Remove nb-parameters from t_forcerec
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_double.c
blobc60e601dac23e43653d4ee1b6131e76503125078
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse2_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwioffset1;
82 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83 int vdwioffset2;
84 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85 int vdwjidx0A,vdwjidx0B;
86 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
97 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
98 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99 real rswitch_scalar,d_scalar;
100 __m128d dummy_mask,cutoff_mask;
101 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102 __m128d one = _mm_set1_pd(1.0);
103 __m128d two = _mm_set1_pd(2.0);
104 x = xx[0];
105 f = ff[0];
107 nri = nlist->nri;
108 iinr = nlist->iinr;
109 jindex = nlist->jindex;
110 jjnr = nlist->jjnr;
111 shiftidx = nlist->shift;
112 gid = nlist->gid;
113 shiftvec = fr->shift_vec[0];
114 fshift = fr->fshift[0];
115 facel = _mm_set1_pd(fr->ic->epsfac);
116 charge = mdatoms->chargeA;
117 krf = _mm_set1_pd(fr->ic->k_rf);
118 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
119 crf = _mm_set1_pd(fr->ic->c_rf);
120 nvdwtype = fr->ntype;
121 vdwparam = fr->nbfp;
122 vdwtype = mdatoms->typeA;
124 /* Setup water-specific parameters */
125 inr = nlist->iinr[0];
126 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
127 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
128 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
129 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
131 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132 rcutoff_scalar = fr->ic->rcoulomb;
133 rcutoff = _mm_set1_pd(rcutoff_scalar);
134 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
136 rswitch_scalar = fr->ic->rvdw_switch;
137 rswitch = _mm_set1_pd(rswitch_scalar);
138 /* Setup switch parameters */
139 d_scalar = rcutoff_scalar-rswitch_scalar;
140 d = _mm_set1_pd(d_scalar);
141 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
142 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
143 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
144 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
145 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148 /* Avoid stupid compiler warnings */
149 jnrA = jnrB = 0;
150 j_coord_offsetA = 0;
151 j_coord_offsetB = 0;
153 outeriter = 0;
154 inneriter = 0;
156 /* Start outer loop over neighborlists */
157 for(iidx=0; iidx<nri; iidx++)
159 /* Load shift vector for this list */
160 i_shift_offset = DIM*shiftidx[iidx];
162 /* Load limits for loop over neighbors */
163 j_index_start = jindex[iidx];
164 j_index_end = jindex[iidx+1];
166 /* Get outer coordinate index */
167 inr = iinr[iidx];
168 i_coord_offset = DIM*inr;
170 /* Load i particle coords and add shift vector */
171 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174 fix0 = _mm_setzero_pd();
175 fiy0 = _mm_setzero_pd();
176 fiz0 = _mm_setzero_pd();
177 fix1 = _mm_setzero_pd();
178 fiy1 = _mm_setzero_pd();
179 fiz1 = _mm_setzero_pd();
180 fix2 = _mm_setzero_pd();
181 fiy2 = _mm_setzero_pd();
182 fiz2 = _mm_setzero_pd();
184 /* Reset potential sums */
185 velecsum = _mm_setzero_pd();
186 vvdwsum = _mm_setzero_pd();
188 /* Start inner kernel loop */
189 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
192 /* Get j neighbor index, and coordinate index */
193 jnrA = jjnr[jidx];
194 jnrB = jjnr[jidx+1];
195 j_coord_offsetA = DIM*jnrA;
196 j_coord_offsetB = DIM*jnrB;
198 /* load j atom coordinates */
199 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200 &jx0,&jy0,&jz0);
202 /* Calculate displacement vector */
203 dx00 = _mm_sub_pd(ix0,jx0);
204 dy00 = _mm_sub_pd(iy0,jy0);
205 dz00 = _mm_sub_pd(iz0,jz0);
206 dx10 = _mm_sub_pd(ix1,jx0);
207 dy10 = _mm_sub_pd(iy1,jy0);
208 dz10 = _mm_sub_pd(iz1,jz0);
209 dx20 = _mm_sub_pd(ix2,jx0);
210 dy20 = _mm_sub_pd(iy2,jy0);
211 dz20 = _mm_sub_pd(iz2,jz0);
