isl_tab_basic_map_partial_lexopt: avoid memory leak on error path
[isl.git] / isl_flow.c
blobe8b9c5879f7f3e60e472f7f0cddf48b8d33d56f7
1 /*
2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl/flow.h>
18 /* A private structure to keep track of a mapping together with
19 * a user-specified identifier and a boolean indicating whether
20 * the map represents a must or may access/dependence.
22 struct isl_labeled_map {
23 struct isl_map *map;
24 void *data;
25 int must;
28 /* A structure containing the input for dependence analysis:
29 * - a sink
30 * - n_must + n_may (<= max_source) sources
31 * - a function for determining the relative order of sources and sink
32 * The must sources are placed before the may sources.
34 struct isl_access_info {
35 struct isl_labeled_map sink;
36 isl_access_level_before level_before;
37 int max_source;
38 int n_must;
39 int n_may;
40 struct isl_labeled_map source[1];
43 /* A structure containing the output of dependence analysis:
44 * - n_source dependences
45 * - a subset of the sink for which definitely no source could be found
46 * - a subset of the sink for which possibly no source could be found
48 struct isl_flow {
49 isl_set *must_no_source;
50 isl_set *may_no_source;
51 int n_source;
52 struct isl_labeled_map *dep;
55 /* Construct an isl_access_info structure and fill it up with
56 * the given data. The number of sources is set to 0.
58 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
59 void *sink_user, isl_access_level_before fn, int max_source)
61 isl_ctx *ctx;
62 struct isl_access_info *acc;
64 if (!sink)
65 return NULL;
67 ctx = isl_map_get_ctx(sink);
68 isl_assert(ctx, max_source >= 0, goto error);
70 acc = isl_alloc(ctx, struct isl_access_info,
71 sizeof(struct isl_access_info) +
72 (max_source - 1) * sizeof(struct isl_labeled_map));
73 if (!acc)
74 goto error;
76 acc->sink.map = sink;
77 acc->sink.data = sink_user;
78 acc->level_before = fn;
79 acc->max_source = max_source;
80 acc->n_must = 0;
81 acc->n_may = 0;
83 return acc;
84 error:
85 isl_map_free(sink);
86 return NULL;
89 /* Free the given isl_access_info structure.
91 void isl_access_info_free(__isl_take isl_access_info *acc)
93 int i;
95 if (!acc)
96 return;
97 isl_map_free(acc->sink.map);
98 for (i = 0; i < acc->n_must + acc->n_may; ++i)
99 isl_map_free(acc->source[i].map);
100 free(acc);
103 /* Add another source to an isl_access_info structure, making
104 * sure the "must" sources are placed before the "may" sources.
105 * This function may be called at most max_source times on a
106 * given isl_access_info structure, with max_source as specified
107 * in the call to isl_access_info_alloc that constructed the structure.
109 __isl_give isl_access_info *isl_access_info_add_source(
110 __isl_take isl_access_info *acc, __isl_take isl_map *source,
111 int must, void *source_user)
113 isl_ctx *ctx;
115 if (!acc)
116 return NULL;
117 ctx = isl_map_get_ctx(acc->sink.map);
118 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
120 if (must) {
121 if (acc->n_may)
122 acc->source[acc->n_must + acc->n_may] =
123 acc->source[acc->n_must];
124 acc->source[acc->n_must].map = source;
125 acc->source[acc->n_must].data = source_user;
126 acc->source[acc->n_must].must = 1;
127 acc->n_must++;
128 } else {
129 acc->source[acc->n_must + acc->n_may].map = source;
130 acc->source[acc->n_must + acc->n_may].data = source_user;
131 acc->source[acc->n_must + acc->n_may].must = 0;
132 acc->n_may++;
135 return acc;
136 error:
137 isl_map_free(source);
138 isl_access_info_free(acc);
139 return NULL;
142 /* A temporary structure used while sorting the accesses in an isl_access_info.
144 struct isl_access_sort_info {
145 struct isl_map *source_map;
146 void *source_data;
147 struct isl_access_info *acc;
150 /* Return -n, 0 or n (with n a positive value), depending on whether
151 * the source access identified by p1 should be sorted before, together
152 * or after that identified by p2.
154 * If p1 and p2 share a different number of levels with the sink,
155 * then the one with the lowest number of shared levels should be
156 * sorted first.
157 * If they both share no levels, then the order is irrelevant.
158 * Otherwise, if p1 appears before p2, then it should be sorted first.
