isl_map.c: basic_set_maximal_difference_at: avoid double free on error path
[isl.git] / isl_affine_hull.c
blob6eb7301afcd1784230db59427824708e9eb2c66e
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include <isl/seq.h>
18 #include <isl/set.h>
19 #include <isl/lp.h>
20 #include <isl/map.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
23 #include "isl_tab.h"
24 #include <isl_mat_private.h>
26 struct isl_basic_map *isl_basic_map_implicit_equalities(
27 struct isl_basic_map *bmap)
29 struct isl_tab *tab;
31 if (!bmap)
32 return bmap;
34 bmap = isl_basic_map_gauss(bmap, NULL);
35 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
36 return bmap;
37 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
38 return bmap;
39 if (bmap->n_ineq <= 1)
40 return bmap;
42 tab = isl_tab_from_basic_map(bmap, 0);
43 if (isl_tab_detect_implicit_equalities(tab) < 0)
44 goto error;
45 bmap = isl_basic_map_update_from_tab(bmap, tab);
46 isl_tab_free(tab);
47 bmap = isl_basic_map_gauss(bmap, NULL);
48 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
49 return bmap;
50 error:
51 isl_tab_free(tab);
52 isl_basic_map_free(bmap);
53 return NULL;
56 struct isl_basic_set *isl_basic_set_implicit_equalities(
57 struct isl_basic_set *bset)
59 return (struct isl_basic_set *)
60 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
63 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
65 int i;
67 if (!map)
68 return map;
70 for (i = 0; i < map->n; ++i) {
71 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
72 if (!map->p[i])
73 goto error;
76 return map;
77 error:
78 isl_map_free(map);
79 return NULL;
82 /* Make eq[row][col] of both bmaps equal so we can add the row
83 * add the column to the common matrix.
84 * Note that because of the echelon form, the columns of row row
85 * after column col are zero.
87 static void set_common_multiple(
88 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
89 unsigned row, unsigned col)
91 isl_int m, c;
93 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
94 return;
96 isl_int_init(c);
97 isl_int_init(m);
98 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
99 isl_int_divexact(c, m, bset1->eq[row][col]);
100 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
101 isl_int_divexact(c, m, bset2->eq[row][col]);
102 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
103 isl_int_clear(c);
104 isl_int_clear(m);
107 /* Delete a given equality, moving all the following equalities one up.
109 static void delete_row(struct isl_basic_set *bset, unsigned row)
111 isl_int *t;
112 int r;
114 t = bset->eq[row];
115 bset->n_eq--;
116 for (r = row; r < bset->n_eq; ++r)
117 bset->eq[r] = bset->eq[r+1];
118 bset->eq[bset->n_eq] = t;
121 /* Make first row entries in column col of bset1 identical to
122 * those of bset2, using the fact that entry bset1->eq[row][col]=a
123 * is non-zero. Initially, these elements of bset1 are all zero.
124 * For each row i < row, we set
125 * A[i] = a * A[i] + B[i][col] * A[row]
126 * B[i] = a * B[i]
127 * so that
128 * A[i][col] = B[i][col] = a * old(B[i][col])
130 static void construct_column(
131 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
132 unsigned row, unsigned col)
134 int r;
135 isl_int a;
136 isl_int b;
137 unsigned total;
139 isl_int_init(a);
140 isl_int_init(b);
141 total = 1 + isl_basic_set_n_dim(bset1);
142 for (r = 0; r < row; ++r) {
143 if (isl_int_is_zero(bset2->eq[r][col]))
144 continue;
145 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
146 isl_int_divexact(a, bset1->eq[row][col], b);
147 isl_int_divexact(b, bset2->eq[r][col], b);
148 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
149 b, bset1->eq[row], total);
150 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
152 isl_int_clear(a);
153 isl_int_clear(b);
154 delete_row(bset1, row);
157 /* Make first row entries in column col of bset1 identical to
158 * those of bset2, using only these entries of the two matrices.
159 * Let t be the last row with different entries.
160 * For each row i < t, we set
161 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
162 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
163 * so that
164 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
166 static int transform_column(
167 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
168 unsigned row, unsigned col)
170 int i, t;
171 isl_int a, b, g;
172 unsigned total;
174 for (t = row-1; t >= 0; --t)
175 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
176 break;
177 if (t < 0)
178 return 0;
180 total = 1 + isl_basic_set_n_dim(bset1);
181 isl_int_init(a);
182 isl_int_init(b);
183 isl_int_init(g);
184 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
185 for (i = 0; i < t; ++i) {
186 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
187 isl_int_gcd(g, a, b);
188 isl_int_divexact(a, a, g);
189 isl_int_divexact(g, b, g);
190 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
191 total);
192 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
193 total);
195 isl_int_clear(a);
196 isl_int_clear(b);
197 isl_int_clear(g);
198 delete_row(bset1, t);
199 delete_row(bset2, t);
200 return 1;
203 /* The implementation is based on Section 5.2 of Michael Karr,
204 * "Affine Relationships Among Variables of a Program",
205 * except that the echelon form we use starts from the last column
206 * and that we are dealing with integer coefficients.
208 static struct isl_basic_set *affine_hull(
209 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
211 unsigned total;
212 int col;
213 int row;
215 if (!bset1 || !bset2)
216 goto error;
218 total = 1 + isl_basic_set_n_dim(bset1);
220 row = 0;
221 for (col = total-1; col >= 0; --col) {
222 int is_zero1 = row >= bset1->n_eq ||
223 isl_int_is_zero(bset1->eq[row][col]);
224 int is_zero2 = row >= bset2->n_eq ||
225 isl_int_is_zero(bset2->eq[row][col]);
226 if (!is_zero1 && !is_zero2) {
227 set_common_multiple(bset1, bset2, row, col);
228 ++row;
229 } else if (!is_zero1 && is_zero2) {
230 construct_column(bset1, bset2, row, col);
231 } else if (is_zero1 && !is_zero2) {
232 construct_column(bset2, bset1, row, col);
233 } else {
234 if (transform_column(bset1, bset2, row, col))
235 --row;
238 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
239 isl_basic_set_free(bset2);
240 bset1 = isl_basic_set_normalize_constraints(bset1);
241 return bset1;
242 error:
243 isl_basic_set_free(bset1);
244 isl_basic_set_free(bset2);
245 return NULL;
248 /* Find an integer point in the set represented by "tab"
249 * that lies outside of the equality "eq" e(x) = 0.
250 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
251 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
252 * The point, if found, is returned.
253 * If no point can be found, a zero-length vector is returned.
255 * Before solving an ILP problem, we first check if simply
256 * adding the normal of the constraint to one of the known
257 * integer points in the basic set represented by "tab"
258 * yields another point inside the basic set.
260 * The caller of this function ensures that the tableau is bounded or
261 * that tab->basis and tab->n_unbounded have been set appropriately.
263 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
265 struct isl_ctx *ctx;
266 struct isl_vec *sample = NULL;
267 struct isl_tab_undo *snap;
268 unsigned dim;
270 if (!tab)
271 return NULL;
272 ctx = tab->mat->ctx;
274 dim = tab->n_var;
275 sample = isl_vec_alloc(ctx, 1 + dim);
276 if (!sample)
277 return NULL;
278 isl_int_set_si(sample->el[0], 1);
279 isl_seq_combine(sample->el + 1,
280 ctx->one, tab->bmap->sample->el + 1,
281 up ? ctx->one : ctx->negone, eq + 1, dim);
282 if (isl_basic_map_contains(tab->bmap, sample))
283 return sample;
284 isl_vec_free(sample);
285 sample = NULL;
287 snap = isl_tab_snap(tab);
289 if (!up)
290 isl_seq_neg(eq, eq, 1 + dim);
291 isl_int_sub_ui(eq[0], eq[0], 1);
293 if (isl_tab_extend_cons(tab, 1) < 0)
294 goto error;
295 if (isl_tab_add_ineq(tab, eq) < 0)
296 goto error;
298 sample = isl_tab_sample(tab);
300 isl_int_add_ui(eq[0], eq[0], 1);
301 if (!up)
302 isl_seq_neg(eq, eq, 1 + dim);
304 if (sample && isl_tab_rollback(tab, snap) < 0)
305 goto error;
307 return sample;
308 error:
309 isl_vec_free(sample);
310 return NULL;
313 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
315 int i;
317 bset = isl_basic_set_cow(bset);
318 if (!bset)
319 return NULL;
320 isl_assert(bset->ctx, bset->n_div == 0, goto error);
322 for (i = 0; i < bset->n_eq; ++i)
323 isl_int_set_si(bset->eq[i][0], 0);
325 for (i = 0; i < bset->n_ineq; ++i)
326 isl_int_set_si(bset->ineq[i][0], 0);
328 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
329 return isl_basic_set_implicit_equalities(bset);
330 error:
331 isl_basic_set_free(bset);
332 return NULL;
335 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
337 int i;
339 if (!set)
340 return NULL;
341 if (set->n == 0)
342 return set;
344 set = isl_set_remove_divs(set);
345 set = isl_set_cow(set);
346 if (!set)
347 return NULL;
349 for (i = 0; i < set->n; ++i) {
350 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
351 if (!set->p[i])
352 goto error;
355 return set;
356 error:
357 isl_set_free(set);
358 return NULL;
361 /* Move "sample" to a point that is one up (or down) from the original
362 * point in dimension "pos".
364 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
366 if (up)
367 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
368 else
369 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
372 /* Check if any points that are adjacent to "sample" also belong to "bset".
373 * If so, add them to "hull" and return the updated hull.
375 * Before checking whether and adjacent point belongs to "bset", we first
376 * check whether it already belongs to "hull" as this test is typically
377 * much cheaper.
379 static __isl_give isl_basic_set *add_adjacent_points(
380 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
381 __isl_keep isl_basic_set *bset)
383 int i, up;
384 int dim;
386 if (!sample)
387 goto error;
389 dim = isl_basic_set_dim(hull, isl_dim_set);
391 for (i = 0; i < dim; ++i) {
392 for (up = 0; up <= 1; ++up) {
393 int contains;
394 isl_basic_set *point;
396 adjacent_point(sample, i, up);
397 contains = isl_basic_set_contains(hull, sample);
398 if (contains < 0)
399 goto error;
400 if (contains) {
401 adjacent_point(sample, i, !up);
402 continue;
404 contains = isl_basic_set_contains(bset, sample);
405 if (contains < 0)
406 goto error;
407 if (contains) {
408 point = isl_basic_set_from_vec(
409 isl_vec_copy(sample));
410 hull = affine_hull(hull, point);
412 adjacent_point(sample, i, !up);
413 if (contains)
414 break;
418 isl_vec_free(sample);
420 return hull;
421 error:
422 isl_vec_free(sample);
423 isl_basic_set_free(hull);
424 return NULL;
427 /* Extend an initial (under-)approximation of the affine hull of basic
428 * set represented by the tableau "tab"
429 * by looking for points that do not satisfy one of the equalities
430 * in the current approximation and adding them to that approximation
431 * until no such points can be found any more.
433 * The caller of this function ensures that "tab" is bounded or
434 * that tab->basis and tab->n_unbounded have been set appropriately.
436 * "bset" may be either NULL or the basic set represented by "tab".
437 * If "bset" is not NULL, we check for any point we find if any
438 * of its adjacent points also belong to "bset".
440 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
441 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
443 int i, j;
444 unsigned dim;
446 if (!tab || !hull)
447 goto error;
449 dim = tab->n_var;
451 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
452 goto error;
454 for (i = 0; i < dim; ++i) {
455 struct isl_vec *sample;
456 struct isl_basic_set *point;
457 for (j = 0; j < hull->n_eq; ++j) {
458 sample = outside_point(tab, hull->eq[j], 1);
459 if (!sample)
460 goto error;
461 if (sample->size > 0)
462 break;
463 isl_vec_free(sample);
464 sample = outside_point(tab, hull->eq[j], 0);
465 if (!sample)
466 goto error;
467 if (sample->size > 0)
468 break;
469 isl_vec_free(sample);
471 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
472 goto error;
474 if (j == hull->n_eq)
475 break;
476 if (tab->samples &&
477 isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
478 hull = isl_basic_set_free(hull);
479 if (bset)
480 hull = add_adjacent_points(hull, isl_vec_copy(sample),
481 bset);
482 point = isl_basic_set_from_vec(sample);
483 hull = affine_hull(hull, point);
484 if (!hull)
485 return NULL;
488 return hull;
489 error:
490 isl_basic_set_free(hull);
491 return NULL;
494 /* Drop all constraints in bmap that involve any of the dimensions
495 * first to first+n-1.
497 static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving(
498 __isl_take isl_basic_map *bmap, unsigned first, unsigned n)
500 int i;
502 if (n == 0)
503 return bmap;
505 bmap = isl_basic_map_cow(bmap);
507 if (!bmap)
508 return NULL;
510 for (i = bmap->n_eq - 1; i >= 0; --i) {
511 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1)
512 continue;
513 isl_basic_map_drop_equality(bmap, i);
516 for (i = bmap->n_ineq - 1; i >= 0; --i) {
517 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1)
518 continue;
519 isl_basic_map_drop_inequality(bmap, i);
522 return bmap;
525 /* Drop all constraints in bset that involve any of the dimensions
526 * first to first+n-1.
528 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
529 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
531 return isl_basic_map_drop_constraints_involving(bset, first, n);
534 /* Drop all constraints in bmap that do not involve any of the dimensions
535 * first to first + n - 1 of the given type.
537 __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims(
538 __isl_take isl_basic_map *bmap,
539 enum isl_dim_type type, unsigned first, unsigned n)
541 int i;
542 unsigned dim;
544 if (n == 0)
545 return isl_basic_map_set_to_empty(bmap);
546 bmap = isl_basic_map_cow(bmap);
547 if (!bmap)
548 return NULL;
550 dim = isl_basic_map_dim(bmap, type);
551 if (first + n > dim || first + n < first)
552 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
553 "index out of bounds", return isl_basic_map_free(bmap));
555 first += isl_basic_map_offset(bmap, type) - 1;
557 for (i = bmap->n_eq - 1; i >= 0; --i) {
558 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1)
559 continue;
560 isl_basic_map_drop_equality(bmap, i);
563 for (i = bmap->n_ineq - 1; i >= 0; --i) {
564 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1)
565 continue;
566 isl_basic_map_drop_inequality(bmap, i);
569 return bmap;
572 /* Drop all constraints in bset that do not involve any of the dimensions
573 * first to first + n - 1 of the given type.
