isl_basic_set_sample: don't project out lineality space up front
[isl.git] / isl_sample.c
blob746bd5c494f3fc5891f1ffa6202a1831dcfd8b60
1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
3 #include "isl_vec.h"
4 #include "isl_mat.h"
5 #include "isl_seq.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
13 struct isl_vec *vec;
15 vec = isl_vec_alloc(bset->ctx, 0);
16 isl_basic_set_free(bset);
17 return vec;
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
26 unsigned dim;
27 struct isl_vec *sample;
29 dim = isl_basic_set_total_dim(bset);
30 sample = isl_vec_alloc(bset->ctx, 1 + dim);
31 if (sample) {
32 isl_int_set_si(sample->el[0], 1);
33 isl_seq_clr(sample->el + 1, dim);
35 isl_basic_set_free(bset);
36 return sample;
39 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
41 int i;
42 isl_int t;
43 struct isl_vec *sample;
45 bset = isl_basic_set_simplify(bset);
46 if (!bset)
47 return NULL;
48 if (isl_basic_set_fast_is_empty(bset))
49 return empty_sample(bset);
50 if (bset->n_eq == 0 && bset->n_ineq == 0)
51 return zero_sample(bset);
53 sample = isl_vec_alloc(bset->ctx, 2);
54 isl_int_set_si(sample->block.data[0], 1);
56 if (bset->n_eq > 0) {
57 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
58 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
59 if (isl_int_is_one(bset->eq[0][1]))
60 isl_int_neg(sample->el[1], bset->eq[0][0]);
61 else {
62 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
63 goto error);
64 isl_int_set(sample->el[1], bset->eq[0][0]);
66 isl_basic_set_free(bset);
67 return sample;
70 isl_int_init(t);
71 if (isl_int_is_one(bset->ineq[0][1]))
72 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
73 else
74 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
75 for (i = 1; i < bset->n_ineq; ++i) {
76 isl_seq_inner_product(sample->block.data,
77 bset->ineq[i], 2, &t);
78 if (isl_int_is_neg(t))
79 break;
81 isl_int_clear(t);
82 if (i < bset->n_ineq) {
83 isl_vec_free(sample);
84 return empty_sample(bset);
87 isl_basic_set_free(bset);
88 return sample;
89 error:
90 isl_basic_set_free(bset);
91 isl_vec_free(sample);
92 return NULL;
95 static struct isl_mat *independent_bounds(struct isl_ctx *ctx,
96 struct isl_basic_set *bset)
98 int i, j, n;
99 struct isl_mat *dirs = NULL;
100 struct isl_mat *bounds = NULL;
101 unsigned dim;
103 if (!bset)
104 return NULL;
106 dim = isl_basic_set_n_dim(bset);
107 bounds = isl_mat_alloc(ctx, 1+dim, 1+dim);
108 if (!bounds)
109 return NULL;
111 isl_int_set_si(bounds->row[0][0], 1);
112 isl_seq_clr(bounds->row[0]+1, dim);
113 bounds->n_row = 1;
115 if (bset->n_ineq == 0)
116 return bounds;
118 dirs = isl_mat_alloc(ctx, dim, dim);
119 if (!dirs) {
120 isl_mat_free(ctx, bounds);
121 return NULL;
123 isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
124 isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
125 for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
126 int pos;
128 isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
130 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
131 if (pos < 0)
132 continue;
133 for (i = 0; i < n; ++i) {
134 int pos_i;
135 pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
136 if (pos_i < pos)
137 continue;
138 if (pos_i > pos)
139 break;
140 isl_seq_elim(dirs->row[n], dirs->row[i], pos,
141 dirs->n_col, NULL);
142 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
143 if (pos < 0)
144 break;
146 if (pos < 0)
147 continue;
148 if (i < n) {
149 int k;
150 isl_int *t = dirs->row[n];
151 for (k = n; k > i; --k)
152 dirs->row[k] = dirs->row[k-1];
153 dirs->row[i] = t;
155 ++n;
156 isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
158 isl_mat_free(ctx, dirs);
159 bounds->n_row = 1+n;
160 return bounds;
163 static void swap_inequality(struct isl_basic_set *bset, int a, int b)
165 isl_int *t = bset->ineq[a];
166 bset->ineq[a] = bset->ineq[b];
167 bset->ineq[b] = t;
170 /* Skew into positive orthant and project out lineality space.
