2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / dbl-64 / s_expm1.c
blobbfd15b2e31b8f8b2efc9226f753aaea57b96b88e
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
18 #endif
20 /* expm1(x)
21 * Returns exp(x)-1, the exponential of x minus 1.
23 * Method
24 * 1. Argument reduction:
25 * Given x, find r and integer k such that
27 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
29 * Here a correction term c will be computed to compensate
30 * the error in r when rounded to a floating-point number.
32 * 2. Approximating expm1(r) by a special rational function on
33 * the interval [0,0.34658]:
34 * Since
35 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
36 * we define R1(r*r) by
37 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
38 * That is,
39 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
40 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
41 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
42 * We use a special Reme algorithm on [0,0.347] to generate
43 * a polynomial of degree 5 in r*r to approximate R1. The
44 * maximum error of this polynomial approximation is bounded
45 * by 2**-61. In other words,
46 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
47 * where Q1 = -1.6666666666666567384E-2,
48 * Q2 = 3.9682539681370365873E-4,
49 * Q3 = -9.9206344733435987357E-6,
50 * Q4 = 2.5051361420808517002E-7,
51 * Q5 = -6.2843505682382617102E-9;
52 * (where z=r*r, and the values of Q1 to Q5 are listed below)
53 * with error bounded by
54 * | 5 | -61
55 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
56 * | |
58 * expm1(r) = exp(r)-1 is then computed by the following
59 * specific way which minimize the accumulation rounding error:
60 * 2 3
61 * r r [ 3 - (R1 + R1*r/2) ]
62 * expm1(r) = r + --- + --- * [--------------------]
63 * 2 2 [ 6 - r*(3 - R1*r/2) ]
65 * To compensate the error in the argument reduction, we use
66 * expm1(r+c) = expm1(r) + c + expm1(r)*c
67 * ~ expm1(r) + c + r*c
68 * Thus c+r*c will be added in as the correction terms for
69 * expm1(r+c). Now rearrange the term to avoid optimization
70 * screw up:
71 * ( 2 2 )
72 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
73 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
74 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
75 * ( )
77 * = r - E
78 * 3. Scale back to obtain expm1(x):
79 * From step 1, we have
80 * expm1(x) = either 2^k*[expm1(r)+1] - 1
81 * = or 2^k*[expm1(r) + (1-2^-k)]
82 * 4. Implementation notes:
83 * (A). To save one multiplication, we scale the coefficient Qi
84 * to Qi*2^i, and replace z by (x^2)/2.
85 * (B). To achieve maximum accuracy, we compute expm1(x) by
86 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
87 * (ii) if k=0, return r-E
88 * (iii) if k=-1, return 0.5*(r-E)-0.5
89 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
90 * else return 1.0+2.0*(r-E);
91 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
92 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
93 * (vii) return 2^k(1-((E+2^-k)-r))
95 * Special cases:
96 * expm1(INF) is INF, expm1(NaN) is NaN;
97 * expm1(-INF) is -1, and
98 * for finite argument, only expm1(0)=0 is exact.
100 * Accuracy:
101 * according to an error analysis, the error is always less than
102 * 1 ulp (unit in the last place).
104 * Misc. info.
105 * For IEEE double
106 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
108 * Constants:
109 * The hexadecimal values are the intended ones for the following
110 * constants. The decimal values may be used, provided that the
111 * compiler will convert from decimal to binary accurately enough
112 * to produce the hexadecimal values shown.
115 #include "math.h"
116 #include "math_private.h"
117 #define one Q[0]
118 #ifdef __STDC__
119 static const double
120 #else
121 static double
122 #endif
123 huge = 1.0e+300,
124 tiny = 1.0e-300,
125 o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
126 ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
127 ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
128 invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
129 /* scaled coefficients related to expm1 */
130 Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
131 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
132 -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
133 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
134 -2.01099218183624371326e-07}; /* BE8AFDB7 6E09C32D */
136 #ifdef __STDC__
137 double __expm1(double x)
138 #else
139 double __expm1(x)
140 double x;
141 #endif
143 double y,hi,lo,c,t,e,hxs,hfx,r1,h2,h4,R1,R2,R3;
144 int32_t k,xsb;
145 u_int32_t hx;
147 GET_HIGH_WORD(hx,x);
148 xsb = hx&0x80000000; /* sign bit of x */
149 if(xsb==0) y=x; else y= -x; /* y = |x| */
150 hx &= 0x7fffffff; /* high word of |x| */
152 /* filter out huge and non-finite argument */
153 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
154 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
155 if(hx>=0x7ff00000) {
156 u_int32_t low;
157 GET_LOW_WORD(low,x);
158 if(((hx&0xfffff)|low)!=0)
159 return x+x; /* NaN */
160 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
162 if(x > o_threshold) return huge*huge; /* overflow */
164 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
165 if(x+tiny<0.0) /* raise inexact */
166 return tiny-one; /* return -1 */
170 /* argument reduction */
171 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
172 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
173 if(xsb==0)
174 {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
175 else
176 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
177 } else {
178 k = invln2*x+((xsb==0)?0.5:-0.5);
179 t = k;
180 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
181 lo = t*ln2_lo;
183 x = hi - lo;
184 c = (hi-x)-lo;
186 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
187 t = huge+x; /* return x with inexact flags when x!=0 */
188 return x - (t-(huge+x));
190 else k = 0;
192 /* x is now in primary range */
193 hfx = 0.5*x;
194 hxs = x*hfx;
195 #ifdef DO_NOT_USE_THIS
196 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
197 #else
198 R1 = one+hxs*Q[1]; h2 = hxs*hxs;
199 R2 = Q[2]+hxs*Q[3]; h4 = h2*h2;
200 R3 = Q[4]+hxs*Q[5];
201 r1 = R1 + h2*R2 + h4*R3;
202 #endif
203 t = 3.0-r1*hfx;
204 e = hxs*((r1-t)/(6.0 - x*t));
205 if(k==0) return x - (x*e-hxs); /* c is 0 */
206 else {
207 e = (x*(e-c)-c);
208 e -= hxs;
209 if(k== -1) return 0.5*(x-e)-0.5;
210 if(k==1) {
211 if(x < -0.25) return -2.0*(e-(x+0.5));
212 else return one+2.0*(x-e);
214 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
215 u_int32_t high;
216 y = one-(e-x);
217 GET_HIGH_WORD(high,y);
218 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
219 return y-one;
221 t = one;
222 if(k<20) {
223 u_int32_t high;
224 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
225 y = t-(e-x);
226 GET_HIGH_WORD(high,y);
227 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
228 } else {
229 u_int32_t high;
230 SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
231 y = x-(e+t);
232 y += one;
233 GET_HIGH_WORD(high,y);
234 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
237 return y;
239 weak_alias (__expm1, expm1)
240 #ifdef NO_LONG_DOUBLE
241 strong_alias (__expm1, __expm1l)
242 weak_alias (__expm1, expm1l)
243 #endif