dimensions.
1994 * That is, domains in different components do not share any values
1995 * of the outer dimensions. This means that these components
1996 * can be freely reordered.
1997 * Within each of the components, we sort the domains according
1998 * to the execution order at the current depth.
2000 * If there is more than one component, then generate_sorted_domains_wrap
2001 * fuses the result of each call to generate_sorted_domains
2002 * into a list with either zero or one graft and collects these (at most)
2003 * single element lists into a bigger list. This means that the elements of the
2004 * final list can be freely reordered. In particular, we sort them
2005 * according to an arbitrary but fixed ordering to ease merging of
2006 * graft lists from different components.
2008 static __isl_give isl_ast_graft_list *generate_parallel_domains(
2009 __isl_keep isl_basic_set_list *domain_list,
2010 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2012 int depth;
2013 struct isl_ast_generate_parallel_domains_data data;
2015 if (!domain_list)
2016 return NULL;
2018 data.n = isl_basic_set_list_n_basic_set(domain_list);
2019 if (data.n <= 1)
2020 return generate_sorted_domains(domain_list, executed, build);
2022 depth = isl_ast_build_get_depth(build);
2023 data.list = NULL;
2024 data.executed = executed;
2025 data.build = build;
2026 data.single = 0;
2027 if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
2028 &generate_sorted_domains_wrap,
2029 &data) < 0)
2030 data.list = isl_ast_graft_list_free(data.list);
2032 if (!data.single)
2033 data.list = isl_ast_graft_list_sort_guard(data.list);
2035 return data.list;
2038 /* Internal data for separate_domain.
2040 * "explicit" is set if we only want to use explicit bounds.
2042 * "domain" collects the separated domains.
2044 struct isl_separate_domain_data {
2045 isl_ast_build *build;
2046 int explicit;
2047 isl_set *domain;
2050 /* Extract implicit bounds on the current dimension for the executed "map".
2052 * The domain of "map" may involve inner dimensions, so we
2053 * need to eliminate them.
2055 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2056 __isl_keep isl_ast_build *build)
2058 isl_set *domain;
2060 domain = isl_map_domain(map);
2061 domain = isl_ast_build_eliminate(build, domain);
2063 return domain;
2066 /* Extract explicit bounds on the current dimension for the executed "map".
2068 * Rather than eliminating the inner dimensions as in implicit_bounds,
2069 * we simply drop any constraints involving those inner dimensions.
2070 * The idea is that most bounds that are implied by constraints on the
2071 * inner dimensions will be enforced by for loops and not by explicit guards.
2072 * There is then no need to separate along those bounds.
2074 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2075 __isl_keep isl_ast_build *build)
2077 isl_set *domain;
2078 int depth, dim;
2080 dim = isl_map_dim(map, isl_dim_out);
2081 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2083 domain = isl_map_domain(map);
2084 depth = isl_ast_build_get_depth(build);
2085 dim = isl_set_dim(domain, isl_dim_set);
2086 domain = isl_set_detect_equalities(domain);
2087 domain = isl_set_drop_constraints_involving_dims(domain,
2088 isl_dim_set, depth + 1, dim - (depth + 1));
2089 domain = isl_set_remove_divs_involving_dims(domain,
2090 isl_dim_set, depth, 1);
2091 domain = isl_set_remove_unknown_divs(domain);
2093 return domain;
2096 /* Split data->domain into pieces that intersect with the range of "map"
2097 * and pieces that do not intersect with the range of "map"
2098 * and then add that part of the range of "map" that does not intersect
2099 * with data->domain.
2101 static int separate_domain(__isl_take isl_map *map, void *user)
2103 struct isl_separate_domain_data *data = user;
2104 isl_set *domain;
2105 isl_set *d1, *d2;
2107 if (data->explicit)
2108 domain = explicit_bounds(map, data->build);
2109 else
2110 domain = implicit_bounds(map, data->build);
2112 domain = isl_set_coalesce(domain);
2113 domain = isl_set_make_disjoint(domain);
2114 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2115 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2116 data->domain = isl_set_intersect(data->domain, domain);
2117 data->domain = isl_set_union(data->domain, d1);
2118 data->domain = isl_set_union(data->domain, d2);
2120 return 0;
2123 /* Separate the schedule domains of "executed".
2125 * That is, break up the domain of "executed" into basic sets,
2126 * such that for each basic set S, every element in S is associated with
2127 * the same domain spaces.
2129 * "space" is the (single) domain space of "executed".
2131 static __isl_give isl_set *separate_schedule_domains(
2132 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2133 __isl_keep isl_ast_build *build)
2135 struct isl_separate_domain_data data = { build };
2136 isl_ctx *ctx;
2138 ctx = isl_ast_build_get_ctx(build);
2139 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2140 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2141 data.domain = isl_set_empty(space);
2142 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2143 data.domain = isl_set_free(data.domain);
2145 isl_union_map_free(executed);
2146 return data.domain;
2149 /* Temporary data used during the search for a lower bound for unrolling.
2151 * "domain" is the original set for which to find a lower bound
2152 * "depth" is the dimension for which to find a lower boudn
2154 * "lower" is the best lower bound found so far. It is NULL if we have not
2155 * found any yet.
2156 * "n" is the corresponding size. If lower is NULL, then the value of n
2157 * is undefined.
2159 struct isl_find_unroll_data {
2160 isl_set *domain;
2161 int depth;
2163 isl_aff *lower;
2164 int *n;
2167 /* Check if we can use "c" as a lower bound and if it is better than
2168 * any previously found lower bound.
2170 * If "c" does not involve the dimension at the current depth,
2171 * then we cannot use it.
2172 * Otherwise, let "c" be of the form
2174 * i >= f(j)/a
2176 * We compute the maximal value of
2178 * -ceil(f(j)/a)) + i + 1
2180 * over the domain. If there is such a value "n", then we know
2182 * -ceil(f(j)/a)) + i + 1 <= n
2184 * or
2186 * i < ceil(f(j)/a)) + n
2188 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2189 * We just need to check if we have found any lower bound before and
2190 * if the new lower bound is better (smaller n) than the previously found
2191 * lower bounds.
2193 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2194 __isl_keep isl_constraint *c)
2196 isl_aff *aff, *lower;
2197 isl_val *max;
2199 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2200 return 0;
2202 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2203 lower = isl_aff_ceil(lower);
2204 aff = isl_aff_copy(lower);
2205 aff = isl_aff_neg(aff);
2206 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2207 aff = isl_aff_add_constant_si(aff, 1);
2208 max = isl_set_max_val(data->domain, aff);
2209 isl_aff_free(aff);
2211 if (!max)
2212 goto error;
2213 if (isl_val_is_infty(max)) {
2214 isl_val_free(max);
2215 isl_aff_free(lower);
2216 return 0;
2219 if (isl_val_cmp_si(max, INT_MAX) <= 0 &&
2220 (!data->lower || isl_val_cmp_si(max, *data->n) < 0)) {
2221 isl_aff_free(data->lower);
2222 data->lower = lower;
2223 *data->n = isl_val_get_num_si(max);
2224 } else
2225 isl_aff_free(lower);
2226 isl_val_free(max);
2228 return 1;
2229 error:
2230 isl_aff_free(lower);
2231 return -1;
2234 /* Check if we can use "c" as a lower bound and if it is better than
2235 * any previously found lower bound.