160 static int access_sort_cmp(const void *p1, const void *p2)
162 const struct isl_access_sort_info *i1, *i2;
163 int level1, level2;
164 i1 = (const struct isl_access_sort_info *) p1;
165 i2 = (const struct isl_access_sort_info *) p2;
167 level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data);
168 level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data);
170 if (level1 != level2 || !level1)
171 return level1 - level2;
173 level1 = i1->acc->level_before(i1->source_data, i2->source_data);
175 return (level1 % 2) ? -1 : 1;
178 /* Sort the must source accesses in order of increasing number of shared
179 * levels with the sink access.
180 * Source accesses with the same number of shared levels are sorted
181 * in their textual order.
183 static __isl_give isl_access_info *isl_access_info_sort_sources(
184 __isl_take isl_access_info *acc)
186 int i;
187 isl_ctx *ctx;
188 struct isl_access_sort_info *array;
190 if (!acc)
191 return NULL;
192 if (acc->n_must <= 1)
193 return acc;
195 ctx = isl_map_get_ctx(acc->sink.map);
196 array = isl_alloc_array(ctx, struct isl_access_sort_info, acc->n_must);
197 if (!array)
198 goto error;
200 for (i = 0; i < acc->n_must; ++i) {
201 array[i].source_map = acc->source[i].map;
202 array[i].source_data = acc->source[i].data;
203 array[i].acc = acc;
206 qsort(array, acc->n_must, sizeof(struct isl_access_sort_info),
207 access_sort_cmp);
209 for (i = 0; i < acc->n_must; ++i) {
210 acc->source[i].map = array[i].source_map;
211 acc->source[i].data = array[i].source_data;
214 free(array);
216 return acc;
217 error:
218 isl_access_info_free(acc);
219 return NULL;
222 /* Initialize an empty isl_flow structure corresponding to a given
223 * isl_access_info structure.
224 * For each must access, two dependences are created (initialized
225 * to the empty relation), one for the resulting must dependences
226 * and one for the resulting may dependences. May accesses can
227 * only lead to may dependences, so only one dependence is created
228 * for each of them.
229 * This function is private as isl_flow structures are only supposed
230 * to be created by isl_access_info_compute_flow.
232 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
234 int i;
235 struct isl_ctx *ctx;
236 struct isl_flow *dep;
238 if (!acc)
239 return NULL;
241 ctx = isl_map_get_ctx(acc->sink.map);
242 dep = isl_calloc_type(ctx, struct isl_flow);
243 if (!dep)
244 return NULL;
246 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
247 2 * acc->n_must + acc->n_may);
248 if (!dep->dep)
249 goto error;
251 dep->n_source = 2 * acc->n_must + acc->n_may;
252 for (i = 0; i < acc->n_must; ++i) {
253 struct isl_dim *dim;
254 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
255 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
256 dep->dep[2 * i].map = isl_map_empty(dim);
257 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
258 dep->dep[2 * i].data = acc->source[i].data;
259 dep->dep[2 * i + 1].data = acc->source[i].data;
260 dep->dep[2 * i].must = 1;
261 dep->dep[2 * i + 1].must = 0;
262 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
263 goto error;
265 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
266 struct isl_dim *dim;
267 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
268 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
269 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
270 dep->dep[acc->n_must + i].data = acc->source[i].data;
271 dep->dep[acc->n_must + i].must = 0;
272 if (!dep->dep[acc->n_must + i].map)
273 goto error;
276 return dep;
277 error:
278 isl_flow_free(dep);
279 return NULL;
282 /* Iterate over all sources and for each resulting flow dependence
283 * that is not empty, call the user specfied function.
284 * The second argument in this function call identifies the source,
285 * while the third argument correspond to the final argument of
286 * the isl_flow_foreach call.
288 int isl_flow_foreach(__isl_keep isl_flow *deps,
289 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
290 void *user)
292 int i;
294 if (!deps)
295 return -1;
297 for (i = 0; i < deps->n_source; ++i) {
298 if (isl_map_fast_is_empty(deps->dep[i].map))
299 continue;
300 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
301 deps->dep[i].data, user) < 0)
302 return -1;
305 return 0;
308 /* Return a copy of the subset of the sink for which no source could be found.
310 __isl_give isl_set *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
312 if (!deps)
313 return NULL;
315 if (must)
316 return isl_set_copy(deps->must_no_source);
317 else
318 return isl_set_copy(deps->may_no_source);
321 void isl_flow_free(__isl_take isl_flow *deps)
323 int i;
325 if (!deps)
326 return;
327 isl_set_free(deps->must_no_source);
328 isl_set_free(deps->may_no_source);
329 if (deps->dep) {
330 for (i = 0; i < deps->n_source; ++i)
331 isl_map_free(deps->dep[i].map);
332 free(deps->dep);
334 free(deps);
337 /* Return a map that enforces that the domain iteration occurs after
338 * the range iteration at the given level.