172 * We perform a unimodular transformation that turns a selected
173 * maximal set of linearly independent bounds into constraints
174 * on the first dimensions that impose that these first dimensions
175 * are non-negative. In particular, the constraint matrix is lower
176 * triangular with positive entries on the diagonal and negative
177 * entries below.
178 * If "bset" has a lineality space then these constraints (and therefore
179 * all constraints in bset) only involve the first dimensions.
180 * The remaining dimensions then do not appear in any constraints and
181 * we can select any value for them, say zero. We therefore project
182 * out this final dimensions and plug in the value zero later. This
183 * is accomplished by simply dropping the final columns of
184 * the unimodular transformation.
186 static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
187 struct isl_basic_set *bset, struct isl_mat **T)
189 struct isl_mat *U = NULL;
190 struct isl_mat *bounds = NULL;
191 int i, j;
192 unsigned old_dim, new_dim;
193 struct isl_ctx *ctx;
195 *T = NULL;
196 if (!bset)
197 return NULL;
199 ctx = bset->ctx;
200 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
201 isl_assert(ctx, bset->n_div == 0, goto error);
202 isl_assert(ctx, bset->n_eq == 0, goto error);
204 old_dim = isl_basic_set_n_dim(bset);
205 /* Try to move (multiples of) unit rows up. */
206 for (i = 0, j = 0; i < bset->n_ineq; ++i) {
207 int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
208 if (pos < 0)
209 continue;
210 if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
211 old_dim-pos-1) >= 0)
212 continue;
213 if (i != j)
214 swap_inequality(bset, i, j);
215 ++j;
217 bounds = independent_bounds(ctx, bset);
218 if (!bounds)
219 goto error;
220 new_dim = bounds->n_row - 1;
221 bounds = isl_mat_left_hermite(ctx, bounds, 1, &U, NULL);
222 if (!bounds)
223 goto error;
224 U = isl_mat_drop_cols(ctx, U, 1 + new_dim, old_dim - new_dim);
225 bset = isl_basic_set_preimage(bset, isl_mat_copy(ctx, U));
226 if (!bset)
227 goto error;
228 *T = U;
229 isl_mat_free(ctx, bounds);
230 return bset;
231 error:
232 isl_mat_free(ctx, bounds);
233 isl_mat_free(ctx, U);
234 isl_basic_set_free(bset);
235 return NULL;
238 /* Find a sample integer point, if any, in bset, which is known
239 * to have equalities. If bset contains no integer points, then
240 * return a zero-length vector.
241 * We simply remove the known equalities, compute a sample
242 * in the resulting bset, using the specified recurse function,
243 * and then transform the sample back to the original space.
245 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
246 struct isl_vec *(*recurse)(struct isl_basic_set *))
248 struct isl_mat *T;
249 struct isl_vec *sample;
250 struct isl_ctx *ctx;
252 if (!bset)
253 return NULL;
255 ctx = bset->ctx;
256 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
257 sample = recurse(bset);
258 if (!sample || sample->size == 0)
259 isl_mat_free(ctx, T);
260 else
261 sample = isl_mat_vec_product(ctx, T, sample);
262 return sample;
265 /* Given a basic set "bset" and an affine function "f"/"denom",
266 * check if bset is bounded and non-empty and if so, return the minimal
267 * and maximal value attained by the affine function in "min" and "max".
268 * The minimal value is rounded up to the nearest integer, while the
269 * maximal value is rounded down.
270 * The return value indicates whether the set was empty or unbounded.
272 * If we happen to find an integer point while looking for the minimal
273 * or maximal value, then we record that value in "bset" and return early.
