2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / ldbl-128ibm / k_tanl.c
blob6c45b2fc456724aaa707155a373aa04260a12c09
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 /* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
59 #include "math.h"
60 #include "math_private.h"
61 #ifdef __STDC__
62 static const long double
63 #else
64 static long double
65 #endif
66 one = 1.0L,
67 pio4hi = 7.8539816339744830961566084581987569936977E-1L,
68 pio4lo = 2.1679525325309452561992610065108379921906E-35L,
70 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
71 0 <= x <= 0.6743316650390625
72 Peak relative error 8.0e-36 */
73 TH = 3.333333333333333333333333333333333333333E-1L,
74 T0 = -1.813014711743583437742363284336855889393E7L,
75 T1 = 1.320767960008972224312740075083259247618E6L,
76 T2 = -2.626775478255838182468651821863299023956E4L,
77 T3 = 1.764573356488504935415411383687150199315E2L,
78 T4 = -3.333267763822178690794678978979803526092E-1L,
80 U0 = -1.359761033807687578306772463253710042010E8L,
81 U1 = 6.494370630656893175666729313065113194784E7L,
82 U2 = -4.180787672237927475505536849168729386782E6L,
83 U3 = 8.031643765106170040139966622980914621521E4L,
84 U4 = -5.323131271912475695157127875560667378597E2L;
85 /* 1.000000000000000000000000000000000000000E0 */
88 #ifdef __STDC__
89 long double
90 __kernel_tanl (long double x, long double y, int iy)
91 #else
92 long double
93 __kernel_tanl (x, y, iy)
94 long double x, y;
95 int iy;
96 #endif
98 long double z, r, v, w, s;
99 int32_t ix, sign;
100 ieee854_long_double_shape_type u, u1;
102 u.value = x;
103 ix = u.parts32.w0 & 0x7fffffff;
104 if (ix < 0x3c600000) /* x < 2**-57 */
106 if ((int) x == 0)
107 { /* generate inexact */
108 if ((ix | u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3
109 | (iy + 1)) == 0)
110 return one / fabs (x);
111 else
112 return (iy == 1) ? x : -one / x;
115 if (ix >= 0x3fe59420) /* |x| >= 0.6743316650390625 */
117 if ((u.parts32.w0 & 0x80000000) != 0)
119 x = -x;
120 y = -y;
121 sign = -1;
123 else
124 sign = 1;
125 z = pio4hi - x;
126 w = pio4lo - y;
127 x = z + w;
128 y = 0.0;
130 z = x * x;
131 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
132 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
133 r = r / v;
135 s = z * x;
136 r = y + z * (s * r + y);
137 r += TH * s;
138 w = x + r;
139 if (ix >= 0x3fe59420)
141 v = (long double) iy;
142 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
143 if (sign < 0)
144 w = -w;
145 return w;
147 if (iy == 1)
148 return w;
149 else
150 { /* if allow error up to 2 ulp,
151 simply return -1.0/(x+r) here */
152 /* compute -1.0/(x+r) accurately */
153 u1.value = w;
154 u1.parts32.w2 = 0;
155 u1.parts32.w3 = 0;
156 v = r - (u1.value - x); /* u1+v = r+x */
157 z = -1.0 / w;
158 u.value = z;
159 u.parts32.w2 = 0;
160 u.parts32.w3 = 0;
161 s = 1.0 + u.value * u1.value;
162 return u.value + z * (s + u.value * v);