339 * If level is odd, then the domain iteration should occur after
340 * the target iteration in their shared level/2 outermost loops.
341 * In this case we simply need to enforce that these outermost
342 * loop iterations are the same.
343 * If level is even, then the loop iterator of the domain should
344 * be greater than the loop iterator of the range at the last
345 * of the level/2 shared loops, i.e., loop level/2 - 1.
347 static __isl_give isl_map *after_at_level(struct isl_dim *dim, int level)
349 struct isl_basic_map *bmap;
351 if (level % 2)
352 bmap = isl_basic_map_equal(dim, level/2);
353 else
354 bmap = isl_basic_map_more_at(dim, level/2 - 1);
356 return isl_map_from_basic_map(bmap);
359 /* Compute the last iteration of must source j that precedes the sink
360 * at the given level for sink iterations in set_C.
361 * The subset of set_C for which no such iteration can be found is returned
362 * in *empty.
364 static struct isl_map *last_source(struct isl_access_info *acc,
365 struct isl_set *set_C,
366 int j, int level, struct isl_set **empty)
368 struct isl_map *read_map;
369 struct isl_map *write_map;
370 struct isl_map *dep_map;
371 struct isl_map *after;
372 struct isl_map *result;
374 read_map = isl_map_copy(acc->sink.map);
375 write_map = isl_map_copy(acc->source[j].map);
376 write_map = isl_map_reverse(write_map);
377 dep_map = isl_map_apply_range(read_map, write_map);
378 after = after_at_level(isl_map_get_dim(dep_map), level);
379 dep_map = isl_map_intersect(dep_map, after);
380 result = isl_map_partial_lexmax(dep_map, set_C, empty);
381 result = isl_map_reverse(result);
383 return result;
386 /* For a given mapping between iterations of must source j and iterations
387 * of the sink, compute the last iteration of must source k preceding
388 * the sink at level before_level for any of the sink iterations,
389 * but following the corresponding iteration of must source j at level
390 * after_level.
392 static struct isl_map *last_later_source(struct isl_access_info *acc,
393 struct isl_map *old_map,
394 int j, int before_level,
395 int k, int after_level,
396 struct isl_set **empty)
398 struct isl_dim *dim;
399 struct isl_set *set_C;
400 struct isl_map *read_map;
401 struct isl_map *write_map;
402 struct isl_map *dep_map;
403 struct isl_map *after_write;
404 struct isl_map *before_read;
405 struct isl_map *result;
407 set_C = isl_map_range(isl_map_copy(old_map));
408 read_map = isl_map_copy(acc->sink.map);
409 write_map = isl_map_copy(acc->source[k].map);
411 write_map = isl_map_reverse(write_map);
412 dep_map = isl_map_apply_range(read_map, write_map);
413 dim = isl_dim_join(isl_map_get_dim(acc->source[k].map),
414 isl_dim_reverse(isl_map_get_dim(acc->source[j].map)));
415 after_write = after_at_level(dim, after_level);
416 after_write = isl_map_apply_range(after_write, old_map);
417 after_write = isl_map_reverse(after_write);
418 dep_map = isl_map_intersect(dep_map, after_write);
419 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
420 dep_map = isl_map_intersect(dep_map, before_read);
421 result = isl_map_partial_lexmax(dep_map, set_C, empty);
422 result = isl_map_reverse(result);
424 return result;
427 /* Given a shared_level between two accesses, return 1 if the
428 * the first can precede the second at the requested target_level.
429 * If the target level is odd, i.e., refers to a statement level
430 * dimension, then first needs to precede second at the requested
431 * level, i.e., shared_level must be equal to target_level.
432 * If the target level is odd, then the two loops should share
433 * at least the requested number of outer loops.
435 static int can_precede_at_level(int shared_level, int target_level)
437 if (shared_level < target_level)
438 return 0;
439 if ((target_level % 2) && shared_level > target_level)
440 return 0;
441 return 1;
444 /* Given a possible flow dependence temp_rel[j] between source j and the sink
445 * at level sink_level, remove those elements for which
446 * there is an iteration of another source k < j that is closer to the sink.
447 * The flow dependences temp_rel[k] are updated with the improved sources.
448 * Any improved source needs to precede the sink at the same level
449 * and needs to follow source j at the same or a deeper level.
450 * The lower this level, the later the execution date of source k.
451 * We therefore consider lower levels first.
453 * If temp_rel[j] is empty, then there can be no improvement and
454 * we return immediately.