275 static enum isl_lp_result basic_set_range(struct isl_basic_set *bset,
276 isl_int *f, isl_int denom, isl_int *min, isl_int *max)
278 unsigned dim;
279 struct isl_tab *tab;
280 enum isl_lp_result res;
282 if (!bset)
283 return isl_lp_error;
284 if (isl_basic_set_fast_is_empty(bset))
285 return isl_lp_empty;
287 tab = isl_tab_from_basic_set(bset);
288 res = isl_tab_min(bset->ctx, tab, f, denom, min, NULL, 0);
289 if (res != isl_lp_ok)
290 goto done;
292 if (isl_tab_sample_is_integer(bset->ctx, tab)) {
293 isl_vec_free(bset->sample);
294 bset->sample = isl_tab_get_sample_value(bset->ctx, tab);
295 if (!bset->sample)
296 goto error;
297 isl_int_set(*max, *min);
298 goto done;
301 dim = isl_basic_set_total_dim(bset);
302 isl_seq_neg(f, f, 1 + dim);
303 res = isl_tab_min(bset->ctx, tab, f, denom, max, NULL, 0);
304 isl_seq_neg(f, f, 1 + dim);
305 isl_int_neg(*max, *max);
307 if (isl_tab_sample_is_integer(bset->ctx, tab)) {
308 isl_vec_free(bset->sample);
309 bset->sample = isl_tab_get_sample_value(bset->ctx, tab);
310 if (!bset->sample)
311 goto error;
314 done:
315 isl_tab_free(bset->ctx, tab);
316 return res;
317 error:
318 isl_tab_free(bset->ctx, tab);
319 return isl_lp_error;
322 /* Perform a basis reduction on "bset" and return the inverse of
323 * the new basis, i.e., an affine mapping from the new coordinates to the old,
324 * in *T.
326 static struct isl_basic_set *basic_set_reduced(struct isl_basic_set *bset,
327 struct isl_mat **T)
329 struct isl_ctx *ctx;
330 unsigned gbr_only_first;
332 *T = NULL;
333 if (!bset)
334 return NULL;
336 ctx = bset->ctx;
338 gbr_only_first = ctx->gbr_only_first;
339 ctx->gbr_only_first = 1;
340 *T = isl_basic_set_reduced_basis(bset);
341 ctx->gbr_only_first = gbr_only_first;
343 *T = isl_mat_lin_to_aff(bset->ctx, *T);
344 *T = isl_mat_right_inverse(bset->ctx, *T);
346 bset = isl_basic_set_preimage(bset, isl_mat_copy(bset->ctx, *T));
347 if (!bset)
348 goto error;
350 return bset;
351 error:
352 isl_mat_free(ctx, *T);
353 *T = NULL;
354 return NULL;
357 static struct isl_vec *sample_bounded(struct isl_basic_set *bset);
359 /* Given a basic set "bset" whose first coordinate ranges between
360 * "min" and "max", step through all values from min to max, until
361 * the slice of bset with the first coordinate fixed to one of these
362 * values contains an integer point. If such a point is found, return it.
363 * If none of the slices contains any integer point, then bset itself
364 * doesn't contain any integer point and an empty sample is returned.
366 static struct isl_vec *sample_scan(struct isl_basic_set *bset,
367 isl_int min, isl_int max)
369 unsigned total;
370 struct isl_basic_set *slice = NULL;
371 struct isl_vec *sample = NULL;
372 isl_int tmp;
374 total = isl_basic_set_total_dim(bset);
376 isl_int_init(tmp);
377 for (isl_int_set(tmp, min); isl_int_le(tmp, max);
378 isl_int_add_ui(tmp, tmp, 1)) {
379 int k;
381 slice = isl_basic_set_copy(bset);
382 slice = isl_basic_set_cow(slice);
383 slice = isl_basic_set_extend_constraints(slice, 1, 0);
384 k = isl_basic_set_alloc_equality(slice);
385 if (k < 0)
386 goto error;
387 isl_int_set(slice->eq[k][0], tmp);
388 isl_int_set_si(slice->eq[k][1], -1);
389 isl_seq_clr(slice->eq[k] + 2, total - 1);
390 slice = isl_basic_set_simplify(slice);
391 sample = sample_bounded(slice);
392 slice = NULL;
393 if (!sample)
394 goto error;
395 if (sample->size > 0)
396 break;
397 isl_vec_free(sample);
398 sample = NULL;
400 if (!sample)
401 sample = empty_sample(bset);
402 else
403 isl_basic_set_free(bset);
404 isl_int_clear(tmp);
405 return sample;
406 error:
407 isl_basic_set_free(bset);
408 isl_basic_set_free(slice);
409 isl_int_clear(tmp);
410 return NULL;
413 /* Given a basic set that is known to be bounded, find and return
414 * an integer point in the basic set, if there is any.
416 * After handling some trivial cases, we check the range of the
417 * first coordinate. If this coordinate can only attain one integer
418 * value, we are happy. Otherwise, we perform basis reduction and
419 * determine the new range.
421 * Then we step through all possible values in the range in sample_scan.
423 * If any basis reduction was performed, the sample value found, if any,
424 * is transformed back to the original space.
426 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
428 unsigned dim;
429 struct isl_ctx *ctx;
430 struct isl_vec *sample;
431 struct isl_vec *obj = NULL;
432 struct isl_mat *T = NULL;
433 isl_int min, max;
434 enum isl_lp_result res;
436 if (!bset)
437 return NULL;
439 if (isl_basic_set_fast_is_empty(bset))
440 return empty_sample(bset);
442 ctx = bset->ctx;
443 dim = isl_basic_set_total_dim(bset);
444 if (dim == 0)
445 return zero_sample(bset);
446 if (dim == 1)
447 return interval_sample(bset);
448 if (bset->n_eq > 0)
449 return sample_eq(bset, sample_bounded);
451 isl_int_init(min);
452 isl_int_init(max);
453 obj = isl_vec_alloc(bset->ctx, 1 + dim);
454 if (!obj)
455 goto error;
456 isl_seq_clr(obj->el, 1+ dim);
457 isl_int_set_si(obj->el[1], 1);
459 res = basic_set_range(bset, obj->el, bset->ctx->one, &min, &max);
460 if (res == isl_lp_error)
461 goto error;
462 isl_assert(bset->ctx, res != isl_lp_unbounded, goto error);
463 if (bset->sample) {
464 sample = isl_vec_copy(bset->sample);
465 isl_basic_set_free(bset);
466 goto out;
468 if (res == isl_lp_empty || isl_int_lt(max, min)) {
469 sample = empty_sample(bset);
470 goto out;
473 if (isl_int_ne(min, max)) {
474 bset = basic_set_reduced(bset, &T);
475 if (!bset)
476 goto error;
478 res = basic_set_range(bset, obj->el, bset->ctx->one, &min, &max);
479 if (res == isl_lp_error)
480 goto error;
481 isl_assert(bset->ctx, res != isl_lp_unbounded, goto error);
482 if (bset->sample) {
483 sample = isl_vec_copy(bset->sample);
484 isl_basic_set_free(bset);
485 goto out;
487 if (res == isl_lp_empty || isl_int_lt(max, min)) {
488 sample = empty_sample(bset);
489 goto out;
493 sample = sample_scan(bset, min, max);
494 out:
495 if (T) {
496 if (!sample || sample->size == 0)
497 isl_mat_free(ctx, T);
498 else
499 sample = isl_mat_vec_product(ctx, T, sample);
501 isl_vec_free(obj);
502 isl_int_clear(min);
503 isl_int_clear(max);
504 return sample;
505 error:
506 isl_mat_free(ctx, T);
507 isl_basic_set_free(bset);
508 isl_vec_free(obj);
509 isl_int_clear(min);
510 isl_int_clear(max);
511 return NULL;
514 /* Given a basic set "bset" and a value "sample" for the first coordinates
515 * of bset, plug in these values and drop the corresponding coordinates.
517 * We do this by computing the preimage of the transformation
519 * [ 1 0 ]
520 * x = [ s 0 ] x'
521 * [ 0 I ]
523 * where [1 s] is the sample value and I is the identity matrix of the
524 * appropriate dimension.