2237 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2239 struct isl_find_unroll_data *data;
2240 int r;
2242 data = (struct isl_find_unroll_data *) user;
2243 r = update_unrolling_lower_bound(data, c);
2244 isl_constraint_free(c);
2246 return r;
2249 /* Look for a lower bound l(i) on the dimension at "depth"
2250 * and a size n such that "domain" is a subset of
2252 * { [i] : l(i) <= i_d < l(i) + n }
2254 * where d is "depth" and l(i) depends only on earlier dimensions.
2255 * Furthermore, try and find a lower bound such that n is as small as possible.
2256 * In particular, "n" needs to be finite.
2258 * Inner dimensions have been eliminated from "domain" by the caller.
2260 * We first construct a collection of lower bounds on the input set
2261 * by computing its simple hull. We then iterate through them,
2262 * discarding those that we cannot use (either because they do not
2263 * involve the dimension at "depth" or because they have no corresponding
2264 * upper bound, meaning that "n" would be unbounded) and pick out the
2265 * best from the remaining ones.
2267 * If we cannot find a suitable lower bound, then we consider that
2268 * to be an error.
2270 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2271 int depth, int *n)
2273 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2274 isl_basic_set *hull;
2276 hull = isl_set_simple_hull(isl_set_copy(domain));
2278 if (isl_basic_set_foreach_constraint(hull,
2279 &constraint_find_unroll, &data) < 0)
2280 goto error;
2282 isl_basic_set_free(hull);
2284 if (!data.lower)
2285 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2286 "cannot find lower bound for unrolling", return NULL);
2288 return data.lower;
2289 error:
2290 isl_basic_set_free(hull);
2291 return isl_aff_free(data.lower);
2294 /* Return the constraint
2296 * i_"depth" = aff + offset
2298 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2299 int offset)
2301 aff = isl_aff_copy(aff);
2302 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2303 aff = isl_aff_add_constant_si(aff, offset);
2304 return isl_equality_from_aff(aff);
2307 /* Data structure for storing the results and the intermediate objects
2308 * of compute_domains.
2310 * "list" is the main result of the function and contains a list
2311 * of disjoint basic sets for which code should be generated.
2313 * "executed" and "build" are inputs to compute_domains.
2314 * "schedule_domain" is the domain of "executed".
2316 * "option" constains the domains at the current depth that should by
2317 * atomic, separated or unrolled. These domains are as specified by
2318 * the user, except that inner dimensions have been eliminated and
2319 * that they have been made pair-wise disjoint.
2321 * "sep_class" contains the user-specified split into separation classes
2322 * specialized to the current depth.
2323 * "done" contains the union of the separation domains that have already
2324 * been handled.
2326 struct isl_codegen_domains {
2327 isl_basic_set_list *list;
2329 isl_union_map *executed;
2330 isl_ast_build *build;
2331 isl_set *schedule_domain;
2333 isl_set *option[3];
2335 isl_map *sep_class;
2336 isl_set *done;
2339 /* Extend domains->list with a list of basic sets, one for each value
2340 * of the current dimension in "domain" and remove the corresponding
2341 * sets from the class domain. Return the updated class domain.
2342 * The divs that involve the current dimension have not been projected out
2343 * from this domain.
2345 * Since we are going to be iterating over the individual values,
2346 * we first check if there are any strides on the current dimension.
2347 * If there is, we rewrite the current dimension i as
2349 * i = stride i' + offset
2351 * and then iterate over individual values of i' instead.
2353 * We then look for a lower bound on i' and a size such that the domain
2354 * is a subset of
2356 * { [j,i'] : l(j) <= i' < l(j) + n }
2358 * and then take slices of the domain at values of i'
2359 * between l(j) and l(j) + n - 1.
2361 * We compute the unshifted simple hull of each slice to ensure that
2362 * we have a single basic set per offset. The slicing constraint
2363 * may get simplified away before the unshifted simple hull is taken
2364 * and may therefore in some rare cases disappear from the result.
2365 * We therefore explicitly add the constraint back after computing
2366 * the unshifted simple hull to ensure that the basic sets
2367 * remain disjoint. The constraints that are dropped by taking the hull
2368 * will be taken into account at the next level, as in the case of the
2369 * atomic option.
2371 * Finally, we map i' back to i and add each basic set to the list.
2372 * Since we may have dropped some constraints, we intersect with
2373 * the class domain again to ensure that each element in the list
2374 * is disjoint from the other class domains.
2376 static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2377 __isl_take isl_set *domain, __isl_take isl_set *class_domain)
2379 int i, n;
2380 int depth;
2381 isl_ctx *ctx;
2382 isl_aff *lower;
2383 isl_multi_aff *expansion;
2384 isl_basic_map *bmap;
2385 isl_set *unroll_domain;
2386 isl_ast_build *build;
2388 if (!domain)
2389 return isl_set_free(class_domain);
2391 ctx = isl_set_get_ctx(domain);
2392 depth = isl_ast_build_get_depth(domains->build);
2393 build = isl_ast_build_copy(domains->build);
2394 domain = isl_ast_build_eliminate_inner(build, domain);
2395 domain = isl_set_intersect(domain, isl_ast_build_get_domain(build));
2396 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2397 expansion = isl_ast_build_get_stride_expansion(build);
2399 domain = isl_set_preimage_multi_aff(domain,
2400 isl_multi_aff_copy(expansion));
2401 domain = isl_ast_build_eliminate_divs(build, domain);
2403 isl_ast_build_free(build);
2405 lower = find_unroll_lower_bound(domain, depth, &n);
2406 if (!lower)
2407 class_domain = isl_set_free(class_domain);
2409 bmap = isl_basic_map_from_multi_aff(expansion);
2411 unroll_domain = isl_set_empty(isl_set_get_space(domain));
2413 for (i = 0; class_domain && i < n; ++i) {
2414 isl_set *set;
2415 isl_basic_set *bset;
2416 isl_constraint *slice;
2417 isl_basic_set_list *list;
2419 slice = at_offset(depth, lower, i);
2420 set = isl_set_copy(domain);
2421 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2422 bset = isl_set_unshifted_simple_hull(set);
2423 bset = isl_basic_set_add_constraint(bset, slice);
2424 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2425 set = isl_set_from_basic_set(bset);
2426 unroll_domain = isl_set_union(unroll_domain, isl_set_copy(set));
2427 set = isl_set_intersect(set, isl_set_copy(class_domain));
2428 set = isl_set_make_disjoint(set);
2429 list = isl_basic_set_list_from_set(set);
2430 domains->list = isl_basic_set_list_concat(domains->list, list);
2433 class_domain = isl_set_subtract(class_domain, unroll_domain);
2435 isl_aff_free(lower);
2436 isl_set_free(domain);
2437 isl_basic_map_free(bmap);
2439 return class_domain;
2442 /* Add domains to domains->list for each individual value of the current
2443 * dimension, for that part of the schedule domain that lies in the
2444 * intersection of the option domain and the class domain.
2445 * Remove the corresponding sets from the class domain and
2446 * return the updated class domain.
2448 * We first break up the unroll option domain into individual pieces
2449 * and then handle each of them separately. The unroll option domain
2450 * has been made disjoint in compute_domains_init_options,
2452 * Note that we actively want to combine different pieces of the
2453 * schedule domain that have the same value at the current dimension.
2454 * We therefore need to break up the unroll option domain before
2455 * intersecting with class and schedule domain, hoping that the
2456 * unroll option domain specified by the user is relatively simple.