456 static int intermediate_sources(__isl_keep isl_access_info *acc,
457 struct isl_map **temp_rel, int j, int sink_level)
459 int k, level;
460 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
462 if (isl_map_fast_is_empty(temp_rel[j]))
463 return 0;
465 for (k = j - 1; k >= 0; --k) {
466 int plevel, plevel2;
467 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
468 if (!can_precede_at_level(plevel, sink_level))
469 continue;
471 plevel2 = acc->level_before(acc->source[j].data,
472 acc->source[k].data);
474 for (level = sink_level; level <= depth; ++level) {
475 struct isl_map *T;
476 struct isl_set *trest;
477 struct isl_map *copy;
479 if (!can_precede_at_level(plevel2, level))
480 continue;
482 copy = isl_map_copy(temp_rel[j]);
483 T = last_later_source(acc, copy, j, sink_level, k,
484 level, &trest);
485 if (isl_map_fast_is_empty(T)) {
486 isl_set_free(trest);
487 isl_map_free(T);
488 continue;
490 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
491 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
495 return 0;
498 /* Compute all iterations of may source j that precedes the sink at the given
499 * level for sink iterations in set_C.
501 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
502 __isl_take isl_set *set_C, int j, int level)
504 isl_map *read_map;
505 isl_map *write_map;
506 isl_map *dep_map;
507 isl_map *after;
509 read_map = isl_map_copy(acc->sink.map);
510 read_map = isl_map_intersect_domain(read_map, set_C);
511 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
512 write_map = isl_map_reverse(write_map);
513 dep_map = isl_map_apply_range(read_map, write_map);
514 after = after_at_level(isl_map_get_dim(dep_map), level);
515 dep_map = isl_map_intersect(dep_map, after);
517 return isl_map_reverse(dep_map);
520 /* For a given mapping between iterations of must source k and iterations
521 * of the sink, compute the all iteration of may source j preceding
522 * the sink at level before_level for any of the sink iterations,
523 * but following the corresponding iteration of must source k at level
524 * after_level.
526 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
527 __isl_keep isl_map *old_map,
528 int j, int before_level, int k, int after_level)
530 isl_dim *dim;
531 isl_set *set_C;
532 isl_map *read_map;
533 isl_map *write_map;
534 isl_map *dep_map;
535 isl_map *after_write;
536 isl_map *before_read;
538 set_C = isl_map_range(isl_map_copy(old_map));
539 read_map = isl_map_copy(acc->sink.map);
540 read_map = isl_map_intersect_domain(read_map, set_C);
541 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
543 write_map = isl_map_reverse(write_map);
544 dep_map = isl_map_apply_range(read_map, write_map);
545 dim = isl_dim_join(isl_map_get_dim(acc->source[acc->n_must + j].map),
546 isl_dim_reverse(isl_map_get_dim(acc->source[k].map)));
547 after_write = after_at_level(dim, after_level);
548 after_write = isl_map_apply_range(after_write, old_map);
549 after_write = isl_map_reverse(after_write);
550 dep_map = isl_map_intersect(dep_map, after_write);
551 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
552 dep_map = isl_map_intersect(dep_map, before_read);
553 return isl_map_reverse(dep_map);
556 /* Given the must and may dependence relations for the must accesses
557 * for level sink_level, check if there are any accesses of may access j
558 * that occur in between and return their union.
559 * If some of these accesses are intermediate with respect to
560 * (previously thought to be) must dependences, then these
561 * must dependences are turned into may dependences.
563 static __isl_give isl_map *all_intermediate_sources(
564 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
565 struct isl_map **must_rel, struct isl_map **may_rel,
566 int j, int sink_level)
568 int k, level;
569 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
570 isl_dim_in) + 1;
572 for (k = 0; k < acc->n_must; ++k) {
573 int plevel;
575 if (isl_map_fast_is_empty(may_rel[k]) &&
576 isl_map_fast_is_empty(must_rel[k]))
577 continue;
579 plevel = acc->level_before(acc->source[k].data,
580 acc->source[acc->n_must + j].data);
582 for (level = sink_level; level <= depth; ++level) {
583 isl_map *T;
584 isl_map *copy;
585 isl_set *ran;
587 if (!can_precede_at_level(plevel, level))
588 continue;
590 copy = isl_map_copy(may_rel[k]);
591 T = all_later_sources(acc, copy, j, sink_level, k, level);
592 map = isl_map_union(map, T);
594 copy = isl_map_copy(must_rel[k]);
595 T = all_later_sources(acc, copy, j, sink_level, k, level);
596 ran = isl_map_range(isl_map_copy(T));
597 map = isl_map_union(map, T);
598 may_rel[k] = isl_map_union_disjoint(may_rel[k],
599 isl_map_intersect_range(isl_map_copy(must_rel[k]),
600 isl_set_copy(ran)));
601 T = isl_map_from_domain_and_range(
602 isl_set_universe(
603 isl_dim_domain(isl_map_get_dim(must_rel[k]))),
604 ran);
605 must_rel[k] = isl_map_subtract(must_rel[k], T);
609 return map;
612 /* Compute dependences for the case where all accesses are "may"
613 * accesses, which boils down to computing memory based dependences.
