Make sure frexp() returns correct for argument 0.0
[gromacs.git] / src / gromacs / simd / tests / simd_floatingpoint.cpp
blob28d07cb7713e90a33504890ae4f0bbac0f158d30
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2014,2015,2016,2017,2018 by the GROMACS development team.
5 * Copyright (c) 2019,2020, by the GROMACS development team, led by
6 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7 * and including many others, as listed in the AUTHORS file in the
8 * top-level source directory and at http://www.gromacs.org.
10 * GROMACS is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public License
12 * as published by the Free Software Foundation; either version 2.1
13 * of the License, or (at your option) any later version.
15 * GROMACS is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with GROMACS; if not, see
22 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 * If you want to redistribute modifications to GROMACS, please
26 * consider that scientific software is very special. Version
27 * control is crucial - bugs must be traceable. We will be happy to
28 * consider code for inclusion in the official distribution, but
29 * derived work must not be called official GROMACS. Details are found
30 * in the README & COPYING files - if they are missing, get the
31 * official version at http://www.gromacs.org.
33 * To help us fund GROMACS development, we humbly ask that you cite
34 * the research papers on the package. Check out http://www.gromacs.org.
36 #include "gmxpre.h"
38 #include <cmath>
40 #include <array>
42 #include "gromacs/math/utilities.h"
43 #include "gromacs/simd/simd.h"
44 #include "gromacs/utility/basedefinitions.h"
46 #include "testutils/testasserts.h"
48 #include "data.h"
49 #include "simd.h"
51 #if GMX_SIMD
53 namespace gmx
55 namespace test
58 namespace
61 /*! \cond internal */
62 /*! \addtogroup module_simd */
63 /*! \{ */
65 # if GMX_SIMD_HAVE_REAL
67 /*! \brief Test fixture for floating-point tests (identical to the generic \ref SimdTest) */
68 typedef SimdTest SimdFloatingpointTest;
70 TEST_F(SimdFloatingpointTest, setZero)
72 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(0.0), setZero());
75 TEST_F(SimdFloatingpointTest, set)
77 const real* p = &c0;
78 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c1), SimdReal(c1));
79 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c0), SimdReal(*p));
82 TEST_F(SimdFloatingpointTest, add)
84 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + c4, c2 + c5), rSimd_c0c1c2 + rSimd_c3c4c5);
87 TEST_F(SimdFloatingpointTest, maskAdd)
89 SimdBool m = setSimdRealFrom3R(c6, 0, c7) != setZero();
90 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + 0.0, c2 + c5),
91 maskAdd(rSimd_c0c1c2, rSimd_c3c4c5, m));
94 TEST_F(SimdFloatingpointTest, sub)
96 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 - c3, c1 - c4, c2 - c5), rSimd_c0c1c2 - rSimd_c3c4c5);
99 TEST_F(SimdFloatingpointTest, mul)
101 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, c1 * c4, c2 * c5), rSimd_c0c1c2 * rSimd_c3c4c5);
104 TEST_F(SimdFloatingpointTest, maskzMul)
106 SimdBool m = setSimdRealFrom3R(c1, 0, c1) != setZero();
107 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, 0.0, c2 * c5),
108 maskzMul(rSimd_c0c1c2, rSimd_c3c4c5, m));
111 TEST_F(SimdFloatingpointTest, fma)
113 // The last bit of FMA operations depends on hardware, so we don't require exact match
114 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, c1 * c4 + c7, c2 * c5 + c8),
115 fma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
119 TEST_F(SimdFloatingpointTest, maskzFma)
121 SimdBool m = setSimdRealFrom3R(c2, 0, c3) != setZero();
122 // The last bit of FMA operations depends on hardware, so we don't require exact match
123 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, 0.0, c2 * c5 + c8),
124 maskzFma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8, m));
127 TEST_F(SimdFloatingpointTest, fms)
129 // The last bit of FMA operations depends on hardware, so we don't require exact match
130 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 - c6, c1 * c4 - c7, c2 * c5 - c8),
131 fms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
134 TEST_F(SimdFloatingpointTest, fnma)
136 // The last bit of FMA operations depends on hardware, so we don't require exact match
137 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c6 - c0 * c3, c7 - c1 * c4, c8 - c2 * c5),
138 fnma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
141 TEST_F(SimdFloatingpointTest, fnms)
143 // The last bit of FMA operations depends on hardware, so we don't require exact match
144 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(-c0 * c3 - c6, -c1 * c4 - c7, -c2 * c5 - c8),
145 fnms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
148 TEST_F(SimdFloatingpointTest, abs)
150 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_c0c1c2)); // fabs(x)=x
151 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_m0m1m2)); // fabs(-x)=x
154 TEST_F(SimdFloatingpointTest, neg)
156 GMX_EXPECT_SIMD_REAL_EQ(rSimd_m0m1m2, -(rSimd_c0c1c2)); // fneg(x)=-x
157 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, -(rSimd_m0m1m2)); // fneg(-x)=x
160 # if GMX_SIMD_HAVE_LOGICAL
161 TEST_F(SimdFloatingpointTest, and)
163 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultAnd, (rSimd_logicalA & rSimd_logicalB));
166 TEST_F(SimdFloatingpointTest, or)
168 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultOr, (rSimd_logicalA | rSimd_logicalB));
171 TEST_F(SimdFloatingpointTest, xor)
173 /* Test xor by taking xor with a number and its negative. This should result
174 * in only the sign bit being set. We then use this bit change the sign of
175 * different numbers.
177 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
178 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c2, c3, -c4), (signbit ^ setSimdRealFrom3R(c2, -c3, c4)));
181 TEST_F(SimdFloatingpointTest, andNot)
183 /* Use xor (which we already tested, so fix that first if both tests fail)
184 * to extract the sign bit, and then use andnot to take absolute values.
186 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
187 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c2, c3, c4),
188 andNot(signbit, setSimdRealFrom3R(-c2, c3, -c4)));
191 # endif
193 TEST_F(SimdFloatingpointTest, max)
195 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c3, c1, c4), max(rSimd_c0c1c2, rSimd_c3c0c4));
196 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c3, c1, c4), max(rSimd_c3c0c4, rSimd_c0c1c2));
197 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m0m1m2, rSimd_m3m0m4));
198 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m3m0m4, rSimd_m0m1m2));
201 TEST_F(SimdFloatingpointTest, min)
203 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c0, c2), min(rSimd_c0c1c2, rSimd_c3c0c4));
204 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c0, c2), min(rSimd_c3c0c4, rSimd_c0c1c2));
205 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m0m1m2, rSimd_m3m0m4));
206 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m3m0m4, rSimd_m0m1m2));
209 TEST_F(SimdFloatingpointTest, round)
211 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), round(rSimd_2p25));
212 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(4), round(rSimd_3p75));
213 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), round(rSimd_m2p25));
214 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-4), round(rSimd_m3p75));
217 TEST_F(SimdFloatingpointTest, roundMode)
219 /* Rounding mode needs to be consistent between round and cvtR2I */
220 SimdReal x0 = setSimdRealFrom3R(0.5, 11.5, 99.5);
221 SimdReal x1 = setSimdRealFrom3R(-0.5, -11.5, -99.5);
223 GMX_EXPECT_SIMD_REAL_EQ(round(x0), cvtI2R(cvtR2I(x0)));
224 GMX_EXPECT_SIMD_REAL_EQ(round(x1), cvtI2R(cvtR2I(x1)));
227 TEST_F(SimdFloatingpointTest, trunc)
229 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), trunc(rSimd_2p25));
230 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(3), trunc(rSimd_3p75));
231 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), trunc(rSimd_m2p25));
232 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-3), trunc(rSimd_m3p75));
235 // We explicitly test the exponent/mantissa routines with double precision data,
236 // since these usually rely on direct manipulation and shift of the SIMD registers,
237 // where it is easy to make mistakes with single vs double precision.
239 TEST_F(SimdFloatingpointTest, frexp)
241 SimdReal fraction;
242 SimdInt32 exponent;
245 fraction = frexp(rSimd_Exp, &exponent);
246 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.609548660288905419513128, 0.5833690139241746175358116,
247 -0.584452007502232362412542),
248 fraction);
249 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(61, -40, 55), exponent);
251 // Test the unsafe flavor too, in case they use different branches
252 fraction = frexp<MathOptimization::Unsafe>(rSimd_Exp, &exponent);
253 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.609548660288905419513128, 0.5833690139241746175358116,
254 -0.584452007502232362412542),
255 fraction);
256 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(61, -40, 55), exponent);
258 // Use ulp testing with 0 bit ulp tolerance for testing to separate 0.0 and -0.0
259 setUlpTol(0);
260 fraction = frexp(setSimdRealFrom1R(0.0), &exponent);
261 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom1R(0.0), fraction);
262 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom1I(0), exponent);
264 // Second -0.0.
265 fraction = frexp(setSimdRealFrom1R(-0.0), &exponent);
266 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom1R(-0.0), fraction);
267 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom1I(0), exponent);
269 // Reset to default ulp tolerance
270 setUlpTol(defaultRealUlpTol());
272 # if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
273 // Test exponents larger than what fit in single precision, as well as mixtures of 0 and non-zero values, to
274 // make sure the shuffling operations in the double-precision implementations don't do anything bad.
