[HEIMDAL-646] malloc(0) checks for AIX
[heimdal.git] / lib / hcrypto / rand-fortuna.c
blobc39c71390121c01545b427f099f10ee817cc134b
1 /*
2 * fortuna.c
3 * Fortuna-like PRNG.
5 * Copyright (c) 2005 Marko Kreen
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
32 #include <config.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <rand.h>
38 #include <roken.h>
40 #include "randi.h"
41 #include "aes.h"
42 #include "sha.h"
45 * Why Fortuna-like: There does not seem to be any definitive reference
46 * on Fortuna in the net. Instead this implementation is based on
47 * following references:
49 * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
50 * - Wikipedia article
51 * http://jlcooke.ca/random/
52 * - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
56 * There is some confusion about whether and how to carry forward
57 * the state of the pools. Seems like original Fortuna does not
58 * do it, resetting hash after each request. I guess expecting
59 * feeding to happen more often that requesting. This is absolutely
60 * unsuitable for pgcrypto, as nothing asynchronous happens here.
62 * J.L. Cooke fixed this by feeding previous hash to new re-initialized
63 * hash context.
65 * Fortuna predecessor Yarrow requires ability to query intermediate
66 * 'final result' from hash, without affecting it.
68 * This implementation uses the Yarrow method - asking intermediate
69 * results, but continuing with old state.
74 * Algorithm parameters
77 #define NUM_POOLS 32
79 /* in microseconds */
80 #define RESEED_INTERVAL 100000 /* 0.1 sec */
82 /* for one big request, reseed after this many bytes */
83 #define RESEED_BYTES (1024*1024)
86 * Skip reseed if pool 0 has less than this many
87 * bytes added since last reseed.
89 #define POOL0_FILL (256/8)
92 * Algorithm constants
95 /* Both cipher key size and hash result size */
96 #define BLOCK 32
98 /* cipher block size */
99 #define CIPH_BLOCK 16
101 /* for internal wrappers */
102 #define MD_CTX SHA256_CTX
103 #define CIPH_CTX AES_KEY
105 struct fortuna_state
107 unsigned char counter[CIPH_BLOCK];
108 unsigned char result[CIPH_BLOCK];
109 unsigned char key[BLOCK];
110 MD_CTX pool[NUM_POOLS];
111 CIPH_CTX ciph;
112 unsigned reseed_count;
113 struct timeval last_reseed_time;
114 unsigned pool0_bytes;
115 unsigned rnd_pos;
116 int tricks_done;
117 pid_t pid;
119 typedef struct fortuna_state FState;
123 * Use our own wrappers here.
124 * - Need to get intermediate result from digest, without affecting it.
125 * - Need re-set key on a cipher context.
126 * - Algorithms are guaranteed to exist.
127 * - No memory allocations.
130 static void
131 ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
133 AES_set_encrypt_key(key, klen * 8, ctx);
136 static void
137 ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
139 AES_encrypt(in, out, ctx);
142 static void
143 md_init(MD_CTX * ctx)
145 SHA256_Init(ctx);
148 static void
149 md_update(MD_CTX * ctx, const unsigned char *data, int len)
151 SHA256_Update(ctx, data, len);
154 static void
155 md_result(MD_CTX * ctx, unsigned char *dst)
157 SHA256_CTX tmp;
159 memcpy(&tmp, ctx, sizeof(*ctx));
160 SHA256_Final(dst, &tmp);
161 memset(&tmp, 0, sizeof(tmp));
165 * initialize state
167 static void
168 init_state(FState * st)
170 int i;
172 memset(st, 0, sizeof(*st));
173 for (i = 0; i < NUM_POOLS; i++)
174 md_init(&st->pool[i]);
175 st->pid = getpid();
179 * Endianess does not matter.
180 * It just needs to change without repeating.
182 static void
183 inc_counter(FState * st)
185 uint32_t *val = (uint32_t *) st->counter;
187 if (++val[0])
188 return;
189 if (++val[1])
190 return;
191 if (++val[2])
192 return;
193 ++val[3];
197 * This is called 'cipher in counter mode'.
199 static void
200 encrypt_counter(FState * st, unsigned char *dst)
202 ciph_encrypt(&st->ciph, st->counter, dst);
203 inc_counter(st);
208 * The time between reseed must be at least RESEED_INTERVAL
209 * microseconds.