614 * The generic algorithm would also work in this case, but it would
615 * be overkill to use it.
617 static __isl_give isl_flow *compute_mem_based_dependences(
618 __isl_take isl_access_info *acc)
620 int i;
621 isl_set *mustdo;
622 isl_set *maydo;
623 isl_flow *res;
625 res = isl_flow_alloc(acc);
626 if (!res)
627 goto error;
629 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
630 maydo = isl_set_copy(mustdo);
632 for (i = 0; i < acc->n_may; ++i) {
633 int plevel;
634 int is_before;
635 isl_dim *dim;
636 isl_map *before;
637 isl_map *dep;
639 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
640 is_before = plevel & 1;
641 plevel >>= 1;
643 dim = isl_map_get_dim(res->dep[i].map);
644 if (is_before)
645 before = isl_map_lex_le_first(dim, plevel);
646 else
647 before = isl_map_lex_lt_first(dim, plevel);
648 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
649 isl_map_reverse(isl_map_copy(acc->sink.map)));
650 dep = isl_map_intersect(dep, before);
651 mustdo = isl_set_subtract(mustdo,
652 isl_map_range(isl_map_copy(dep)));
653 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
656 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
657 res->must_no_source = mustdo;
659 isl_access_info_free(acc);
661 return res;
662 error:
663 isl_access_info_free(acc);
664 return NULL;
667 /* Compute dependences for the case where there is at least one
668 * "must" access.
670 * The core algorithm considers all levels in which a source may precede
671 * the sink, where a level may either be a statement level or a loop level.
672 * The outermost statement level is 1, the first loop level is 2, etc...
673 * The algorithm basically does the following:
674 * for all levels l of the read access from innermost to outermost
675 * for all sources w that may precede the sink access at that level
676 * compute the last iteration of the source that precedes the sink access
677 * at that level
678 * add result to possible last accesses at level l of source w
679 * for all sources w2 that we haven't considered yet at this level that may
680 * also precede the sink access
681 * for all levels l2 of w from l to innermost
682 * for all possible last accesses dep of w at l
683 * compute last iteration of w2 between the source and sink
684 * of dep
685 * add result to possible last accesses at level l of write w2
686 * and replace possible last accesses dep by the remainder
689 * The above algorithm is applied to the must access. During the course
690 * of the algorithm, we keep track of sink iterations that still
691 * need to be considered. These iterations are split into those that
692 * haven't been matched to any source access (mustdo) and those that have only
693 * been matched to may accesses (maydo).
694 * At the end of each level, we also consider the may accesses.
695 * In particular, we consider may accesses that precede the remaining
696 * sink iterations, moving elements from mustdo to maydo when appropriate,
697 * and may accesses that occur between a must source and a sink of any
698 * dependences found at the current level, turning must dependences into
699 * may dependences when appropriate.
702 static __isl_give isl_flow *compute_val_based_dependences(
703 __isl_take isl_access_info *acc)
705 isl_ctx *ctx;
706 isl_flow *res;
707 isl_set *mustdo = NULL;
708 isl_set *maydo = NULL;
709 int level, j;
710 int depth;
711 isl_map **must_rel = NULL;
712 isl_map **may_rel = NULL;
714 acc = isl_access_info_sort_sources(acc);
715 if (!acc)
716 return NULL;
718 res = isl_flow_alloc(acc);
719 if (!res)
720 goto error;
721 ctx = isl_map_get_ctx(acc->sink.map);
723 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
724 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
725 maydo = isl_set_empty_like(mustdo);
726 if (!mustdo || !maydo)
727 goto error;
728 if (isl_set_fast_is_empty(mustdo))
729 goto done;
731 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
732 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
733 if (!must_rel || !may_rel)
734 goto error;
736 for (level = depth; level >= 1; --level) {
737 for (j = acc->n_must-1; j >=0; --j) {
738 must_rel[j] = isl_map_empty_like(res->dep[j].map);
739 may_rel[j] = isl_map_copy(must_rel[j]);
742 for (j = acc->n_must - 1; j >= 0; --j) {
743 struct isl_map *T;
744 struct isl_set *rest;
745 int plevel;
747 plevel = acc->level_before(acc->source[j].data,
748 acc->sink.data);