575 __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims(
576 __isl_take isl_basic_set *bset,
577 enum isl_dim_type type, unsigned first, unsigned n)
579 return isl_basic_map_drop_constraints_not_involving_dims(bset,
580 type, first, n);
583 /* Drop all constraints in bmap that involve any of the dimensions
584 * first to first + n - 1 of the given type.
586 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims(
587 __isl_take isl_basic_map *bmap,
588 enum isl_dim_type type, unsigned first, unsigned n)
590 unsigned dim;
592 if (!bmap)
593 return NULL;
594 if (n == 0)
595 return bmap;
597 dim = isl_basic_map_dim(bmap, type);
598 if (first + n > dim || first + n < first)
599 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
600 "index out of bounds", return isl_basic_map_free(bmap));
602 bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n);
603 first += isl_basic_map_offset(bmap, type) - 1;
604 return isl_basic_map_drop_constraints_involving(bmap, first, n);
607 /* Drop all constraints in bset that involve any of the dimensions
608 * first to first + n - 1 of the given type.
610 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims(
611 __isl_take isl_basic_set *bset,
612 enum isl_dim_type type, unsigned first, unsigned n)
614 return isl_basic_map_drop_constraints_involving_dims(bset,
615 type, first, n);
618 /* Drop all constraints in map that involve any of the dimensions
619 * first to first + n - 1 of the given type.
621 __isl_give isl_map *isl_map_drop_constraints_involving_dims(
622 __isl_take isl_map *map,
623 enum isl_dim_type type, unsigned first, unsigned n)
625 int i;
626 unsigned dim;
628 if (!map)
629 return NULL;
630 if (n == 0)
631 return map;
633 dim = isl_map_dim(map, type);
634 if (first + n > dim || first + n < first)
635 isl_die(isl_map_get_ctx(map), isl_error_invalid,
636 "index out of bounds", return isl_map_free(map));
638 map = isl_map_cow(map);
639 if (!map)
640 return NULL;
642 for (i = 0; i < map->n; ++i) {
643 map->p[i] = isl_basic_map_drop_constraints_involving_dims(
644 map->p[i], type, first, n);
645 if (!map->p[i])
646 return isl_map_free(map);
649 return map;
652 /* Drop all constraints in set that involve any of the dimensions
653 * first to first + n - 1 of the given type.
655 __isl_give isl_set *isl_set_drop_constraints_involving_dims(
656 __isl_take isl_set *set,
657 enum isl_dim_type type, unsigned first, unsigned n)
659 return isl_map_drop_constraints_involving_dims(set, type, first, n);
662 /* Construct an initial underapproximatino of the hull of "bset"
663 * from "sample" and any of its adjacent points that also belong to "bset".
665 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
666 __isl_take isl_vec *sample)
668 isl_basic_set *hull;
670 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
671 hull = add_adjacent_points(hull, sample, bset);
673 return hull;
676 /* Look for all equalities satisfied by the integer points in bset,
677 * which is assumed to be bounded.
679 * The equalities are obtained by successively looking for
680 * a point that is affinely independent of the points found so far.
681 * In particular, for each equality satisfied by the points so far,
682 * we check if there is any point on a hyperplane parallel to the
683 * corresponding hyperplane shifted by at least one (in either direction).
685 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
687 struct isl_vec *sample = NULL;
688 struct isl_basic_set *hull;
689 struct isl_tab *tab = NULL;
690 unsigned dim;
692 if (isl_basic_set_plain_is_empty(bset))
693 return bset;
695 dim = isl_basic_set_n_dim(bset);
697 if (bset->sample && bset->sample->size == 1 + dim) {
698 int contains = isl_basic_set_contains(bset, bset->sample);
699 if (contains < 0)
700 goto error;
701 if (contains) {
702 if (dim == 0)
703 return bset;
704 sample = isl_vec_copy(bset->sample);
705 } else {
706 isl_vec_free(bset->sample);
707 bset->sample = NULL;
711 tab = isl_tab_from_basic_set(bset, 1);
712 if (!tab)
713 goto error;
714 if (tab->empty) {
715 isl_tab_free(tab);
716 isl_vec_free(sample);
717 return isl_basic_set_set_to_empty(bset);
720 if (!sample) {
721 struct isl_tab_undo *snap;
722 snap = isl_tab_snap(tab);
723 sample = isl_tab_sample(tab);
724 if (isl_tab_rollback(tab, snap) < 0)
725 goto error;
726 isl_vec_free(tab->bmap->sample);
727 tab->bmap->sample = isl_vec_copy(sample);
730 if (!sample)
731 goto error;
732 if (sample->size == 0) {
733 isl_tab_free(tab);
734 isl_vec_free(sample);
735 return isl_basic_set_set_to_empty(bset);
738 hull = initialize_hull(bset, sample);
740 hull = extend_affine_hull(tab, hull, bset);
741 isl_basic_set_free(bset);
742 isl_tab_free(tab);
744 return hull;
745 error:
746 isl_vec_free(sample);
747 isl_tab_free(tab);
748 isl_basic_set_free(bset);
749 return NULL;
752 /* Given an unbounded tableau and an integer point satisfying the tableau,
753 * construct an initial affine hull containing the recession cone
754 * shifted to the given point.
