2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / dbl-64 / e_pow.c
blob1e159f2c0b2702682bca759b4ffa9cbaf503c1c9
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001, 2002, 2004 Free Software Foundation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 /***************************************************************************/
21 /* MODULE_NAME: upow.c */
22 /* */
23 /* FUNCTIONS: upow */
24 /* power1 */
25 /* my_log2 */
26 /* log1 */
27 /* checkint */
28 /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */
29 /* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */
30 /* uexp.c upow.c */
31 /* root.tbl uexp.tbl upow.tbl */
32 /* An ultimate power routine. Given two IEEE double machine numbers y,x */
33 /* it computes the correctly rounded (to nearest) value of x^y. */
34 /* Assumption: Machine arithmetic operations are performed in */
35 /* round to nearest mode of IEEE 754 standard. */
36 /* */
37 /***************************************************************************/
38 #include "endian.h"
39 #include "upow.h"
40 #include "dla.h"
41 #include "mydefs.h"
42 #include "MathLib.h"
43 #include "upow.tbl"
44 #include "math_private.h"
47 double __exp1(double x, double xx, double error);
48 static double log1(double x, double *delta, double *error);
49 static double my_log2(double x, double *delta, double *error);
50 double __slowpow(double x, double y,double z);
51 static double power1(double x, double y);
52 static int checkint(double x);
54 /***************************************************************************/
55 /* An ultimate power routine. Given two IEEE double machine numbers y,x */
56 /* it computes the correctly rounded (to nearest) value of X^y. */
57 /***************************************************************************/
58 double __ieee754_pow(double x, double y) {
59 double z,a,aa,error, t,a1,a2,y1,y2;
60 #if 0
61 double gor=1.0;
62 #endif
63 mynumber u,v;
64 int k;
65 int4 qx,qy;
66 v.x=y;
67 u.x=x;
68 if (v.i[LOW_HALF] == 0) { /* of y */
69 qx = u.i[HIGH_HALF]&0x7fffffff;
70 /* Checking if x is not too small to compute */
71 if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x;
72 if (y == 1.0) return x;
73 if (y == 2.0) return x*x;
74 if (y == -1.0) return 1.0/x;
75 if (y == 0) return 1.0;
77 /* else */
78 if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */
79 (u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) &&
80 /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
81 (v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */
82 z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */
83 t = y*134217729.0;
84 y1 = t - (t-y);
85 y2 = y - y1;
86 t = z*134217729.0;
87 a1 = t - (t-z);
88 a2 = (z - a1)+aa;
89 a = y1*a1;
90 aa = y2*a1 + y*a2;
91 a1 = a+aa;
92 a2 = (a-a1)+aa;
93 error = error*ABS(y);
94 t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */
95 return (t>0)?t:power1(x,y);
98 if (x == 0) {
99 if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0)
100 || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000)
101 return y;
102 if (ABS(y) > 1.0e20) return (y>0)?0:INF.x;
103 k = checkint(y);
104 if (k == -1)
105 return y < 0 ? 1.0/x : x;
106 else
107 return y < 0 ? 1.0/ABS(x) : 0.0; /* return 0 */
110 qx = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
111 qy = v.i[HIGH_HALF]&0x7fffffff; /* no sign */
113 if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) return NaNQ.x;
114 if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0))
115 return x == 1.0 ? 1.0 : NaNQ.x;
117 /* if x<0 */
118 if (u.i[HIGH_HALF] < 0) {
119 k = checkint(y);
120 if (k==0) {
121 if (qy == 0x7ff00000) {
122 if (x == -1.0) return 1.0;
123 else if (x > -1.0) return v.i[HIGH_HALF] < 0 ? INF.x : 0.0;
124 else return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x;