749 if (!can_precede_at_level(plevel, level))
750 continue;
752 T = last_source(acc, mustdo, j, level, &rest);
753 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
754 mustdo = rest;
756 intermediate_sources(acc, must_rel, j, level);
758 T = last_source(acc, maydo, j, level, &rest);
759 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
760 maydo = rest;
762 intermediate_sources(acc, may_rel, j, level);
764 if (isl_set_fast_is_empty(mustdo) &&
765 isl_set_fast_is_empty(maydo))
766 break;
768 for (j = j - 1; j >= 0; --j) {
769 int plevel;
771 plevel = acc->level_before(acc->source[j].data,
772 acc->sink.data);
773 if (!can_precede_at_level(plevel, level))
774 continue;
776 intermediate_sources(acc, must_rel, j, level);
777 intermediate_sources(acc, may_rel, j, level);
780 for (j = 0; j < acc->n_may; ++j) {
781 int plevel;
782 isl_map *T;
783 isl_set *ran;
785 plevel = acc->level_before(acc->source[acc->n_must + j].data,
786 acc->sink.data);
787 if (!can_precede_at_level(plevel, level))
788 continue;
790 T = all_sources(acc, isl_set_copy(maydo), j, level);
791 res->dep[2 * acc->n_must + j].map =
792 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
793 T = all_sources(acc, isl_set_copy(mustdo), j, level);
794 ran = isl_map_range(isl_map_copy(T));
795 res->dep[2 * acc->n_must + j].map =
796 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
797 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
798 maydo = isl_set_union_disjoint(maydo, ran);
800 T = res->dep[2 * acc->n_must + j].map;
801 T = all_intermediate_sources(acc, T, must_rel, may_rel,
802 j, level);
803 res->dep[2 * acc->n_must + j].map = T;
806 for (j = acc->n_must - 1; j >= 0; --j) {
807 res->dep[2 * j].map =
808 isl_map_union_disjoint(res->dep[2 * j].map,
809 must_rel[j]);
810 res->dep[2 * j + 1].map =
811 isl_map_union_disjoint(res->dep[2 * j + 1].map,
812 may_rel[j]);
815 if (isl_set_fast_is_empty(mustdo) &&
816 isl_set_fast_is_empty(maydo))
817 break;
820 free(must_rel);
821 free(may_rel);
822 done:
823 res->must_no_source = mustdo;
824 res->may_no_source = maydo;
825 isl_access_info_free(acc);
826 return res;
827 error:
828 isl_access_info_free(acc);
829 isl_flow_free(res);
830 isl_set_free(mustdo);
831 isl_set_free(maydo);
832 free(must_rel);
833 free(may_rel);
834 return NULL;
837 /* Given a "sink" access, a list of n "source" accesses,
838 * compute for each iteration of the sink access
839 * and for each element accessed by that iteration,
840 * the source access in the list that last accessed the
841 * element accessed by the sink access before this sink access.
842 * Each access is given as a map from the loop iterators
843 * to the array indices.
844 * The result is a list of n relations between source and sink
845 * iterations and a subset of the domain of the sink access,
846 * corresponding to those iterations that access an element
847 * not previously accessed.
849 * To deal with multi-valued sink access relations, the sink iteration
850 * domain is first extended with dimensions that correspond to the data
851 * space. After the computation is finished, these extra dimensions are
852 * projected out again.
854 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
856 int j;
857 struct isl_flow *res;
858 isl_map *domain_map = NULL;
860 if (!acc)
861 return NULL;
863 domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
864 acc->sink.map = isl_map_range_map(acc->sink.map);
865 if (!acc->sink.map)
866 goto error;
868 if (acc->n_must == 0)
869 res = compute_mem_based_dependences(acc);
870 else
871 res = compute_val_based_dependences(acc);
872 if (!res)
873 return NULL;
875 for (j = 0; j < res->n_source; ++j) {
876 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
877 isl_map_copy(domain_map));
878 if (!res->dep[j].map)
879 goto error2;
881 res->must_no_source = isl_set_apply(res->must_no_source,
882 isl_map_copy(domain_map));
883 res->may_no_source = isl_set_apply(res->may_no_source,
884 isl_map_copy(domain_map));
885 if (!res->must_no_source || !res->may_no_source)
886 goto error2;
888 isl_map_free(domain_map);
889 return res;
890 error:
891 isl_map_free(domain_map);
892 isl_access_info_free(acc);
893 return NULL;
894 error2:
895 isl_map_free(domain_map);
896 isl_flow_free(res);
897 return NULL;
901 struct isl_compute_flow_data {
902 isl_union_map *must_source;
903 isl_union_map *may_source;
904 isl_union_map *must_dep;
905 isl_union_map *may_dep;