275 fraction = frexp(rSimd_ExpDouble1, &exponent);
276 GMX_EXPECT_SIMD_REAL_EQ(
277 setSimdRealFrom3R(0.0, 0.5236473618795619566768096, -0.9280331023751380303821179), fraction);
278 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(0, -461, 673), exponent);
280 fraction = frexp(rSimd_ExpDouble2, &exponent);
281 GMX_EXPECT_SIMD_REAL_EQ(
282 setSimdRealFrom3R(0.6206306194761728178832527, 0.0, -0.9280331023751380303821179), fraction);
283 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(588, 0, 673), exponent);
284 # endif
287 TEST_F(SimdFloatingpointTest, ldexp)
289 SimdReal one = setSimdRealFrom1R(1.0);
291 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 60.0), pow(2.0, -41.0), pow(2.0, 54.0)),
292 ldexp<MathOptimization::Unsafe>(one, setSimdIntFrom3I(60, -41, 54)));
293 # if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
294 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 587.0), pow(2.0, -462.0), pow(2.0, 672.0)),
295 ldexp<MathOptimization::Unsafe>(one, setSimdIntFrom3I(587, -462, 672)));
296 # endif
297 // The default safe version must be able to handle very negative arguments too
298 GMX_EXPECT_SIMD_REAL_EQ(setZero(), ldexp(one, setSimdIntFrom3I(-2000, -1000000, -1000000000)));
302 * We do extensive 1/sqrt(x) and 1/x accuracy testing in the math module, so
303 * we just make sure the lookup instructions appear to work here
306 TEST_F(SimdFloatingpointTest, rsqrt)
308 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
309 SimdReal ref = setSimdRealFrom3R(0.5, 1.0 / std::sqrt(M_PI), 1.0 / std::sqrt(1234567890.0));
310 int shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RSQRT_BITS;
312 if (shiftbits < 0)
314 shiftbits = 0;
317 /* Set the allowed ulp error as 2 to the power of the number of bits in
318 * the mantissa that do not have to be correct after the table lookup.
320 setUlpTol(1LL << shiftbits);
321 GMX_EXPECT_SIMD_REAL_NEAR(ref, rsqrt(x));
324 TEST_F(SimdFloatingpointTest, maskzRsqrt)
326 SimdReal x = setSimdRealFrom3R(M_PI, -4.0, 0.0);
327 // simdCmpLe is tested separately further down
328 SimdBool m = setZero() < x;
329 SimdReal ref = setSimdRealFrom3R(1.0 / std::sqrt(M_PI), 0.0, 0.0);
330 int shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RSQRT_BITS;
332 if (shiftbits < 0)
334 shiftbits = 0;
337 /* Set the allowed ulp error as 2 to the power of the number of bits in
338 * the mantissa that do not have to be correct after the table lookup.
340 setUlpTol(1LL << shiftbits);
341 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRsqrt(x, m));
344 TEST_F(SimdFloatingpointTest, rcp)
346 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
347 SimdReal ref = setSimdRealFrom3R(0.25, 1.0 / M_PI, 1.0 / 1234567890.0);
348 int shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RCP_BITS;
350 if (shiftbits < 0)
352 shiftbits = 0;
355 /* Set the allowed ulp error as 2 to the power of the number of bits in
356 * the mantissa that do not have to be correct after the table lookup.
358 setUlpTol(1LL << shiftbits);
359 GMX_EXPECT_SIMD_REAL_NEAR(ref, rcp(x));
362 TEST_F(SimdFloatingpointTest, maskzRcp)
364 SimdReal x = setSimdRealFrom3R(M_PI, 0.0, -1234567890.0);
365 SimdBool m = (x != setZero());
366 SimdReal ref = setSimdRealFrom3R(1.0 / M_PI, 0.0, -1.0 / 1234567890.0);
367 int shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RCP_BITS;
369 if (shiftbits < 0)
371 shiftbits = 0;
374 /* Set the allowed ulp error as 2 to the power of the number of bits in
375 * the mantissa that do not have to be correct after the table lookup.