126 else if (qx == 0x7ff00000)
127 return y < 0 ? 0.0 : INF.x;
128 return NaNQ.x; /* y not integer and x<0 */
130 else if (qx == 0x7ff00000)
132 if (k < 0)
133 return y < 0 ? nZERO.x : nINF.x;
134 else
135 return y < 0 ? 0.0 : INF.x;
137 return (k==1)?__ieee754_pow(-x,y):-__ieee754_pow(-x,y); /* if y even or odd */
139 /* x>0 */
141 if (qx == 0x7ff00000) /* x= 2^-0x3ff */
142 {if (y == 0) return NaNQ.x;
143 return (y>0)?x:0; }
145 if (qy > 0x45f00000 && qy < 0x7ff00000) {
146 if (x == 1.0) return 1.0;
147 if (y>0) return (x>1.0)?INF.x:0;
148 if (y<0) return (x<1.0)?INF.x:0;
151 if (x == 1.0) return 1.0;
152 if (y>0) return (x>1.0)?INF.x:0;
153 if (y<0) return (x<1.0)?INF.x:0;
154 return 0; /* unreachable, to make the compiler happy */
157 /**************************************************************************/
158 /* Computing x^y using more accurate but more slow log routine */
159 /**************************************************************************/
160 static double power1(double x, double y) {
161 double z,a,aa,error, t,a1,a2,y1,y2;
162 z = my_log2(x,&aa,&error);
163 t = y*134217729.0;
164 y1 = t - (t-y);
165 y2 = y - y1;
166 t = z*134217729.0;
167 a1 = t - (t-z);
168 a2 = z - a1;
169 a = y*z;
170 aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y;
171 a1 = a+aa;
172 a2 = (a-a1)+aa;
173 error = error*ABS(y);
174 t = __exp1(a1,a2,1.9e16*error);
175 return (t >= 0)?t:__slowpow(x,y,z);
178 /****************************************************************************/
179 /* Computing log(x) (x is left argument). The result is the returned double */
180 /* + the parameter delta. */
181 /* The result is bounded by error (rightmost argument) */
182 /****************************************************************************/
183 static double log1(double x, double *delta, double *error) {
184 int i,j,m;
185 #if 0
186 int n;
187 #endif
188 double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,add=0;
189 #if 0
190 double cor;
191 #endif
192 mynumber u,v;
193 #ifdef BIG_ENDI
194 mynumber
195 /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */
196 #else
197 #ifdef LITTLE_ENDI
198 mynumber
199 /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */
200 #endif
201 #endif
203 u.x = x;
204 m = u.i[HIGH_HALF];
205 *error = 0;
206 *delta = 0;
207 if (m < 0x00100000) /* 1<x<2^-1007 */
208 { x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF];}
210 if ((m&0x000fffff) < 0x0006a09e)
211 {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
212 else
213 {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
215 v.x = u.x + bigu.x;
216 uu = v.x - bigu.x;
217 i = (v.i[LOW_HALF]&0x000003ff)<<2;
218 if (two52.i[LOW_HALF] == 1023) /* nx = 0 */
220 if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */
222 t = x - 1.0;
223 t1 = (t+5.0e6)-5.0e6;
224 t2 = t-t1;
225 e1 = t - 0.5*t1*t1;
226 e2 = t*t*t*(r3+t*(r4+t*(r5+t*(r6+t*(r7+t*r8)))))-0.5*t2*(t+t1);
227 res = e1+e2;
228 *error = 1.0e-21*ABS(t);
229 *delta = (e1-res)+e2;
230 return res;
231 } /* |x-1| < 1.5*2**-10 */
232 else
234 v.x = u.x*(ui.x[i]+ui.x[i+1])+bigv.x;
235 vv = v.x-bigv.x;
236 j = v.i[LOW_HALF]&0x0007ffff;
237 j = j+j+j;
238 eps = u.x - uu*vv;
239 e1 = eps*ui.x[i];
240 e2 = eps*(ui.x[i+1]+vj.x[j]*(ui.x[i]+ui.x[i+1]));
241 e = e1+e2;
242 e2 = ((e1-e)+e2);
243 t=ui.x[i+2]+vj.x[j+1];
244 t1 = t+e;
245 t2 = (((t-t1)+e)+(ui.x[i+3]+vj.x[j+2]))+e2+e*e*(p2+e*(p3+e*p4));
246 res=t1+t2;
247 *error = 1.0e-24;
248 *delta = (t1-res)+t2;
249 return res;
251 } /* nx = 0 */
252 else /* nx != 0 */
254 eps = u.x - uu;
255 nx = (two52.x - two52e.x)+add;
256 e1 = eps*ui.x[i];
257 e2 = eps*ui.x[i+1];
258 e=e1+e2;
259 e2 = (e1-e)+e2;
260 t=nx*ln2a.x+ui.x[i+2];
261 t1=t+e;
262 t2=(((t-t1)+e)+nx*ln2b.x+ui.x[i+3]+e2)+e*e*(q2+e*(q3+e*(q4+e*(q5+e*q6))));
