2.9
[glibc/nacl-glibc.git] / sysdeps / ia64 / fpu / libm_lgammaf.S
blob4bd92c3b267cda0f53d626d94dd266406a73e3b1
1 .file "libm_lgammaf.s"
4 // Copyright (c) 2002 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2002 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
26 // LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
29 // EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code,and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 //*********************************************************************
42 // History:
43 // 01/10/02  Initial version
44 // 01/25/02  Corrected parameter store, load, and tag for __libm_error_support
45 // 02/01/02  Added support of SIGN(GAMMA(x)) calculation
46 // 05/20/02  Cleaned up namespace and sf0 syntax
47 // 09/16/02  Improved accuracy on intervals reduced to [1;1.25]
48 // 10/21/02  Now it returns SIGN(GAMMA(x))=-1 for negative zero
49 // 02/10/03  Reordered header: .section, .global, .proc, .align
50 // 07/22/03  Reformatted some data tables
51 // 03/31/05  Reformatted delimiters between data tables
53 //*********************************************************************
55 //*********************************************************************
57 // Function: __libm_lgammaf(float x, int* signgam, int szsigngam)
58 // computes the principle value of the logarithm of the GAMMA function
59 // of x. Signum of GAMMA(x) is stored to memory starting at the address
60 // specified by the signgam.
62 //*********************************************************************
64 // Resources Used:
66 //    Floating-Point Registers: f6-f15
67 //                              f32-f97
69 //    General Purpose Registers:
70 //      r8-r11
71 //      r14-r30
72 //      r32-r36
73 //      r37-r40 (Used to pass arguments to error handling routine)
75 //    Predicate Registers:      p6-p15
77 //*********************************************************************
79 // IEEE Special Conditions:
81 //    lgamma(+inf) = +inf
82 //    lgamma(-inf) = +inf
83 //    lgamma(+/-0) = +inf
84 //    lgamma(x<0, x - integer) = +inf
85 //    lgamma(SNaN) = QNaN
86 //    lgamma(QNaN) = QNaN
88 //*********************************************************************
90 // Overview
92 // The method consists of three cases.
94 // If      2^13 <= x < OVERFLOW_BOUNDARY  use case lgammaf_pstirling;
95 // else if 1 < x < 2^13                   use case lgammaf_regular;
96 // else if -9 < x < 1                     use case lgammaf_negrecursion;
97 // else if -2^13 <  x < -9                use case lgammaf_negpoly;
98 // else if x < -2^13                      use case lgammaf_negstirling;
99 // else if x is close to negative
100 //         roots of ln(GAMMA(x))          use case lgammaf_negroots;
103 // Case 2^13 <= x < OVERFLOW_BOUNDARY
104 // ----------------------------------
105 //   Here we use algorithm based on the Stirling formula:
106 //     ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)*ln(x) - x
108 // Case 1 < x < 2^13
109 // -----------------
110 //   To calculate ln(GAMMA(x)) for such arguments we use polynomial
111 //   approximation on following intervals: [1.0; 1.25), [1.25; 1.5),
112 //   [1.5, 1.75), [1.75; 2), [2; 4), [2^i; 2^(i+1)), i=1..8
114 //   Following variants of approximation and argument reduction are used:
115 //    1. [1.0; 1.25)
116 //       ln(GAMMA(x)) ~ (x-1.0)*P7(x)
118 //    2. [1.25; 1.5)
119 //       ln(GAMMA(x)) ~ ln(GAMMA(x0))+(x-x0)*P8(x-x0),
120 //       where x0 - point of local minimum on [1;2] rounded to nearest double
121 //       precision number.
123 //    3. [1.5; 1.75)
124 //       ln(GAMMA(x)) ~ P8(x)
126 //    4. [1.75; 2.0)
127 //       ln(GAMMA(x)) ~ (x-2)*P7(x)
129 //    5. [2; 4)
130 //       ln(GAMMA(x)) ~ (x-2)*P10(x)
132 //    6. [2^i; 2^(i+1)), i=2..8
133 //       ln(GAMMA(x)) ~ P10((x-2^i)/2^i)
135 // Case -9 < x < 1
136 // ---------------
137 //   Here we use the recursive formula:
138 //   ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
140 //   Using this formula we reduce argument to base interval [1.0; 2.0]
142 // Case -2^13 < x < -9
143 // --------------------
144 //   Here we use the formula:
145 //   ln(GAMMA(x)) = ln(Pi/(|x|*GAMMA(|x|)*sin(Pi*|x|))) =
146 //   = -ln(|x|) - ln((GAMMA(|x|)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
147 //   where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
148 //   ln(sin(Pi*r)/(Pi*r)) is approximated by 8-degree polynomial of r^2
150 // Case x < -2^13
151 // --------------
152 //   Here we use algorithm based on the Stirling formula:
153 //   ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (|x|-0.5)ln(x) - |x| -
154 //   - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
155 //   where r = x - rounded_to_nearest(x).
157 // Neighbourhoods of negative roots
158 // --------------------------------
159 //   Here we use polynomial approximation
160 //   ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
161 //   where x0 is a root of ln(GAMMA(x)) rounded to nearest double
162 //   precision number.
165 // Claculation of logarithm
166 // ------------------------
167 //   Consider  x = 2^N * xf so
168 //   ln(x) = ln(frcpa(x)*x/frcpa(x))
169 //         = ln(1/frcpa(x)) + ln(frcpa(x)*x)
171 //   frcpa(x) = 2^(-N) * frcpa(xf)
173 //   ln(1/frcpa(x)) = -ln(2^(-N)) - ln(frcpa(xf))
174 //                  = N*ln(2) - ln(frcpa(xf))
175 //                  = N*ln(2) + ln(1/frcpa(xf))
177 //   ln(x) = ln(1/frcpa(x)) + ln(frcpa(x)*x) =
178 //         = N*ln(2) + ln(1/frcpa(xf)) + ln(frcpa(x)*x)
179 //         = N*ln(2) + T + ln(frcpa(x)*x)
181 //   Let r = 1 - frcpa(x)*x, note that r is quite small by
182 //   absolute value so
184 //   ln(x) = N*ln(2) + T + ln(1+r) ~ N*ln(2) + T + Series(r),
185 //   where T - is precomputed tabular value,
186 //   Series(r) = (P3*r + P2)*r^2 + (P1*r + 1)
188 //*********************************************************************
190 GR_TAG                 = r8
191 GR_ad_Data             = r8
192 GR_ad_Co               = r9
193 GR_ad_SignGam          = r10
194 GR_ad_Ce               = r10
195 GR_SignExp             = r11
197 GR_ad_C650             = r14
198 GR_ad_RootCo           = r14
199 GR_ad_C0               = r15
200 GR_Dx                  = r15
201 GR_Ind                 = r16
202 GR_Offs                = r17
203 GR_IntNum              = r17
204 GR_ExpBias             = r18
205 GR_ExpMask             = r19
206 GR_Ind4T               = r20
207 GR_RootInd             = r20
208 GR_Sig                 = r21
209 GR_Exp                 = r22
210 GR_PureExp             = r23
211 GR_ad_C43              = r24
212 GR_StirlBound          = r25
213 GR_ad_T                = r25
214 GR_IndX8               = r25
215 GR_Neg2                = r25
216 GR_2xDx                = r25
217 GR_SingBound           = r26
218 GR_IndX2               = r26
219 GR_Neg4                = r26
220 GR_ad_RootCe           = r26
221 GR_Arg                 = r27
222 GR_ExpOf2              = r28
223 GR_fff7                = r28
224 GR_Root                = r28
225 GR_ReqBound            = r28
226 GR_N                   = r29
227 GR_ad_Root             = r30
228 GR_ad_OvfBound         = r30
229 GR_SignOfGamma         = r31
231 GR_SAVE_B0             = r33
232 GR_SAVE_PFS            = r34
233 GR_SAVE_GP             = r35
234 GR_SAVE_SP             = r36
236 GR_Parameter_X         = r37
237 GR_Parameter_Y         = r38
238 GR_Parameter_RESULT    = r39
239 GR_Parameter_TAG       = r40
241 //*********************************************************************
243 FR_X                   = f10
244 FR_Y                   = f1 // lgammaf is single argument function
245 FR_RESULT              = f8
247 FR_x                   = f6
248 FR_x2                  = f7
250 FR_x3                  = f9
251 FR_x4                  = f10
252 FR_xm2                 = f11
253 FR_w                   = f11
254 FR_w2                  = f12
255 FR_Q32                 = f13
256 FR_Q10                 = f14
257 FR_InvX                = f15
259 FR_NormX               = f32