756 * The unbounded directions are taken from the last rows of the basis,
757 * which is assumed to have been initialized appropriately.
759 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
760 __isl_take isl_vec *vec)
762 int i;
763 int k;
764 struct isl_basic_set *bset = NULL;
765 struct isl_ctx *ctx;
766 unsigned dim;
768 if (!vec || !tab)
769 return NULL;
770 ctx = vec->ctx;
771 isl_assert(ctx, vec->size != 0, goto error);
773 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
774 if (!bset)
775 goto error;
776 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
777 for (i = 0; i < dim; ++i) {
778 k = isl_basic_set_alloc_equality(bset);
779 if (k < 0)
780 goto error;
781 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
782 vec->size - 1);
783 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
784 vec->size - 1, &bset->eq[k][0]);
785 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
787 bset->sample = vec;
788 bset = isl_basic_set_gauss(bset, NULL);
790 return bset;
791 error:
792 isl_basic_set_free(bset);
793 isl_vec_free(vec);
794 return NULL;
797 /* Given a tableau of a set and a tableau of the corresponding
798 * recession cone, detect and add all equalities to the tableau.
799 * If the tableau is bounded, then we can simply keep the
800 * tableau in its state after the return from extend_affine_hull.
801 * However, if the tableau is unbounded, then
802 * isl_tab_set_initial_basis_with_cone will add some additional
803 * constraints to the tableau that have to be removed again.
804 * In this case, we therefore rollback to the state before
805 * any constraints were added and then add the equalities back in.
807 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
808 struct isl_tab *tab_cone)
810 int j;
811 struct isl_vec *sample;
812 struct isl_basic_set *hull = NULL;
813 struct isl_tab_undo *snap;
815 if (!tab || !tab_cone)
816 goto error;
818 snap = isl_tab_snap(tab);
820 isl_mat_free(tab->basis);
821 tab->basis = NULL;
823 isl_assert(tab->mat->ctx, tab->bmap, goto error);
824 isl_assert(tab->mat->ctx, tab->samples, goto error);
825 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
826 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
828 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
829 goto error;
831 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
832 if (!sample)
833 goto error;
835 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
837 isl_vec_free(tab->bmap->sample);
838 tab->bmap->sample = isl_vec_copy(sample);
840 if (tab->n_unbounded == 0)
841 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
842 else
843 hull = initial_hull(tab, isl_vec_copy(sample));
845 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
846 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
847 hull = affine_hull(hull,
848 isl_basic_set_from_vec(isl_vec_copy(sample)));
851 isl_vec_free(sample);
853 hull = extend_affine_hull(tab, hull, NULL);
854 if (!hull)
855 goto error;
857 if (tab->n_unbounded == 0) {
858 isl_basic_set_free(hull);
859 return tab;
862 if (isl_tab_rollback(tab, snap) < 0)
863 goto error;
865 if (hull->n_eq > tab->n_zero) {
866 for (j = 0; j < hull->n_eq; ++j) {
867 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
868 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
869 goto error;
873 isl_basic_set_free(hull);
875 return tab;
876 error:
877 isl_basic_set_free(hull);
878 isl_tab_free(tab);
879 return NULL;
882 /* Compute the affine hull of "bset", where "cone" is the recession cone
883 * of "bset".
885 * We first compute a unimodular transformation that puts the unbounded
886 * directions in the last dimensions. In particular, we take a transformation
887 * that maps all equalities to equalities (in HNF) on the first dimensions.
888 * Let x be the original dimensions and y the transformed, with y_1 bounded
889 * and y_2 unbounded.
891 * [ y_1 ] [ y_1 ] [ Q_1 ]
892 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
894 * Let's call the input basic set S. We compute S' = preimage(S, U)
895 * and drop the final dimensions including any constraints involving them.
896 * This results in set S''.
897 * Then we compute the affine hull A'' of S''.
898 * Let F y_1 >= g be the constraint system of A''. In the transformed
899 * space the y_2 are unbounded, so we can add them back without any constraints,
900 * resulting in
902 * [ y_1 ]
903 * [ F 0 ] [ y_2 ] >= g
904 * or
905 * [ Q_1 ]
906 * [ F 0 ] [ Q_2 ] x >= g
907 * or
908 * F Q_1 x >= g
910 * The affine hull in the original space is then obtained as
911 * A = preimage(A'', Q_1).