213 /* Calculate squared distance and things based on it */
214 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
218 rinv00 = sse2_invsqrt_d(rsq00);
219 rinv10 = sse2_invsqrt_d(rsq10);
220 rinv20 = sse2_invsqrt_d(rsq20);
222 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
223 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
224 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
226 /* Load parameters for j particles */
227 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228 vdwjidx0A = 2*vdwtype[jnrA+0];
229 vdwjidx0B = 2*vdwtype[jnrB+0];
231 fjx0 = _mm_setzero_pd();
232 fjy0 = _mm_setzero_pd();
233 fjz0 = _mm_setzero_pd();
235 /**************************
236 * CALCULATE INTERACTIONS *
237 **************************/
239 if (gmx_mm_any_lt(rsq00,rcutoff2))
242 r00 = _mm_mul_pd(rsq00,rinv00);
244 /* Compute parameters for interactions between i and j atoms */
245 qq00 = _mm_mul_pd(iq0,jq0);
246 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
247 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249 /* REACTION-FIELD ELECTROSTATICS */
250 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
251 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
253 /* LENNARD-JONES DISPERSION/REPULSION */
255 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
256 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
257 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
258 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
259 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
261 d = _mm_sub_pd(r00,rswitch);
262 d = _mm_max_pd(d,_mm_setzero_pd());
263 d2 = _mm_mul_pd(d,d);
264 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
266 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
268 /* Evaluate switch function */
269 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
270 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
271 vvdw = _mm_mul_pd(vvdw,sw);
272 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
274 /* Update potential sum for this i atom from the interaction with this j atom. */
275 velec = _mm_and_pd(velec,cutoff_mask);
276 velecsum = _mm_add_pd(velecsum,velec);
277 vvdw = _mm_and_pd(vvdw,cutoff_mask);
278 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
280 fscal = _mm_add_pd(felec,fvdw);
282 fscal = _mm_and_pd(fscal,cutoff_mask);
284 /* Calculate temporary vectorial force */
285 tx = _mm_mul_pd(fscal,dx00);
286 ty = _mm_mul_pd(fscal,dy00);
287 tz = _mm_mul_pd(fscal,dz00);
289 /* Update vectorial force */
290 fix0 = _mm_add_pd(fix0,tx);
291 fiy0 = _mm_add_pd(fiy0,ty);
292 fiz0 = _mm_add_pd(fiz0,tz);
294 fjx0 = _mm_add_pd(fjx0,tx);
295 fjy0 = _mm_add_pd(fjy0,ty);
296 fjz0 = _mm_add_pd(fjz0,tz);
300 /**************************
301 * CALCULATE INTERACTIONS *
302 **************************/
304 if (gmx_mm_any_lt(rsq10,rcutoff2))
307 /* Compute parameters for interactions between i and j atoms */
308 qq10 = _mm_mul_pd(iq1,jq0);
310 /* REACTION-FIELD ELECTROSTATICS */
311 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
312 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
314 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
316 /* Update potential sum for this i atom from the interaction with this j atom. */
317 velec = _mm_and_pd(velec,cutoff_mask);
318 velecsum = _mm_add_pd(velecsum,velec);
320 fscal = felec;
322 fscal = _mm_and_pd(fscal,cutoff_mask);
324 /* Calculate temporary vectorial force */
325 tx = _mm_mul_pd(fscal,dx10);
326 ty = _mm_mul_pd(fscal,dy10);
327 tz = _mm_mul_pd(fscal,dz10);
329 /* Update vectorial force */
330 fix1 = _mm_add_pd(fix1,tx);
331 fiy1 = _mm_add_pd(fiy1,ty);
332 fiz1 = _mm_add_pd(fiz1,tz);
334 fjx0 = _mm_add_pd(fjx0,tx);
335 fjy0 = _mm_add_pd(fjy0,ty);
336 fjz0 = _mm_add_pd(fjz0,tz);
340 /**************************
341 * CALCULATE INTERACTIONS *
342 **************************/
344 if (gmx_mm_any_lt(rsq20,rcutoff2))
347 /* Compute parameters for interactions between i and j atoms */
348 qq20 = _mm_mul_pd(iq2,jq0);