261 FR_A0                  = f33
262 FR_A1                  = f34
263 FR_A2                  = f35
264 FR_A3                  = f36
265 FR_A4                  = f37
266 FR_A5                  = f38
267 FR_A6                  = f39
268 FR_A7                  = f40
269 FR_A8                  = f41
270 FR_A9                  = f42
271 FR_A10                 = f43
273 FR_int_N               = f44
274 FR_P3                  = f45
275 FR_P2                  = f46
276 FR_P1                  = f47
277 FR_LocalMin            = f48
278 FR_Ln2                 = f49
279 FR_05                  = f50
280 FR_LnSqrt2Pi           = f51
281 FR_3                   = f52
282 FR_r                   = f53
283 FR_r2                  = f54
284 FR_T                   = f55
285 FR_N                   = f56
286 FR_xm05                = f57
287 FR_int_Ln              = f58
288 FR_P32                 = f59
289 FR_P10                 = f60
291 FR_Xf                  = f61
292 FR_InvXf               = f62
293 FR_rf                  = f63
294 FR_rf2                 = f64
295 FR_Tf                  = f65
296 FR_Nf                  = f66
297 FR_xm05f               = f67
298 FR_P32f                = f68
299 FR_P10f                = f69
300 FR_Lnf                 = f70
301 FR_Xf2                 = f71
302 FR_Xf4                 = f72
303 FR_Xf8                 = f73
304 FR_Ln                  = f74
305 FR_xx                  = f75
306 FR_Root                = f75
307 FR_Req                 = f76
308 FR_1pXf                = f77
310 FR_S16                 = f78
311 FR_R3                  = f78
312 FR_S14                 = f79
313 FR_R2                  = f79
314 FR_S12                 = f80
315 FR_R1                  = f80
316 FR_S10                 = f81
317 FR_R0                  = f81
318 FR_S8                  = f82
319 FR_rx                  = f82
320 FR_S6                  = f83
321 FR_rx2                 = f84
322 FR_S4                  = f84
323 FR_S2                  = f85
325 FR_Xp1                 = f86
326 FR_Xp2                 = f87
327 FR_Xp3                 = f88
328 FR_Xp4                 = f89
329 FR_Xp5                 = f90
330 FR_Xp6                 = f91
331 FR_Xp7                 = f92
332 FR_Xp8                 = f93
333 FR_OverflowBound       = f93
335 FR_2                   = f94
336 FR_tmp                 = f95
337 FR_int_Ntrunc          = f96
338 FR_Ntrunc              = f97
340 //*********************************************************************
342 RODATA
343 .align 32
344 LOCAL_OBJECT_START(lgammaf_data)
345 log_table_1:
346 data8 0xbfd0001008f39d59 // P3
347 data8 0x3fd5556073e0c45a // P2
348 data8 0x3fe62e42fefa39ef // ln(2)
349 data8 0x3fe0000000000000 // 0.5
351 data8 0x3F60040155D5889E //ln(1/frcpa(1+   0/256)
352 data8 0x3F78121214586B54 //ln(1/frcpa(1+   1/256)
353 data8 0x3F841929F96832F0 //ln(1/frcpa(1+   2/256)
354 data8 0x3F8C317384C75F06 //ln(1/frcpa(1+   3/256)
355 data8 0x3F91A6B91AC73386 //ln(1/frcpa(1+   4/256)
356 data8 0x3F95BA9A5D9AC039 //ln(1/frcpa(1+   5/256)
357 data8 0x3F99D2A8074325F4 //ln(1/frcpa(1+   6/256)
358 data8 0x3F9D6B2725979802 //ln(1/frcpa(1+   7/256)
359 data8 0x3FA0C58FA19DFAAA //ln(1/frcpa(1+   8/256)
360 data8 0x3FA2954C78CBCE1B //ln(1/frcpa(1+   9/256)
361 data8 0x3FA4A94D2DA96C56 //ln(1/frcpa(1+  10/256)
362 data8 0x3FA67C94F2D4BB58 //ln(1/frcpa(1+  11/256)
363 data8 0x3FA85188B630F068 //ln(1/frcpa(1+  12/256)
364 data8 0x3FAA6B8ABE73AF4C //ln(1/frcpa(1+  13/256)
365 data8 0x3FAC441E06F72A9E //ln(1/frcpa(1+  14/256)
366 data8 0x3FAE1E6713606D07 //ln(1/frcpa(1+  15/256)
367 data8 0x3FAFFA6911AB9301 //ln(1/frcpa(1+  16/256)
368 data8 0x3FB0EC139C5DA601 //ln(1/frcpa(1+  17/256)
369 data8 0x3FB1DBD2643D190B //ln(1/frcpa(1+  18/256)
370 data8 0x3FB2CC7284FE5F1C //ln(1/frcpa(1+  19/256)
371 data8 0x3FB3BDF5A7D1EE64 //ln(1/frcpa(1+  20/256)
372 data8 0x3FB4B05D7AA012E0 //ln(1/frcpa(1+  21/256)
373 data8 0x3FB580DB7CEB5702 //ln(1/frcpa(1+  22/256)
374 data8 0x3FB674F089365A7A //ln(1/frcpa(1+  23/256)
375 data8 0x3FB769EF2C6B568D //ln(1/frcpa(1+  24/256)
376 data8 0x3FB85FD927506A48 //ln(1/frcpa(1+  25/256)
377 data8 0x3FB9335E5D594989 //ln(1/frcpa(1+  26/256)
378 data8 0x3FBA2B0220C8E5F5 //ln(1/frcpa(1+  27/256)
379 data8 0x3FBB0004AC1A86AC //ln(1/frcpa(1+  28/256)
380 data8 0x3FBBF968769FCA11 //ln(1/frcpa(1+  29/256)
381 data8 0x3FBCCFEDBFEE13A8 //ln(1/frcpa(1+  30/256)
382 data8 0x3FBDA727638446A2 //ln(1/frcpa(1+  31/256)
383 data8 0x3FBEA3257FE10F7A //ln(1/frcpa(1+  32/256)
384 data8 0x3FBF7BE9FEDBFDE6 //ln(1/frcpa(1+  33/256)
385 data8 0x3FC02AB352FF25F4 //ln(1/frcpa(1+  34/256)
386 data8 0x3FC097CE579D204D //ln(1/frcpa(1+  35/256)
387 data8 0x3FC1178E8227E47C //ln(1/frcpa(1+  36/256)
388 data8 0x3FC185747DBECF34 //ln(1/frcpa(1+  37/256)
389 data8 0x3FC1F3B925F25D41 //ln(1/frcpa(1+  38/256)
390 data8 0x3FC2625D1E6DDF57 //ln(1/frcpa(1+  39/256)
391 data8 0x3FC2D1610C86813A //ln(1/frcpa(1+  40/256)
392 data8 0x3FC340C59741142E //ln(1/frcpa(1+  41/256)
393 data8 0x3FC3B08B6757F2A9 //ln(1/frcpa(1+  42/256)
394 data8 0x3FC40DFB08378003 //ln(1/frcpa(1+  43/256)
395 data8 0x3FC47E74E8CA5F7C //ln(1/frcpa(1+  44/256)
396 data8 0x3FC4EF51F6466DE4 //ln(1/frcpa(1+  45/256)
397 data8 0x3FC56092E02BA516 //ln(1/frcpa(1+  46/256)
398 data8 0x3FC5D23857CD74D5 //ln(1/frcpa(1+  47/256)
399 data8 0x3FC6313A37335D76 //ln(1/frcpa(1+  48/256)
400 data8 0x3FC6A399DABBD383 //ln(1/frcpa(1+  49/256)
401 data8 0x3FC70337DD3CE41B //ln(1/frcpa(1+  50/256)
402 data8 0x3FC77654128F6127 //ln(1/frcpa(1+  51/256)
403 data8 0x3FC7E9D82A0B022D //ln(1/frcpa(1+  52/256)
404 data8 0x3FC84A6B759F512F //ln(1/frcpa(1+  53/256)
405 data8 0x3FC8AB47D5F5A310 //ln(1/frcpa(1+  54/256)
406 data8 0x3FC91FE49096581B //ln(1/frcpa(1+  55/256)
407 data8 0x3FC981634011AA75 //ln(1/frcpa(1+  56/256)
408 data8 0x3FC9F6C407089664 //ln(1/frcpa(1+  57/256)
409 data8 0x3FCA58E729348F43 //ln(1/frcpa(1+  58/256)
410 data8 0x3FCABB55C31693AD //ln(1/frcpa(1+  59/256)
411 data8 0x3FCB1E104919EFD0 //ln(1/frcpa(1+  60/256)
412 data8 0x3FCB94EE93E367CB //ln(1/frcpa(1+  61/256)
413 data8 0x3FCBF851C067555F //ln(1/frcpa(1+  62/256)
414 data8 0x3FCC5C0254BF23A6 //ln(1/frcpa(1+  63/256)
415 data8 0x3FCCC000C9DB3C52 //ln(1/frcpa(1+  64/256)
416 data8 0x3FCD244D99C85674 //ln(1/frcpa(1+  65/256)
417 data8 0x3FCD88E93FB2F450 //ln(1/frcpa(1+  66/256)
418 data8 0x3FCDEDD437EAEF01 //ln(1/frcpa(1+  67/256)
419 data8 0x3FCE530EFFE71012 //ln(1/frcpa(1+  68/256)
420 data8 0x3FCEB89A1648B971 //ln(1/frcpa(1+  69/256)
421 data8 0x3FCF1E75FADF9BDE //ln(1/frcpa(1+  70/256)
422 data8 0x3FCF84A32EAD7C35 //ln(1/frcpa(1+  71/256)
423 data8 0x3FCFEB2233EA07CD //ln(1/frcpa(1+  72/256)
424 data8 0x3FD028F9C7035C1C //ln(1/frcpa(1+  73/256)
425 data8 0x3FD05C8BE0D9635A //ln(1/frcpa(1+  74/256)
426 data8 0x3FD085EB8F8AE797 //ln(1/frcpa(1+  75/256)
427 data8 0x3FD0B9C8E32D1911 //ln(1/frcpa(1+  76/256)
428 data8 0x3FD0EDD060B78081 //ln(1/frcpa(1+  77/256)
429 data8 0x3FD122024CF0063F //ln(1/frcpa(1+  78/256)
430 data8 0x3FD14BE2927AECD4 //ln(1/frcpa(1+  79/256)
431 data8 0x3FD180618EF18ADF //ln(1/frcpa(1+  80/256)
432 data8 0x3FD1B50BBE2FC63B //ln(1/frcpa(1+  81/256)
433 data8 0x3FD1DF4CC7CF242D //ln(1/frcpa(1+  82/256)
434 data8 0x3FD214456D0EB8D4 //ln(1/frcpa(1+  83/256)
435 data8 0x3FD23EC5991EBA49 //ln(1/frcpa(1+  84/256)
436 data8 0x3FD2740D9F870AFB //ln(1/frcpa(1+  85/256)
437 data8 0x3FD29ECDABCDFA04 //ln(1/frcpa(1+  86/256)
438 data8 0x3FD2D46602ADCCEE //ln(1/frcpa(1+  87/256)
439 data8 0x3FD2FF66B04EA9D4 //ln(1/frcpa(1+  88/256)
440 data8 0x3FD335504B355A37 //ln(1/frcpa(1+  89/256)
441 data8 0x3FD360925EC44F5D //ln(1/frcpa(1+  90/256)
442 data8 0x3FD38BF1C3337E75 //ln(1/frcpa(1+  91/256)
443 data8 0x3FD3C25277333184 //ln(1/frcpa(1+  92/256)
444 data8 0x3FD3EDF463C1683E //ln(1/frcpa(1+  93/256)
445 data8 0x3FD419B423D5E8C7 //ln(1/frcpa(1+  94/256)
446 data8 0x3FD44591E0539F49 //ln(1/frcpa(1+  95/256)
447 data8 0x3FD47C9175B6F0AD //ln(1/frcpa(1+  96/256)
448 data8 0x3FD4A8B341552B09 //ln(1/frcpa(1+  97/256)
