2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / ldbl-128 / e_jnl.c
bloba4a4e24cf5a3afdc41dc3ec550b4f88fb76d4470
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include "math.h"
60 #include "math_private.h"
62 #ifdef __STDC__
63 static const long double
64 #else
65 static long double
66 #endif
67 invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
68 two = 2.0e0L,
69 one = 1.0e0L,
70 zero = 0.0L;
73 #ifdef __STDC__
74 long double
75 __ieee754_jnl (int n, long double x)
76 #else
77 long double
78 __ieee754_jnl (n, x)
79 int n;
80 long double x;
81 #endif
83 u_int32_t se;
84 int32_t i, ix, sgn;
85 long double a, b, temp, di;
86 long double z, w;
87 ieee854_long_double_shape_type u;
90 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
91 * Thus, J(-n,x) = J(n,-x)
94 u.value = x;
95 se = u.parts32.w0;
96 ix = se & 0x7fffffff;
98 /* if J(n,NaN) is NaN */
99 if (ix >= 0x7fff0000)
101 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
102 return x + x;
105 if (n < 0)
107 n = -n;
108 x = -x;
109 se ^= 0x80000000;
111 if (n == 0)
112 return (__ieee754_j0l (x));
113 if (n == 1)
114 return (__ieee754_j1l (x));
115 sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
116 x = fabsl (x);
118 if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
119 b = zero;
120 else if ((long double) n <= x)
122 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
123 if (ix >= 0x412D0000)
124 { /* x > 2**302 */
126 /* ??? Could use an expansion for large x here. */
128 /* (x >> n**2)
129 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
130 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
131 * Let s=sin(x), c=cos(x),
132 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
134 * n sin(xn)*sqt2 cos(xn)*sqt2
135 * ----------------------------------
136 * 0 s-c c+s
137 * 1 -s-c -c+s
138 * 2 -s+c -c-s
139 * 3 s+c c-s
141 long double s;
142 long double c;
143 __sincosl (x, &s, &c);
144 switch (n & 3)
146 case 0:
147 temp = c + s;
148 break;
149 case 1:
150 temp = -c + s;
151 break;
152 case 2:
153 temp = -c - s;
154 break;
155 case 3:
156 temp = c - s;
157 break;
159 b = invsqrtpi * temp / __ieee754_sqrtl (x);
161 else
163 a = __ieee754_j0l (x);
164 b = __ieee754_j1l (x);
165 for (i = 1; i < n; i++)
167 temp = b;
168 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
169 a = temp;
173 else
175 if (ix < 0x3fc60000)
176 { /* x < 2**-57 */
177 /* x is tiny, return the first Taylor expansion of J(n,x)
178 * J(n,x) = 1/n!*(x/2)^n - ...
180 if (n >= 400) /* underflow, result < 10^-4952 */
181 b = zero;
182 else
184 temp = x * 0.5;
185 b = temp;
186 for (a = one, i = 2; i <= n; i++)
188 a *= (long double) i; /* a = n! */
189 b *= temp; /* b = (x/2)^n */
191 b = b / a;
194 else
196 /* use backward recurrence */
197 /* x x^2 x^2
198 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
199 * 2n - 2(n+1) - 2(n+2)
201 * 1 1 1
202 * (for large x) = ---- ------ ------ .....
203 * 2n 2(n+1) 2(n+2)
204 * -- - ------ - ------ -
205 * x x x
207 * Let w = 2n/x and h=2/x, then the above quotient
208 * is equal to the continued fraction:
210 * = -----------------------
212 * w - -----------------
214 * w+h - ---------
215 * w+2h - ...