350 /* REACTION-FIELD ELECTROSTATICS */
351 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
352 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
354 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
356 /* Update potential sum for this i atom from the interaction with this j atom. */
357 velec = _mm_and_pd(velec,cutoff_mask);
358 velecsum = _mm_add_pd(velecsum,velec);
360 fscal = felec;
362 fscal = _mm_and_pd(fscal,cutoff_mask);
364 /* Calculate temporary vectorial force */
365 tx = _mm_mul_pd(fscal,dx20);
366 ty = _mm_mul_pd(fscal,dy20);
367 tz = _mm_mul_pd(fscal,dz20);
369 /* Update vectorial force */
370 fix2 = _mm_add_pd(fix2,tx);
371 fiy2 = _mm_add_pd(fiy2,ty);
372 fiz2 = _mm_add_pd(fiz2,tz);
374 fjx0 = _mm_add_pd(fjx0,tx);
375 fjy0 = _mm_add_pd(fjy0,ty);
376 fjz0 = _mm_add_pd(fjz0,tz);
380 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
382 /* Inner loop uses 145 flops */
385 if(jidx<j_index_end)
388 jnrA = jjnr[jidx];
389 j_coord_offsetA = DIM*jnrA;
391 /* load j atom coordinates */
392 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
393 &jx0,&jy0,&jz0);
395 /* Calculate displacement vector */
396 dx00 = _mm_sub_pd(ix0,jx0);
397 dy00 = _mm_sub_pd(iy0,jy0);
398 dz00 = _mm_sub_pd(iz0,jz0);
399 dx10 = _mm_sub_pd(ix1,jx0);
400 dy10 = _mm_sub_pd(iy1,jy0);
401 dz10 = _mm_sub_pd(iz1,jz0);
402 dx20 = _mm_sub_pd(ix2,jx0);
403 dy20 = _mm_sub_pd(iy2,jy0);
404 dz20 = _mm_sub_pd(iz2,jz0);
406 /* Calculate squared distance and things based on it */
407 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
408 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
409 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
411 rinv00 = sse2_invsqrt_d(rsq00);
412 rinv10 = sse2_invsqrt_d(rsq10);
413 rinv20 = sse2_invsqrt_d(rsq20);
415 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
416 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
417 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
419 /* Load parameters for j particles */
420 jq0 = _mm_load_sd(charge+jnrA+0);
421 vdwjidx0A = 2*vdwtype[jnrA+0];
423 fjx0 = _mm_setzero_pd();
424 fjy0 = _mm_setzero_pd();
425 fjz0 = _mm_setzero_pd();
427 /**************************
428 * CALCULATE INTERACTIONS *
429 **************************/
431 if (gmx_mm_any_lt(rsq00,rcutoff2))
434 r00 = _mm_mul_pd(rsq00,rinv00);
436 /* Compute parameters for interactions between i and j atoms */
437 qq00 = _mm_mul_pd(iq0,jq0);
438 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
440 /* REACTION-FIELD ELECTROSTATICS */
441 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
442 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
444 /* LENNARD-JONES DISPERSION/REPULSION */
446 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
447 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
448 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
449 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
450 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
452 d = _mm_sub_pd(r00,rswitch);
453 d = _mm_max_pd(d,_mm_setzero_pd());
454 d2 = _mm_mul_pd(d,d);
455 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
457 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
459 /* Evaluate switch function */
460 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
461 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
462 vvdw = _mm_mul_pd(vvdw,sw);
463 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
465 /* Update potential sum for this i atom from the interaction with this j atom. */
466 velec = _mm_and_pd(velec,cutoff_mask);
467 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
468 velecsum = _mm_add_pd(velecsum,velec);
469 vvdw = _mm_and_pd(vvdw,cutoff_mask);
470 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
471 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
473 fscal = _mm_add_pd(felec,fvdw);
475 fscal = _mm_and_pd(fscal,cutoff_mask);
477 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479 /* Calculate temporary vectorial force */
480 tx = _mm_mul_pd(fscal,dx00);
481 ty = _mm_mul_pd(fscal,dy00);
482 tz = _mm_mul_pd(fscal,dz00);
484 /* Update vectorial force */
485 fix0 = _mm_add_pd(fix0,tx);
486 fiy0 = _mm_add_pd(fiy0,ty);
487 fiz0 = _mm_add_pd(fiz0,tz);
489 fjx0 = _mm_add_pd(fjx0,tx);
490 fjy0 = _mm_add_pd(fjy0,ty);
491 fjz0 = _mm_add_pd(fjz0,tz);
495 /**************************
496 * CALCULATE INTERACTIONS *
497 **************************/
499 if (gmx_mm_any_lt(rsq10,rcutoff2))
502 /* Compute parameters for interactions between i and j atoms */
503 qq10 = _mm_mul_pd(iq1,jq0);
505 /* REACTION-FIELD ELECTROSTATICS */
506 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
507 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
509 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
511 /* Update potential sum for this i atom from the interaction with this j atom. */
512 velec = _mm_and_pd(velec,cutoff_mask);
513 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
514 velecsum = _mm_add_pd(velecsum,velec);
516 fscal = felec;
518 fscal = _mm_and_pd(fscal,cutoff_mask);
520 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
522 /* Calculate temporary vectorial force */
523 tx = _mm_mul_pd(fscal,dx10);
524 ty = _mm_mul_pd(fscal,dy10);
525 tz = _mm_mul_pd(fscal,dz10);
527 /* Update vectorial force */
528 fix1 = _mm_add_pd(fix1,tx);
529 fiy1 = _mm_add_pd(fiy1,ty);
530 fiz1 = _mm_add_pd(fiz1,tz);
532 fjx0 = _mm_add_pd(fjx0,tx);
533 fjy0 = _mm_add_pd(fjy0,ty);
534 fjz0 = _mm_add_pd(fjz0,tz);
538 /**************************
539 * CALCULATE INTERACTIONS *
540 **************************/
542 if (gmx_mm_any_lt(rsq20,rcutoff2))
545 /* Compute parameters for interactions between i and j atoms */
546 qq20 = _mm_mul_pd(iq2,jq0);
548 /* REACTION-FIELD ELECTROSTATICS */
549 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
550 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
552 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
554 /* Update potential sum for this i atom from the interaction with this j atom. */
555 velec = _mm_and_pd(velec,cutoff_mask);
556 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
557 velecsum = _mm_add_pd(velecsum,velec);
559 fscal = felec;
561 fscal = _mm_and_pd(fscal,cutoff_mask);
563 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565 /* Calculate temporary vectorial force */
566 tx = _mm_mul_pd(fscal,dx20);
567 ty = _mm_mul_pd(fscal,dy20);
568 tz = _mm_mul_pd(fscal,dz20);
570 /* Update vectorial force */
571 fix2 = _mm_add_pd(fix2,tx);
572 fiy2 = _mm_add_pd(fiy2,ty);
573 fiz2 = _mm_add_pd(fiz2,tz);
575 fjx0 = _mm_add_pd(fjx0,tx);
576 fjy0 = _mm_add_pd(fjy0,ty);
577 fjz0 = _mm_add_pd(fjz0,tz);
581 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
583 /* Inner loop uses 145 flops */
586 /* End of innermost loop */
588 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
589 f+i_coord_offset,fshift+i_shift_offset);
591 ggid = gid[iidx];
592 /* Update potential energies */
593 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
594 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
596 /* Increment number of inner iterations */
597 inneriter += j_index_end - j_index_start;
599 /* Outer loop uses 20 flops */
602 /* Increment number of outer iterations */
603 outeriter += nri;
605 /* Update outer/inner flops */
607 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
610 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
611 * Electrostatics interaction: ReactionField
612 * VdW interaction: LennardJones
613 * Geometry: Water3-Particle
614 * Calculate force/pot: Force
616 void
617 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
618 (t_nblist * gmx_restrict nlist,
619 rvec * gmx_restrict xx,
620 rvec * gmx_restrict ff,
621 struct t_forcerec * gmx_restrict fr,
622 t_mdatoms * gmx_restrict mdatoms,
623 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
624 t_nrnb * gmx_restrict nrnb)
626 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
627 * just 0 for non-waters.