449 data8 0x3FD4D4F3908901A0 //ln(1/frcpa(1+  98/256)
450 data8 0x3FD501528DA1F968 //ln(1/frcpa(1+  99/256)
451 data8 0x3FD52DD06347D4F6 //ln(1/frcpa(1+ 100/256)
452 data8 0x3FD55A6D3C7B8A8A //ln(1/frcpa(1+ 101/256)
453 data8 0x3FD5925D2B112A59 //ln(1/frcpa(1+ 102/256)
454 data8 0x3FD5BF406B543DB2 //ln(1/frcpa(1+ 103/256)
455 data8 0x3FD5EC433D5C35AE //ln(1/frcpa(1+ 104/256)
456 data8 0x3FD61965CDB02C1F //ln(1/frcpa(1+ 105/256)
457 data8 0x3FD646A84935B2A2 //ln(1/frcpa(1+ 106/256)
458 data8 0x3FD6740ADD31DE94 //ln(1/frcpa(1+ 107/256)
459 data8 0x3FD6A18DB74A58C5 //ln(1/frcpa(1+ 108/256)
460 data8 0x3FD6CF31058670EC //ln(1/frcpa(1+ 109/256)
461 data8 0x3FD6F180E852F0BA //ln(1/frcpa(1+ 110/256)
462 data8 0x3FD71F5D71B894F0 //ln(1/frcpa(1+ 111/256)
463 data8 0x3FD74D5AEFD66D5C //ln(1/frcpa(1+ 112/256)
464 data8 0x3FD77B79922BD37E //ln(1/frcpa(1+ 113/256)
465 data8 0x3FD7A9B9889F19E2 //ln(1/frcpa(1+ 114/256)
466 data8 0x3FD7D81B037EB6A6 //ln(1/frcpa(1+ 115/256)
467 data8 0x3FD8069E33827231 //ln(1/frcpa(1+ 116/256)
468 data8 0x3FD82996D3EF8BCB //ln(1/frcpa(1+ 117/256)
469 data8 0x3FD85855776DCBFB //ln(1/frcpa(1+ 118/256)
470 data8 0x3FD8873658327CCF //ln(1/frcpa(1+ 119/256)
471 data8 0x3FD8AA75973AB8CF //ln(1/frcpa(1+ 120/256)
472 data8 0x3FD8D992DC8824E5 //ln(1/frcpa(1+ 121/256)
473 data8 0x3FD908D2EA7D9512 //ln(1/frcpa(1+ 122/256)
474 data8 0x3FD92C59E79C0E56 //ln(1/frcpa(1+ 123/256)
475 data8 0x3FD95BD750EE3ED3 //ln(1/frcpa(1+ 124/256)
476 data8 0x3FD98B7811A3EE5B //ln(1/frcpa(1+ 125/256)
477 data8 0x3FD9AF47F33D406C //ln(1/frcpa(1+ 126/256)
478 data8 0x3FD9DF270C1914A8 //ln(1/frcpa(1+ 127/256)
479 data8 0x3FDA0325ED14FDA4 //ln(1/frcpa(1+ 128/256)
480 data8 0x3FDA33440224FA79 //ln(1/frcpa(1+ 129/256)
481 data8 0x3FDA57725E80C383 //ln(1/frcpa(1+ 130/256)
482 data8 0x3FDA87D0165DD199 //ln(1/frcpa(1+ 131/256)
483 data8 0x3FDAAC2E6C03F896 //ln(1/frcpa(1+ 132/256)
484 data8 0x3FDADCCC6FDF6A81 //ln(1/frcpa(1+ 133/256)
485 data8 0x3FDB015B3EB1E790 //ln(1/frcpa(1+ 134/256)
486 data8 0x3FDB323A3A635948 //ln(1/frcpa(1+ 135/256)
487 data8 0x3FDB56FA04462909 //ln(1/frcpa(1+ 136/256)
488 data8 0x3FDB881AA659BC93 //ln(1/frcpa(1+ 137/256)
489 data8 0x3FDBAD0BEF3DB165 //ln(1/frcpa(1+ 138/256)
490 data8 0x3FDBD21297781C2F //ln(1/frcpa(1+ 139/256)
491 data8 0x3FDC039236F08819 //ln(1/frcpa(1+ 140/256)
492 data8 0x3FDC28CB1E4D32FD //ln(1/frcpa(1+ 141/256)
493 data8 0x3FDC4E19B84723C2 //ln(1/frcpa(1+ 142/256)
494 data8 0x3FDC7FF9C74554C9 //ln(1/frcpa(1+ 143/256)
495 data8 0x3FDCA57B64E9DB05 //ln(1/frcpa(1+ 144/256)
496 data8 0x3FDCCB130A5CEBB0 //ln(1/frcpa(1+ 145/256)
497 data8 0x3FDCF0C0D18F326F //ln(1/frcpa(1+ 146/256)
498 data8 0x3FDD232075B5A201 //ln(1/frcpa(1+ 147/256)
499 data8 0x3FDD490246DEFA6B //ln(1/frcpa(1+ 148/256)
500 data8 0x3FDD6EFA918D25CD //ln(1/frcpa(1+ 149/256)
501 data8 0x3FDD9509707AE52F //ln(1/frcpa(1+ 150/256)
502 data8 0x3FDDBB2EFE92C554 //ln(1/frcpa(1+ 151/256)
503 data8 0x3FDDEE2F3445E4AF //ln(1/frcpa(1+ 152/256)
504 data8 0x3FDE148A1A2726CE //ln(1/frcpa(1+ 153/256)
505 data8 0x3FDE3AFC0A49FF40 //ln(1/frcpa(1+ 154/256)
506 data8 0x3FDE6185206D516E //ln(1/frcpa(1+ 155/256)
507 data8 0x3FDE882578823D52 //ln(1/frcpa(1+ 156/256)
508 data8 0x3FDEAEDD2EAC990C //ln(1/frcpa(1+ 157/256)
509 data8 0x3FDED5AC5F436BE3 //ln(1/frcpa(1+ 158/256)
510 data8 0x3FDEFC9326D16AB9 //ln(1/frcpa(1+ 159/256)
511 data8 0x3FDF2391A2157600 //ln(1/frcpa(1+ 160/256)
512 data8 0x3FDF4AA7EE03192D //ln(1/frcpa(1+ 161/256)
513 data8 0x3FDF71D627C30BB0 //ln(1/frcpa(1+ 162/256)
514 data8 0x3FDF991C6CB3B379 //ln(1/frcpa(1+ 163/256)
515 data8 0x3FDFC07ADA69A910 //ln(1/frcpa(1+ 164/256)
516 data8 0x3FDFE7F18EB03D3E //ln(1/frcpa(1+ 165/256)
517 data8 0x3FE007C053C5002E //ln(1/frcpa(1+ 166/256)
518 data8 0x3FE01B942198A5A1 //ln(1/frcpa(1+ 167/256)
519 data8 0x3FE02F74400C64EB //ln(1/frcpa(1+ 168/256)
520 data8 0x3FE04360BE7603AD //ln(1/frcpa(1+ 169/256)
521 data8 0x3FE05759AC47FE34 //ln(1/frcpa(1+ 170/256)
522 data8 0x3FE06B5F1911CF52 //ln(1/frcpa(1+ 171/256)
523 data8 0x3FE078BF0533C568 //ln(1/frcpa(1+ 172/256)
524 data8 0x3FE08CD9687E7B0E //ln(1/frcpa(1+ 173/256)
525 data8 0x3FE0A10074CF9019 //ln(1/frcpa(1+ 174/256)
526 data8 0x3FE0B5343A234477 //ln(1/frcpa(1+ 175/256)
527 data8 0x3FE0C974C89431CE //ln(1/frcpa(1+ 176/256)
528 data8 0x3FE0DDC2305B9886 //ln(1/frcpa(1+ 177/256)
529 data8 0x3FE0EB524BAFC918 //ln(1/frcpa(1+ 178/256)
530 data8 0x3FE0FFB54213A476 //ln(1/frcpa(1+ 179/256)
531 data8 0x3FE114253DA97D9F //ln(1/frcpa(1+ 180/256)
532 data8 0x3FE128A24F1D9AFF //ln(1/frcpa(1+ 181/256)
533 data8 0x3FE1365252BF0865 //ln(1/frcpa(1+ 182/256)
534 data8 0x3FE14AE558B4A92D //ln(1/frcpa(1+ 183/256)
535 data8 0x3FE15F85A19C765B //ln(1/frcpa(1+ 184/256)
536 data8 0x3FE16D4D38C119FA //ln(1/frcpa(1+ 185/256)
537 data8 0x3FE18203C20DD133 //ln(1/frcpa(1+ 186/256)
538 data8 0x3FE196C7BC4B1F3B //ln(1/frcpa(1+ 187/256)
539 data8 0x3FE1A4A738B7A33C //ln(1/frcpa(1+ 188/256)
540 data8 0x3FE1B981C0C9653D //ln(1/frcpa(1+ 189/256)
541 data8 0x3FE1CE69E8BB106B //ln(1/frcpa(1+ 190/256)
542 data8 0x3FE1DC619DE06944 //ln(1/frcpa(1+ 191/256)
543 data8 0x3FE1F160A2AD0DA4 //ln(1/frcpa(1+ 192/256)
544 data8 0x3FE2066D7740737E //ln(1/frcpa(1+ 193/256)
545 data8 0x3FE2147DBA47A394 //ln(1/frcpa(1+ 194/256)
546 data8 0x3FE229A1BC5EBAC3 //ln(1/frcpa(1+ 195/256)
547 data8 0x3FE237C1841A502E //ln(1/frcpa(1+ 196/256)
548 data8 0x3FE24CFCE6F80D9A //ln(1/frcpa(1+ 197/256)
549 data8 0x3FE25B2C55CD5762 //ln(1/frcpa(1+ 198/256)
550 data8 0x3FE2707F4D5F7C41 //ln(1/frcpa(1+ 199/256)
551 data8 0x3FE285E0842CA384 //ln(1/frcpa(1+ 200/256)
552 data8 0x3FE294294708B773 //ln(1/frcpa(1+ 201/256)
553 data8 0x3FE2A9A2670AFF0C //ln(1/frcpa(1+ 202/256)
554 data8 0x3FE2B7FB2C8D1CC1 //ln(1/frcpa(1+ 203/256)
555 data8 0x3FE2C65A6395F5F5 //ln(1/frcpa(1+ 204/256)
556 data8 0x3FE2DBF557B0DF43 //ln(1/frcpa(1+ 205/256)
557 data8 0x3FE2EA64C3F97655 //ln(1/frcpa(1+ 206/256)
558 data8 0x3FE3001823684D73 //ln(1/frcpa(1+ 207/256)
559 data8 0x3FE30E97E9A8B5CD //ln(1/frcpa(1+ 208/256)
560 data8 0x3FE32463EBDD34EA //ln(1/frcpa(1+ 209/256)
561 data8 0x3FE332F4314AD796 //ln(1/frcpa(1+ 210/256)
562 data8 0x3FE348D90E7464D0 //ln(1/frcpa(1+ 211/256)
563 data8 0x3FE35779F8C43D6E //ln(1/frcpa(1+ 212/256)
564 data8 0x3FE36621961A6A99 //ln(1/frcpa(1+ 213/256)
565 data8 0x3FE37C299F3C366A //ln(1/frcpa(1+ 214/256)
566 data8 0x3FE38AE2171976E7 //ln(1/frcpa(1+ 215/256)
567 data8 0x3FE399A157A603E7 //ln(1/frcpa(1+ 216/256)
568 data8 0x3FE3AFCCFE77B9D1 //ln(1/frcpa(1+ 217/256)
569 data8 0x3FE3BE9D503533B5 //ln(1/frcpa(1+ 218/256)
570 data8 0x3FE3CD7480B4A8A3 //ln(1/frcpa(1+ 219/256)
571 data8 0x3FE3E3C43918F76C //ln(1/frcpa(1+ 220/256)
572 data8 0x3FE3F2ACB27ED6C7 //ln(1/frcpa(1+ 221/256)
573 data8 0x3FE4019C2125CA93 //ln(1/frcpa(1+ 222/256)
574 data8 0x3FE4181061389722 //ln(1/frcpa(1+ 223/256)
575 data8 0x3FE42711518DF545 //ln(1/frcpa(1+ 224/256)
576 data8 0x3FE436194E12B6BF //ln(1/frcpa(1+ 225/256)
577 data8 0x3FE445285D68EA69 //ln(1/frcpa(1+ 226/256)
578 data8 0x3FE45BCC464C893A //ln(1/frcpa(1+ 227/256)
579 data8 0x3FE46AED21F117FC //ln(1/frcpa(1+ 228/256)
580 data8 0x3FE47A1527E8A2D3 //ln(1/frcpa(1+ 229/256)
581 data8 0x3FE489445EFFFCCC //ln(1/frcpa(1+ 230/256)
582 data8 0x3FE4A018BCB69835 //ln(1/frcpa(1+ 231/256)
583 data8 0x3FE4AF5A0C9D65D7 //ln(1/frcpa(1+ 232/256)
584 data8 0x3FE4BEA2A5BDBE87 //ln(1/frcpa(1+ 233/256)
585 data8 0x3FE4CDF28F10AC46 //ln(1/frcpa(1+ 234/256)
586 data8 0x3FE4DD49CF994058 //ln(1/frcpa(1+ 235/256)
587 data8 0x3FE4ECA86E64A684 //ln(1/frcpa(1+ 236/256)
588 data8 0x3FE503C43CD8EB68 //ln(1/frcpa(1+ 237/256)
589 data8 0x3FE513356667FC57 //ln(1/frcpa(1+ 238/256)
590 data8 0x3FE522AE0738A3D8 //ln(1/frcpa(1+ 239/256)
591 data8 0x3FE5322E26867857 //ln(1/frcpa(1+ 240/256)
592 data8 0x3FE541B5CB979809 //ln(1/frcpa(1+ 241/256)
593 data8 0x3FE55144FDBCBD62 //ln(1/frcpa(1+ 242/256)
594 data8 0x3FE560DBC45153C7 //ln(1/frcpa(1+ 243/256)
595 data8 0x3FE5707A26BB8C66 //ln(1/frcpa(1+ 244/256)
596 data8 0x3FE587F60ED5B900 //ln(1/frcpa(1+ 245/256)
597 data8 0x3FE597A7977C8F31 //ln(1/frcpa(1+ 246/256)