913 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
914 struct isl_basic_set *cone)
916 unsigned total;
917 unsigned cone_dim;
918 struct isl_basic_set *hull;
919 struct isl_mat *M, *U, *Q;
921 if (!bset || !cone)
922 goto error;
924 total = isl_basic_set_total_dim(cone);
925 cone_dim = total - cone->n_eq;
927 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
928 M = isl_mat_left_hermite(M, 0, &U, &Q);
929 if (!M)
930 goto error;
931 isl_mat_free(M);
933 U = isl_mat_lin_to_aff(U);
934 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
936 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
937 cone_dim);
938 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
940 Q = isl_mat_lin_to_aff(Q);
941 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
943 if (bset && bset->sample && bset->sample->size == 1 + total)
944 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
946 hull = uset_affine_hull_bounded(bset);
948 if (!hull) {
949 isl_mat_free(Q);
950 isl_mat_free(U);
951 } else {
952 struct isl_vec *sample = isl_vec_copy(hull->sample);
953 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
954 if (sample && sample->size > 0)
955 sample = isl_mat_vec_product(U, sample);
956 else
957 isl_mat_free(U);
958 hull = isl_basic_set_preimage(hull, Q);
959 if (hull) {
960 isl_vec_free(hull->sample);
961 hull->sample = sample;
962 } else
963 isl_vec_free(sample);
966 isl_basic_set_free(cone);
968 return hull;
969 error:
970 isl_basic_set_free(bset);
971 isl_basic_set_free(cone);
972 return NULL;
975 /* Look for all equalities satisfied by the integer points in bset,
976 * which is assumed not to have any explicit equalities.
978 * The equalities are obtained by successively looking for
979 * a point that is affinely independent of the points found so far.
980 * In particular, for each equality satisfied by the points so far,
981 * we check if there is any point on a hyperplane parallel to the
982 * corresponding hyperplane shifted by at least one (in either direction).
984 * Before looking for any outside points, we first compute the recession
985 * cone. The directions of this recession cone will always be part
986 * of the affine hull, so there is no need for looking for any points
987 * in these directions.
988 * In particular, if the recession cone is full-dimensional, then
989 * the affine hull is simply the whole universe.
991 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
993 struct isl_basic_set *cone;
995 if (isl_basic_set_plain_is_empty(bset))
996 return bset;
998 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
999 if (!cone)
1000 goto error;
1001 if (cone->n_eq == 0) {
1002 struct isl_basic_set *hull;
1003 isl_basic_set_free(cone);
1004 hull = isl_basic_set_universe_like(bset);
1005 isl_basic_set_free(bset);
1006 return hull;
1009 if (cone->n_eq < isl_basic_set_total_dim(cone))
1010 return affine_hull_with_cone(bset, cone);
1012 isl_basic_set_free(cone);
1013 return uset_affine_hull_bounded(bset);
1014 error:
1015 isl_basic_set_free(bset);
1016 return NULL;
1019 /* Look for all equalities satisfied by the integer points in bmap
1020 * that are independent of the equalities already explicitly available
1021 * in bmap.
1023 * We first remove all equalities already explicitly available,
1024 * then look for additional equalities in the reduced space
1025 * and then transform the result to the original space.
1026 * The original equalities are _not_ added to this set. This is
1027 * the responsibility of the calling function.
1028 * The resulting basic set has all meaning about the dimensions removed.
1029 * In particular, dimensions that correspond to existential variables
1030 * in bmap and that are found to be fixed are not removed.
1032 static struct isl_basic_set *equalities_in_underlying_set(
1033 struct isl_basic_map *bmap)
1035 struct isl_mat *T1 = NULL;
1036 struct isl_mat *T2 = NULL;
1037 struct isl_basic_set *bset = NULL;
1038 struct isl_basic_set *hull = NULL;
1040 bset = isl_basic_map_underlying_set(bmap);
1041 if (!bset)
1042 return NULL;
1043 if (bset->n_eq)
1044 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
1045 if (!bset)
1046 goto error;
1048 hull = uset_affine_hull(bset);
1049 if (!T2)
1050 return hull;
1052 if (!hull) {
1053 isl_mat_free(T1);
1054 isl_mat_free(T2);
1055 } else {
1056 struct isl_vec *sample = isl_vec_copy(hull->sample);
1057 if (sample && sample->size > 0)
1058 sample = isl_mat_vec_product(T1, sample);
1059 else
1060 isl_mat_free(T1);
1061 hull = isl_basic_set_preimage(hull, T2);
1062 if (hull) {
1063 isl_vec_free(hull->sample);
1064 hull->sample = sample;
1065 } else
1066 isl_vec_free(sample);
1069 return hull;
1070 error:
1071 isl_mat_free(T1);
1072 isl_mat_free(T2);
1073 isl_basic_set_free(bset);
1074 isl_basic_set_free(hull);
1075 return NULL;
1078 /* Detect and make explicit all equalities satisfied by the (integer)
1079 * points in bmap.