906 isl_union_set *must_no_source;
907 isl_union_set *may_no_source;
909 int count;
910 int must;
911 isl_dim *dim;
912 isl_dim *sink_dim;
913 isl_dim **source_dim;
914 isl_access_info *accesses;
917 static int count_matching_array(__isl_take isl_map *map, void *user)
919 int eq;
920 isl_dim *dim;
921 struct isl_compute_flow_data *data;
923 data = (struct isl_compute_flow_data *)user;
925 dim = isl_dim_range(isl_map_get_dim(map));
927 eq = isl_dim_equal(dim, data->dim);
929 isl_dim_free(dim);
930 isl_map_free(map);
932 if (eq < 0)
933 return -1;
934 if (eq)
935 data->count++;
937 return 0;
940 static int collect_matching_array(__isl_take isl_map *map, void *user)
942 int eq;
943 isl_dim *dim;
944 struct isl_compute_flow_data *data;
946 data = (struct isl_compute_flow_data *)user;
948 dim = isl_dim_range(isl_map_get_dim(map));
950 eq = isl_dim_equal(dim, data->dim);
952 isl_dim_free(dim);
954 if (eq < 0)
955 goto error;
956 if (!eq) {
957 isl_map_free(map);
958 return 0;
961 dim = isl_dim_unwrap(isl_dim_domain(isl_map_get_dim(map)));
962 data->source_dim[data->count] = dim;
964 data->accesses = isl_access_info_add_source(data->accesses,
965 map, data->must, dim);
967 data->count++;
969 return 0;
970 error:
971 isl_map_free(map);
972 return -1;
975 static int before(void *first, void *second)
977 isl_dim *dim1 = first;
978 isl_dim *dim2 = second;
979 int n1, n2;
981 n1 = isl_dim_size(dim1, isl_dim_in);
982 n2 = isl_dim_size(dim2, isl_dim_in);
984 if (n2 < n1)
985 n1 = n2;
987 return 2 * n1 + (dim1 < dim2);
990 /* Given a sink access, look for all the source accesses that access
991 * the same array and perform dataflow analysis on them using
992 * isl_access_info_compute_flow.
994 static int compute_flow(__isl_take isl_map *map, void *user)
996 int i;
997 isl_ctx *ctx;
998 struct isl_compute_flow_data *data;
999 isl_flow *flow;
1001 data = (struct isl_compute_flow_data *)user;
1003 ctx = isl_map_get_ctx(map);
1005 data->accesses = NULL;
1006 data->sink_dim = NULL;
1007 data->source_dim = NULL;
1008 data->count = 0;
1009 data->dim = isl_dim_range(isl_map_get_dim(map));
1011 if (isl_union_map_foreach_map(data->must_source,
1012 &count_matching_array, data) < 0)
1013 goto error;
1014 if (isl_union_map_foreach_map(data->may_source,
1015 &count_matching_array, data) < 0)
1016 goto error;
1018 data->sink_dim = isl_dim_unwrap(isl_dim_domain(isl_map_get_dim(map)));
1019 data->source_dim = isl_calloc_array(ctx, isl_dim *, data->count);
1021 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1022 data->sink_dim, &before, data->count);
1023 data->count = 0;
1024 data->must = 1;
1025 if (isl_union_map_foreach_map(data->must_source,
1026 &collect_matching_array, data) < 0)
1027 goto error;
1028 data->must = 0;
1029 if (isl_union_map_foreach_map(data->may_source,
1030 &collect_matching_array, data) < 0)
1031 goto error;
1033 flow = isl_access_info_compute_flow(data->accesses);
1034 data->accesses = NULL;
1036 if (!flow)
1037 goto error;
1039 data->must_no_source = isl_union_set_union(data->must_no_source,
1040 isl_union_set_from_set(isl_set_copy(flow->must_no_source)));
1041 data->may_no_source = isl_union_set_union(data->may_no_source,
1042 isl_union_set_from_set(isl_set_copy(flow->may_no_source)));
1044 for (i = 0; i < flow->n_source; ++i) {
1045 isl_union_map *dep;
1046 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1047 if (flow->dep[i].must)
1048 data->must_dep = isl_union_map_union(data->must_dep, dep);
1049 else
1050 data->may_dep = isl_union_map_union(data->may_dep, dep);
1053 isl_flow_free(flow);
1055 isl_dim_free(data->sink_dim);
1056 if (data->source_dim) {
1057 for (i = 0; i < data->count; ++i)
1058 isl_dim_free(data->source_dim[i]);
1059 free(data->source_dim);
1061 isl_dim_free(data->dim);
1062 isl_map_free(map);
1064 return 0;
1065 error:
1066 isl_access_info_free(data->accesses);
1067 isl_dim_free(data->sink_dim);
1068 if (data->source_dim) {
1069 for (i = 0; i < data->count; ++i)
1070 isl_dim_free(data->source_dim[i]);
1071 free(data->source_dim);
1073 isl_dim_free(data->dim);
1074 isl_map_free(map);
1076 return -1;
1079 /* Given a collection of "sink" and "source" accesses,
1080 * compute for each iteration of a sink access
1081 * and for each element accessed by that iteration,
1082 * the source access in the list that last accessed the
1083 * element accessed by the sink access before this sink access.
