2.9
[glibc/nacl-glibc.git] / sysdeps / ieee754 / dbl-64 / dla.h
blobbf73fa902e25177cc3aaea642cba9026a79ce630
1 /*
2 * IBM Accurate Mathematical Library
3 * Written by International Business Machines Corp.
4 * Copyright (C) 2001 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 /***********************************************************************/
22 /*MODULE_NAME: dla.h */
23 /* */
24 /* This file holds C language macros for 'Double Length Floating Point */
25 /* Arithmetic'. The macros are based on the paper: */
26 /* T.J.Dekker, "A floating-point Technique for extending the */
27 /* Available Precision", Number. Math. 18, 224-242 (1971). */
28 /* A Double-Length number is defined by a pair (r,s), of IEEE double */
29 /* precision floating point numbers that satisfy, */
30 /* */
31 /* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
32 /* */
33 /* The computer arithmetic assumed is IEEE double precision in */
34 /* round to nearest mode. All variables in the macros must be of type */
35 /* IEEE double. */
36 /***********************************************************************/
38 /* CN = 1+2**27 = '41a0000002000000' IEEE double format */
39 #define CN 134217729.0
42 /* Exact addition of two single-length floating point numbers, Dekker. */
43 /* The macro produces a double-length number (z,zz) that satisfies */
44 /* z+zz = x+y exactly. */
46 #define EADD(x,y,z,zz) \
47 z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
50 /* Exact subtraction of two single-length floating point numbers, Dekker. */
51 /* The macro produces a double-length number (z,zz) that satisfies */
52 /* z+zz = x-y exactly. */
54 #define ESUB(x,y,z,zz) \
55 z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
58 /* Exact multiplication of two single-length floating point numbers, */
59 /* Veltkamp. The macro produces a double-length number (z,zz) that */
60 /* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
61 /* storage variables of type double. */
63 #define EMULV(x,y,z,zz,p,hx,tx,hy,ty) \
64 p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
65 p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
66 z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;
69 /* Exact multiplication of two single-length floating point numbers, Dekker. */
70 /* The macro produces a nearly double-length number (z,zz) (see Dekker) */
71 /* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
72 /* storage variables of type double. */
74 #define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
75 p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
76 p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
77 p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
80 /* Double-length addition, Dekker. The macro produces a double-length */
81 /* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
82 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
83 /* are assumed to be double-length numbers. r,s are temporary */
84 /* storage variables of type double. */
86 #define ADD2(x,xx,y,yy,z,zz,r,s) \
87 r=(x)+(y); s=(ABS(x)>ABS(y)) ? \
88 (((((x)-r)+(y))+(yy))+(xx)) : \
89 (((((y)-r)+(x))+(xx))+(yy)); \
90 z=r+s; zz=(r-z)+s;
93 /* Double-length subtraction, Dekker. The macro produces a double-length */
94 /* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
95 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
96 /* are assumed to be double-length numbers. r,s are temporary */
97 /* storage variables of type double. */
99 #define SUB2(x,xx,y,yy,z,zz,r,s) \
100 r=(x)-(y); s=(ABS(x)>ABS(y)) ? \
101 (((((x)-r)-(y))-(yy))+(xx)) : \
102 ((((x)-((y)+r))+(xx))-(yy)); \
103 z=r+s; zz=(r-z)+s;
106 /* Double-length multiplication, Dekker. The macro produces a double-length */
107 /* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
108 /* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
109 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
110 /* temporary storage variables of type double. */
112 #define MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc) \
113 MUL12(x,y,c,cc,p,hx,tx,hy,ty,q) \
114 cc=((x)*(yy)+(xx)*(y))+cc; z=c+cc; zz=(c-z)+cc;
117 /* Double-length division, Dekker. The macro produces a double-length */
118 /* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
119 /* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
120 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
121 /* are temporary storage variables of type double. */
123 #define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
124 c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
125 cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
128 /* Double-length addition, slower but more accurate than ADD2. */
129 /* The macro produces a double-length */
130 /* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
131 /* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
132 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
133 /* are temporary storage variables of type double. */
135 #define ADD2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
136 r=(x)+(y); \
137 if (ABS(x)>ABS(y)) { rr=((x)-r)+(y); s=(rr+(yy))+(xx); } \
138 else { rr=((y)-r)+(x); s=(rr+(xx))+(yy); } \
139 if (rr!=0.0) { \
140 z=r+s; zz=(r-z)+s; } \
141 else { \
142 ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)+(yy)) : (((yy)-s)+(xx)); \
143 u=r+s; \
144 uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
145 w=uu+ss; z=u+w; \
146 zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }
149 /* Double-length subtraction, slower but more accurate than SUB2. */
150 /* The macro produces a double-length */
151 /* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
152 /* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
153 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
154 /* are temporary storage variables of type double. */
156 #define SUB2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
157 r=(x)-(y); \
158 if (ABS(x)>ABS(y)) { rr=((x)-r)-(y); s=(rr-(yy))+(xx); } \
159 else { rr=(x)-((y)+r); s=(rr+(xx))-(yy); } \
160 if (rr!=0.0) { \
161 z=r+s; zz=(r-z)+s; } \
162 else { \
163 ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)-(yy)) : ((xx)-((yy)+s)); \
164 u=r+s; \
165 uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
166 w=uu+ss; z=u+w; \
167 zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }