2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / dbl-64 / s_atan.c
blob556f5b216ddd4684059b5c149f819694941a87a1
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001 Free Software Foundation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 /************************************************************************/
21 /* MODULE_NAME: atnat.c */
22 /* */
23 /* FUNCTIONS: uatan */
24 /* atanMp */
25 /* signArctan */
26 /* */
27 /* */
28 /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */
29 /* mpatan.c mpatan2.c mpsqrt.c */
30 /* uatan.tbl */
31 /* */
32 /* An ultimate atan() routine. Given an IEEE double machine number x */
33 /* it computes the correctly rounded (to nearest) value of atan(x). */
34 /* */
35 /* Assumption: Machine arithmetic operations are performed in */
36 /* round to nearest mode of IEEE 754 standard. */
37 /* */
38 /************************************************************************/
40 #include "dla.h"
41 #include "mpa.h"
42 #include "MathLib.h"
43 #include "uatan.tbl"
44 #include "atnat.h"
45 #include "math.h"
47 void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */
48 static double atanMp(double,const int[]);
49 double __signArctan(double,double);
50 /* An ultimate atan() routine. Given an IEEE double machine number x, */
51 /* routine computes the correctly rounded (to nearest) value of atan(x). */
52 double atan(double x) {
55 double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3,
56 v,vv,w,ww,y,yy,z,zz;
57 #if 0
58 double y1,y2;
59 #endif
60 int i,ux,dx;
61 #if 0
62 int p;
63 #endif
64 static const int pr[M]={6,8,10,32};
65 number num;
66 #if 0
67 mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;
68 #endif
70 num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
72 /* x=NaN */
73 if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))
74 return x+x;
76 /* Regular values of x, including denormals +-0 and +-INF */
77 u = (x<ZERO) ? -x : x;
78 if (u<C) {
79 if (u<B) {
80 if (u<A) { /* u < A */
81 return x; }
82 else { /* A <= u < B */
83 v=x*x; yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
84 if ((y=x+(yy-U1*x)) == x+(yy+U1*x)) return y;
86 EMULV(x,x,v,vv,t1,t2,t3,t4,t5) /* v+vv=x^2 */
87 s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
88 ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
89 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
90 ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
91 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
92 ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
93 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
94 ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
95 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
96 MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
97 ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2)
98 if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1)) return y;
100 return atanMp(x,pr);
102 else { /* B <= u < C */
103 i=(TWO52+TWO8*u)-TWO52; i-=16;
104 z=u-cij[i][0].d;
105 yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
106 z*(cij[i][5].d+z* cij[i][6].d))));
107 t1=cij[i][1].d;
108 if (i<112) {
109 if (i<48) u2=U21; /* u < 1/4 */
110 else u2=U22; } /* 1/4 <= u < 1/2 */
111 else {
112 if (i<176) u2=U23; /* 1/2 <= u < 3/4 */
113 else u2=U24; } /* 3/4 <= u <= 1 */
114 if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1)) return __signArctan(x,y);
116 z=u-hij[i][0].d;
117 s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
118 z*(hij[i][14].d+z* hij[i][15].d))));
119 ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
120 MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
121 ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
122 MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
123 ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
124 MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
125 ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
126 MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
127 ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
128 if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2)) return __signArctan(x,y);
130 return atanMp(x,pr);
133 else {
134 if (u<D) { /* C <= u < D */
135 w=ONE/u;
136 EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
137 ww=w*((ONE-t1)-t2);
138 i=(TWO52+TWO8*w)-TWO52; i-=16;
139 z=(w-cij[i][0].d)+ww;
140 yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
141 z*(cij[i][5].d+z* cij[i][6].d))));
142 t1=HPI-cij[i][1].d;
143 if (i<112) u3=U31; /* w < 1/2 */
144 else u3=U32; /* w >= 1/2 */
145 if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y);
147 DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
148 t1=w-hij[i][0].d;
149 EADD(t1,ww,z,zz)
150 s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
151 z*(hij[i][14].d+z* hij[i][15].d))));
152 ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
153 MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
154 ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
155 MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
156 ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
157 MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
158 ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
159 MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
160 ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
161 SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)
162 if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y);
164 return atanMp(x,pr);
166 else {
167 if (u<E) { /* D <= u < E */
168 w=ONE/u; v=w*w;
169 EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
170 yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
171 ww=w*((ONE-t1)-t2);
172 ESUB(HPI,w,t3,cor)
173 yy=((HPI1+cor)-ww)-yy;
174 if ((y=t3+(yy-U4)) == t3+(yy+U4)) return __signArctan(x,y);
176 DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
177 MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
178 s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
179 ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
180 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
181 ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
182 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
183 ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
184 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
185 ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
186 MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
187 MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
188 ADD2(w,ww,s2,ss2,s1,ss1,t1,t2)
189 SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2)
190 if ((y=s2+(ss2-U8)) == s2+(ss2+U8)) return __signArctan(x,y);
192 return atanMp(x,pr);
194 else {
195 /* u >= E */
196 if (x>0) return HPI;
197 else return MHPI; }
204 /* Fix the sign of y and return */
205 double __signArctan(double x,double y){
207 if (x<ZERO) return -y;
208 else return y;
211 /* Final stages. Compute atan(x) by multiple precision arithmetic */
212 static double atanMp(double x,const int pr[]){
213 mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
214 double y1,y2;
215 int i,p;
217 for (i=0; i<M; i++) {
218 p = pr[i];
219 __dbl_mp(x,&mpx,p); __mpatan(&mpx,&mpy,p);
220 __dbl_mp(u9[i].d,&mpt1,p); __mul(&mpy,&mpt1,&mperr,p);
221 __add(&mpy,&mperr,&mpy1,p); __sub(&mpy,&mperr,&mpy2,p);
222 __mp_dbl(&mpy1,&y1,p); __mp_dbl(&mpy2,&y2,p);
223 if (y1==y2) return y1;
225 return y1; /*if unpossible to do exact computing */
228 #ifdef NO_LONG_DOUBLE
229 weak_alias (atan, atanl)
230 #endif