263 res = t1+t2;
264 *error = 1.0e-21;
265 *delta = (t1-res)+t2;
266 return res;
267 } /* nx != 0 */
270 /****************************************************************************/
271 /* More slow but more accurate routine of log */
272 /* Computing log(x)(x is left argument).The result is return double + delta.*/
273 /* The result is bounded by error (right argument) */
274 /****************************************************************************/
275 static double my_log2(double x, double *delta, double *error) {
276 int i,j,m;
277 #if 0
278 int n;
279 #endif
280 double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,add=0;
281 #if 0
282 double cor;
283 #endif
284 double ou1,ou2,lu1,lu2,ov,lv1,lv2,a,a1,a2;
285 double y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8;
286 mynumber u,v;
287 #ifdef BIG_ENDI
288 mynumber
289 /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */
290 #else
291 #ifdef LITTLE_ENDI
292 mynumber
293 /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */
294 #endif
295 #endif
297 u.x = x;
298 m = u.i[HIGH_HALF];
299 *error = 0;
300 *delta = 0;
301 add=0;
302 if (m<0x00100000) { /* x < 2^-1022 */
303 x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF]; }
305 if ((m&0x000fffff) < 0x0006a09e)
306 {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
307 else
308 {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
310 v.x = u.x + bigu.x;
311 uu = v.x - bigu.x;
312 i = (v.i[LOW_HALF]&0x000003ff)<<2;
313 /*------------------------------------- |x-1| < 2**-11------------------------------- */
314 if ((two52.i[LOW_HALF] == 1023) && (i == 1200))
316 t = x - 1.0;
317 EMULV(t,s3,y,yy,j1,j2,j3,j4,j5);
318 ADD2(-0.5,0,y,yy,z,zz,j1,j2);
319 MUL2(t,0,z,zz,y,yy,j1,j2,j3,j4,j5,j6,j7,j8);
320 MUL2(t,0,y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8);
322 e1 = t+z;
323 e2 = (((t-e1)+z)+zz)+t*t*t*(ss3+t*(s4+t*(s5+t*(s6+t*(s7+t*s8)))));
324 res = e1+e2;
325 *error = 1.0e-25*ABS(t);
326 *delta = (e1-res)+e2;
327 return res;
329 /*----------------------------- |x-1| > 2**-11 -------------------------- */
330 else
331 { /*Computing log(x) according to log table */
332 nx = (two52.x - two52e.x)+add;
333 ou1 = ui.x[i];
334 ou2 = ui.x[i+1];
335 lu1 = ui.x[i+2];
336 lu2 = ui.x[i+3];
337 v.x = u.x*(ou1+ou2)+bigv.x;
338 vv = v.x-bigv.x;
339 j = v.i[LOW_HALF]&0x0007ffff;
340 j = j+j+j;
341 eps = u.x - uu*vv;
342 ov = vj.x[j];
343 lv1 = vj.x[j+1];
344 lv2 = vj.x[j+2];
345 a = (ou1+ou2)*(1.0+ov);
346 a1 = (a+1.0e10)-1.0e10;
347 a2 = a*(1.0-a1*uu*vv);
348 e1 = eps*a1;
349 e2 = eps*a2;
350 e = e1+e2;
351 e2 = (e1-e)+e2;
352 t=nx*ln2a.x+lu1+lv1;
353 t1 = t+e;
354 t2 = (((t-t1)+e)+(lu2+lv2+nx*ln2b.x+e2))+e*e*(p2+e*(p3+e*p4));
355 res=t1+t2;
356 *error = 1.0e-27;
357 *delta = (t1-res)+t2;
358 return res;
362 /**********************************************************************/
363 /* Routine receives a double x and checks if it is an integer. If not */
364 /* it returns 0, else it returns 1 if even or -1 if odd. */
365 /**********************************************************************/
366 static int checkint(double x) {
367 union {int4 i[2]; double x;} u;
368 int k,m,n;
369 #if 0
370 int l;
371 #endif
372 u.x = x;
373 m = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
374 if (m >= 0x7ff00000) return 0; /* x is +/-inf or NaN */
375 if (m >= 0x43400000) return 1; /* |x| >= 2**53 */
376 if (m < 0x40000000) return 0; /* |x| < 2, can not be 0 or 1 */
377 n = u.i[LOW_HALF];
378 k = (m>>20)-1023; /* 1 <= k <= 52 */
379 if (k == 52) return (n&1)? -1:1; /* odd or even*/
380 if (k>20) {
381 if (n<<(k-20)) return 0; /* if not integer */
382 return (n<<(k-21))?-1:1;
384 if (n) return 0; /*if not integer*/
385 if (k == 20) return (m&1)? -1:1;
386 if (m<<(k+12)) return 0;
387 return (m<<(k+11))?-1:1;