2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / dbl-64 / s_log1p.c
blob0a9801a931d008e9f21b0c660bfdb8cab20cce55
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
18 #endif
20 /* double log1p(double x)
22 * Method :
23 * 1. Argument Reduction: find k and f such that
24 * 1+x = 2^k * (1+f),
25 * where sqrt(2)/2 < 1+f < sqrt(2) .
27 * Note. If k=0, then f=x is exact. However, if k!=0, then f
28 * may not be representable exactly. In that case, a correction
29 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
30 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
31 * and add back the correction term c/u.
32 * (Note: when x > 2**53, one can simply return log(x))
34 * 2. Approximation of log1p(f).
35 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
36 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
37 * = 2s + s*R
38 * We use a special Reme algorithm on [0,0.1716] to generate
39 * a polynomial of degree 14 to approximate R The maximum error
40 * of this polynomial approximation is bounded by 2**-58.45. In
41 * other words,
42 * 2 4 6 8 10 12 14
43 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
44 * (the values of Lp1 to Lp7 are listed in the program)
45 * and
46 * | 2 14 | -58.45
47 * | Lp1*s +...+Lp7*s - R(z) | <= 2
48 * | |
49 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 * In order to guarantee error in log below 1ulp, we compute log
51 * by
52 * log1p(f) = f - (hfsq - s*(hfsq+R)).
54 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
55 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
56 * Here ln2 is split into two floating point number:
57 * ln2_hi + ln2_lo,
58 * where n*ln2_hi is always exact for |n| < 2000.
60 * Special cases:
61 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
62 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
63 * log1p(NaN) is that NaN with no signal.
65 * Accuracy:
66 * according to an error analysis, the error is always less than
67 * 1 ulp (unit in the last place).
69 * Constants:
70 * The hexadecimal values are the intended ones for the following
71 * constants. The decimal values may be used, provided that the
72 * compiler will convert from decimal to binary accurately enough
73 * to produce the hexadecimal values shown.
75 * Note: Assuming log() return accurate answer, the following
76 * algorithm can be used to compute log1p(x) to within a few ULP:
78 * u = 1+x;
79 * if(u==1.0) return x ; else
80 * return log(u)*(x/(u-1.0));
82 * See HP-15C Advanced Functions Handbook, p.193.
85 #include "math.h"
86 #include "math_private.h"
88 #ifdef __STDC__
89 static const double
90 #else
91 static double
92 #endif
93 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
94 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
95 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
96 Lp[] = {0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */
97 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
98 2.857142874366239149e-01, /* 3FD24924 94229359 */
99 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
100 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
101 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
102 1.479819860511658591e-01}; /* 3FC2F112 DF3E5244 */
104 #ifdef __STDC__
105 static const double zero = 0.0;
106 #else
107 static double zero = 0.0;
108 #endif
110 #ifdef __STDC__
111 double __log1p(double x)
112 #else
113 double __log1p(x)
114 double x;
115 #endif
117 double hfsq,f,c,s,z,R,u,z2,z4,z6,R1,R2,R3,R4;
118 int32_t k,hx,hu,ax;
120 GET_HIGH_WORD(hx,x);
121 ax = hx&0x7fffffff;
123 k = 1;
124 if (hx < 0x3FDA827A) { /* x < 0.41422 */
125 if(ax>=0x3ff00000) { /* x <= -1.0 */
126 if(x==-1.0) return -two54/(x-x);/* log1p(-1)=+inf */
127 else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
129 if(ax<0x3e200000) { /* |x| < 2**-29 */
130 if(two54+x>zero /* raise inexact */
131 &&ax<0x3c900000) /* |x| < 2**-54 */
132 return x;
133 else
134 return x - x*x*0.5;
136 if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
137 k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
139 if (hx >= 0x7ff00000) return x+x;
140 if(k!=0) {
141 if(hx<0x43400000) {
142 u = 1.0+x;
143 GET_HIGH_WORD(hu,u);
144 k = (hu>>20)-1023;
145 c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
146 c /= u;
147 } else {
148 u = x;
149 GET_HIGH_WORD(hu,u);
150 k = (hu>>20)-1023;
151 c = 0;
153 hu &= 0x000fffff;
154 if(hu<0x6a09e) {
155 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
156 } else {
157 k += 1;
158 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
159 hu = (0x00100000-hu)>>2;
161 f = u-1.0;
163 hfsq=0.5*f*f;
164 if(hu==0) { /* |f| < 2**-20 */
165 if(f==zero) {
166 if(k==0) return zero;
167 else {c += k*ln2_lo; return k*ln2_hi+c;}
169 R = hfsq*(1.0-0.66666666666666666*f);
170 if(k==0) return f-R; else
171 return k*ln2_hi-((R-(k*ln2_lo+c))-f);
173 s = f/(2.0+f);
174 z = s*s;
175 #ifdef DO_NOT_USE_THIS
176 R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
177 #else
178 R1 = z*Lp[1]; z2=z*z;
179 R2 = Lp[2]+z*Lp[3]; z4=z2*z2;
180 R3 = Lp[4]+z*Lp[5]; z6=z4*z2;
181 R4 = Lp[6]+z*Lp[7];
182 R = R1 + z2*R2 + z4*R3 + z6*R4;
183 #endif
184 if(k==0) return f-(hfsq-s*(hfsq+R)); else
185 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
187 weak_alias (__log1p, log1p)
188 #ifdef NO_LONG_DOUBLE
189 strong_alias (__log1p, __log1pl)
190 weak_alias (__log1p, log1pl)
191 #endif