526 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
527 struct isl_vec *sample)
529 int i;
530 unsigned total;
531 struct isl_mat *T;
533 if (!bset || !sample)
534 goto error;
536 total = isl_basic_set_total_dim(bset);
537 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
538 if (!T)
539 goto error;
541 for (i = 0; i < sample->size; ++i) {
542 isl_int_set(T->row[i][0], sample->el[i]);
543 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
545 for (i = 0; i < T->n_col - 1; ++i) {
546 isl_seq_clr(T->row[sample->size + i], T->n_col);
547 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
549 isl_vec_free(sample);
551 bset = isl_basic_set_preimage(bset, T);
552 return bset;
553 error:
554 isl_basic_set_free(bset);
555 isl_vec_free(sample);
556 return NULL;
559 /* Given a basic set "bset", return any (possibly non-integer) point
560 * in the basic set.
562 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
564 struct isl_tab *tab;
565 struct isl_vec *sample;
567 if (!bset)
568 return NULL;
570 tab = isl_tab_from_basic_set(bset);
571 sample = isl_tab_get_sample_value(bset->ctx, tab);
572 isl_tab_free(bset->ctx, tab);
574 isl_basic_set_free(bset);
576 return sample;
579 /* Given a rational vector, with the denominator in the first element
580 * of the vector, round up all coordinates.
582 struct isl_vec *isl_vec_ceil(struct isl_vec *vec)
584 int i;
586 vec = isl_vec_cow(vec);
587 if (!vec)
588 return NULL;
590 isl_seq_cdiv_q(vec->el + 1, vec->el + 1, vec->el[0], vec->size - 1);
592 isl_int_set_si(vec->el[0], 1);
594 return vec;
597 /* Given a linear cone "cone" and a rational point "vec",
598 * construct a polyhedron with shifted copies of the constraints in "cone",
599 * i.e., a polyhedron with "cone" as its recession cone, such that each
600 * point x in this polyhedron is such that the unit box positioned at x
601 * lies entirely inside the affine cone 'vec + cone'.
602 * Any rational point in this polyhedron may therefore be rounded up
603 * to yield an integer point that lies inside said affine cone.
605 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
606 * point "vec" by v/d.
607 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
608 * by <a_i, x> - b/d >= 0.
609 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
610 * We prefer this polyhedron over the actual affine cone because it doesn't
611 * require a scaling of the constraints.
612 * If each of the vertices of the unit cube positioned at x lies inside
613 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
614 * We therefore impose that x' = x + \sum e_i, for any selection of unit
615 * vectors lies inside the polyhedron, i.e.,
617 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
619 * The most stringent of these constraints is the one that selects
620 * all negative a_i, so the polyhedron we are looking for has constraints
622 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
624 * Note that if cone were known to have only non-negative rays
625 * (which can be accomplished by a unimodular transformation),
626 * then we would only have to check the points x' = x + e_i
627 * and we only have to add the smallest negative a_i (if any)
628 * instead of the sum of all negative a_i.
630 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
631 struct isl_vec *vec)
633 int i, j, k;
634 unsigned total;
636 struct isl_basic_set *shift = NULL;
638 if (!cone || !vec)
639 goto error;
641 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
643 total = isl_basic_set_total_dim(cone);
645 shift = isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone),
646 0, 0, cone->n_ineq);
648 for (i = 0; i < cone->n_ineq; ++i) {
649 k = isl_basic_set_alloc_inequality(shift);
650 if (k < 0)
651 goto error;
652 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
653 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
654 &shift->ineq[k][0]);
655 isl_int_cdiv_q(shift->ineq[k][0],
656 shift->ineq[k][0], vec->el[0]);
657 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
658 for (j = 0; j < total; ++j) {
659 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
660 continue;
661 isl_int_add(shift->ineq[k][0],
662 shift->ineq[k][0], shift->ineq[k][1 + j]);
666 isl_basic_set_free(cone);
667 isl_vec_free(vec);
669 return isl_basic_set_finalize(shift);
670 error:
671 isl_basic_set_free(shift);
672 isl_basic_set_free(cone);
673 isl_vec_free(vec);
674 return NULL;
677 /* Given a rational point vec in a (transformed) basic set,
678 * such that cone is the recession cone of the original basic set,
679 * "round up" the rational point to an integer point.
681 * We first check if the rational point just happens to be integer.