2458 static __isl_give isl_set *compute_unroll_domains(
2459 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2461 isl_set *unroll_domain;
2462 isl_basic_set_list *unroll_list;
2463 int i, n;
2464 int empty;
2466 empty = isl_set_is_empty(domains->option[unroll]);
2467 if (empty < 0)
2468 return isl_set_free(class_domain);
2469 if (empty)
2470 return class_domain;
2472 unroll_domain = isl_set_copy(domains->option[unroll]);
2473 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2475 n = isl_basic_set_list_n_basic_set(unroll_list);
2476 for (i = 0; i < n; ++i) {
2477 isl_basic_set *bset;
2479 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2480 unroll_domain = isl_set_from_basic_set(bset);
2481 unroll_domain = isl_set_intersect(unroll_domain,
2482 isl_set_copy(class_domain));
2483 unroll_domain = isl_set_intersect(unroll_domain,
2484 isl_set_copy(domains->schedule_domain));
2486 empty = isl_set_is_empty(unroll_domain);
2487 if (empty >= 0 && empty) {
2488 isl_set_free(unroll_domain);
2489 continue;
2492 class_domain = do_unroll(domains, unroll_domain, class_domain);
2495 isl_basic_set_list_free(unroll_list);
2497 return class_domain;
2500 /* Try and construct a single basic set that includes the intersection of
2501 * the schedule domain, the atomic option domain and the class domain.
2502 * Add the resulting basic set(s) to domains->list and remove them
2503 * from class_domain. Return the updated class domain.
2505 * We construct a single domain rather than trying to combine
2506 * the schedule domains of individual domains because we are working
2507 * within a single component so that non-overlapping schedule domains
2508 * should already have been separated.
2509 * We do however need to make sure that this single domains is a subset
2510 * of the class domain so that it would not intersect with any other
2511 * class domains. This means that we may end up splitting up the atomic
2512 * domain in case separation classes are being used.
2514 * "domain" is the intersection of the schedule domain and the class domain,
2515 * with inner dimensions projected out.
2517 static __isl_give isl_set *compute_atomic_domain(
2518 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2520 isl_basic_set *bset;
2521 isl_basic_set_list *list;
2522 isl_set *domain, *atomic_domain;
2523 int empty;
2525 domain = isl_set_copy(domains->option[atomic]);
2526 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2527 domain = isl_set_intersect(domain,
2528 isl_set_copy(domains->schedule_domain));
2529 empty = isl_set_is_empty(domain);
2530 if (empty < 0)
2531 class_domain = isl_set_free(class_domain);
2532 if (empty) {
2533 isl_set_free(domain);
2534 return class_domain;
2537 domain = isl_ast_build_eliminate(domains->build, domain);
2538 domain = isl_set_coalesce(domain);
2539 bset = isl_set_unshifted_simple_hull(domain);
2540 domain = isl_set_from_basic_set(bset);
2541 atomic_domain = isl_set_copy(domain);
2542 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2543 class_domain = isl_set_subtract(class_domain, atomic_domain);
2544 domain = isl_set_make_disjoint(domain);
2545 list = isl_basic_set_list_from_set(domain);
2546 domains->list = isl_basic_set_list_concat(domains->list, list);
2548 return class_domain;
2551 /* Split up the schedule domain into uniform basic sets,
2552 * in the sense that each element in a basic set is associated to
2553 * elements of the same domains, and add the result to domains->list.
2554 * Do this for that part of the schedule domain that lies in the
2555 * intersection of "class_domain" and the separate option domain.
2557 * "class_domain" may or may not include the constraints
2558 * of the schedule domain, but this does not make a difference
2559 * since we are going to intersect it with the domain of the inverse schedule.
2560 * If it includes schedule domain constraints, then they may involve
2561 * inner dimensions, but we will eliminate them in separation_domain.
2563 static int compute_separate_domain(struct isl_codegen_domains *domains,
2564 __isl_keep isl_set *class_domain)
2566 isl_space *space;
2567 isl_set *domain;
2568 isl_union_map *executed;
2569 isl_basic_set_list *list;
2570 int empty;
2572 domain = isl_set_copy(domains->option[separate]);
2573 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2574 executed = isl_union_map_copy(domains->executed);
2575 executed = isl_union_map_intersect_domain(executed,
2576 isl_union_set_from_set(domain));
2577 empty = isl_union_map_is_empty(executed);
2578 if (empty < 0 || empty) {
2579 isl_union_map_free(executed);
2580 return empty < 0 ? -1 : 0;
2583 space = isl_set_get_space(class_domain);
2584 domain = separate_schedule_domains(space, executed, domains->build);
2586 list = isl_basic_set_list_from_set(domain);
2587 domains->list = isl_basic_set_list_concat(domains->list, list);
2589 return 0;
2592 /* Split up the domain at the current depth into disjoint
2593 * basic sets for which code should be generated separately
2594 * for the given separation class domain.
2596 * If any separation classes have been defined, then "class_domain"
2597 * is the domain of the current class and does not refer to inner dimensions.
2598 * Otherwise, "class_domain" is the universe domain.
2600 * We first make sure that the class domain is disjoint from
2601 * previously considered class domains.
2603 * The separate domains can be computed directly from the "class_domain".
2605 * The unroll, atomic and remainder domains need the constraints
2606 * from the schedule domain.
2608 * For unrolling, the actual schedule domain is needed (with divs that
2609 * may refer to the current dimension) so that stride detection can be
2610 * performed.
2612 * For atomic and remainder domains, inner dimensions and divs involving
2613 * the current dimensions should be eliminated.
2614 * In case we are working within a separation class, we need to intersect
2615 * the result with the current "class_domain" to ensure that the domains
2616 * are disjoint from those generated from other class domains.
2618 * The domain that has been made atomic may be larger than specified
2619 * by the user since it needs to be representable as a single basic set.
2620 * This possibly larger domain is removed from class_domain by
2621 * compute_atomic_domain. It is computed first so that the extended domain
2622 * would not overlap with any domains computed before.
2623 * Similary, the unrolled domains may have some constraints removed and
2624 * may therefore also be larger than specified by the user.
2626 * If anything is left after handling separate, unroll and atomic,
2627 * we split it up into basic sets and append the basic sets to domains->list.
2629 static int compute_partial_domains(struct isl_codegen_domains *domains,
2630 __isl_take isl_set *class_domain)
2632 isl_basic_set_list *list;
2633 isl_set *domain;
2635 class_domain = isl_set_subtract(class_domain,
2636 isl_set_copy(domains->done));
2637 domains->done = isl_set_union(domains->done,
2638 isl_set_copy(class_domain));
2640 class_domain = compute_atomic_domain(domains, class_domain);
2641 class_domain = compute_unroll_domains(domains, class_domain);
2643 domain = isl_set_copy(class_domain);
2645 if (compute_separate_domain(domains, domain) < 0)
2646 goto error;
2647 domain = isl_set_subtract(domain,
2648 isl_set_copy(domains->option[separate]));
2650 domain = isl_set_intersect(domain,
2651 isl_set_copy(domains->schedule_domain));
2653 domain = isl_ast_build_eliminate(domains->build, domain);
2654 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2656 domain = isl_set_coalesce(domain);
2657 domain = isl_set_make_disjoint(domain);
2659 list = isl_basic_set_list_from_set(domain);
2660 domains->list = isl_basic_set_list_concat(domains->list, list);
2662 isl_set_free(class_domain);
2664 return 0;
2665 error:
2666 isl_set_free(domain);
2667 isl_set_free(class_domain);
2668 return -1;
2671 /* Split up the domain at the current depth into disjoint
2672 * basic sets for which code should be generated separately
2673 * for the separation class identified by "pnt".
