Import imath 1.14
[heimdal.git] / lib / hcrypto / imath / imath.h
blobcb877959e98afb2f92180b6f3b8cbda4817c700d
1 /*
2 Name: imath.h
3 Purpose: Arbitrary precision integer arithmetic routines.
4 Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
5 Info: $Id: imath.h 635 2008-01-08 18:19:40Z sting $
7 Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
9 Permission is hereby granted, free of charge, to any person
10 obtaining a copy of this software and associated documentation files
11 (the "Software"), to deal in the Software without restriction,
12 including without limitation the rights to use, copy, modify, merge,
13 publish, distribute, sublicense, and/or sell copies of the Software,
14 and to permit persons to whom the Software is furnished to do so,
15 subject to the following conditions:
17 The above copyright notice and this permission notice shall be
18 included in all copies or substantial portions of the Software.
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
23 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
24 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
25 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
26 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27 SOFTWARE.
30 #ifndef IMATH_H_
31 #define IMATH_H_
33 #include <limits.h>
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
39 typedef unsigned char mp_sign;
40 typedef unsigned int mp_size;
41 typedef int mp_result;
42 typedef long mp_small; /* must be a signed type */
43 typedef unsigned long mp_usmall; /* must be an unsigned type */
44 #ifdef USE_LONG_LONG
45 typedef unsigned int mp_digit;
46 typedef unsigned long long mp_word;
47 #else
48 typedef unsigned short mp_digit;
49 typedef unsigned int mp_word;
50 #endif
52 typedef struct mpz {
53 mp_digit single;
54 mp_digit *digits;
55 mp_size alloc;
56 mp_size used;
57 mp_sign sign;
58 } mpz_t, *mp_int;
60 #define MP_DIGITS(Z) ((Z)->digits)
61 #define MP_ALLOC(Z) ((Z)->alloc)
62 #define MP_USED(Z) ((Z)->used)
63 #define MP_SIGN(Z) ((Z)->sign)
65 extern const mp_result MP_OK;
66 extern const mp_result MP_FALSE;
67 extern const mp_result MP_TRUE;
68 extern const mp_result MP_MEMORY;
69 extern const mp_result MP_RANGE;
70 extern const mp_result MP_UNDEF;
71 extern const mp_result MP_TRUNC;
72 extern const mp_result MP_BADARG;
73 extern const mp_result MP_MINERR;
75 #define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
76 #define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
77 #define MP_SMALL_MIN LONG_MIN
78 #define MP_SMALL_MAX LONG_MAX
79 #define MP_USMALL_MIN ULONG_MIN
80 #define MP_USMALL_MAX ULONG_MAX
82 #ifdef USE_LONG_LONG
83 # ifndef ULONG_LONG_MAX
84 # ifdef ULLONG_MAX
85 # define ULONG_LONG_MAX ULLONG_MAX
86 # else
87 # error "Maximum value of unsigned long long not defined!"
88 # endif
89 # endif
90 # define MP_DIGIT_MAX (ULONG_MAX * 1ULL)
91 # define MP_WORD_MAX ULONG_LONG_MAX
92 #else
93 # define MP_DIGIT_MAX (USHRT_MAX * 1UL)
94 # define MP_WORD_MAX (UINT_MAX * 1UL)
95 #endif
97 #define MP_MIN_RADIX 2
98 #define MP_MAX_RADIX 36
100 /* Values with fewer than this many significant digits use the
101 standard multiplication algorithm; otherwise, a recursive algorithm
102 is used. Choose a value to suit your platform.