682 * If not, we transform the cone in the same way as the basic set,
683 * pick a point x in this cone shifted to the rational point such that
684 * the whole unit cube at x is also inside this affine cone.
685 * Then we simply round up the coordinates of x and return the
686 * resulting integer point.
688 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
689 struct isl_basic_set *cone, struct isl_mat *U)
691 unsigned total;
693 if (!vec || !cone || !U)
694 goto error;
696 isl_assert(vec->ctx, vec->size != 0, goto error);
697 if (isl_int_is_one(vec->el[0])) {
698 isl_mat_free(vec->ctx, U);
699 isl_basic_set_free(cone);
700 return vec;
703 total = isl_basic_set_total_dim(cone);
704 cone = isl_basic_set_preimage(cone, U);
705 cone = isl_basic_set_remove_dims(cone, 0, total - (vec->size - 1));
707 cone = shift_cone(cone, vec);
709 vec = rational_sample(cone);
710 vec = isl_vec_ceil(vec);
711 return vec;
712 error:
713 isl_mat_free(vec ? vec->ctx : cone ? cone->ctx : NULL, U);
714 isl_vec_free(vec);
715 isl_basic_set_free(cone);
716 return NULL;
719 /* Concatenate two integer vectors, i.e., two vectors with denominator
720 * (stored in element 0) equal to 1.
722 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
724 struct isl_vec *vec;
726 if (!vec1 || !vec2)
727 goto error;
728 isl_assert(vec1->ctx, vec1->size > 0, goto error);
729 isl_assert(vec2->ctx, vec2->size > 0, goto error);
730 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
731 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
733 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
734 if (!vec)
735 goto error;
737 isl_seq_cpy(vec->el, vec1->el, vec1->size);
738 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
740 isl_vec_free(vec1);
741 isl_vec_free(vec2);
743 return vec;
744 error:
745 isl_vec_free(vec1);
746 isl_vec_free(vec2);
747 return NULL;
750 /* Drop all constraints in bset that involve any of the dimensions
751 * first to first+n-1.
753 static struct isl_basic_set *drop_constraints_involving
754 (struct isl_basic_set *bset, unsigned first, unsigned n)
756 int i;
758 if (!bset)
759 return NULL;
761 bset = isl_basic_set_cow(bset);
763 for (i = bset->n_ineq - 1; i >= 0; --i) {
764 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
765 continue;
766 isl_basic_set_drop_inequality(bset, i);
769 return bset;
772 /* Give a basic set "bset" with recession cone "cone", compute and
773 * return an integer point in bset, if any.
775 * If the recession cone is full-dimensional, then we know that
776 * bset contains an infinite number of integer points and it is
777 * fairly easy to pick one of them.
778 * If the recession cone is not full-dimensional, then we first
779 * transform bset such that the bounded directions appear as
780 * the first dimensions of the transformed basic set.
781 * We do this by using a unimodular transformation that transforms
782 * the equalities in the recession cone to equalities on the first
783 * dimensions.
785 * The transformed set is then projected onto its bounded dimensions.
786 * Note that to compute this projection, we can simply drop all constraints
787 * involving any of the unbounded dimensions since these constraints
788 * cannot be combined to produce a constraint on the bounded dimensions.
789 * To see this, assume that there is such a combination of constraints
790 * that produces a constraint on the bounded dimensions. This means
791 * that some combination of the unbounded dimensions has both an upper
792 * bound and a lower bound in terms of the bounded dimensions, but then
793 * this combination would be a bounded direction too and would have been
794 * transformed into a bounded dimensions.
796 * We then compute a sample value in the bounded dimensions.
797 * If no such value can be found, then the original set did not contain
798 * any integer points and we are done.
799 * Otherwise, we plug in the value we found in the bounded dimensions,
800 * project out these bounded dimensions and end up with a set with
801 * a full-dimensional recession cone.
802 * A sample point in this set is computed by "rounding up" any
803 * rational point in the set.
805 * The sample points in the bounded and unbounded dimensions are
806 * then combined into a single sample point and transformed back
807 * to the original space.