377 setUlpTol(1LL << shiftbits);
378 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRcp(x, m));
381 TEST_F(SimdFloatingpointTest, cmpEqAndSelectByMask)
383 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
384 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
387 TEST_F(SimdFloatingpointTest, selectByNotMask)
389 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
390 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByNotMask(rSimd_c0c1c2, eq));
393 TEST_F(SimdFloatingpointTest, cmpNe)
395 SimdBool eq = rSimd_c4c6c8 != rSimd_c6c7c8;
396 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, eq));
399 TEST_F(SimdFloatingpointTest, cmpLe)
401 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
402 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, le));
405 TEST_F(SimdFloatingpointTest, cmpLt)
407 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
408 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, lt));
411 # if GMX_SIMD_HAVE_INT32_LOGICAL || GMX_SIMD_HAVE_LOGICAL
412 TEST_F(SimdFloatingpointTest, testBits)
414 SimdBool eq = testBits(setSimdRealFrom3R(c1, 0, c1));
415 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
417 // Test if we detect only the sign bit being set
418 eq = testBits(setSimdRealFrom1R(GMX_REAL_NEGZERO));
419 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, eq));
421 # endif
423 TEST_F(SimdFloatingpointTest, andB)
425 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
426 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
427 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, (eq && le)));
430 TEST_F(SimdFloatingpointTest, orB)
432 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
433 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
434 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, (eq || lt)));
437 TEST_F(SimdFloatingpointTest, anyTrueB)
439 alignas(GMX_SIMD_ALIGNMENT) std::array<real, GMX_SIMD_REAL_WIDTH> mem{};
441 // Test the false case
442 EXPECT_FALSE(anyTrue(setZero() < load<SimdReal>(mem.data())));
444 // Test each bit (these should all be true)
445 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
447 mem.fill(0.0);
448 mem[i] = 1.0;
449 EXPECT_TRUE(anyTrue(setZero() < load<SimdReal>(mem.data())))
450 << "Not detecting true in element " << i;
454 TEST_F(SimdFloatingpointTest, blend)
456 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
457 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c3, c4, c2), blend(rSimd_c0c1c2, rSimd_c3c4c5, lt));
460 TEST_F(SimdFloatingpointTest, reduce)
462 // The horizontal sum of the SIMD variable depends on the width, so
463 // simply store it an extra time and calculate what the sum should be
464 std::vector<real> v = simdReal2Vector(rSimd_c3c4c5);
465 real sum = 0.0;
467 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
469 sum += v[i];
472 EXPECT_REAL_EQ_TOL(sum, reduce(rSimd_c3c4c5), defaultRealTolerance());
475 # endif // GMX_SIMD_HAVE_REAL
477 # if GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
478 TEST_F(SimdFloatingpointTest, cvtFloat2Double)
480 alignas(GMX_SIMD_ALIGNMENT) float f[GMX_SIMD_FLOAT_WIDTH];
481 alignas(GMX_SIMD_ALIGNMENT) double d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
483 int i;
484 SimdFloat vf;
485 SimdDouble vd0;
486 FloatingPointTolerance tolerance(defaultRealTolerance());
488 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
490 // Scale by 1+100*eps to use low bits too.
491 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
492 f[i] = i * (1.0 + 100 * GMX_FLOAT_EPS);
495 vf = load<SimdFloat>(f);
496 # if (GMX_SIMD_FLOAT_WIDTH == 2 * GMX_SIMD_DOUBLE_WIDTH)
497 SimdDouble vd1;
498 cvtF2DD(vf, &vd0, &vd1);
499 store(d + GMX_SIMD_DOUBLE_WIDTH, vd1); // Store upper part halfway through array
500 # elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
501 vd0 = cvtF2D(vf);
502 # else
503 # error Width of float SIMD must either be identical to double, or twice the width.
504 # endif
505 store(d, vd0); // store lower (or whole) part from start of vector
507 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
509 EXPECT_REAL_EQ_TOL(f[i], d[i], tolerance);
513 TEST_F(SimdFloatingpointTest, cvtDouble2Float)
515 alignas(GMX_SIMD_ALIGNMENT) float f[GMX_SIMD_FLOAT_WIDTH];
516 alignas(GMX_SIMD_ALIGNMENT) double d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
517 int i;
518 SimdFloat vf;
519 SimdDouble vd0;
520 FloatingPointTolerance tolerance(defaultRealTolerance());
522 // This fills elements for pd1 too when double width is 2*single width
523 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
525 // Scale by 1+eps to use low bits too.
526 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
527 d[i] = i * (1.0 + 100 * GMX_FLOAT_EPS);
530 vd0 = load<SimdDouble>(d);
531 # if (GMX_SIMD_FLOAT_WIDTH == 2 * GMX_SIMD_DOUBLE_WIDTH)
532 SimdDouble vd1 = load<SimdDouble>(d + GMX_SIMD_DOUBLE_WIDTH); // load upper half of data
533 vf = cvtDD2F(vd0, vd1);
534 # elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
535 vf = cvtD2F(vd0);
536 # else
537 # error Width of float SIMD must either be identical to double, or twice the width.
538 # endif
539 store(f, vf);
541 // This will check elements in pd1 too when double width is 2*single width
542 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
544 EXPECT_FLOAT_EQ_TOL(d[i], f[i], tolerance);
547 # endif // GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
549 /*! \} */
550 /*! \endcond */
552 } // namespace
553 } // namespace test
554 } // namespace gmx
556 #endif // GMX_SIMD