2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_acoshl.c
blob00576c76c8a8e131bc9ca4becc53331a3901f52b
1 /* @(#)e_acosh.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_acosh.c,v 1.9 1995/05/12 04:57:18 jtc Exp $";
15 #endif
17 /* __ieee754_acosh(x)
18 * Method :
19 * Based on
20 * acosh(x) = log [ x + sqrt(x*x-1) ]
21 * we have
22 * acosh(x) := log(x)+ln2, if x is large; else
23 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
24 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
26 * Special cases:
27 * acosh(x) is NaN with signal if x<1.
28 * acosh(NaN) is NaN without signal.
31 #include "math.h"
32 #include "math_private.h"
34 #ifdef __STDC__
35 static const long double
36 #else
37 static long double
38 #endif
39 one = 1.0L,
40 ln2 = 6.93147180559945286227e-01L; /* 0x3FE62E42, 0xFEFA39EF */
42 #ifdef __STDC__
43 long double __ieee754_acoshl(long double x)
44 #else
45 long double __ieee754_acoshl(x)
46 long double x;
47 #endif
49 long double t;
50 int64_t hx;
51 u_int64_t lx;
52 GET_LDOUBLE_WORDS64(hx,lx,x);
53 if(hx<0x3ff0000000000000LL) { /* x < 1 */
54 return (x-x)/(x-x);
55 } else if(hx >=0x41b0000000000000LL) { /* x > 2**28 */
56 if(hx >=0x7ff0000000000000LL) { /* x is inf of NaN */
57 return x+x;
58 } else
59 return __ieee754_logl(x)+ln2; /* acosh(huge)=log(2x) */
60 } else if (((hx-0x3ff0000000000000LL)|(lx&0x7fffffffffffffffLL))==0) {
61 return 0.0; /* acosh(1) = 0 */
62 } else if (hx > 0x4000000000000000LL) { /* 2**28 > x > 2 */
63 t=x*x;
64 return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
65 } else { /* 1<x<2 */
66 t = x-one;
67 return __log1p(t+__sqrtl(2.0*t+t*t));