2675 * We extract the corresponding class domain from domains->sep_class,
2676 * eliminate inner dimensions and pass control to compute_partial_domains.
2678 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2680 struct isl_codegen_domains *domains = user;
2681 isl_set *class_set;
2682 isl_set *domain;
2683 int disjoint;
2685 class_set = isl_set_from_point(pnt);
2686 domain = isl_map_domain(isl_map_intersect_range(
2687 isl_map_copy(domains->sep_class), class_set));
2688 domain = isl_ast_build_compute_gist(domains->build, domain);
2689 domain = isl_ast_build_eliminate(domains->build, domain);
2691 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2692 if (disjoint < 0)
2693 return -1;
2694 if (disjoint) {
2695 isl_set_free(domain);
2696 return 0;
2699 return compute_partial_domains(domains, domain);
2702 /* Extract the domains at the current depth that should be atomic,
2703 * separated or unrolled and store them in option.
2705 * The domains specified by the user might overlap, so we make
2706 * them disjoint by subtracting earlier domains from later domains.
2708 static void compute_domains_init_options(isl_set *option[3],
2709 __isl_keep isl_ast_build *build)
2711 enum isl_ast_build_domain_type type, type2;
2713 for (type = atomic; type <= separate; ++type) {
2714 option[type] = isl_ast_build_get_option_domain(build, type);
2715 for (type2 = atomic; type2 < type; ++type2)
2716 option[type] = isl_set_subtract(option[type],
2717 isl_set_copy(option[type2]));
2720 option[unroll] = isl_set_coalesce(option[unroll]);
2721 option[unroll] = isl_set_make_disjoint(option[unroll]);
2724 /* Split up the domain at the current depth into disjoint
2725 * basic sets for which code should be generated separately,
2726 * based on the user-specified options.
2727 * Return the list of disjoint basic sets.
2729 * There are three kinds of domains that we need to keep track of.
2730 * - the "schedule domain" is the domain of "executed"
2731 * - the "class domain" is the domain corresponding to the currrent
2732 * separation class
2733 * - the "option domain" is the domain corresponding to one of the options
2734 * atomic, unroll or separate
2736 * We first consider the individial values of the separation classes
2737 * and split up the domain for each of them separately.
2738 * Finally, we consider the remainder. If no separation classes were
2739 * specified, then we call compute_partial_domains with the universe
2740 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2741 * with inner dimensions removed. We do this because we want to
2742 * avoid computing the complement of the class domains (i.e., the difference
2743 * between the universe and domains->done).
2745 static __isl_give isl_basic_set_list *compute_domains(
2746 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2748 struct isl_codegen_domains domains;
2749 isl_ctx *ctx;
2750 isl_set *domain;
2751 isl_union_set *schedule_domain;
2752 isl_set *classes;
2753 isl_space *space;
2754 int n_param;
2755 enum isl_ast_build_domain_type type;
2756 int empty;
2758 if (!executed)
2759 return NULL;
2761 ctx = isl_union_map_get_ctx(executed);
2762 domains.list = isl_basic_set_list_alloc(ctx, 0);
2764 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2765 domain = isl_set_from_union_set(schedule_domain);
2767 compute_domains_init_options(domains.option, build);
2769 domains.sep_class = isl_ast_build_get_separation_class(build);
2770 classes = isl_map_range(isl_map_copy(domains.sep_class));
2771 n_param = isl_set_dim(classes, isl_dim_param);
2772 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2774 space = isl_set_get_space(domain);
2775 domains.build = build;
2776 domains.schedule_domain = isl_set_copy(domain);
2777 domains.executed = executed;
2778 domains.done = isl_set_empty(space);
2780 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2781 domains.list = isl_basic_set_list_free(domains.list);
2782 isl_set_free(classes);
2784 empty = isl_set_is_empty(domains.done);
2785 if (empty < 0) {
2786 domains.list = isl_basic_set_list_free(domains.list);
2787 domain = isl_set_free(domain);
2788 } else if (empty) {
2789 isl_set_free(domain);
2790 domain = isl_set_universe(isl_set_get_space(domains.done));
2791 } else {
2792 domain = isl_ast_build_eliminate(build, domain);
2794 if (compute_partial_domains(&domains, domain) < 0)
2795 domains.list = isl_basic_set_list_free(domains.list);
2797 isl_set_free(domains.schedule_domain);
2798 isl_set_free(domains.done);
2799 isl_map_free(domains.sep_class);
2800 for (type = atomic; type <= separate; ++type)
2801 isl_set_free(domains.option[type]);
2803 return domains.list;
2806 /* Generate code for a single component, after shifting (if any)
2807 * has been applied.
2809 * We first split up the domain at the current depth into disjoint
2810 * basic sets based on the user-specified options.
2811 * Then we generated code for each of them and concatenate the results.
2813 static __isl_give isl_ast_graft_list *generate_shifted_component(
2814 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2816 isl_basic_set_list *domain_list;
2817 isl_ast_graft_list *list = NULL;
2819 domain_list = compute_domains(executed, build);
2820 list = generate_parallel_domains(domain_list, executed, build);
2822 isl_basic_set_list_free(domain_list);
2823 isl_union_map_free(executed);
2824 isl_ast_build_free(build);
2826 return list;
2829 struct isl_set_map_pair {
2830 isl_set *set;
2831 isl_map *map;
2834 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2835 * of indices into the "domain" array,
2836 * return the union of the "map" fields of the elements
2837 * indexed by the first "n" elements of "order".
2839 static __isl_give isl_union_map *construct_component_executed(
2840 struct isl_set_map_pair *domain, int *order, int n)
2842 int i;
2843 isl_map *map;
2844 isl_union_map *executed;
2846 map = isl_map_copy(domain[order[0]].map);
2847 executed = isl_union_map_from_map(map);
2848 for (i = 1; i < n; ++i) {
2849 map = isl_map_copy(domain[order[i]].map);
2850 executed = isl_union_map_add_map(executed, map);
2853 return executed;
2856 /* Generate code for a single component, after shifting (if any)
2857 * has been applied.
2859 * The component inverse schedule is specified as the "map" fields
2860 * of the elements of "domain" indexed by the first "n" elements of "order".
2862 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2863 struct isl_set_map_pair *domain, int *order, int n,
2864 __isl_take isl_ast_build *build)
2866 isl_union_map *executed;
2868 executed = construct_component_executed(domain, order, n);
2869 return generate_shifted_component(executed, build);
2872 /* Does set dimension "pos" of "set" have an obviously fixed value?
2874 static int dim_is_fixed(__isl_keep isl_set *set, int pos)
2876 int fixed;
2877 isl_val *v;
2879 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
2880 if (!v)
2881 return -1;
2882 fixed = !isl_val_is_nan(v);
2883 isl_val_free(v);
2885 return fixed;
2888 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2889 * of indices into the "domain" array,
2890 * do all (except for at most one) of the "set" field of the elements
2891 * indexed by the first "n" elements of "order" have a fixed value
2892 * at position "depth"?