1084 * Each access is given as a map from the loop iterators
1085 * to the array indices.
1086 * The result is a relations between source and sink
1087 * iterations and a subset of the domain of the sink accesses,
1088 * corresponding to those iterations that access an element
1089 * not previously accessed.
1091 * We first prepend the schedule dimensions to the domain
1092 * of the accesses so that we can easily compare their relative order.
1093 * Then we consider each sink access individually in compute_flow.
1095 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1096 __isl_take isl_union_map *must_source,
1097 __isl_take isl_union_map *may_source,
1098 __isl_take isl_union_map *schedule,
1099 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1100 __isl_give isl_union_set **must_no_source,
1101 __isl_give isl_union_set **may_no_source)
1103 isl_dim *dim;
1104 isl_union_map *range_map = NULL;
1105 struct isl_compute_flow_data data;
1107 sink = isl_union_map_align_params(sink,
1108 isl_union_map_get_dim(must_source));
1109 sink = isl_union_map_align_params(sink,
1110 isl_union_map_get_dim(may_source));
1111 sink = isl_union_map_align_params(sink,
1112 isl_union_map_get_dim(schedule));
1113 dim = isl_union_map_get_dim(sink);
1114 must_source = isl_union_map_align_params(must_source, isl_dim_copy(dim));
1115 may_source = isl_union_map_align_params(may_source, isl_dim_copy(dim));
1116 schedule = isl_union_map_align_params(schedule, isl_dim_copy(dim));
1118 schedule = isl_union_map_reverse(schedule);
1119 range_map = isl_union_map_range_map(schedule);
1120 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1121 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1122 must_source = isl_union_map_apply_domain(must_source,
1123 isl_union_map_copy(schedule));
1124 may_source = isl_union_map_apply_domain(may_source, schedule);
1126 data.must_source = must_source;
1127 data.may_source = may_source;
1128 data.must_dep = must_dep ?
1129 isl_union_map_empty(isl_dim_copy(dim)) : NULL;
1130 data.may_dep = may_dep ? isl_union_map_empty(isl_dim_copy(dim)) : NULL;
1131 data.must_no_source = must_no_source ?
1132 isl_union_set_empty(isl_dim_copy(dim)) : NULL;
1133 data.may_no_source = may_no_source ?
1134 isl_union_set_empty(isl_dim_copy(dim)) : NULL;
1136 isl_dim_free(dim);
1138 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1139 goto error;
1141 isl_union_map_free(sink);
1142 isl_union_map_free(must_source);
1143 isl_union_map_free(may_source);
1145 if (must_dep) {
1146 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1147 isl_union_map_copy(range_map));
1148 data.must_dep = isl_union_map_apply_range(data.must_dep,
1149 isl_union_map_copy(range_map));
1150 *must_dep = data.must_dep;
1152 if (may_dep) {
1153 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1154 isl_union_map_copy(range_map));
1155 data.may_dep = isl_union_map_apply_range(data.may_dep,
1156 isl_union_map_copy(range_map));
1157 *may_dep = data.may_dep;
1159 if (must_no_source) {
1160 data.must_no_source = isl_union_set_apply(data.must_no_source,
1161 isl_union_map_copy(range_map));
1162 *must_no_source = data.must_no_source;
1164 if (may_no_source) {
1165 data.may_no_source = isl_union_set_apply(data.may_no_source,
1166 isl_union_map_copy(range_map));
1167 *may_no_source = data.may_no_source;
1170 isl_union_map_free(range_map);
1172 return 0;
1173 error:
1174 isl_union_map_free(range_map);
1175 isl_union_map_free(sink);
1176 isl_union_map_free(must_source);
1177 isl_union_map_free(may_source);
1178 isl_union_map_free(data.must_dep);
1179 isl_union_map_free(data.may_dep);
1180 isl_union_set_free(data.must_no_source);
1181 isl_union_set_free(data.may_no_source);
1183 if (must_dep)
1184 *must_dep = NULL;
1185 if (may_dep)
1186 *may_dep = NULL;
1187 if (must_no_source)
1188 *must_no_source = NULL;
1189 if (may_no_source)
1190 *may_no_source = NULL;
1191 return -1;