1081 struct isl_basic_map *isl_basic_map_detect_equalities(
1082 struct isl_basic_map *bmap)
1084 int i, j;
1085 struct isl_basic_set *hull = NULL;
1087 if (!bmap)
1088 return NULL;
1089 if (bmap->n_ineq == 0)
1090 return bmap;
1091 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1092 return bmap;
1093 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
1094 return bmap;
1095 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
1096 return isl_basic_map_implicit_equalities(bmap);
1098 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
1099 if (!hull)
1100 goto error;
1101 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
1102 isl_basic_set_free(hull);
1103 return isl_basic_map_set_to_empty(bmap);
1105 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
1106 hull->n_eq, 0);
1107 for (i = 0; i < hull->n_eq; ++i) {
1108 j = isl_basic_map_alloc_equality(bmap);
1109 if (j < 0)
1110 goto error;
1111 isl_seq_cpy(bmap->eq[j], hull->eq[i],
1112 1 + isl_basic_set_total_dim(hull));
1114 isl_vec_free(bmap->sample);
1115 bmap->sample = isl_vec_copy(hull->sample);
1116 isl_basic_set_free(hull);
1117 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
1118 bmap = isl_basic_map_simplify(bmap);
1119 return isl_basic_map_finalize(bmap);
1120 error:
1121 isl_basic_set_free(hull);
1122 isl_basic_map_free(bmap);
1123 return NULL;
1126 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1127 __isl_take isl_basic_set *bset)
1129 return (isl_basic_set *)
1130 isl_basic_map_detect_equalities((isl_basic_map *)bset);
1133 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
1135 return isl_map_inline_foreach_basic_map(map,
1136 &isl_basic_map_detect_equalities);
1139 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
1141 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
1144 /* After computing the rational affine hull (by detecting the implicit
1145 * equalities), we compute the additional equalities satisfied by
1146 * the integer points (if any) and add the original equalities back in.
1148 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1150 bmap = isl_basic_map_detect_equalities(bmap);
1151 bmap = isl_basic_map_cow(bmap);
1152 if (bmap)
1153 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
1154 bmap = isl_basic_map_finalize(bmap);
1155 return bmap;
1158 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1160 return (struct isl_basic_set *)
1161 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
1164 /* Given a rational affine matrix "M", add stride constraints to "bmap"
1165 * that ensure that
1167 * M(x)
1169 * is an integer vector. The variables x include all the variables
1170 * of "bmap" except the unknown divs.
1172 * If d is the common denominator of M, then we need to impose that
1174 * d M(x) = 0 mod d
1176 * or
1178 * exists alpha : d M(x) = d alpha
1180 * This function is similar to add_strides in isl_morph.c
1182 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1183 __isl_keep isl_mat *M, int n_known)
1185 int i, div, k;
1186 isl_int gcd;
1188 if (isl_int_is_one(M->row[0][0]))
1189 return bmap;
1191 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1192 M->n_row - 1, M->n_row - 1, 0);
1194 isl_int_init(gcd);
1195 for (i = 1; i < M->n_row; ++i) {
1196 isl_seq_gcd(M->row[i], M->n_col, &gcd);
1197 if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1198 continue;
1199 div = isl_basic_map_alloc_div(bmap);
1200 if (div < 0)
1201 goto error;
1202 isl_int_set_si(bmap->div[div][0], 0);
1203 k = isl_basic_map_alloc_equality(bmap);
1204 if (k < 0)
1205 goto error;
1206 isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1207 isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1208 isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1209 M->row[0][0]);
1211 isl_int_clear(gcd);
1213 return bmap;
1214 error:
1215 isl_int_clear(gcd);
1216 isl_basic_map_free(bmap);
1217 return NULL;
1220 /* If there are any equalities that involve (multiple) unknown divs,
1221 * then extract the stride information encoded by those equalities
1222 * and make it explicitly available in "bmap".
1224 * We first sort the divs so that the unknown divs appear last and
1225 * then we count how many equalities involve these divs.
1227 * Let these equalities be of the form
1229 * A(x) + B y = 0
1231 * where y represents the unknown divs and x the remaining variables.
1232 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1234 * B = [H 0] Q
1236 * Then x is a solution of the equalities iff
1238 * H^-1 A(x) (= - [I 0] Q y)
1240 * is an integer vector. Let d be the common denominator of H^-1.
1241 * We impose
1243 * d H^-1 A(x) = d alpha
1245 * in add_strides, with alpha fresh existentially quantified variables.