211 static int
212 enough_time_passed(FState * st)
214 int ok;
215 struct timeval tv;
216 struct timeval *last = &st->last_reseed_time;
218 gettimeofday(&tv, NULL);
220 /* check how much time has passed */
221 ok = 0;
222 if (tv.tv_sec > last->tv_sec + 1)
223 ok = 1;
224 else if (tv.tv_sec == last->tv_sec + 1)
226 if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
227 ok = 1;
229 else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
230 ok = 1;
232 /* reseed will happen, update last_reseed_time */
233 if (ok)
234 memcpy(last, &tv, sizeof(tv));
236 memset(&tv, 0, sizeof(tv));
238 return ok;
242 * generate new key from all the pools
244 static void
245 reseed(FState * st)
247 unsigned k;
248 unsigned n;
249 MD_CTX key_md;
250 unsigned char buf[BLOCK];
252 /* set pool as empty */
253 st->pool0_bytes = 0;
256 * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
258 n = ++st->reseed_count;
261 * The goal: use k-th pool only 1/(2^k) of the time.
263 md_init(&key_md);
264 for (k = 0; k < NUM_POOLS; k++)
266 md_result(&st->pool[k], buf);
267 md_update(&key_md, buf, BLOCK);
269 if (n & 1 || !n)
270 break;
271 n >>= 1;
274 /* add old key into mix too */
275 md_update(&key_md, st->key, BLOCK);
277 /* add pid to make output diverse after fork() */
278 md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));
280 /* now we have new key */
281 md_result(&key_md, st->key);
283 /* use new key */
284 ciph_init(&st->ciph, st->key, BLOCK);
286 memset(&key_md, 0, sizeof(key_md));
287 memset(buf, 0, BLOCK);
291 * Pick a random pool. This uses key bytes as random source.
293 static unsigned
294 get_rand_pool(FState * st)
296 unsigned rnd;
299 * This slightly prefers lower pools - thats OK.
301 rnd = st->key[st->rnd_pos] % NUM_POOLS;
303 st->rnd_pos++;
304 if (st->rnd_pos >= BLOCK)
305 st->rnd_pos = 0;
307 return rnd;
311 * update pools
313 static void
314 add_entropy(FState * st, const unsigned char *data, unsigned len)
316 unsigned pos;
317 unsigned char hash[BLOCK];
318 MD_CTX md;
320 /* hash given data */
321 md_init(&md);
322 md_update(&md, data, len);
323 md_result(&md, hash);
326 * Make sure the pool 0 is initialized, then update randomly.
328 if (st->reseed_count == 0)
329 pos = 0;
330 else
331 pos = get_rand_pool(st);
332 md_update(&st->pool[pos], hash, BLOCK);
334 if (pos == 0)
335 st->pool0_bytes += len;
337 memset(hash, 0, BLOCK);
338 memset(&md, 0, sizeof(md));
342 * Just take 2 next blocks as new key
344 static void
345 rekey(FState * st)
347 encrypt_counter(st, st->key);
348 encrypt_counter(st, st->key + CIPH_BLOCK);
349 ciph_init(&st->ciph, st->key, BLOCK);
353 * Hide public constants. (counter, pools > 0)
355 * This can also be viewed as spreading the startup
356 * entropy over all of the components.
358 static void
359 startup_tricks(FState * st)
361 int i;
362 unsigned char buf[BLOCK];
364 /* Use next block as counter. */
365 encrypt_counter(st, st->counter);
367 /* Now shuffle pools, excluding #0 */
368 for (i = 1; i < NUM_POOLS; i++)
370 encrypt_counter(st, buf);
371 encrypt_counter(st, buf + CIPH_BLOCK);
372 md_update(&st->pool[i], buf, BLOCK);
374 memset(buf, 0, BLOCK);
376 /* Hide the key. */
377 rekey(st);
379 /* This can be done only once. */
380 st->tricks_done = 1;
383 static void
384 extract_data(FState * st, unsigned count, unsigned char *dst)
386 unsigned n;
387 unsigned block_nr = 0;
388 pid_t pid = getpid();
390 /* Should we reseed? */
391 if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
392 if (enough_time_passed(st))
393 reseed(st);
395 /* Do some randomization on first call */
396 if (!st->tricks_done)
397 startup_tricks(st);
399 /* If we forked, force a reseed again */
400 if (pid != st->pid) {
401 st->pid = pid;
402 reseed(st);
405 while (count > 0)
407 /* produce bytes */
408 encrypt_counter(st, st->result);
410 /* copy result */
411 if (count > CIPH_BLOCK)
412 n = CIPH_BLOCK;
413 else
414 n = count;
415 memcpy(dst, st->result, n);
416 dst += n;
417 count -= n;
419 /* must not give out too many bytes with one key */
420 block_nr++;
421 if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
423 rekey(st);
424 block_nr = 0;
427 /* Set new key for next request. */
428 rekey(st);
432 * public interface
435 static FState main_state;
436 static int init_done;
437 static int have_entropy;
438 #define FORTUNA_RESEED_BYTE 10000
439 static unsigned resend_bytes;
442 * Try our best to do an inital seed
444 #define INIT_BYTES 128
446 static int
447 fortuna_reseed(void)
449 int entropy_p = 0;
451 if (!init_done)
452 abort();
455 unsigned char buf[INIT_BYTES];
456 if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
457 add_entropy(&main_state, buf, sizeof(buf));
458 entropy_p = 1;
459 memset(buf, 0, sizeof(buf));
462 #ifdef HAVE_ARC4RANDOM
464 uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
465 int i;
467 for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
468 buf[i] = arc4random();
469 add_entropy(&main_state, (void *)buf, sizeof(buf));
470 entropy_p = 1;
472 #endif
474 * Only to get egd entropy if /dev/random or arc4rand failed since
475 * it can be horribly slow to generate new bits.