217 * To determine how many terms needed, let
218 * Q(0) = w, Q(1) = w(w+h) - 1,
219 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
220 * When Q(k) > 1e4 good for single
221 * When Q(k) > 1e9 good for double
222 * When Q(k) > 1e17 good for quadruple
224 /* determine k */
225 long double t, v;
226 long double q0, q1, h, tmp;
227 int32_t k, m;
228 w = (n + n) / (long double) x;
229 h = 2.0L / (long double) x;
230 q0 = w;
231 z = w + h;
232 q1 = w * z - 1.0L;
233 k = 1;
234 while (q1 < 1.0e17L)
236 k += 1;
237 z += h;
238 tmp = z * q1 - q0;
239 q0 = q1;
240 q1 = tmp;
242 m = n + n;
243 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
244 t = one / (i / x - t);
245 a = t;
246 b = one;
247 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
248 * Hence, if n*(log(2n/x)) > ...
249 * single 8.8722839355e+01
250 * double 7.09782712893383973096e+02
251 * long double 1.1356523406294143949491931077970765006170e+04
252 * then recurrent value may overflow and the result is
253 * likely underflow to zero
255 tmp = n;
256 v = two / x;
257 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
259 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
261 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
263 temp = b;
264 b *= di;
265 b = b / x - a;
266 a = temp;
267 di -= two;
270 else
272 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
274 temp = b;
275 b *= di;
276 b = b / x - a;
277 a = temp;
278 di -= two;
279 /* scale b to avoid spurious overflow */
280 if (b > 1e100L)
282 a /= b;
283 t /= b;
284 b = one;
288 b = (t * __ieee754_j0l (x) / b);
291 if (sgn == 1)
292 return -b;
293 else
294 return b;
297 #ifdef __STDC__
298 long double
299 __ieee754_ynl (int n, long double x)
300 #else
301 long double
302 __ieee754_ynl (n, x)
303 int n;
304 long double x;
305 #endif
307 u_int32_t se;
308 int32_t i, ix;
309 int32_t sign;
310 long double a, b, temp;
311 ieee854_long_double_shape_type u;
313 u.value = x;
314 se = u.parts32.w0;
315 ix = se & 0x7fffffff;
317 /* if Y(n,NaN) is NaN */
318 if (ix >= 0x7fff0000)
320 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
321 return x + x;
323 if (x <= 0.0L)
325 if (x == 0.0L)
326 return -HUGE_VALL + x;
327 if (se & 0x80000000)
328 return zero / (zero * x);
330 sign = 1;
331 if (n < 0)
333 n = -n;
334 sign = 1 - ((n & 1) << 1);
336 if (n == 0)
337 return (__ieee754_y0l (x));
338 if (n == 1)
339 return (sign * __ieee754_y1l (x));
340 if (ix >= 0x7fff0000)
341 return zero;
342 if (ix >= 0x412D0000)
343 { /* x > 2**302 */
345 /* ??? See comment above on the possible futility of this. */
347 /* (x >> n**2)
348 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
349 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
350 * Let s=sin(x), c=cos(x),
351 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
353 * n sin(xn)*sqt2 cos(xn)*sqt2
354 * ----------------------------------
355 * 0 s-c c+s
356 * 1 -s-c -c+s
357 * 2 -s+c -c-s
358 * 3 s+c c-s
360 long double s;
361 long double c;
362 __sincosl (x, &s, &c);
363 switch (n & 3)
365 case 0:
366 temp = s - c;
367 break;
368 case 1:
369 temp = -s - c;
370 break;
371 case 2:
372 temp = -s + c;
373 break;
374 case 3:
375 temp = s + c;
376 break;
378 b = invsqrtpi * temp / __ieee754_sqrtl (x);
380 else
382 a = __ieee754_y0l (x);
383 b = __ieee754_y1l (x);
384 /* quit if b is -inf */
385 u.value = b;
386 se = u.parts32.w0 & 0xffff0000;
387 for (i = 1; i < n && se != 0xffff0000; i++)
389 temp = b;
390 b = ((long double) (i + i) / x) * b - a;
391 u.value = b;
392 se = u.parts32.w0 & 0xffff0000;
393 a = temp;
396 if (sign > 0)
397 return b;
398 else
399 return -b;