2894 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2895 int *order, int n, int depth)
2897 int i;
2898 int non_fixed = -1;
2900 for (i = 0; i < n; ++i) {
2901 int f;
2903 f = dim_is_fixed(domain[order[i]].set, depth);
2904 if (f < 0)
2905 return -1;
2906 if (f)
2907 continue;
2908 if (non_fixed >= 0)
2909 return 0;
2910 non_fixed = i;
2913 return 1;
2916 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2917 * of indices into the "domain" array,
2918 * eliminate the inner dimensions from the "set" field of the elements
2919 * indexed by the first "n" elements of "order", provided the current
2920 * dimension does not have a fixed value.
2922 * Return the index of the first element in "order" with a corresponding
2923 * "set" field that does not have an (obviously) fixed value.
2925 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2926 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2928 int i;
2929 int base = -1;
2931 for (i = n - 1; i >= 0; --i) {
2932 int f;
2933 f = dim_is_fixed(domain[order[i]].set, depth);
2934 if (f < 0)
2935 return -1;
2936 if (f)
2937 continue;
2938 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2939 domain[order[i]].set);
2940 base = i;
2943 return base;
2946 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2947 * of indices into the "domain" array,
2948 * find the element of "domain" (amongst those indexed by the first "n"
2949 * elements of "order") with the "set" field that has the smallest
2950 * value for the current iterator.
2952 * Note that the domain with the smallest value may depend on the parameters
2953 * and/or outer loop dimension. Since the result of this function is only
2954 * used as heuristic, we only make a reasonable attempt at finding the best
2955 * domain, one that should work in case a single domain provides the smallest
2956 * value for the current dimension over all values of the parameters
2957 * and outer dimensions.
2959 * In particular, we compute the smallest value of the first domain
2960 * and replace it by that of any later domain if that later domain
2961 * has a smallest value that is smaller for at least some value
2962 * of the parameters and outer dimensions.
2964 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2965 __isl_keep isl_ast_build *build)
2967 int i;
2968 isl_map *min_first;
2969 int first = 0;
2971 min_first = isl_ast_build_map_to_iterator(build,
2972 isl_set_copy(domain[order[0]].set));
2973 min_first = isl_map_lexmin(min_first);
2975 for (i = 1; i < n; ++i) {
2976 isl_map *min, *test;
2977 int empty;
2979 min = isl_ast_build_map_to_iterator(build,
2980 isl_set_copy(domain[order[i]].set));
2981 min = isl_map_lexmin(min);
2982 test = isl_map_copy(min);
2983 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2984 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2985 empty = isl_map_is_empty(test);
2986 isl_map_free(test);
2987 if (empty >= 0 && !empty) {
2988 isl_map_free(min_first);
2989 first = i;
2990 min_first = min;
2991 } else
2992 isl_map_free(min);
2994 if (empty < 0)
2995 break;
2998 isl_map_free(min_first);
3000 return i < n ? -1 : first;
3003 /* Construct a shifted inverse schedule based on the original inverse schedule,
3004 * the stride and the offset.
3006 * The original inverse schedule is specified as the "map" fields
3007 * of the elements of "domain" indexed by the first "n" elements of "order".
3009 * "stride" and "offset" are such that the difference
3010 * between the values of the current dimension of domain "i"
3011 * and the values of the current dimension for some reference domain are
3012 * equal to
3014 * stride * integer + offset[i]
3016 * Moreover, 0 <= offset[i] < stride.
3018 * For each domain, we create a map
3020 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3022 * where j refers to the current dimension and the other dimensions are
3023 * unchanged, and apply this map to the original schedule domain.
3025 * For example, for the original schedule
3027 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3029 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3030 * we apply the mapping
3032 * { [j] -> [j, 0] }
3034 * to the schedule of the "A" domain and the mapping
3036 * { [j - 1] -> [j, 1] }
3038 * to the schedule of the "B" domain.
3041 * Note that after the transformation, the differences between pairs
3042 * of values of the current dimension over all domains are multiples
3043 * of stride and that we have therefore exposed the stride.
3046 * To see that the mapping preserves the lexicographic order,
3047 * first note that each of the individual maps above preserves the order.
3048 * If the value of the current iterator is j1 in one domain and j2 in another,
3049 * then if j1 = j2, we know that the same map is applied to both domains
3050 * and the order is preserved.
3051 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3052 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3054 * j1 - c1 < j2 - c2
3056 * and the order is preserved.
3057 * If c1 < c2, then we know
3059 * 0 <= c2 - c1 < s
3061 * We also have
3063 * j2 - j1 = n * s + r
3065 * with n >= 0 and 0 <= r < s.
3066 * In other words, r = c2 - c1.
3067 * If n > 0, then
3069 * j1 - c1 < j2 - c2
3071 * If n = 0, then
3073 * j1 - c1 = j2 - c2
3075 * and so
3077 * (j1 - c1, c1) << (j2 - c2, c2)
3079 * with "<<" the lexicographic order, proving that the order is preserved
3080 * in all cases.
3082 static __isl_give isl_union_map *contruct_shifted_executed(
3083 struct isl_set_map_pair *domain, int *order, int n,
3084 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3085 __isl_take isl_ast_build *build)
3087 int i;
3088 isl_union_map *executed;
3089 isl_space *space;
3090 isl_map *map;
3091 int depth;
3092 isl_constraint *c;
3094 depth = isl_ast_build_get_depth(build);
3095 space = isl_ast_build_get_space(build, 1);
3096 executed = isl_union_map_empty(isl_space_copy(space));
3097 space = isl_space_map_from_set(space);
3098 map = isl_map_identity(isl_space_copy(space));
3099 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3100 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3101 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3103 c = isl_equality_alloc(isl_local_space_from_space(space));
3104 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3105 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3107 for (i = 0; i < n; ++i) {
3108 isl_map *map_i;
3109 isl_val *v;
3111 v = isl_multi_val_get_val(offset, i);
3112 if (!v)
3113 break;
3114 map_i = isl_map_copy(map);
3115 map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
3116 isl_val_copy(v));
3117 v = isl_val_neg(v);
3118 c = isl_constraint_set_constant_val(c, v);
3119 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3121 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3122 map_i);
3123 executed = isl_union_map_add_map(executed, map_i);
3126 isl_constraint_free(c);
3127 isl_map_free(map);
3129 if (i < n)
3130 executed = isl_union_map_free(executed);
3132 return executed;
3135 /* Generate code for a single component, after exposing the stride,
3136 * given that the schedule domain is "shifted strided".
3138 * The component inverse schedule is specified as the "map" fields
3139 * of the elements of "domain" indexed by the first "n" elements of "order".
3141 * The schedule domain being "shifted strided" means that the differences
3142 * between the values of the current dimension of domain "i"
3143 * and the values of the current dimension for some reference domain are
3144 * equal to
3146 * stride * integer + offset[i]
3148 * We first look for the domain with the "smallest" value for the current
3149 * dimension and adjust the offsets such that the offset of the "smallest"
3150 * domain is equal to zero. The other offsets are reduced modulo stride.
3152 * Based on this information, we construct a new inverse schedule in
3153 * contruct_shifted_executed that exposes the stride.
3154 * Since this involves the introduction of a new schedule dimension,
3155 * the build needs to be changed accodingly.
3156 * After computing the AST, the newly introduced dimension needs
3157 * to be removed again from the list of grafts. We do this by plugging
3158 * in a mapping that represents the new schedule domain in terms of the
3159 * old schedule domain.
