2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / ldbl-128 / e_log2l.c
blob8663d78b3f3c7d013f53ecb15390b8007b8681ae
1 /* log2l.c
2 * Base 2 logarithm, 128-bit long double precision
6 * SYNOPSIS:
8 * long double x, y, log2l();
10 * y = log2l( x );
14 * DESCRIPTION:
16 * Returns the base 2 logarithm of x.
18 * The argument is separated into its exponent and fractional
19 * parts. If the exponent is between -1 and +1, the (natural)
20 * logarithm of the fraction is approximated by
22 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24 * Otherwise, setting z = 2(x-1)/x+1),
26 * log(x) = z + z^3 P(z)/Q(z).
30 * ACCURACY:
32 * Relative error:
33 * arithmetic domain # trials peak rms
34 * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
37 * In the tests over the interval exp(+-10000), the logarithms
38 * of the random arguments were uniformly distributed over
39 * [-10000, +10000].
44 Cephes Math Library Release 2.2: January, 1991
45 Copyright 1984, 1991 by Stephen L. Moshier
46 Adapted for glibc November, 2001
48 This library is free software; you can redistribute it and/or
49 modify it under the terms of the GNU Lesser General Public
50 License as published by the Free Software Foundation; either
51 version 2.1 of the License, or (at your option) any later version.
53 This library is distributed in the hope that it will be useful,
54 but WITHOUT ANY WARRANTY; without even the implied warranty of
55 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56 Lesser General Public License for more details.
58 You should have received a copy of the GNU Lesser General Public
59 License along with this library; if not, write to the Free Software
60 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
63 #include "math.h"
64 #include "math_private.h"
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67 * 1/sqrt(2) <= x < sqrt(2)
68 * Theoretical peak relative error = 5.3e-37,
69 * relative peak error spread = 2.3e-14
71 static const long double P[13] =
73 1.313572404063446165910279910527789794488E4L,
74 7.771154681358524243729929227226708890930E4L,
75 2.014652742082537582487669938141683759923E5L,
76 3.007007295140399532324943111654767187848E5L,
77 2.854829159639697837788887080758954924001E5L,
78 1.797628303815655343403735250238293741397E5L,
79 7.594356839258970405033155585486712125861E4L,
80 2.128857716871515081352991964243375186031E4L,
81 3.824952356185897735160588078446136783779E3L,
82 4.114517881637811823002128927449878962058E2L,
83 2.321125933898420063925789532045674660756E1L,
84 4.998469661968096229986658302195402690910E-1L,
85 1.538612243596254322971797716843006400388E-6L
87 static const long double Q[12] =
89 3.940717212190338497730839731583397586124E4L,
90 2.626900195321832660448791748036714883242E5L,
91 7.777690340007566932935753241556479363645E5L,
92 1.347518538384329112529391120390701166528E6L,
93 1.514882452993549494932585972882995548426E6L,
94 1.158019977462989115839826904108208787040E6L,
95 6.132189329546557743179177159925690841200E5L,
96 2.248234257620569139969141618556349415120E5L,
97 5.605842085972455027590989944010492125825E4L,
98 9.147150349299596453976674231612674085381E3L,
99 9.104928120962988414618126155557301584078E2L,
100 4.839208193348159620282142911143429644326E1L
101 /* 1.000000000000000000000000000000000000000E0L, */
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105 * where z = 2(x-1)/(x+1)
106 * 1/sqrt(2) <= x < sqrt(2)
107 * Theoretical peak relative error = 1.1e-35,
108 * relative peak error spread 1.1e-9
110 static const long double R[6] =
112 1.418134209872192732479751274970992665513E5L,
113 -8.977257995689735303686582344659576526998E4L,
114 2.048819892795278657810231591630928516206E4L,
115 -2.024301798136027039250415126250455056397E3L,
116 8.057002716646055371965756206836056074715E1L,
117 -8.828896441624934385266096344596648080902E-1L
119 static const long double S[6] =
121 1.701761051846631278975701529965589676574E6L,
122 -1.332535117259762928288745111081235577029E6L,
123 4.001557694070773974936904547424676279307E5L,
124 -5.748542087379434595104154610899551484314E4L,
125 3.998526750980007367835804959888064681098E3L,
126 -1.186359407982897997337150403816839480438E2L
127 /* 1.000000000000000000000000000000000000000E0L, */
130 static const long double
131 /* log2(e) - 1 */
132 LOG2EA = 4.4269504088896340735992468100189213742664595E-1L,
133 /* sqrt(2)/2 */
134 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
137 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
139 static long double
140 neval (long double x, const long double *p, int n)
142 long double y;
144 p += n;
145 y = *p--;
148 y = y * x + *p--;
150 while (--n > 0);
151 return y;
155 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
157 static long double
158 deval (long double x, const long double *p, int n)
160 long double y;
162 p += n;
163 y = x + *p--;
166 y = y * x + *p--;
168 while (--n > 0);
169 return y;
174 long double
175 __ieee754_log2l (x)
176 long double x;
178 long double z;
179 long double y;
180 int e;
181 int64_t hx, lx;
183 /* Test for domain */
184 GET_LDOUBLE_WORDS64 (hx, lx, x);
185 if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
186 return (-1.0L / (x - x));
187 if (hx < 0)
188 return (x - x) / (x - x);
189 if (hx >= 0x7fff000000000000LL)
190 return (x + x);
192 /* separate mantissa from exponent */
194 /* Note, frexp is used so that denormal numbers
195 * will be handled properly.
197 x = __frexpl (x, &e);
200 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
201 * where z = 2(x-1)/x+1)
203 if ((e > 2) || (e < -2))
205 if (x < SQRTH)
206 { /* 2( 2x-1 )/( 2x+1 ) */
207 e -= 1;
208 z = x - 0.5L;
209 y = 0.5L * z + 0.5L;
211 else
212 { /* 2 (x-1)/(x+1) */
213 z = x - 0.5L;
214 z -= 0.5L;
215 y = 0.5L * x + 0.5L;
217 x = z / y;
218 z = x * x;
219 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
220 goto done;
224 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
226 if (x < SQRTH)
228 e -= 1;
229 x = 2.0 * x - 1.0L; /* 2x - 1 */
231 else
233 x = x - 1.0L;
235 z = x * x;
236 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
237 y = y - 0.5 * z;
239 done:
241 /* Multiply log of fraction by log2(e)
242 * and base 2 exponent by 1
244 z = y * LOG2EA;
245 z += x * LOG2EA;
246 z += y;
247 z += x;
248 z += e;
249 return (z);