477 if (!entropy_p) {
478 unsigned char buf[INIT_BYTES];
479 if ((*hc_rand_egd_method.bytes)(buf, sizeof(buf)) == 1) {
480 add_entropy(&main_state, buf, sizeof(buf));
481 entropy_p = 1;
482 memset(buf, 0, sizeof(buf));
486 * Fall back to gattering data from timer and secret files, this
487 * is really the last resort.
489 if (!entropy_p) {
490 /* to save stackspace */
491 union {
492 unsigned char buf[INIT_BYTES];
493 unsigned char shad[1001];
494 } u;
495 int fd;
497 /* add timer info */
498 if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
499 add_entropy(&main_state, u.buf, sizeof(u.buf));
500 /* add /etc/shadow */
501 fd = open("/etc/shadow", O_RDONLY, 0);
502 if (fd >= 0) {
503 ssize_t n;
504 rk_cloexec(fd);
505 /* add_entropy will hash the buf */
506 while ((n = read(fd, (char *)u.shad, sizeof(u.shad))) > 0)
507 add_entropy(&main_state, u.shad, sizeof(u.shad));
508 close(fd);
511 memset(&u, 0, sizeof(u));
513 entropy_p = 1; /* sure about this ? */
516 pid_t pid = getpid();
517 add_entropy(&main_state, (void *)&pid, sizeof(pid));
520 struct timeval tv;
521 gettimeofday(&tv, NULL);
522 add_entropy(&main_state, (void *)&tv, sizeof(tv));
525 uid_t u = getuid();
526 add_entropy(&main_state, (void *)&u, sizeof(u));
528 return entropy_p;
531 static int
532 fortuna_init(void)
534 if (!init_done)
536 init_state(&main_state);
537 init_done = 1;
539 if (!have_entropy)
540 have_entropy = fortuna_reseed();
541 return (init_done && have_entropy);
546 static void
547 fortuna_seed(const void *indata, int size)
549 fortuna_init();
550 add_entropy(&main_state, indata, size);
551 if (size >= INIT_BYTES)
552 have_entropy = 1;
555 static int
556 fortuna_bytes(unsigned char *outdata, int size)
558 if (!fortuna_init())
559 return 0;
560 resend_bytes += size;
561 if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
562 resend_bytes = 0;
563 fortuna_reseed();
565 extract_data(&main_state, size, outdata);
566 return 1;
569 static void
570 fortuna_cleanup(void)
572 init_done = 0;
573 have_entropy = 0;
574 memset(&main_state, 0, sizeof(main_state));
577 static void
578 fortuna_add(const void *indata, int size, double entropi)
580 fortuna_seed(indata, size);
583 static int
584 fortuna_pseudorand(unsigned char *outdata, int size)
586 return fortuna_bytes(outdata, size);
589 static int
590 fortuna_status(void)
592 return fortuna_init() ? 1 : 0;
595 const RAND_METHOD hc_rand_fortuna_method = {
596 fortuna_seed,
597 fortuna_bytes,
598 fortuna_cleanup,
599 fortuna_add,
600 fortuna_pseudorand,
601 fortuna_status
604 const RAND_METHOD *
605 RAND_fortuna_method(void)
607 return &hc_rand_fortuna_method;