598 data8 0x3FE5A760D634BB8B //ln(1/frcpa(1+ 247/256)
599 data8 0x3FE5B721D295F10F //ln(1/frcpa(1+ 248/256)
600 data8 0x3FE5C6EA94431EF9 //ln(1/frcpa(1+ 249/256)
601 data8 0x3FE5D6BB22EA86F6 //ln(1/frcpa(1+ 250/256)
602 data8 0x3FE5E6938645D390 //ln(1/frcpa(1+ 251/256)
603 data8 0x3FE5F673C61A2ED2 //ln(1/frcpa(1+ 252/256)
604 data8 0x3FE6065BEA385926 //ln(1/frcpa(1+ 253/256)
605 data8 0x3FE6164BFA7CC06B //ln(1/frcpa(1+ 254/256)
606 data8 0x3FE62643FECF9743 //ln(1/frcpa(1+ 255/256)
608 // [2;4)
609 data8 0xBEB2CC7A38B9355F,0x3F035F2D1833BF4C // A10,A9
610 data8 0xBFF51BAA7FD27785,0x3FFC9D5D5B6CDEFF // A2,A1
611 data8 0xBF421676F9CB46C7,0x3F7437F2FA1436C6 // A8,A7
612 data8 0xBFD7A7041DE592FE,0x3FE9F107FEE8BD29 // A4,A3
613 // [4;8)
614 data8 0x3F6BBBD68451C0CD,0xBF966EC3272A16F7 // A10,A9
615 data8 0x40022A24A39AD769,0x4014190EDF49C8C5 // A2,A1
616 data8 0x3FB130FD016EE241,0xBFC151B46E635248 // A8,A7
617 data8 0x3FDE8F611965B5FE,0xBFEB5110EB265E3D // A4,A3
618 // [8;16)
619 data8 0x3F736EF93508626A,0xBF9FE5DBADF58AF1 // A10,A9
620 data8 0x40110A9FC5192058,0x40302008A6F96B29 // A2,A1
621 data8 0x3FB8E74E0CE1E4B5,0xBFC9B5DA78873656 // A8,A7
622 data8 0x3FE99D0DF10022DC,0xBFF829C0388F9484 // A4,A3
623 // [16;32)
624 data8 0x3F7FFF9D6D7E9269,0xBFAA780A249AEDB1 // A10,A9
625 data8 0x402082A807AEA080,0x4045ED9868408013 // A2,A1
626 data8 0x3FC4E1E54C2F99B7,0xBFD5DE2D6FFF1490 // A8,A7
627 data8 0x3FF75FC89584AE87,0xC006B4BADD886CAE // A4,A3
628 // [32;64)
629 data8 0x3F8CE54375841A5F,0xBFB801ABCFFA1BE2 // A10,A9
630 data8 0x403040A8B1815BDA,0x405B99A917D24B7A // A2,A1
631 data8 0x3FD30CAB81BFFA03,0xBFE41AEF61ECF48B // A8,A7
632 data8 0x400650CC136BEC43,0xC016022046E8292B // A4,A3
633 // [64;128)
634 data8 0x3F9B69BD22CAA8B8,0xBFC6D48875B7A213 // A10,A9
635 data8 0x40402028CCAA2F6D,0x40709AACEB3CBE0F // A2,A1
636 data8 0x3FE22C6A5924761E,0xBFF342F5F224523D // A8,A7
637 data8 0x4015CD405CCA331F,0xC025AAD10482C769 // A4,A3
638 // [128;256)
639 data8 0x3FAAAD9CD0E40D06,0xBFD63FC8505D80CB // A10,A9
640 data8 0x40501008D56C2648,0x408364794B0F4376 // A2,A1
641 data8 0x3FF1BE0126E00284,0xC002D8E3F6F7F7CA // A8,A7
642 data8 0x40258C757E95D860,0xC0357FA8FD398011 // A4,A3
643 // [256;512)
644 data8 0x3FBA4DAC59D49FEB,0xBFE5F476D1C43A77 // A10,A9
645 data8 0x40600800D890C7C6,0x40962C42AAEC8EF0 // A2,A1
646 data8 0x40018680ECF19B89,0xC012A3EB96FB7BA4 // A8,A7
647 data8 0x40356C4CDD3B60F9,0xC0456A34BF18F440 // A4,A3
648 // [512;1024)
649 data8 0x3FCA1B54F6225A5A,0xBFF5CD67BA10E048 // A10,A9
650 data8 0x407003FED94C58C2,0x40A8F30B4ACBCD22 // A2,A1
651 data8 0x40116A135EB66D8C,0xC022891B1CED527E // A8,A7
652 data8 0x40455C4617FDD8BC,0xC0555F82729E59C4 // A4,A3
653 // [1024;2048)
654 data8 0x3FD9FFF9095C6EC9,0xC005B88CB25D76C9 // A10,A9
655 data8 0x408001FE58FA734D,0x40BBB953BAABB0F3 // A2,A1
656 data8 0x40215B2F9FEB5D87,0xC0327B539DEA5058 // A8,A7
657 data8 0x40555444B3E8D64D,0xC0655A2B26F9FC8A // A4,A3
658 // [2048;4096)
659 data8 0x3FE9F065A1C3D6B1,0xC015ACF6FAE8D78D // A10,A9
660 data8 0x409000FE383DD2B7,0x40CE7F5C1E8BCB8B // A2,A1
661 data8 0x40315324E5DB2EBE,0xC04274194EF70D18 // A8,A7
662 data8 0x4065504353FF2207,0xC075577FE1BFE7B6 // A4,A3
663 // [4096;8192)
664 data8 0x3FF9E6FBC6B1C70D,0xC025A62DAF76F85D // A10,A9
665 data8 0x40A0007E2F61EBE8,0x40E0A2A23FB5F6C3 // A2,A1
666 data8 0x40414E9BC0A0141A,0xC0527030F2B69D43 // A8,A7
667 data8 0x40754E417717B45B,0xC085562A447258E5 // A4,A3
669 data8 0xbfdffffffffaea15 // P1
670 data8 0x3FDD8B618D5AF8FE // point of local minimum on [1;2]
671 data8 0x3FED67F1C864BEB5 // ln(sqrt(2*Pi))
672 data8 0x4008000000000000 // 3.0
674 data8 0xBF9E1C289FB224AB,0x3FBF7422445C9460 // A6,A5
675 data8 0xBFF01E76D66F8D8A // A0
676 data8 0xBFE2788CFC6F91DA // A1 [1.0;1.25)
677 data8 0x3FCB8CC69000EB5C,0xBFD41997A0C2C641 // A6,A5
678 data8 0x3FFCAB0BFA0EA462 // A0
679 data8 0xBFBF19B9BCC38A42 // A0 [1.25;1.5)
680 data8 0x3FD51EE4DE0A364C,0xBFE00D7F98A16E4B // A6,A5
681 data8 0x40210CE1F327E9E4 // A0
682 data8 0x4001DB08F9DFA0CC // A0 [1.5;1.75)
683 data8 0x3FE24F606742D252,0xBFEC81D7D12574EC // A6,A5
684 data8 0x403BE636A63A9C27 // A0
685 data8 0x4000A0CB38D6CF0A // A0 [1.75;2.0)
686 data8 0x3FF1029A9DD542B4,0xBFFAD37C209D3B25 // A6,A5
687 data8 0x405385E6FD9BE7EA // A0
688 data8 0x478895F1C0000000 // Overflow boundary
689 data8 0x400062D97D26B523,0xC00A03E1529FF023 // A6,A5
690 data8 0x4069204C51E566CE // A0
691 data8 0x0000000000000000 // pad
692 data8 0x40101476B38FD501,0xC0199DE7B387C0FC // A6,A5
693 data8 0x407EB8DAEC83D759 // A0
694 data8 0x0000000000000000 // pad
695 data8 0x401FDB008D65125A,0xC0296B506E665581 // A6,A5
696 data8 0x409226D93107EF66 // A0
697 data8 0x0000000000000000 // pad
698 data8 0x402FB3EAAF3E7B2D,0xC039521142AD8E0D // A6,A5
699 data8 0x40A4EFA4F072792E // A0
700 data8 0x0000000000000000 // pad
701 data8 0x403FA024C66B2563,0xC0494569F250E691 // A6,A5
702 data8 0x40B7B747C9235BB8 // A0
703 data8 0x0000000000000000 // pad
704 data8 0x404F9607D6DA512C,0xC0593F0B2EDDB4BC // A6,A5
705 data8 0x40CA7E29C5F16DE2 // A0
706 data8 0x0000000000000000 // pad
707 data8 0x405F90C5F613D98D,0xC0693BD130E50AAF // A6,A5
708 data8 0x40DD4495238B190C // A0
709 data8 0x0000000000000000 // pad
711 // polynomial approximation of ln(sin(Pi*x)/(Pi*x)), |x| <= 0.5
712 data8 0xBFD58731A486E820,0xBFA4452CC28E15A9 // S16,S14
713 data8 0xBFD013F6E1B86C4F,0xBFD5B3F19F7A341F // S8,S6
714 data8 0xBFC86A0D5252E778,0xBFC93E08C9EE284B // S12,S10
715 data8 0xBFE15132555C9EDD,0xBFFA51A662480E35 // S4,S2
717 // [1.0;1.25)
718 data8 0xBFA697D6775F48EA,0x3FB9894B682A98E7 // A9,A8
719 data8 0xBFCA8969253CFF55,0x3FD15124EFB35D9D // A5,A4
720 data8 0xBFC1B00158AB719D,0x3FC5997D04E7F1C1 // A7,A6
721 data8 0xBFD9A4D50BAFF989,0x3FEA51A661F5176A // A3,A2
722 // [1.25;1.5)
723 data8 0x3F838E0D35A6171A,0xBF831BBBD61313B7 // A8,A7
724 data8 0x3FB08B40196425D0,0xBFC2E427A53EB830 // A4,A3
725 data8 0x3F9285DDDC20D6C3,0xBFA0C90C9C223044 // A6,A5
726 data8 0x3FDEF72BC8F5287C,0x3D890B3DAEBC1DFC // A2,A1
727 // [1.5;1.75)
728 data8 0x3F65D5A7EB31047F,0xBFA44EAC9BFA7FDE // A8,A7
729 data8 0x40051FEFE7A663D8,0xC012A5CFE00A2522 // A4,A3
730 data8 0x3FD0E1583AB00E08,0xBFF084AF95883BA5 // A6,A5
731 data8 0x40185982877AE0A2,0xC015F83DB73B57B7 // A2,A1
732 // [1.75;2.0)
733 data8 0x3F4A9222032EB39A,0xBF8CBC9587EEA5A3 // A8,A7
734 data8 0x3FF795400783BE49,0xC00851BC418B8A25 // A4,A3
735 data8 0x3FBBC992783E8C5B,0xBFDFA67E65E89B29 // A6,A5
736 data8 0x4012B408F02FAF88,0xC013284CE7CB0C39 // A2,A1
738 // roots
739 data8 0xC003A7FC9600F86C // -2.4570247382208005860
740 data8 0xC009260DBC9E59AF // -3.1435808883499798405
741 data8 0xC005FB410A1BD901 // -2.7476826467274126919
742 data8 0xC00FA471547C2FE5 // -3.9552942848585979085
744 // polynomial approximation of ln(GAMMA(x)) near roots
745 // near -2.4570247382208005860
746 data8 0x3FF694A6058D9592,0x40136EEBB003A92B // R3,R2
747 data8 0x3FF83FE966AF5360,0x3C90323B6D1FE86D // R1,R0
748 // near -3.1435808883499798405
749 data8 0x405C11371268DA38,0x4039D4D2977D2C23 // R3,R2
750 data8 0x401F20A65F2FAC62,0x3CDE9605E3AE7A62 // R1,R0
751 // near -2.7476826467274126919
752 data8 0xC034185AC31314FF,0x4023267F3C28DFE3 // R3,R2
753 data8 0xBFFEA12DA904B194,0x3CA8FB8530BA7689 // R1,R0
754 // near -2.7476826467274126919
755 data8 0xC0AD25359E70C888,0x406F76DEAEA1B8C6 // R3,R2
756 data8 0xC034B99D966C5644,0xBCBDDC0336980B58 // R1,R0
757 LOCAL_OBJECT_END(lgammaf_data)
759 //*********************************************************************
761 .section .text
762 GLOBAL_LIBM_ENTRY(__libm_lgammaf)
763 { .mfi
764       getf.exp      GR_SignExp = f8
765       frcpa.s1      FR_InvX,p0 = f1,f8
766       mov           GR_ExpOf2 = 0x10000
768 { .mfi
769       addl          GR_ad_Data = @ltoff(lgammaf_data),gp
770       fcvt.fx.s1    FR_int_N = f8
771       mov           GR_ExpMask = 0x1ffff
773 { .mfi
774       getf.sig      GR_Sig = f8
775       fclass.m      p13,p0 = f8,0x1EF // is x NaTVal, NaN,
776                                       // +/-0, +/-INF or +/-deno?
777       mov           GR_ExpBias = 0xffff
779 { .mfi
780       ld8           GR_ad_Data = [GR_ad_Data]
781       fma.s1        FR_Xp1 = f8,f1,f1
782       mov           GR_StirlBound = 0x1000C
784 { .mfi
785       setf.exp      FR_2 = GR_ExpOf2
786       fmerge.se     FR_x = f1,f8
787       dep.z         GR_Ind = GR_SignExp,3,4
789 { .mfi
790       cmp.eq        p8,p0 = GR_SignExp,GR_ExpBias
791       fcvt.fx.trunc.s1 FR_int_Ntrunc = f8
792       and           GR_Exp = GR_ExpMask,GR_SignExp
794 { .mfi
795       add           GR_ad_C650 = 0xB20,GR_ad_Data
796       fcmp.lt.s1    p14,p15 = f8,f0
797       extr.u        GR_Ind4T = GR_Sig,55,8
799 { .mfb
800       sub           GR_PureExp = GR_Exp,GR_ExpBias
801       fnorm.s1      FR_NormX = f8
802       // jump if x is NaTVal, NaN, +/-0, +/-INF or +/-deno
803 (p13) br.cond.spnt  lgammaf_spec
805 lgammaf_core:
806 { .mfi
807       ldfpd         FR_P1,FR_LocalMin = [GR_ad_C650],16
808       fms.s1        FR_xm2 = f8,f1,f1
809       add           GR_ad_Co = 0x820,GR_ad_Data
811 { .mib
812       ldfpd         FR_P3,FR_P2 = [GR_ad_Data],16
813       cmp.ltu       p9,p0 = GR_SignExp,GR_ExpBias
814       // jump if x is from the interval [1; 2)
815 (p8)  br.cond.spnt  lgammaf_1_2
817 { .mfi
818       setf.sig      FR_int_Ln = GR_PureExp
819       fms.s1        FR_r = FR_InvX,f8,f1
820       shladd        GR_ad_Co = GR_Ind,3,GR_ad_Co
822 { .mib
823       ldfpd         FR_LnSqrt2Pi,FR_3 = [GR_ad_C650],16
824       cmp.lt        p13,p12 = GR_Exp,GR_StirlBound
825       // jump if x is from the interval (0; 1)
826 (p9)  br.cond.spnt  lgammaf_0_1
828 { .mfi
829       ldfpd         FR_Ln2,FR_05 = [GR_ad_Data],16
830       fma.s1        FR_Xp2 = f1,f1,FR_Xp1 // (x+2)
831       shladd        GR_ad_C650 = GR_Ind,2,GR_ad_C650
833 { .mfi
834       add           GR_ad_Ce = 0x20,GR_ad_Co
835       nop.f         0
836       add           GR_ad_C43 = 0x30,GR_ad_Co
838 { .mfi
839       // load coefficients of polynomial approximation
840       // of ln(GAMMA(x)), 2 <= x < 2^13
841 (p13) ldfpd         FR_A10,FR_A9 = [GR_ad_Co],16
842       fcvt.xf       FR_N = FR_int_N
843       cmp.eq.unc    p6,p7 = GR_ExpOf2,GR_SignExp
845 { .mib
846 (p13) ldfpd         FR_A8,FR_A7 = [GR_ad_Ce]
847 (p14) cmp.le.unc    p9,p0 = GR_StirlBound,GR_Exp
848       // jump if x is less or equal to -2^13
849 (p9)  br.cond.spnt  lgammaf_negstirling
851 .pred.rel "mutex",p6,p7
852 { .mfi
853 (p13) ldfpd         FR_A6,FR_A5 = [GR_ad_C650],16
854 (p6)  fma.s1        FR_x = f0,f0,FR_NormX
855       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
857 { .mfi
858 (p13) ldfpd         FR_A4,FR_A3 = [GR_ad_C43]
859 (p7)  fms.s1        FR_x = FR_x,f1,f1
860 (p14) mov           GR_ReqBound = 0x20005
862 { .mfi
863 (p13) ldfpd         FR_A2,FR_A1 = [GR_ad_Co],16
864       fms.s1        FR_xm2 = FR_xm2,f1,f1
865 (p14) extr.u        GR_Arg = GR_Sig,60,4
867 { .mfi
868       mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
869       fcvt.xf       FR_Ntrunc = FR_int_Ntrunc
870       nop.i         0
872 { .mfi
873       ldfd          FR_T = [GR_ad_T]
874       fma.s1        FR_r2 = FR_r,FR_r,f0
875       shl           GR_ReqBound = GR_ReqBound,3
877 { .mfi
878       add           GR_ad_Co = 0xCA0,GR_ad_Data
879       fnma.s1       FR_Req = FR_Xp1,FR_NormX,f0 // -x*(x+1)
880 (p14) shladd        GR_Arg = GR_Exp,4,GR_Arg
882 { .mfi
883 (p13) ldfd          FR_A0 = [GR_ad_C650]
884       fma.s1        FR_Xp3 = FR_2,f1,FR_Xp1 // (x+3)
885 (p14) cmp.le.unc    p9,p0 = GR_Arg,GR_ReqBound
887 { .mfi
888 (p14) add           GR_ad_Ce = 0x20,GR_ad_Co
889       fma.s1        FR_Xp4 = FR_2,FR_2,FR_NormX // (x+4)
890 (p15) add           GR_ad_OvfBound = 0xBB8,GR_ad_Data
892 { .mfi
893       // load coefficients of polynomial approximation
894       // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
895 (p14) ldfpd         FR_S16,FR_S14 = [GR_ad_Co],16
896 (p14) fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
897 (p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma // set sign of
898                                                        // gamma(x) to -1
900 { .mfb
901 (p14) ldfpd         FR_S12,FR_S10 = [GR_ad_Ce],16
902       fma.s1        FR_Xp5 = FR_2,FR_2,FR_Xp1 // (x+5)
903       // jump if x is from the interval (-9; 0)
904 (p9)  br.cond.spnt  lgammaf_negrecursion
906 { .mfi
907 (p14) ldfpd         FR_S8,FR_S6 = [GR_ad_Co],16
908       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
909       nop.i         0
911 { .mfb
912 (p14) ldfpd         FR_S4,FR_S2 = [GR_ad_Ce],16
913       fma.s1        FR_x2 = FR_x,FR_x,f0
914       // jump if x is from the interval (-2^13; -9)
915 (p14) br.cond.spnt  lgammaf_negpoly
917 { .mfi
918       ldfd          FR_OverflowBound = [GR_ad_OvfBound]
919 (p12) fcvt.xf       FR_N = FR_int_Ln
920       // set p9  if signgum is 32-bit int
921       // set p10 if signgum is 64-bit int
922       cmp.eq        p10,p9 = 8,r34
924 { .mfi
925       nop.m         0
926 (p12) fma.s1        FR_P10 = FR_P1,FR_r,f1
927       nop.i         0
929 .pred.rel "mutex",p6,p7
930 .pred.rel "mutex",p9,p10
931 { .mfi
932       // store sign of gamma(x) as 32-bit int
933 (p9)  st4           [r33] = GR_SignOfGamma
934 (p6)  fma.s1        FR_xx = FR_x,FR_xm2,f0
935       nop.i         0
937 { .mfi
938       // store sign of gamma(x) as 64-bit int
939 (p10) st8           [r33] = GR_SignOfGamma
940 (p7)  fma.s1        FR_xx = f0,f0,FR_x
941       nop.i         0
943 { .mfi
944       nop.m         0
945 (p13) fma.s1        FR_A9 = FR_A10,FR_x,FR_A9
946       nop.i         0
948 { .mfi
949       nop.m         0
950 (p13) fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
951       nop.i         0
953 { .mfi
954       nop.m         0
955 (p13) fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
956       nop.i         0
958 { .mfi
959       nop.m         0
960 (p13) fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
961       nop.i         0
963 { .mfi
964       nop.m         0
965 (p15) fcmp.eq.unc.s1 p8,p0 = FR_NormX,FR_2 // is input argument 2.0?
966       nop.i         0
968 { .mfi
969       nop.m         0
970 (p13) fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
971       nop.i         0
973 { .mfi
974       nop.m         0
975 (p12) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
976       nop.i         0
978 { .mfi
979       nop.m         0
980 (p12) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
981       nop.i         0
983 { .mfi
984       nop.m         0
985 (p13) fma.s1        FR_x4 = FR_x2,FR_x2,f0
986       nop.i         0
988 { .mfi
989       nop.m         0
990 (p13) fma.s1        FR_x3 = FR_x2,FR_xx,f0
991       nop.i         0
993 { .mfi
994       nop.m         0
995 (p13) fma.s1        FR_A7 = FR_A9,FR_x2,FR_A7
996       nop.i         0
998 { .mfb
999       nop.m         0
1000 (p8)  fma.s.s0      f8 = f0,f0,f0
1001 (p8)  br.ret.spnt   b0 // fast exit for 2.0
1003 { .mfi
1004       nop.m         0
1005 (p6)  fma.s1        FR_A0 = FR_A0,FR_xm2,f0
1006       nop.i         0
1008 { .mfi
1009       nop.m         0
1010 (p13) fma.s1        FR_A3 = FR_A5,FR_x2,FR_A3
1011       nop.i         0
1013 { .mfi
1014       nop.m         0
1015 (p15) fcmp.le.unc.s1 p8,p0 = FR_OverflowBound,FR_NormX // overflow test
1016       nop.i         0
1018 { .mfi
1019       nop.m         0
1020 (p12) fms.s1        FR_xm05 = FR_NormX,f1,FR_05
1021       nop.i         0
1023 { .mfi
1024       nop.m         0
1025 (p12) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1026       nop.i         0
1028 { .mfi
1029       nop.m         0
1030 (p12) fms.s1        FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
1031       nop.i         0
1033 { .mfi
1034       nop.m         0
1035 (p13) fma.s1        FR_A0 = FR_A1,FR_xx,FR_A0
1036       nop.i         0
1038 { .mfb
1039       nop.m         0
1040 (p13) fma.s1        FR_A3 = FR_A7,FR_x4,FR_A3
1041       // jump if result overflows
1042 (p8)  br.cond.spnt  lgammaf_overflow
1044 .pred.rel "mutex",p12,p13
1045 { .mfi
1046       nop.m         0
1047 (p12) fma.s.s0      f8 = FR_Ln,FR_xm05,FR_LnSqrt2Pi
1048       nop.i         0
1050 { .mfb
1051       nop.m         0
1052 (p13) fma.s.s0      f8 = FR_A3,FR_x3,FR_A0
1053       br.ret.sptk   b0
1055 // branch for calculating of ln(GAMMA(x)) for 0 < x < 1
1056 //---------------------------------------------------------------------
1057 .align 32
1058 lgammaf_0_1:
1059 { .mfi
1060       getf.sig      GR_Ind = FR_Xp1
1061       fma.s1        FR_r2 = FR_r,FR_r,f0
1062       mov           GR_fff7 = 0xFFF7
1064 { .mfi
1065       ldfpd         FR_Ln2,FR_05 = [GR_ad_Data],16
1066       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1067       // input argument cann't be equal to 1.0
1068       cmp.eq        p0,p14 = r0,r0
1070 { .mfi
1071       getf.exp      GR_Exp = FR_w
1072       fcvt.xf       FR_N = FR_int_Ln
1073       add           GR_ad_Co = 0xCE0,GR_ad_Data
1075 { .mfi
1076       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1077       fma.s1        FR_P10 = FR_P1,FR_r,f1
1078       add           GR_ad_Ce = 0xD00,GR_ad_Data
1080 { .mfi
1081       ldfd          FR_T = [GR_ad_T]
1082       fma.s1        FR_w2 = FR_w,FR_w,f0
1083       extr.u        GR_Ind = GR_Ind,61,2
1085 { .mfi
1086       nop.m         0
1087       fma.s1        FR_Q32 = FR_P3,FR_w,FR_P2
1088 ////      add           GR_ad_C0 = 0xB30,GR_ad_Data
1089       add           GR_ad_C0 = 0xB38,GR_ad_Data
1091 { .mfi
1092       and           GR_Exp = GR_Exp,GR_ExpMask
1093       nop.f         0
1094       shladd        GR_IndX8 = GR_Ind,3,r0
1096 { .mfi
1097       shladd        GR_IndX2 = GR_Ind,1,r0
1098       fma.s1        FR_Q10 = FR_P1,FR_w,f1
1099       cmp.eq        p6,p15 = 0,GR_Ind
1101 { .mfi
1102       shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1103 (p6)  fma.s1        FR_x = f0,f0,FR_NormX
1104       shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1106 { .mfi
1107       shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1108       nop.f         0
1109 (p15) cmp.eq.unc    p7,p8 = 1,GR_Ind
1111 .pred.rel "mutex",p7,p8
1112 { .mfi
1113       ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1114 (p7)  fms.s1        FR_x = FR_NormX,f1,FR_LocalMin
1115       cmp.ge        p10,p11 = GR_Exp,GR_fff7
1117 { .mfb
1118       ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1119 (p8)  fma.s1        FR_x = f1,f1,FR_NormX
1120       br.cond.sptk  lgamma_0_2_core
1122 // branch for calculating of ln(GAMMA(x)) for 1 <= x < 2
1123 //---------------------------------------------------------------------
1124 .align 32
1125 lgammaf_1_2:
1126 { .mfi
1127       add           GR_ad_Co = 0xCF0,GR_ad_Data
1128       fcmp.eq.s1    p14,p0 = f1,FR_NormX // is input argument 1.0?