628 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
629 * jnr indices corresponding to data put in the four positions in the SIMD register.
631 int i_shift_offset,i_coord_offset,outeriter,inneriter;
632 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
633 int jnrA,jnrB;
634 int j_coord_offsetA,j_coord_offsetB;
635 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
636 real rcutoff_scalar;
637 real *shiftvec,*fshift,*x,*f;
638 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
639 int vdwioffset0;
640 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
641 int vdwioffset1;
642 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
643 int vdwioffset2;
644 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
645 int vdwjidx0A,vdwjidx0B;
646 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
647 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
648 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
649 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
650 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
651 real *charge;
652 int nvdwtype;
653 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
654 int *vdwtype;
655 real *vdwparam;
656 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
657 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
658 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
659 real rswitch_scalar,d_scalar;
660 __m128d dummy_mask,cutoff_mask;
661 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
662 __m128d one = _mm_set1_pd(1.0);
663 __m128d two = _mm_set1_pd(2.0);
664 x = xx[0];
665 f = ff[0];
667 nri = nlist->nri;
668 iinr = nlist->iinr;
669 jindex = nlist->jindex;
670 jjnr = nlist->jjnr;
671 shiftidx = nlist->shift;
672 gid = nlist->gid;
673 shiftvec = fr->shift_vec[0];
674 fshift = fr->fshift[0];
675 facel = _mm_set1_pd(fr->ic->epsfac);
676 charge = mdatoms->chargeA;
677 krf = _mm_set1_pd(fr->ic->k_rf);
678 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
679 crf = _mm_set1_pd(fr->ic->c_rf);
680 nvdwtype = fr->ntype;
681 vdwparam = fr->nbfp;
682 vdwtype = mdatoms->typeA;
684 /* Setup water-specific parameters */
685 inr = nlist->iinr[0];
686 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
687 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
688 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
689 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
691 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
692 rcutoff_scalar = fr->ic->rcoulomb;
693 rcutoff = _mm_set1_pd(rcutoff_scalar);
694 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
696 rswitch_scalar = fr->ic->rvdw_switch;
697 rswitch = _mm_set1_pd(rswitch_scalar);
698 /* Setup switch parameters */
699 d_scalar = rcutoff_scalar-rswitch_scalar;
700 d = _mm_set1_pd(d_scalar);
701 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
702 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
703 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
704 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
705 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
706 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
708 /* Avoid stupid compiler warnings */
709 jnrA = jnrB = 0;
710 j_coord_offsetA = 0;
711 j_coord_offsetB = 0;
713 outeriter = 0;
714 inneriter = 0;
716 /* Start outer loop over neighborlists */
717 for(iidx=0; iidx<nri; iidx++)
719 /* Load shift vector for this list */
720 i_shift_offset = DIM*shiftidx[iidx];
722 /* Load limits for loop over neighbors */
723 j_index_start = jindex[iidx];
724 j_index_end = jindex[iidx+1];