1247 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1248 __isl_take isl_basic_map *bmap)
1250 int known;
1251 int n_known;
1252 int n, n_col;
1253 int total;
1254 isl_ctx *ctx;
1255 isl_mat *A, *B, *M;
1257 known = isl_basic_map_divs_known(bmap);
1258 if (known < 0)
1259 return isl_basic_map_free(bmap);
1260 if (known)
1261 return bmap;
1262 bmap = isl_basic_map_sort_divs(bmap);
1263 bmap = isl_basic_map_gauss(bmap, NULL);
1264 if (!bmap)
1265 return NULL;
1267 for (n_known = 0; n_known < bmap->n_div; ++n_known)
1268 if (isl_int_is_zero(bmap->div[n_known][0]))
1269 break;
1270 ctx = isl_basic_map_get_ctx(bmap);
1271 total = isl_space_dim(bmap->dim, isl_dim_all);
1272 for (n = 0; n < bmap->n_eq; ++n)
1273 if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known,
1274 bmap->n_div - n_known) == -1)
1275 break;
1276 if (n == 0)
1277 return bmap;
1278 B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known);
1279 n_col = bmap->n_div - n_known;
1280 A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col);
1281 A = isl_mat_left_hermite(A, 0, NULL, NULL);
1282 A = isl_mat_drop_cols(A, n, n_col - n);
1283 A = isl_mat_lin_to_aff(A);
1284 A = isl_mat_right_inverse(A);
1285 B = isl_mat_insert_zero_rows(B, 0, 1);
1286 B = isl_mat_set_element_si(B, 0, 0, 1);
1287 M = isl_mat_product(A, B);
1288 if (!M)
1289 return isl_basic_map_free(bmap);
1290 bmap = add_strides(bmap, M, n_known);
1291 bmap = isl_basic_map_gauss(bmap, NULL);
1292 isl_mat_free(M);
1294 return bmap;
1297 /* Compute the affine hull of each basic map in "map" separately
1298 * and make all stride information explicit so that we can remove
1299 * all unknown divs without losing this information.
1300 * The result is also guaranteed to be gaussed.
1302 * In simple cases where a div is determined by an equality,
1303 * calling isl_basic_map_gauss is enough to make the stride information
1304 * explicit, as it will derive an explicit representation for the div
1305 * from the equality. If, however, the stride information
1306 * is encoded through multiple unknown divs then we need to make
1307 * some extra effort in isl_basic_map_make_strides_explicit.
1309 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1311 int i;
1313 map = isl_map_cow(map);
1314 if (!map)
1315 return NULL;
1317 for (i = 0; i < map->n; ++i) {
1318 map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1319 map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1320 map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1321 if (!map->p[i])
1322 return isl_map_free(map);
1325 return map;
1328 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1330 return isl_map_local_affine_hull(set);
1333 /* Compute the affine hull of "map".
1335 * We first compute the affine hull of each basic map separately.
1336 * Then we align the divs and recompute the affine hulls of the basic
1337 * maps since some of them may now have extra divs.
1338 * In order to avoid performing parametric integer programming to
1339 * compute explicit expressions for the divs, possible leading to
1340 * an explosion in the number of basic maps, we first drop all unknown
1341 * divs before aligning the divs. Note that isl_map_local_affine_hull tries
1342 * to make sure that all stride information is explicitly available
1343 * in terms of known divs. This involves calling isl_basic_set_gauss,
1344 * which is also needed because affine_hull assumes its input has been gaussed,
1345 * while isl_map_affine_hull may be called on input that has not been gaussed,
1346 * in particular from initial_facet_constraint.
1347 * Similarly, align_divs may reorder some divs so that we need to
1348 * gauss the result again.
1349 * Finally, we combine the individual affine hulls into a single
1350 * affine hull.
1352 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1354 struct isl_basic_map *model = NULL;
1355 struct isl_basic_map *hull = NULL;
1356 struct isl_set *set;
1357 isl_basic_set *bset;
1359 map = isl_map_detect_equalities(map);
1360 map = isl_map_local_affine_hull(map);
1361 map = isl_map_remove_empty_parts(map);
1362 map = isl_map_remove_unknown_divs(map);
1363 map = isl_map_align_divs(map);
1365 if (!map)
1366 return NULL;
1368 if (map->n == 0) {
1369 hull = isl_basic_map_empty_like_map(map);
1370 isl_map_free(map);
1371 return hull;
1374 model = isl_basic_map_copy(map->p[0]);
1375 set = isl_map_underlying_set(map);
1376 set = isl_set_cow(set);
1377 set = isl_set_local_affine_hull(set);
1378 if (!set)
1379 goto error;
1381 while (set->n > 1)
1382 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1384 bset = isl_basic_set_copy(set->p[0]);
1385 hull = isl_basic_map_overlying_set(bset, model);
1386 isl_set_free(set);
1387 hull = isl_basic_map_simplify(hull);
1388 return isl_basic_map_finalize(hull);
1389 error:
1390 isl_basic_map_free(model);
1391 isl_set_free(set);
1392 return NULL;
1395 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1397 return (struct isl_basic_set *)
1398 isl_map_affine_hull((struct isl_map *)set);