809 static struct isl_vec *sample_with_cone(struct isl_basic_set *bset,
810 struct isl_basic_set *cone)
812 unsigned total;
813 unsigned cone_dim;
814 struct isl_mat *M, *U;
815 struct isl_vec *sample;
816 struct isl_vec *cone_sample;
817 struct isl_ctx *ctx;
818 struct isl_basic_set *bounded;
820 if (!bset || !cone)
821 goto error;
823 ctx = bset->ctx;
824 total = isl_basic_set_total_dim(cone);
825 cone_dim = total - cone->n_eq;
827 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
828 M = isl_mat_left_hermite(bset->ctx, M, 0, &U, NULL);
829 if (!M)
830 goto error;
831 isl_mat_free(bset->ctx, M);
833 U = isl_mat_lin_to_aff(bset->ctx, U);
834 bset = isl_basic_set_preimage(bset, isl_mat_copy(bset->ctx, U));
836 bounded = isl_basic_set_copy(bset);
837 bounded = drop_constraints_involving(bounded, total - cone_dim, cone_dim);
838 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
839 sample = sample_bounded(bounded);
840 if (!sample || sample->size == 0) {
841 isl_basic_set_free(bset);
842 isl_basic_set_free(cone);
843 isl_mat_free(ctx, U);
844 return sample;
846 bset = plug_in(bset, isl_vec_copy(sample));
847 cone_sample = rational_sample(bset);
848 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(ctx, U));
849 sample = vec_concat(sample, cone_sample);
850 sample = isl_mat_vec_product(ctx, U, sample);
851 return sample;
852 error:
853 isl_basic_set_free(cone);
854 isl_basic_set_free(bset);
855 return NULL;
858 /* Compute and return a sample point in bset using generalized basis
859 * reduction. We first check if the input set has a non-trivial
860 * recession cone. If so, we perform some extra preprocessing in
861 * sample_with_cone. Otherwise, we directly perform generalized basis
862 * reduction.
864 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
866 unsigned dim;
867 struct isl_basic_set *cone;
869 dim = isl_basic_set_total_dim(bset);
871 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
873 if (cone->n_eq < dim)
874 return sample_with_cone(bset, cone);
876 isl_basic_set_free(cone);
877 return sample_bounded(bset);
880 static struct isl_vec *pip_sample(struct isl_basic_set *bset)
882 struct isl_mat *T;
883 struct isl_ctx *ctx;
884 struct isl_vec *sample;
886 bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
887 if (!bset)
888 return NULL;
890 ctx = bset->ctx;
891 sample = isl_pip_basic_set_sample(bset);
893 if (sample && sample->size != 0)
894 sample = isl_mat_vec_product(ctx, T, sample);
895 else
896 isl_mat_free(ctx, T);
898 return sample;
901 struct isl_vec *isl_basic_set_sample(struct isl_basic_set *bset)
903 struct isl_ctx *ctx;
904 unsigned dim;
905 if (!bset)
906 return NULL;
908 ctx = bset->ctx;
909 if (isl_basic_set_fast_is_empty(bset))
910 return empty_sample(bset);
912 dim = isl_basic_set_n_dim(bset);
913 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
914 isl_assert(ctx, bset->n_div == 0, goto error);
916 if (bset->sample && bset->sample->size == 1 + dim) {
917 int contains = isl_basic_set_contains(bset, bset->sample);
918 if (contains < 0)
919 goto error;
920 if (contains) {
921 struct isl_vec *sample = isl_vec_copy(bset->sample);
922 isl_basic_set_free(bset);
923 return sample;
926 isl_vec_free(bset->sample);
927 bset->sample = NULL;
929 if (bset->n_eq > 0)
930 return sample_eq(bset, isl_basic_set_sample);
931 if (dim == 0)
932 return zero_sample(bset);
933 if (dim == 1)
934 return interval_sample(bset);
936 switch (bset->ctx->ilp_solver) {
937 case ISL_ILP_PIP:
938 return pip_sample(bset);
939 case ISL_ILP_GBR:
940 return gbr_sample(bset);
942 isl_assert(bset->ctx, 0, );
943 error:
944 isl_basic_set_free(bset);
945 return NULL;