3161 static __isl_give isl_ast_graft_list *generate_shift_component(
3162 struct isl_set_map_pair *domain, int *order, int n,
3163 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3164 __isl_take isl_ast_build *build)
3166 isl_ast_graft_list *list;
3167 int first;
3168 int depth;
3169 isl_ctx *ctx;
3170 isl_val *val;
3171 isl_multi_val *mv;
3172 isl_space *space;
3173 isl_multi_aff *ma, *zero;
3174 isl_union_map *executed;
3176 ctx = isl_ast_build_get_ctx(build);
3177 depth = isl_ast_build_get_depth(build);
3179 first = first_offset(domain, order, n, build);
3180 if (first < 0)
3181 goto error;
3183 mv = isl_multi_val_copy(offset);
3184 val = isl_multi_val_get_val(offset, first);
3185 val = isl_val_neg(val);
3186 mv = isl_multi_val_add_val(mv, val);
3187 mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
3189 executed = contruct_shifted_executed(domain, order, n, stride, mv,
3190 build);
3191 space = isl_ast_build_get_space(build, 1);
3192 space = isl_space_map_from_set(space);
3193 ma = isl_multi_aff_identity(isl_space_copy(space));
3194 space = isl_space_from_domain(isl_space_domain(space));
3195 space = isl_space_add_dims(space, isl_dim_out, 1);
3196 zero = isl_multi_aff_zero(space);
3197 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3198 build = isl_ast_build_insert_dim(build, depth + 1);
3199 list = generate_shifted_component(executed, build);
3201 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3203 isl_multi_val_free(mv);
3205 return list;
3206 error:
3207 isl_ast_build_free(build);
3208 return NULL;
3211 /* Generate code for a single component.
3213 * The component inverse schedule is specified as the "map" fields
3214 * of the elements of "domain" indexed by the first "n" elements of "order".
3216 * This function may modify the "set" fields of "domain".
3218 * Before proceeding with the actual code generation for the component,
3219 * we first check if there are any "shifted" strides, meaning that
3220 * the schedule domains of the individual domains are all strided,
3221 * but that they have different offsets, resulting in the union
3222 * of schedule domains not being strided anymore.
3224 * The simplest example is the schedule
3226 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3228 * Both schedule domains are strided, but their union is not.
3229 * This function detects such cases and then rewrites the schedule to
3231 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3233 * In the new schedule, the schedule domains have the same offset (modulo
3234 * the stride), ensuring that the union of schedule domains is also strided.
3237 * If there is only a single domain in the component, then there is
3238 * nothing to do. Similarly, if the current schedule dimension has
3239 * a fixed value for almost all domains then there is nothing to be done.
3240 * In particular, we need at least two domains where the current schedule
3241 * dimension does not have a fixed value.
3242 * Finally, if any of the options refer to the current schedule dimension,
3243 * then we bail out as well. It would be possible to reformulate the options
3244 * in terms of the new schedule domain, but that would introduce constraints
3245 * that separate the domains in the options and that is something we would
3246 * like to avoid.
3249 * To see if there is any shifted stride, we look at the differences
3250 * between the values of the current dimension in pairs of domains
3251 * for equal values of outer dimensions. These differences should be
3252 * of the form
3254 * m x + r
3256 * with "m" the stride and "r" a constant. Note that we cannot perform
3257 * this analysis on individual domains as the lower bound in each domain
3258 * may depend on parameters or outer dimensions and so the current dimension
3259 * itself may not have a fixed remainder on division by the stride.
3261 * In particular, we compare the first domain that does not have an
3262 * obviously fixed value for the current dimension to itself and all
3263 * other domains and collect the offsets and the gcd of the strides.
3264 * If the gcd becomes one, then we failed to find shifted strides.
3265 * If the gcd is zero, then the differences were all fixed, meaning
3266 * that some domains had non-obviously fixed values for the current dimension.
3267 * If all the offsets are the same (for those domains that do not have
3268 * an obviously fixed value for the current dimension), then we do not
3269 * apply the transformation.
3270 * If none of the domains were skipped, then there is nothing to do.
3271 * If some of them were skipped, then if we apply separation, the schedule
3272 * domain should get split in pieces with a (non-shifted) stride.
3274 * Otherwise, we apply a shift to expose the stride in
3275 * generate_shift_component.
3277 static __isl_give isl_ast_graft_list *generate_component(
3278 struct isl_set_map_pair *domain, int *order, int n,
3279 __isl_take isl_ast_build *build)
3281 int i, d;
3282 int depth;
3283 isl_ctx *ctx;
3284 isl_map *map;
3285 isl_set *deltas;
3286 isl_val *gcd = NULL;
3287 isl_multi_val *mv;
3288 int fixed, skip;
3289 int base;
3290 isl_ast_graft_list *list;
3291 int res = 0;
3293 depth = isl_ast_build_get_depth(build);
3295 skip = n == 1;
3296 if (skip >= 0 && !skip)
3297 skip = at_most_one_non_fixed(domain, order, n, depth);
3298 if (skip >= 0 && !skip)
3299 skip = isl_ast_build_options_involve_depth(build);
3300 if (skip < 0)
3301 goto error;
3302 if (skip)
3303 return generate_shifted_component_from_list(domain,
3304 order, n, build);
3306 base = eliminate_non_fixed(domain, order, n, depth, build);
3307 if (base < 0)
3308 goto error;
3310 ctx = isl_ast_build_get_ctx(build);
3312 mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
3314 fixed = 1;
3315 for (i = 0; i < n; ++i) {
3316 isl_val *r, *m;
3318 map = isl_map_from_domain_and_range(
3319 isl_set_copy(domain[order[base]].set),
3320 isl_set_copy(domain[order[i]].set));
3321 for (d = 0; d < depth; ++d)
3322 map = isl_map_equate(map, isl_dim_in, d,
3323 isl_dim_out, d);
3324 deltas = isl_map_deltas(map);
3325 res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
3326 isl_set_free(deltas);
3327 if (res < 0)
3328 break;
3330 if (i == 0)
3331 gcd = m;
3332 else
3333 gcd = isl_val_gcd(gcd, m);
3334 if (isl_val_is_one(gcd)) {
3335 isl_val_free(r);
3336 break;
3338 mv = isl_multi_val_set_val(mv, i, r);
3340 res = dim_is_fixed(domain[order[i]].set, depth);
3341 if (res < 0)
3342 break;
3343 if (res)
3344 continue;
3346 if (fixed && i > base) {
3347 isl_val *a, *b;
3348 a = isl_multi_val_get_val(mv, i);
3349 b = isl_multi_val_get_val(mv, base);
3350 if (isl_val_ne(a, b))
3351 fixed = 0;
3352 isl_val_free(a);
3353 isl_val_free(b);
3357 if (res < 0 || !gcd) {
3358 isl_ast_build_free(build);
3359 list = NULL;
3360 } else if (i < n || fixed || isl_val_is_zero(gcd)) {
3361 list = generate_shifted_component_from_list(domain,
3362 order, n, build);
3363 } else {
3364 list = generate_shift_component(domain, order, n, gcd, mv,
3365 build);
3368 isl_val_free(gcd);
3369 isl_multi_val_free(mv);
3371 return list;
3372 error:
3373 isl_ast_build_free(build);
3374 return NULL;
3377 /* Store both "map" itself and its domain in the
3378 * structure pointed to by *next and advance to the next array element.