1129       extr.u        GR_Ind = GR_Sig,61,2
1131 { .mfi
1132       add           GR_ad_Ce = 0xD10,GR_ad_Data
1133       nop.f         0
1134 ////      add           GR_ad_C0 = 0xB40,GR_ad_Data
1135       add           GR_ad_C0 = 0xB48,GR_ad_Data
1137 { .mfi
1138       shladd        GR_IndX8 = GR_Ind,3,r0
1139       nop.f         0
1140       shladd        GR_IndX2 = GR_Ind,1,r0
1142 { .mfi
1143       cmp.eq        p6,p15 = 0,GR_Ind // p6 <- x from [1;1.25)
1144       nop.f         0
1145       cmp.ne        p9,p0 = r0,r0
1147 { .mfi
1148       shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1149 (p6)  fms.s1        FR_x = FR_NormX,f1,f1 // reduced x for [1;1.25)
1150       shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1152 { .mfi
1153       shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1154 (p14) fma.s.s0      f8 = f0,f0,f0
1155 (p15) cmp.eq.unc    p7,p8 = 1,GR_Ind // p7 <- x from [1.25;1.5)
1157 .pred.rel "mutex",p7,p8
1158 { .mfi
1159       ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1160 (p7)  fms.s1        FR_x = FR_xm2,f1,FR_LocalMin
1161       nop.i         0
1163 { .mfi
1164       ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1165 (p8)  fma.s1        FR_x = f0,f0,FR_NormX
1166 (p9)  cmp.eq.unc    p10,p11 = r0,r0
1168 lgamma_0_2_core:
1169 { .mmi
1170       ldfpd         FR_A4,FR_A3 = [GR_ad_Co],16
1171       ldfpd         FR_A2,FR_A1 = [GR_ad_Ce],16
1172       mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
1174 { .mfi
1175 //      add           GR_ad_C0 = 8,GR_ad_C0
1176       ldfd          FR_A0 = [GR_ad_C0]
1177       nop.f         0
1178       // set p13 if signgum is 32-bit int
1179       // set p15 if signgum is 64-bit int
1180       cmp.eq        p15,p13 = 8,r34
1182 .pred.rel "mutex",p13,p15
1183 { .mmf
1184       // store sign of gamma(x)
1185 (p13) st4           [r33] = GR_SignOfGamma // as 32-bit int
1186 (p15) st8           [r33] = GR_SignOfGamma // as 64-bit int
1187 (p11) fma.s1        FR_Q32 = FR_Q32,FR_w2,FR_Q10
1189 { .mfb
1190       nop.m         0
1191 (p10) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1192 (p14) br.ret.spnt   b0 // fast exit for 1.0
1194 { .mfi
1195       nop.m         0
1196 (p10) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1197       cmp.eq        p6,p7 = 0,GR_Ind // p6 <- x from [1;1.25)
1199 { .mfi
1200       nop.m         0
1201       fma.s1        FR_x2 = FR_x,FR_x,f0
1202       cmp.eq        p8,p0 = r0,r0 // set p8 to 1 that means we on [1;2]
1204 { .mfi
1205       nop.m         0
1206 (p11) fma.s1        FR_Ln = FR_Q32,FR_w,f0
1207       nop.i         0
1209 { .mfi
1210       nop.m         0
1211       nop.f         0
1212       nop.i         0
1214 .pred.rel "mutex",p6,p7
1215 { .mfi
1216       nop.m         0
1217 (p6)  fma.s1        FR_xx = f0,f0,FR_x
1218       nop.i         0
1220 { .mfi
1221       nop.m         0
1222 (p7)  fma.s1        FR_xx = f0,f0,f1
1223       nop.i         0
1225 { .mfi
1226       nop.m         0
1227       fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1228       nop.i         0
1230 { .mfi
1231       nop.m         0
1232       fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1233 (p9)  cmp.ne        p8,p0 = r0,r0 // set p8 to 0 that means we on [0;1]
1235 { .mfi
1236       nop.m         0
1237       fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1238       nop.i         0
1240 { .mfi
1241       nop.m         0
1242       fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1243       nop.i         0
1245 { .mfi
1246       nop.m         0
1247       fma.s1        FR_x4 = FR_x2,FR_x2,f0
1248       nop.i         0
1250 { .mfi
1251       nop.m         0
1252 (p10) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1253       nop.i         0
1255 { .mfi
1256       nop.m         0
1257       fma.s1        FR_A5 = FR_A7,FR_x2,FR_A5
1258       nop.i         0
1260 { .mfi
1261       nop.m         0
1262       fma.s1        FR_A1 = FR_A3,FR_x2,FR_A1
1263       nop.i         0
1265 .pred.rel "mutex",p9,p8
1266 { .mfi
1267       nop.m         0
1268 (p9)  fms.d.s1      FR_A0 = FR_A0,FR_xx,FR_Ln
1269       nop.i         0
1271 { .mfi
1272       nop.m         0
1273 (p8)  fms.s1        FR_A0 = FR_A0,FR_xx,f0
1274       nop.i         0
1276 { .mfi
1277       nop.m         0
1278       fma.d.s1      FR_A1 = FR_A5,FR_x4,FR_A1
1279       nop.i         0
1281 { .mfi
1282       nop.m         0
1283       nop.f         0
1284       nop.i         0
1286 .pred.rel "mutex",p6,p7
1287 { .mfi
1288       nop.m         0
1289 (p6)  fma.s.s0      f8 = FR_A1,FR_x2,FR_A0
1290       nop.i         0
1292 { .mfb
1293       nop.m         0
1294 (p7)  fma.s.s0      f8 = FR_A1,FR_x,FR_A0
1295       br.ret.sptk   b0
1297 // branch for calculating of ln(GAMMA(x)) for -9 < x < 1
1298 //---------------------------------------------------------------------
1299 .align 32
1300 lgammaf_negrecursion:
1301 { .mfi
1302       getf.sig      GR_N = FR_int_Ntrunc
1303       fms.s1        FR_1pXf = FR_Xp2,f1,FR_Ntrunc // 1 + (x+1) - [x]
1304       mov           GR_Neg2 = 2
1306 { .mfi
1307       add           GR_ad_Co = 0xCE0,GR_ad_Data
1308       fms.s1        FR_Xf = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
1309       mov           GR_Neg4 = 4
1311 { .mfi
1312       add           GR_ad_Ce = 0xD00,GR_ad_Data
1313       fma.s1        FR_Xp6 = FR_2,FR_2,FR_Xp2 // (x+6)
1314       add           GR_ad_C0 = 0xB30,GR_ad_Data
1316 { .mfi
1317       sub           GR_Neg2 = r0,GR_Neg2
1318       fma.s1        FR_Xp7 = FR_2,FR_3,FR_Xp1 // (x+7)
1319       sub           GR_Neg4 = r0,GR_Neg4
1321 { .mfi
1322       cmp.ne        p8,p0 = r0,GR_N
1323       fcmp.eq.s1    p13,p0 = FR_NormX,FR_Ntrunc
1324       and           GR_IntNum = 0xF,GR_N
1326 { .mfi
1327       cmp.lt        p6,p0 = GR_N,GR_Neg2
1328       fma.s1        FR_Xp8 = FR_2,FR_3,FR_Xp2 // (x+8)
1329       cmp.lt        p7,p0 = GR_N,GR_Neg4
1331 { .mfi
1332       getf.d        GR_Arg = FR_NormX
1333 (p6)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp3,f0
1334 (p8)  tbit.z.unc    p14,p15 = GR_IntNum,0
1336 { .mfi
1337       sub           GR_RootInd = 0xE,GR_IntNum
1338 (p7)  fma.s1        FR_Xp4 = FR_Xp4,FR_Xp5,f0
1339       add           GR_ad_Root = 0xDE0,GR_ad_Data
1341 { .mfi
1342       shladd        GR_ad_Root = GR_RootInd,3,GR_ad_Root
1343       fms.s1        FR_x = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
1344       nop.i         0
1346 { .mfb
1347       nop.m         0
1348       nop.f         0
1349 (p13) br.cond.spnt  lgammaf_singularity
1351 .pred.rel "mutex",p14,p15
1352 { .mfi
1353       cmp.gt        p6,p0 = 0xA,GR_IntNum
1354 (p14) fma.s1        FR_Req = FR_Req,FR_Xf,f0
1355       cmp.gt        p7,p0 = 0xD,GR_IntNum
1357 { .mfi
1358 (p15) mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
1359 (p15) fnma.s1       FR_Req = FR_Req,FR_Xf,f0
1360       cmp.leu       p0,p13 = 2,GR_RootInd
1362 { .mfi
1363       nop.m         0
1364 (p6)  fma.s1        FR_Xp6 = FR_Xp6,FR_Xp7,f0
1365 (p13) add           GR_ad_RootCo = 0xE00,GR_ad_Data
1367 { .mfi
1368       nop.m         0
1369       fcmp.eq.s1    p12,p11 = FR_1pXf,FR_2
1370       nop.i         0
1372 { .mfi
1373       getf.sig      GR_Sig = FR_1pXf
1374       fcmp.le.s1    p9,p0 = FR_05,FR_Xf
1375       nop.i         0
1377 { .mfi
1378 (p13) shladd        GR_RootInd = GR_RootInd,4,r0
1379 (p7)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp4,f0
1380 (p8)  cmp.gt.unc    p10,p0 = 0x9,GR_IntNum
1382 .pred.rel "mutex",p11,p12
1383 { .mfi
1384       nop.m         0
1385 (p10) fma.s1        FR_Req = FR_Req,FR_Xp8,f0
1386 (p11) extr.u        GR_Ind = GR_Sig,61,2
1388 { .mfi
1389 (p13) add           GR_RootInd = GR_RootInd,GR_RootInd
1390       nop.f         0
1391 (p12) mov           GR_Ind = 3
1393 { .mfi
1394       shladd        GR_IndX2 = GR_Ind,1,r0
1395       nop.f         0
1396       cmp.gt        p14,p0 = 2,GR_Ind
1398 { .mfi
1399       shladd        GR_IndX8 = GR_Ind,3,r0
1400       nop.f         0
1401       cmp.eq        p6,p0 = 1,GR_Ind
1403 .pred.rel "mutex",p6,p9
1404 { .mfi
1405       shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1406 (p6)  fms.s1        FR_x = FR_Xf,f1,FR_LocalMin
1407       cmp.gt        p10,p0 = 0xB,GR_IntNum
1409 { .mfi
1410       shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1411 (p9)  fma.s1        FR_x = f0,f0,FR_1pXf
1412       shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1414 { .mfi
1415       // load coefficients of polynomial approximation
1416       // of ln(GAMMA(x)), 1 <= x < 2
1417       ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1418 (p10) fma.s1        FR_Xp2 = FR_Xp2,FR_Xp6,f0
1419       add           GR_ad_C0 = 8,GR_ad_C0
1421 { .mfi
1422       ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1423       nop.f         0
1424 (p14) add           GR_ad_Root = 0x10,GR_ad_Root
1426 { .mfi
1427       ldfpd         FR_A4,FR_A3 = [GR_ad_Co],16
1428       nop.f         0
1429       add           GR_ad_RootCe = 0xE10,GR_ad_Data
1431 { .mfi
1432       ldfpd         FR_A2,FR_A1 = [GR_ad_Ce],16
1433       nop.f         0
1434 (p14) add           GR_RootInd = 0x40,GR_RootInd
1436 { .mmi
1437       ldfd          FR_A0 = [GR_ad_C0]
1438 (p13) add           GR_ad_RootCo = GR_ad_RootCo,GR_RootInd
1439 (p13) add           GR_ad_RootCe = GR_ad_RootCe,GR_RootInd
1441 { .mmi
1442 (p13) ld8           GR_Root = [GR_ad_Root]
1443 (p13) ldfd          FR_Root = [GR_ad_Root]
1444       mov           GR_ExpBias = 0xffff
1446 { .mfi
1447       nop.m         0
1448       fma.s1        FR_x2 = FR_x,FR_x,f0
1449       nop.i         0
1451 { .mlx
1452 (p8)  cmp.gt.unc    p10,p0 = 0xF,GR_IntNum
1453       movl          GR_Dx = 0x000000014F8B588E
1455 { .mfi
1456       // load coefficients of polynomial approximation
1457       // of ln(GAMMA(x)), x is close to one of negative roots
1458 (p13) ldfpd         FR_R3,FR_R2 = [GR_ad_RootCo]
1459       // argumenth for logarithm
1460 (p10) fma.s1        FR_Req = FR_Req,FR_Xp2,f0
1461       mov           GR_ExpMask = 0x1ffff
1463 { .mfi
1464 (p13) ldfpd         FR_R1,FR_R0 = [GR_ad_RootCe]
1465       nop.f         0
1466       // set p9 if signgum is 32-bit int
1467       // set p8 if signgum is 64-bit int
1468       cmp.eq        p8,p9 = 8,r34
1470 .pred.rel "mutex",p9,p8
1471 { .mfi
1472 (p9)  st4           [r33] = GR_SignOfGamma // as 32-bit int
1473       fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1474 (p13) sub           GR_Root = GR_Arg,GR_Root
1476 { .mfi
1477 (p8)  st8           [r33] = GR_SignOfGamma // as 64-bit int
1478       fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1479       nop.i         0
1481 { .mfi
1482       nop.m         0
1483       fms.s1        FR_w = FR_Req,f1,f1
1484 (p13) add           GR_Root = GR_Root,GR_Dx
1486 { .mfi
1487       nop.m         0
1488       nop.f         0
1489 (p13) add           GR_2xDx = GR_Dx,GR_Dx
1491 { .mfi
1492       nop.m         0
1493       fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1494       nop.i         0
1496 { .mfi
1497       nop.m         0
1498       fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1499 (p13) cmp.leu.unc   p10,p0 = GR_Root,GR_2xDx
1501 { .mfi
1502       nop.m         0
1503       frcpa.s1      FR_InvX,p0 = f1,FR_Req
1504       nop.i         0
1506 { .mfi
1507       nop.m         0
1508 (p10) fms.s1        FR_rx = FR_NormX,f1,FR_Root
1509       nop.i         0
1511 { .mfi
1512       getf.exp      GR_SignExp = FR_Req
1513       fma.s1        FR_x4 = FR_x2,FR_x2,f0
1514       nop.i         0
1516 { .mfi
1517       getf.sig      GR_Sig = FR_Req
1518       fma.s1        FR_A5 = FR_A7,FR_x2,FR_A5
1519       nop.i         0
1521 { .mfi
1522       sub           GR_PureExp = GR_SignExp,GR_ExpBias
1523       fma.s1        FR_w2 = FR_w,FR_w,f0
1524       nop.i         0
1526 { .mfi
1527       nop.m         0
1528       fma.s1        FR_Q32 = FR_P3,FR_w,FR_P2
1529       nop.i         0
1531 { .mfi
1532       setf.sig      FR_int_Ln = GR_PureExp
1533       fma.s1        FR_A1 = FR_A3,FR_x2,FR_A1
1534       extr.u        GR_Ind4T = GR_Sig,55,8
1536 { .mfi
1537       nop.m         0
1538       fma.s1        FR_Q10 = FR_P1,FR_w,f1
1539       nop.i         0
1541 { .mfi
1542       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1543       fms.s1        FR_r = FR_InvX,FR_Req,f1
1544       nop.i         0
1546 { .mfi
1547       nop.m         0
1548 (p10) fms.s1        FR_rx2 = FR_rx,FR_rx,f0
1549       nop.i         0
1551 { .mfi
1552       ldfd          FR_T = [GR_ad_T]
1553 (p10) fma.s1        FR_R2 = FR_R3,FR_rx,FR_R2
1554       nop.i         0
1556 { .mfi
1557       nop.m         0
1558 (p10) fma.s1        FR_R0 = FR_R1,FR_rx,FR_R0
1559       nop.i         0
1561 { .mfi
1562       getf.exp      GR_Exp = FR_w
1563       fma.s1        FR_A1 = FR_A5,FR_x4,FR_A1
1564       mov           GR_ExpMask = 0x1ffff
1566 { .mfi
1567       nop.m         0
1568       fma.s1        FR_Q32 = FR_Q32, FR_w2,FR_Q10
1569       nop.i         0
1571 { .mfi
1572       nop.m         0
1573       fma.s1        FR_r2 = FR_r,FR_r,f0
1574       mov           GR_fff7 = 0xFFF7
1576 { .mfi
1577       nop.m         0
1578       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1579       nop.i         0
1581 { .mfi
1582       nop.m         0
1583       fma.s1        FR_P10 = FR_P1,FR_r,f1
1584       and           GR_Exp = GR_ExpMask,GR_Exp
1586 { .mfb
1587       nop.m         0
1588 (p10) fma.s.s0      f8 = FR_R2,FR_rx2,FR_R0
1589 (p10) br.ret.spnt   b0 // exit for arguments close to negative roots
1591 { .mfi
1592       nop.m         0
1593       fcvt.xf       FR_N = FR_int_Ln
1594       nop.i         0
1596 { .mfi
1597       cmp.ge        p14,p15 = GR_Exp,GR_fff7
1598       nop.f         0
1599       nop.i         0
1601 { .mfi
1602       nop.m         0
1603       fma.s1        FR_A0 = FR_A1,FR_x,FR_A0
1604       nop.i         0
1606 { .mfi
1607       nop.m         0
1608 (p15) fma.s1        FR_Ln = FR_Q32,FR_w,f0
1609       nop.i         0
1611 { .mfi
1612       nop.m         0
1613 (p14) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1614       cmp.eq        p6,p7 = 0,GR_Ind
1616 { .mfi
1617       nop.m         0
1618 (p14) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1619       nop.i         0
1621 { .mfi
1622       nop.m         0
1623 (p14) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1624       nop.i         0
1626 .pred.rel "mutex",p6,p7
1627 { .mfi
1628       nop.m         0
1629 (p6)  fms.s.s0      f8 = FR_A0,FR_x,FR_Ln
1630       nop.i         0
1632 { .mfb
1633       nop.m         0
1634 (p7)  fms.s.s0      f8 = FR_A0,f1,FR_Ln
1635       br.ret.sptk   b0
1638 // branch for calculating of ln(GAMMA(x)) for x < -2^13
1639 //---------------------------------------------------------------------
1640 .align 32
1641 lgammaf_negstirling:
1642 { .mfi
1643       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1644       fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
1645       mov           GR_SingBound = 0x10016
1647 { .mfi
1648       add           GR_ad_Co = 0xCA0,GR_ad_Data
1649       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1650       nop.i         0
1652 { .mfi
1653       ldfd          FR_T = [GR_ad_T]
1654       fcvt.xf       FR_int_Ln = FR_int_Ln
1655       cmp.le        p6,p0 = GR_SingBound,GR_Exp
1657 { .mfb
1658       add           GR_ad_Ce = 0x20,GR_ad_Co
1659       fma.s1        FR_r2 = FR_r,FR_r,f0
1660 (p6)  br.cond.spnt  lgammaf_singularity
1662 { .mfi
1663       // load coefficients of polynomial approximation
1664       // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
1665       ldfpd         FR_S16,FR_S14 = [GR_ad_Co],16
1666       fma.s1        FR_P10 = FR_P1,FR_r,f1
1667       nop.i         0
1669 { .mfi
1670       ldfpd         FR_S12,FR_S10 = [GR_ad_Ce],16
1671       fms.s1        FR_xm05 = FR_NormX,f1,FR_05
1672       nop.i         0
1674 { .mmi
1675       ldfpd         FR_S8,FR_S6 = [GR_ad_Co],16
1676       ldfpd         FR_S4,FR_S2 = [GR_ad_Ce],16
1677       nop.i         0
1679 { .mfi
1680       getf.sig      GR_N = FR_int_Ntrunc // signgam calculation
1681       fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
1682       nop.i         0
1684 { .mfi
1685       nop.m         0
1686       frcpa.s1      FR_InvXf,p0 = f1,FR_Xf
1687       nop.i         0
1689 { .mfi
1690       getf.d        GR_Arg = FR_Xf
1691       fcmp.eq.s1    p6,p0 = FR_NormX,FR_N
1692       mov           GR_ExpBias = 0x3FF
1694 { .mfi
1695       nop.m         0
1696       fma.s1        FR_T = FR_int_Ln,FR_Ln2,FR_T
1697       extr.u        GR_Exp = GR_Arg,52,11
1699 { .mfi
1700       nop.m         0
1701       fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1702       nop.i         0
1704 { .mfi
1705       sub           GR_PureExp = GR_Exp,GR_ExpBias
1706       fma.s1        FR_S14 = FR_S16,FR_Xf2,FR_S14
1707       extr.u        GR_Ind4T = GR_Arg,44,8
1709 { .mfb
1710       mov           GR_SignOfGamma = 1 // set signgam to -1
1711       fma.s1        FR_S10 = FR_S12,FR_Xf2,FR_S10
1712 (p6)  br.cond.spnt  lgammaf_singularity
1714 { .mfi
1715       setf.sig      FR_int_Ln = GR_PureExp
1716       fms.s1        FR_rf = FR_InvXf,FR_Xf,f1
1717       // set p14 if GR_N is even
1718       tbit.z        p14,p0 = GR_N,0
1720 { .mfi
1721       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1722       fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
1723       nop.i         0
1725 { .mfi
1726 (p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma // set signgam to -1
1727       fma.s1        FR_S6 = FR_S8,FR_Xf2,FR_S6
1728       nop.i         0
1730 { .mfi
1731       // set p9  if signgum is 32-bit int
1732       // set p10 if signgum is 64-bit int
1733       cmp.eq        p10,p9 = 8,r34
1734       fma.s1        FR_S2 = FR_S4,FR_Xf2,FR_S2
1735       nop.i         0
1737 { .mfi
1738       ldfd          FR_Tf = [GR_ad_T]
1739       fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1740       nop.i         0
1742 { .mfi
1743       nop.m         0
1744       fma.s1        FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
1745       nop.i         0
1747 .pred.rel "mutex",p9,p10
1748 { .mfi
1749 (p9)  st4           [r33] = GR_SignOfGamma  // as 32-bit int
1750       fma.s1        FR_rf2 = FR_rf,FR_rf,f0
1751       nop.i         0
1753 { .mfi
1754 (p10) st8           [r33] = GR_SignOfGamma  // as 64-bit int
1755       fma.s1        FR_S10 = FR_S14,FR_Xf4,FR_S10
1756       nop.i         0
1758 { .mfi
1759       nop.m         0
1760       fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2
1761       nop.i         0
1763 { .mfi
1764       nop.m         0
1765       fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
1766       nop.i         0
1768 { .mfi
1769       nop.m         0
1770       fma.s1        FR_P10f = FR_P1,FR_rf,f1
1771       nop.i         0
1773 { .mfi
1774       nop.m         0
1775       fma.s1        FR_S2 = FR_S6,FR_Xf4,FR_S2
1776       nop.i         0
1778 { .mfi
1779       nop.m         0
1780       fms.s1        FR_Ln = FR_Ln,FR_xm05,FR_LnSqrt2Pi
1781       nop.i         0
1783 { .mfi
1784       nop.m         0
1785       fcvt.xf       FR_Nf = FR_int_Ln
1786       nop.i         0
1788 { .mfi
1789       nop.m         0
1790       fma.s1        FR_S2 = FR_S10,FR_Xf8,FR_S2
1791       nop.i         0
1793 { .mfi
1794       nop.m         0
1795       fma.s1        FR_Tf = FR_Nf,FR_Ln2,FR_Tf
1796       nop.i         0
1798 { .mfi
1799       nop.m         0
1800       fma.s1        FR_P32f = FR_P32f,FR_rf2,FR_P10f // ??????