104 #define MP_MULT_THRESH 22
106 #define MP_DEFAULT_PREC 8 /* default memory allocation, in digits */
108 extern const mp_sign MP_NEG;
109 extern const mp_sign MP_ZPOS;
111 #define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
112 #define mp_int_is_even(Z) !((Z)->digits[0] & 1)
114 mp_result mp_int_init(mp_int z);
115 mp_int mp_int_alloc(void);
116 mp_result mp_int_init_size(mp_int z, mp_size prec);
117 mp_result mp_int_init_copy(mp_int z, mp_int old);
118 mp_result mp_int_init_value(mp_int z, mp_small value);
119 mp_result mp_int_set_value(mp_int z, mp_small value);
120 void mp_int_clear(mp_int z);
121 void mp_int_free(mp_int z);
123 mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
124 void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
125 void mp_int_zero(mp_int z); /* z = 0 */
126 mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
127 mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
128 mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
129 mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
130 mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
131 mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
132 mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
133 mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
134 mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
135 mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
136 mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
137 mp_int q, mp_int r); /* r = a % b */
138 mp_result mp_int_div_value(mp_int a, mp_small value, /* q = a / value */
139 mp_int q, mp_small *r); /* r = a % value */
140 mp_result mp_int_div_pow2(mp_int a, mp_small p2, /* q = a / 2^p2 */
141 mp_int q, mp_int r); /* r = q % 2^p2 */
142 mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
143 #define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
144 mp_result mp_int_expt(mp_int a, mp_small b, mp_int c); /* c = a^b */
145 mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c); /* c = a^b */
147 int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
148 int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
149 int mp_int_compare_zero(mp_int z); /* a <=> 0 */
150 int mp_int_compare_value(mp_int z, mp_small value); /* a <=> v */
152 /* Returns true if v|a, false otherwise (including errors) */
153 int mp_int_divisible_value(mp_int a, mp_small v);
155 /* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
156 int mp_int_is_pow2(mp_int z);
158 mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
159 mp_int c); /* c = a^b (mod m) */
160 mp_result mp_int_exptmod_evalue(mp_int a, mp_small value,
161 mp_int m, mp_int c); /* c = a^v (mod m) */
162 mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
163 mp_int m, mp_int c); /* c = v^b (mod m) */
164 mp_result mp_int_exptmod_known(mp_int a, mp_int b,
165 mp_int m, mp_int mu,
166 mp_int c); /* c = a^b (mod m) */
167 mp_result mp_int_redux_const(mp_int m, mp_int c);
169 mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
171 mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
173 mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
174 mp_int x, mp_int y); /* c = ax + by */
176 mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c); /* c = lcm(a, b) */
178 mp_result mp_int_root(mp_int a, mp_small b, mp_int c); /* c = floor(a^{1/b}) */
179 #define mp_int_sqrt(a, c) mp_int_root(a, 2, c) /* c = floor(sqrt(a)) */
181 /* Convert to a small int, if representable; else MP_RANGE */
182 mp_result mp_int_to_int(mp_int z, mp_small *out);
183 mp_result mp_int_to_uint(mp_int z, mp_usmall *out);
185 /* Convert to nul-terminated string with the specified radix, writing at
186 most limit characters including the nul terminator */
187 mp_result mp_int_to_string(mp_int z, mp_size radix,
188 char *str, int limit);
190 /* Return the number of characters required to represent
191 z in the given radix. May over-estimate. */
192 mp_result mp_int_string_len(mp_int z, mp_size radix);
194 /* Read zero-terminated string into z */
195 mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
196 mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
197 char **end);
199 /* Return the number of significant bits in z */
200 mp_result mp_int_count_bits(mp_int z);
202 /* Convert z to two's complement binary, writing at most limit bytes */
203 mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
205 /* Read a two's complement binary value into z from the given buffer */
206 mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
208 /* Return the number of bytes required to represent z in binary. */
209 mp_result mp_int_binary_len(mp_int z);
211 /* Convert z to unsigned binary, writing at most limit bytes */
212 mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
214 /* Read an unsigned binary value into z from the given buffer */
215 mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
217 /* Return the number of bytes required to represent z as unsigned output */
218 mp_result mp_int_unsigned_len(mp_int z);
220 /* Return a statically allocated string describing error code res */
221 const char *mp_error_string(mp_result res);
223 #if DEBUG
224 void s_print(char *tag, mp_int z);
225 void s_print_buf(char *tag, mp_digit *buf, mp_size num);
226 #endif
228 #ifdef __cplusplus
230 #endif
231 #endif /* end IMATH_H_ */