3380 static int extract_domain(__isl_take isl_map *map, void *user)
3382 struct isl_set_map_pair **next = user;
3384 (*next)->map = isl_map_copy(map);
3385 (*next)->set = isl_map_domain(map);
3386 (*next)++;
3388 return 0;
3391 /* Internal data for any_scheduled_after.
3393 * "depth" is the number of loops that have already been generated
3394 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3395 * "domain" is an array of set-map pairs corresponding to the different
3396 * iteration domains. The set is the schedule domain, i.e., the domain
3397 * of the inverse schedule, while the map is the inverse schedule itself.
3399 struct isl_any_scheduled_after_data {
3400 int depth;
3401 int group_coscheduled;
3402 struct isl_set_map_pair *domain;
3405 /* Is any element of domain "i" scheduled after any element of domain "j"
3406 * (for a common iteration of the first data->depth loops)?
3408 * data->domain[i].set contains the domain of the inverse schedule
3409 * for domain "i", i.e., elements in the schedule domain.
3411 * If data->group_coscheduled is set, then we also return 1 if there
3412 * is any pair of elements in the two domains that are scheduled together.
3414 static int any_scheduled_after(int i, int j, void *user)
3416 struct isl_any_scheduled_after_data *data = user;
3417 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3418 int pos;
3420 for (pos = data->depth; pos < dim; ++pos) {
3421 int follows;
3423 follows = isl_set_follows_at(data->domain[i].set,
3424 data->domain[j].set, pos);
3426 if (follows < -1)
3427 return -1;
3428 if (follows > 0)
3429 return 1;
3430 if (follows < 0)
3431 return 0;
3434 return data->group_coscheduled;
3437 /* Look for independent components at the current depth and generate code
3438 * for each component separately. The resulting lists of grafts are
3439 * merged in an attempt to combine grafts with identical guards.
3441 * Code for two domains can be generated separately if all the elements
3442 * of one domain are scheduled before (or together with) all the elements
3443 * of the other domain. We therefore consider the graph with as nodes
3444 * the domains and an edge between two nodes if any element of the first
3445 * node is scheduled after any element of the second node.
3446 * If the ast_build_group_coscheduled is set, then we also add an edge if
3447 * there is any pair of elements in the two domains that are scheduled
3448 * together.
3449 * Code is then generated (by generate_component)
3450 * for each of the strongly connected components in this graph
3451 * in their topological order.
3453 * Since the test is performed on the domain of the inverse schedules of
3454 * the different domains, we precompute these domains and store
3455 * them in data.domain.
3457 static __isl_give isl_ast_graft_list *generate_components(
3458 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3460 int i;
3461 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3462 int n = isl_union_map_n_map(executed);
3463 struct isl_any_scheduled_after_data data;
3464 struct isl_set_map_pair *next;
3465 struct isl_tarjan_graph *g = NULL;
3466 isl_ast_graft_list *list = NULL;
3467 int n_domain = 0;
3469 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3470 if (!data.domain)
3471 goto error;
3472 n_domain = n;
3474 next = data.domain;
3475 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3476 goto error;
3478 if (!build)
3479 goto error;
3480 data.depth = isl_ast_build_get_depth(build);
3481 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3482 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3483 if (!g)
3484 goto error;
3486 list = isl_ast_graft_list_alloc(ctx, 0);
3488 i = 0;
3489 while (list && n) {
3490 isl_ast_graft_list *list_c;
3491 int first = i;
3493 if (g->order[i] == -1)
3494 isl_die(ctx, isl_error_internal, "cannot happen",
3495 goto error);
3496 ++i; --n;
3497 while (g->order[i] != -1) {
3498 ++i; --n;
3501 list_c = generate_component(data.domain,
3502 g->order + first, i - first,
3503 isl_ast_build_copy(build));
3504 list = isl_ast_graft_list_merge(list, list_c, build);
3506 ++i;
3509 if (0)
3510 error: list = isl_ast_graft_list_free(list);
3511 isl_tarjan_graph_free(g);
3512 for (i = 0; i < n_domain; ++i) {
3513 isl_map_free(data.domain[i].map);
3514 isl_set_free(data.domain[i].set);
3516 free(data.domain);
3517 isl_union_map_free(executed);
3518 isl_ast_build_free(build);
3520 return list;
3523 /* Generate code for the next level (and all inner levels).
3525 * If "executed" is empty, i.e., no code needs to be generated,
3526 * then we return an empty list.
3528 * If we have already generated code for all loop levels, then we pass
3529 * control to generate_inner_level.
3531 * If "executed" lives in a single space, i.e., if code needs to be
3532 * generated for a single domain, then there can only be a single
3533 * component and we go directly to generate_shifted_component.
3534 * Otherwise, we call generate_components to detect the components
3535 * and to call generate_component on each of them separately.
3537 static __isl_give isl_ast_graft_list *generate_next_level(
3538 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3540 int depth;
3542 if (!build || !executed)
3543 goto error;
3545 if (isl_union_map_is_empty(executed)) {
3546 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3547 isl_union_map_free(executed);
3548 isl_ast_build_free(build);
3549 return isl_ast_graft_list_alloc(ctx, 0);
3552 depth = isl_ast_build_get_depth(build);
3553 if (depth >= isl_ast_build_dim(build, isl_dim_set))
3554 return generate_inner_level(executed, build);
3556 if (isl_union_map_n_map(executed) == 1)
3557 return generate_shifted_component(executed, build);
3559 return generate_components(executed, build);
3560 error:
3561 isl_union_map_free(executed);
3562 isl_ast_build_free(build);
3563 return NULL;
3566 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3567 * internal, executed and build are the inputs to generate_code.
3568 * list collects the output.
3570 struct isl_generate_code_data {
3571 int internal;
3572 isl_union_map *executed;
3573 isl_ast_build *build;
3575 isl_ast_graft_list *list;
3578 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3580 * [E -> S] -> D
3582 * with E the external build schedule and S the additional schedule "space",
3583 * reformulate the inverse schedule in terms of the internal schedule domain,
3584 * i.e., return
3586 * [I -> S] -> D
3588 * We first obtain a mapping
3590 * I -> E
3592 * take the inverse and the product with S -> S, resulting in
3594 * [I -> S] -> [E -> S]
3596 * Applying the map to the input produces the desired result.
3598 static __isl_give isl_union_map *internal_executed(
3599 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3600 __isl_keep isl_ast_build *build)
3602 isl_map *id, *proj;
3604 proj = isl_ast_build_get_schedule_map(build);
3605 proj = isl_map_reverse(proj);
3606 space = isl_space_map_from_set(isl_space_copy(space));
3607 id = isl_map_identity(space);
3608 proj = isl_map_product(proj, id);
3609 executed = isl_union_map_apply_domain(executed,
3610 isl_union_map_from_map(proj));
3611 return executed;
3614 /* Generate an AST that visits the elements in the range of data->executed
3615 * in the relative order specified by the corresponding domain element(s)
3616 * for those domain elements that belong to "set".
3617 * Add the result to data->list.
3619 * The caller ensures that "set" is a universe domain.
3620 * "space" is the space of the additional part of the schedule.
3621 * It is equal to the space of "set" if build->domain is parametric.
3622 * Otherwise, it is equal to the range of the wrapped space of "set".
3624 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3625 * was called from an outside user (data->internal not set), then
3626 * the (inverse) schedule refers to the external build domain and needs to
3627 * be transformed to refer to the internal build domain.
3629 * If the build space is parametric, then we add some of the parameter
3630 * constraints to the executed relation. Adding these constraints
3631 * allows for an earlier detection of conflicts in some cases.
3632 * However, we do not want to divide the executed relation into
3633 * more disjuncts than necessary. We therefore approximate
3634 * the constraints on the parameters by a single disjunct set.
3636 * The build is extended to include the additional part of the schedule.
3637 * If the original build space was not parametric, then the options
3638 * in data->build refer only to the additional part of the schedule
3639 * and they need to be adjusted to refer to the complete AST build
3640 * domain.
3642 * After having adjusted inverse schedule and build, we start generating
3643 * code with the outer loop of the current code generation
3644 * in generate_next_level.
3646 * If the original build space was not parametric, we undo the embedding
3647 * on the resulting isl_ast_node_list so that it can be used within
3648 * the outer AST build.
3650 static int generate_code_in_space(struct isl_generate_code_data *data,
3651 __isl_take isl_set *set, __isl_take isl_space *space)
3653 isl_union_map *executed;
3654 isl_ast_build *build;
3655 isl_ast_graft_list *list;
3656 int embed;
3658 executed = isl_union_map_copy(data->executed);
3659 executed = isl_union_map_intersect_domain(executed,
3660 isl_union_set_from_set(set));
3662 embed = !isl_set_is_params(data->build->domain);
3663 if (embed && !data->internal)
3664 executed = internal_executed(executed, space, data->build);
3665 if (!embed) {
3666 isl_set *domain;
3667 domain = isl_ast_build_get_domain(data->build);
3668 domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
3669 executed = isl_union_map_intersect_params(executed, domain);
3672 build = isl_ast_build_copy(data->build);
3673 build = isl_ast_build_product(build, space);
3675 list = generate_next_level(executed, build);
3677 list = isl_ast_graft_list_unembed(list, embed);
3679 data->list = isl_ast_graft_list_concat(data->list, list);
3681 return 0;
3684 /* Generate an AST that visits the elements in the range of data->executed
3685 * in the relative order specified by the corresponding domain element(s)
3686 * for those domain elements that belong to "set".
3687 * Add the result to data->list.
3689 * The caller ensures that "set" is a universe domain.
3691 * If the build space S is not parametric, then the space of "set"
3692 * need to be a wrapped relation with S as domain. That is, it needs
3693 * to be of the form
3695 * [S -> T]
3697 * Check this property and pass control to generate_code_in_space
3698 * passing along T.
3699 * If the build space is not parametric, then T is the space of "set".
3701 static int generate_code_set(__isl_take isl_set *set, void *user)
3703 struct isl_generate_code_data *data = user;
3704 isl_space *space, *build_space;
3705 int is_domain;
3707 space = isl_set_get_space(set);
3709 if (isl_set_is_params(data->build->domain))
3710 return generate_code_in_space(data, set, space);
3712 build_space = isl_ast_build_get_space(data->build, data->internal);
3713 space = isl_space_unwrap(space);
3714 is_domain = isl_space_is_domain(build_space, space);
3715 isl_space_free(build_space);
3716 space = isl_space_range(space);
3718 if (is_domain < 0)
3719 goto error;
3720 if (!is_domain)
3721 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3722 "invalid nested schedule space", goto error);
3724 return generate_code_in_space(data, set, space);
3725 error:
3726 isl_set_free(set);
3727 isl_space_free(space);
3728 return -1;
3731 /* Generate an AST that visits the elements in the range of "executed"
3732 * in the relative order specified by the corresponding domain element(s).
3734 * "build" is an isl_ast_build that has either been constructed by
3735 * isl_ast_build_from_context or passed to a callback set by
3736 * isl_ast_build_set_create_leaf.
3737 * In the first case, the space of the isl_ast_build is typically
3738 * a parametric space, although this is currently not enforced.
3739 * In the second case, the space is never a parametric space.
3740 * If the space S is not parametric, then the domain space(s) of "executed"
3741 * need to be wrapped relations with S as domain.
3743 * If the domain of "executed" consists of several spaces, then an AST
3744 * is generated for each of them (in arbitrary order) and the results
3745 * are concatenated.
3747 * If "internal" is set, then the domain "S" above refers to the internal
3748 * schedule domain representation. Otherwise, it refers to the external
3749 * representation, as returned by isl_ast_build_get_schedule_space.
3751 * We essentially run over all the spaces in the domain of "executed"
3752 * and call generate_code_set on each of them.
3754 static __isl_give isl_ast_graft_list *generate_code(
3755 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3756 int internal)
3758 isl_ctx *ctx;
3759 struct isl_generate_code_data data = { 0 };
3760 isl_space *space;
3761 isl_union_set *schedule_domain;
3762 isl_union_map *universe;
3764 if (!build)
3765 goto error;
3766 space = isl_ast_build_get_space(build, 1);
3767 space = isl_space_align_params(space,
3768 isl_union_map_get_space(executed));
3769 space = isl_space_align_params(space,
3770 isl_union_map_get_space(build->options));
3771 build = isl_ast_build_align_params(build, isl_space_copy(space));
3772 executed = isl_union_map_align_params(executed, space);
3773 if (!executed || !build)
3774 goto error;
3776 ctx = isl_ast_build_get_ctx(build);
3778 data.internal = internal;
3779 data.executed = executed;
3780 data.build = build;
3781 data.list = isl_ast_graft_list_alloc(ctx, 0);
3783 universe = isl_union_map_universe(isl_union_map_copy(executed));
3784 schedule_domain = isl_union_map_domain(universe);
3785 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3786 &data) < 0)
3787 data.list = isl_ast_graft_list_free(data.list);
3789 isl_union_set_free(schedule_domain);
3790 isl_union_map_free(executed);
3792 isl_ast_build_free(build);
3793 return data.list;
3794 error:
3795 isl_union_map_free(executed);
3796 isl_ast_build_free(build);
3797 return NULL;
3800 /* Generate an AST that visits the elements in the domain of "schedule"
3801 * in the relative order specified by the corresponding image element(s).
3803 * "build" is an isl_ast_build that has either been constructed by
3804 * isl_ast_build_from_context or passed to a callback set by
3805 * isl_ast_build_set_create_leaf.
3806 * In the first case, the space of the isl_ast_build is typically
3807 * a parametric space, although this is currently not enforced.
3808 * In the second case, the space is never a parametric space.
3809 * If the space S is not parametric, then the range space(s) of "schedule"
3810 * need to be wrapped relations with S as domain.
3812 * If the range of "schedule" consists of several spaces, then an AST
3813 * is generated for each of them (in arbitrary order) and the results
3814 * are concatenated.
3816 * We first initialize the local copies of the relevant options.
3817 * We do this here rather than when the isl_ast_build is created
3818 * because the options may have changed between the construction
3819 * of the isl_ast_build and the call to isl_generate_code.
3821 * The main computation is performed on an inverse schedule (with
3822 * the schedule domain in the domain and the elements to be executed
3823 * in the range) called "executed".
3825 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3826 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3828 isl_ast_graft_list *list;
3829 isl_ast_node *node;
3830 isl_union_map *executed;
3832 build = isl_ast_build_copy(build);
3833 build = isl_ast_build_set_single_valued(build, 0);
3834 schedule = isl_union_map_coalesce(schedule);
3835 executed = isl_union_map_reverse(schedule);
3836 list = generate_code(executed, isl_ast_build_copy(build), 0);
3837 node = isl_ast_node_from_graft_list(list, build);
3838 isl_ast_build_free(build);
3840 return node;