726 /* Get outer coordinate index */
727 inr = iinr[iidx];
728 i_coord_offset = DIM*inr;
730 /* Load i particle coords and add shift vector */
731 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
732 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
734 fix0 = _mm_setzero_pd();
735 fiy0 = _mm_setzero_pd();
736 fiz0 = _mm_setzero_pd();
737 fix1 = _mm_setzero_pd();
738 fiy1 = _mm_setzero_pd();
739 fiz1 = _mm_setzero_pd();
740 fix2 = _mm_setzero_pd();
741 fiy2 = _mm_setzero_pd();
742 fiz2 = _mm_setzero_pd();
744 /* Start inner kernel loop */
745 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
748 /* Get j neighbor index, and coordinate index */
749 jnrA = jjnr[jidx];
750 jnrB = jjnr[jidx+1];
751 j_coord_offsetA = DIM*jnrA;
752 j_coord_offsetB = DIM*jnrB;
754 /* load j atom coordinates */
755 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
756 &jx0,&jy0,&jz0);
758 /* Calculate displacement vector */
759 dx00 = _mm_sub_pd(ix0,jx0);
760 dy00 = _mm_sub_pd(iy0,jy0);
761 dz00 = _mm_sub_pd(iz0,jz0);
762 dx10 = _mm_sub_pd(ix1,jx0);
763 dy10 = _mm_sub_pd(iy1,jy0);
764 dz10 = _mm_sub_pd(iz1,jz0);
765 dx20 = _mm_sub_pd(ix2,jx0);
766 dy20 = _mm_sub_pd(iy2,jy0);
767 dz20 = _mm_sub_pd(iz2,jz0);
769 /* Calculate squared distance and things based on it */
770 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
771 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
772 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
774 rinv00 = sse2_invsqrt_d(rsq00);
775 rinv10 = sse2_invsqrt_d(rsq10);
776 rinv20 = sse2_invsqrt_d(rsq20);
778 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
779 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
780 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
782 /* Load parameters for j particles */
783 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
784 vdwjidx0A = 2*vdwtype[jnrA+0];
785 vdwjidx0B = 2*vdwtype[jnrB+0];
787 fjx0 = _mm_setzero_pd();
788 fjy0 = _mm_setzero_pd();
789 fjz0 = _mm_setzero_pd();
791 /**************************
792 * CALCULATE INTERACTIONS *
793 **************************/
795 if (gmx_mm_any_lt(rsq00,rcutoff2))
798 r00 = _mm_mul_pd(rsq00,rinv00);
800 /* Compute parameters for interactions between i and j atoms */
801 qq00 = _mm_mul_pd(iq0,jq0);
802 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
803 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
805 /* REACTION-FIELD ELECTROSTATICS */
806 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
808 /* LENNARD-JONES DISPERSION/REPULSION */
810 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
811 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
812 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
813 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
814 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
816 d = _mm_sub_pd(r00,rswitch);
817 d = _mm_max_pd(d,_mm_setzero_pd());
818 d2 = _mm_mul_pd(d,d);
819 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
821 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
823 /* Evaluate switch function */
824 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
825 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
826 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
828 fscal = _mm_add_pd(felec,fvdw);
830 fscal = _mm_and_pd(fscal,cutoff_mask);
832 /* Calculate temporary vectorial force */
833 tx = _mm_mul_pd(fscal,dx00);
834 ty = _mm_mul_pd(fscal,dy00);
835 tz = _mm_mul_pd(fscal,dz00);
837 /* Update vectorial force */
838 fix0 = _mm_add_pd(fix0,tx);
839 fiy0 = _mm_add_pd(fiy0,ty);
840 fiz0 = _mm_add_pd(fiz0,tz);
842 fjx0 = _mm_add_pd(fjx0,tx);
843 fjy0 = _mm_add_pd(fjy0,ty);
844 fjz0 = _mm_add_pd(fjz0,tz);
848 /**************************
849 * CALCULATE INTERACTIONS *
850 **************************/
852 if (gmx_mm_any_lt(rsq10,rcutoff2))
855 /* Compute parameters for interactions between i and j atoms */
856 qq10 = _mm_mul_pd(iq1,jq0);
858 /* REACTION-FIELD ELECTROSTATICS */
859 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
861 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
863 fscal = felec;
865 fscal = _mm_and_pd(fscal,cutoff_mask);
867 /* Calculate temporary vectorial force */
868 tx = _mm_mul_pd(fscal,dx10);
869 ty = _mm_mul_pd(fscal,dy10);
870 tz = _mm_mul_pd(fscal,dz10);
872 /* Update vectorial force */
873 fix1 = _mm_add_pd(fix1,tx);
874 fiy1 = _mm_add_pd(fiy1,ty);
875 fiz1 = _mm_add_pd(fiz1,tz);
877 fjx0 = _mm_add_pd(fjx0,tx);
878 fjy0 = _mm_add_pd(fjy0,ty);
879 fjz0 = _mm_add_pd(fjz0,tz);
883 /**************************
884 * CALCULATE INTERACTIONS *
885 **************************/
887 if (gmx_mm_any_lt(rsq20,rcutoff2))
890 /* Compute parameters for interactions between i and j atoms */
891 qq20 = _mm_mul_pd(iq2,jq0);
893 /* REACTION-FIELD ELECTROSTATICS */
894 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
896 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
898 fscal = felec;
900 fscal = _mm_and_pd(fscal,cutoff_mask);
902 /* Calculate temporary vectorial force */
903 tx = _mm_mul_pd(fscal,dx20);
904 ty = _mm_mul_pd(fscal,dy20);
905 tz = _mm_mul_pd(fscal,dz20);
907 /* Update vectorial force */
908 fix2 = _mm_add_pd(fix2,tx);
909 fiy2 = _mm_add_pd(fiy2,ty);
910 fiz2 = _mm_add_pd(fiz2,tz);
912 fjx0 = _mm_add_pd(fjx0,tx);
913 fjy0 = _mm_add_pd(fjy0,ty);
914 fjz0 = _mm_add_pd(fjz0,tz);
918 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
920 /* Inner loop uses 124 flops */
923 if(jidx<j_index_end)
926 jnrA = jjnr[jidx];
927 j_coord_offsetA = DIM*jnrA;
929 /* load j atom coordinates */
930 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
931 &jx0,&jy0,&jz0);
933 /* Calculate displacement vector */
934 dx00 = _mm_sub_pd(ix0,jx0);
935 dy00 = _mm_sub_pd(iy0,jy0);
936 dz00 = _mm_sub_pd(iz0,jz0);
937 dx10 = _mm_sub_pd(ix1,jx0);
938 dy10 = _mm_sub_pd(iy1,jy0);
939 dz10 = _mm_sub_pd(iz1,jz0);
940 dx20 = _mm_sub_pd(ix2,jx0);
941 dy20 = _mm_sub_pd(iy2,jy0);
942 dz20 = _mm_sub_pd(iz2,jz0);
944 /* Calculate squared distance and things based on it */
945 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
946 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
947 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
949 rinv00 = sse2_invsqrt_d(rsq00);
950 rinv10 = sse2_invsqrt_d(rsq10);
951 rinv20 = sse2_invsqrt_d(rsq20);
953 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
954 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
955 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
957 /* Load parameters for j particles */
958 jq0 = _mm_load_sd(charge+jnrA+0);
959 vdwjidx0A = 2*vdwtype[jnrA+0];
961 fjx0 = _mm_setzero_pd();
962 fjy0 = _mm_setzero_pd();
963 fjz0 = _mm_setzero_pd();
965 /**************************
966 * CALCULATE INTERACTIONS *
967 **************************/
969 if (gmx_mm_any_lt(rsq00,rcutoff2))
972 r00 = _mm_mul_pd(rsq00,rinv00);
974 /* Compute parameters for interactions between i and j atoms */
975 qq00 = _mm_mul_pd(iq0,jq0);
976 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
978 /* REACTION-FIELD ELECTROSTATICS */
979 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
981 /* LENNARD-JONES DISPERSION/REPULSION */
983 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
984 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
985 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
986 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
987 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
989 d = _mm_sub_pd(r00,rswitch);
990 d = _mm_max_pd(d,_mm_setzero_pd());
991 d2 = _mm_mul_pd(d,d);
992 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
994 dsw = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
996 /* Evaluate switch function */
997 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
998 fvdw = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
999 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1001 fscal = _mm_add_pd(felec,fvdw);
1003 fscal = _mm_and_pd(fscal,cutoff_mask);
1005 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007 /* Calculate temporary vectorial force */
1008 tx = _mm_mul_pd(fscal,dx00);
1009 ty = _mm_mul_pd(fscal,dy00);
1010 tz = _mm_mul_pd(fscal,dz00);
1012 /* Update vectorial force */
1013 fix0 = _mm_add_pd(fix0,tx);
1014 fiy0 = _mm_add_pd(fiy0,ty);
1015 fiz0 = _mm_add_pd(fiz0,tz);
1017 fjx0 = _mm_add_pd(fjx0,tx);
1018 fjy0 = _mm_add_pd(fjy0,ty);
1019 fjz0 = _mm_add_pd(fjz0,tz);
1023 /**************************
1024 * CALCULATE INTERACTIONS *
1025 **************************/
1027 if (gmx_mm_any_lt(rsq10,rcutoff2))
1030 /* Compute parameters for interactions between i and j atoms */
1031 qq10 = _mm_mul_pd(iq1,jq0);
1033 /* REACTION-FIELD ELECTROSTATICS */
1034 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1036 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1038 fscal = felec;
1040 fscal = _mm_and_pd(fscal,cutoff_mask);
1042 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1044 /* Calculate temporary vectorial force */
1045 tx = _mm_mul_pd(fscal,dx10);
1046 ty = _mm_mul_pd(fscal,dy10);
1047 tz = _mm_mul_pd(fscal,dz10);
1049 /* Update vectorial force */
1050 fix1 = _mm_add_pd(fix1,tx);
1051 fiy1 = _mm_add_pd(fiy1,ty);
1052 fiz1 = _mm_add_pd(fiz1,tz);
1054 fjx0 = _mm_add_pd(fjx0,tx);
1055 fjy0 = _mm_add_pd(fjy0,ty);
1056 fjz0 = _mm_add_pd(fjz0,tz);
1060 /**************************
1061 * CALCULATE INTERACTIONS *
1062 **************************/
1064 if (gmx_mm_any_lt(rsq20,rcutoff2))
1067 /* Compute parameters for interactions between i and j atoms */
1068 qq20 = _mm_mul_pd(iq2,jq0);
1070 /* REACTION-FIELD ELECTROSTATICS */
1071 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1073 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1075 fscal = felec;
1077 fscal = _mm_and_pd(fscal,cutoff_mask);
1079 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081 /* Calculate temporary vectorial force */
1082 tx = _mm_mul_pd(fscal,dx20);
1083 ty = _mm_mul_pd(fscal,dy20);
1084 tz = _mm_mul_pd(fscal,dz20);
1086 /* Update vectorial force */
1087 fix2 = _mm_add_pd(fix2,tx);
1088 fiy2 = _mm_add_pd(fiy2,ty);
1089 fiz2 = _mm_add_pd(fiz2,tz);
1091 fjx0 = _mm_add_pd(fjx0,tx);
1092 fjy0 = _mm_add_pd(fjy0,ty);
1093 fjz0 = _mm_add_pd(fjz0,tz);
1097 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1099 /* Inner loop uses 124 flops */
1102 /* End of innermost loop */
1104 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1105 f+i_coord_offset,fshift+i_shift_offset);
1107 /* Increment number of inner iterations */
1108 inneriter += j_index_end - j_index_start;
1110 /* Outer loop uses 18 flops */
1113 /* Increment number of outer iterations */
1114 outeriter += nri;
1116 /* Update outer/inner flops */
1118 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*124);