1801       nop.i         0
1803 { .mfi
1804       nop.m         0
1805       fnma.s1       FR_Ln = FR_S2,FR_Xf2,FR_Ln
1806       nop.i         0
1808 { .mfi
1809       nop.m         0
1810       fma.s1        FR_Lnf = FR_P32f,FR_rf,FR_Tf
1811       nop.i         0
1813 { .mfb
1814       nop.m         0
1815       fms.s.s0      f8 = FR_Ln,f1,FR_Lnf
1816       br.ret.sptk   b0
1818 // branch for calculating of ln(GAMMA(x)) for -2^13 < x < -9
1819 //---------------------------------------------------------------------
1820 .align 32
1821 lgammaf_negpoly:
1822 { .mfi
1823       getf.d        GR_Arg = FR_Xf
1824       frcpa.s1      FR_InvXf,p0 = f1,FR_Xf
1825       mov           GR_ExpBias = 0x3FF
1827 { .mfi
1828       nop.m         0
1829       fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
1830       nop.i         0
1832 { .mfi
1833       getf.sig      GR_N = FR_int_Ntrunc
1834       fcvt.xf       FR_N = FR_int_Ln
1835       mov           GR_SignOfGamma = 1
1837 { .mfi
1838       nop.m         0
1839       fma.s1        FR_A9 = FR_A10,FR_x,FR_A9
1840       nop.i         0
1842 { .mfi
1843       nop.m         0
1844       fma.s1        FR_P10 = FR_P1,FR_r,f1
1845       extr.u        GR_Exp = GR_Arg,52,11
1847 { .mfi
1848       nop.m         0
1849       fma.s1        FR_x4 = FR_x2,FR_x2,f0
1850       nop.i         0
1852 { .mfi
1853       sub           GR_PureExp = GR_Exp,GR_ExpBias
1854       fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1855       tbit.z        p14,p0 = GR_N,0
1857 { .mfi
1858       nop.m         0
1859       fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1860       nop.i         0
1862 { .mfi
1863       setf.sig      FR_int_Ln = GR_PureExp
1864       fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1865       nop.i         0
1867 { .mfi
1868       nop.m         0
1869       fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1870 (p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma
1872 { .mfi
1873       nop.m         0
1874       fms.s1        FR_rf = FR_InvXf,FR_Xf,f1
1875       nop.i         0
1877 { .mfi
1878       nop.m         0
1879       fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
1880       nop.i         0
1882 { .mfi
1883       nop.m         0
1884       fma.s1        FR_S14 = FR_S16,FR_Xf2,FR_S14
1885       nop.i         0
1887 { .mfi
1888       nop.m         0
1889       fma.s1        FR_S10 = FR_S12,FR_Xf2,FR_S10
1890       nop.i         0
1892 { .mfi
1893       nop.m         0
1894       fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1895       nop.i         0
1897 { .mfi
1898       nop.m         0
1899       fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1900       nop.i         0
1902 { .mfi
1903       nop.m         0
1904       fma.s1        FR_S6 = FR_S8,FR_Xf2,FR_S6
1905       extr.u        GR_Ind4T = GR_Arg,44,8
1907 { .mfi
1908       nop.m         0
1909       fma.s1        FR_S2 = FR_S4,FR_Xf2,FR_S2
1910       nop.i         0
1912 { .mfi
1913       nop.m         0
1914       fma.s1        FR_A7 = FR_A9,FR_x2,FR_A7
1915       nop.i         0
1917 { .mfi
1918       shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1919       fma.s1        FR_A3 = FR_A5,FR_x2,FR_A3
1920       nop.i         0
1922 { .mfi
1923       nop.m         0
1924       fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
1925       nop.i         0
1927 { .mfi
1928       nop.m         0
1929       fma.s1        FR_rf2 = FR_rf,FR_rf,f0
1930       nop.i         0
1932 { .mfi
1933       nop.m         0
1934       fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2
1935       nop.i         0
1937 { .mfi
1938       nop.m         0
1939       fma.s1        FR_P10f = FR_P1,FR_rf,f1
1940       nop.i         0
1942 { .mfi
1943       ldfd          FR_Tf = [GR_ad_T]
1944       fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1945       nop.i         0
1947 { .mfi
1948       nop.m         0
1949       fma.s1        FR_A0 = FR_A1,FR_x,FR_A0
1950       nop.i         0
1952 { .mfi
1953       nop.m         0
1954       fma.s1        FR_S10 = FR_S14,FR_Xf4,FR_S10
1955       nop.i         0
1957 { .mfi
1958       nop.m         0
1959       fma.s1        FR_S2 = FR_S6,FR_Xf4,FR_S2
1960       nop.i         0
1962 { .mfi
1963       nop.m         0
1964       fcvt.xf       FR_Nf = FR_int_Ln
1965       nop.i         0
1967 { .mfi
1968       nop.m         0
1969       fma.s1        FR_A3 = FR_A7,FR_x4,FR_A3
1970       nop.i         0
1972 { .mfi
1973       nop.m         0
1974       fcmp.eq.s1    p13,p0 = FR_NormX,FR_Ntrunc
1975       nop.i         0
1977 { .mfi
1978       nop.m         0
1979       fnma.s1       FR_x3 = FR_x2,FR_x,f0 // -x^3
1980       nop.i         0
1982 { .mfi
1983       nop.m         0
1984       fma.s1        FR_P32f = FR_P32f,FR_rf2,FR_P10f
1985       nop.i         0
1987 { .mfb
1988       // set p9  if signgum is 32-bit int
1989       // set p10 if signgum is 64-bit int
1990       cmp.eq        p10,p9 = 8,r34
1991       fma.s1        FR_S2 = FR_S10,FR_Xf8,FR_S2
1992 (p13) br.cond.spnt  lgammaf_singularity
1994 .pred.rel "mutex",p9,p10
1995 { .mmf
1996 (p9)  st4           [r33] = GR_SignOfGamma  // as 32-bit int
1997 (p10) st8           [r33] = GR_SignOfGamma  // as 64-bit int
1998       fms.s1        FR_A0 = FR_A3,FR_x3,FR_A0 // -A3*x^3-A0
2000 { .mfi
2001       nop.m         0
2002       fma.s1        FR_Tf = FR_Nf,FR_Ln2,FR_Tf
2003       nop.i         0
2005 { .mfi
2006       nop.m         0
2007       fma.s1        FR_Ln = FR_S2,FR_Xf2,FR_Ln // S2*Xf^2+Ln
2008       nop.i         0
2010 { .mfi
2011       nop.m         0
2012       fma.s1        FR_Lnf = FR_P32f,FR_rf,FR_Tf
2013       nop.i         0
2015 { .mfi
2016       nop.m         0
2017       fms.s1        FR_Ln = FR_A0,f1,FR_Ln
2018       nop.i         0
2020 { .mfb
2021       nop.m         0
2022       fms.s.s0      f8 = FR_Ln,f1,FR_Lnf
2023       br.ret.sptk   b0
2025 // branch for handling +/-0, NaT, QNaN, +/-INF and denormalised numbers
2026 //---------------------------------------------------------------------
2027 .align 32
2028 lgammaf_spec:
2029 { .mfi
2030       getf.exp      GR_SignExp = FR_NormX
2031       fclass.m      p6,p0 = f8,0x21 // is arg +INF?
2032       mov           GR_SignOfGamma = 1 // set signgam to 1
2034 { .mfi
2035       getf.sig      GR_Sig = FR_NormX
2036       fclass.m      p7,p0 = f8,0xB // is x deno?
2037       // set p11 if signgum is 32-bit int
2038       // set p12 if signgum is 64-bit int
2039       cmp.eq        p12,p11 = 8,r34
2041 .pred.rel "mutex",p11,p12
2042 { .mfi
2043       // store sign of gamma(x) as 32-bit int
2044 (p11) st4           [r33] = GR_SignOfGamma
2045       fclass.m      p8,p0 = f8,0x1C0 // is arg NaT or NaN?
2046       dep.z         GR_Ind = GR_SignExp,3,4
2048 { .mib
2049       // store sign of gamma(x) as 64-bit int
2050 (p12) st8           [r33] = GR_SignOfGamma
2051       and           GR_Exp = GR_ExpMask,GR_SignExp
2052 (p6)  br.ret.spnt   b0 // exit for +INF
2054 { .mfi
2055       sub           GR_PureExp = GR_Exp,GR_ExpBias
2056       fclass.m      p9,p0 = f8,0x22 // is arg -INF?
2057       extr.u        GR_Ind4T = GR_Sig,55,8
2059 { .mfb
2060       nop.m         0
2061 (p7)  fma.s0        FR_tmp = f1,f1,f8
2062 (p7)  br.cond.sptk  lgammaf_core
2064 { .mfb
2065       nop.m         0
2066 (p8)  fms.s.s0      f8 = f8,f1,f8
2067 (p8)  br.ret.spnt   b0 // exit for NaT and NaN
2069 { .mfb
2070       nop.m         0
2071 (p9)  fmerge.s      f8 = f1,f8
2072 (p9)  br.ret.spnt   b0 // exit -INF
2074 // branch for handling negative integers and +/-0
2075 //---------------------------------------------------------------------
2076 .align 32
2077 lgammaf_singularity:
2078 { .mfi
2079       mov           GR_SignOfGamma = 1 // set signgam to 1
2080       fclass.m      p6,p0 = f8,0x6 // is x -0?
2081       mov           GR_TAG = 109 // negative
2083 { .mfi
2084       mov           GR_ad_SignGam = r33
2085       fma.s1        FR_X = f0,f0,f8
2086       nop.i         0
2088 { .mfi
2089       nop.m         0
2090       frcpa.s0      f8,p0 = f1,f0
2091       // set p9  if signgum is 32-bit int
2092       // set p10 if signgum is 64-bit int
2093       cmp.eq        p10,p9 = 8,r34
2095 { .mib
2096       nop.m         0
2097 (p6)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
2098       br.cond.sptk  lgammaf_libm_err
2100 // overflow (x > OVERFLOV_BOUNDARY)
2101 //---------------------------------------------------------------------
2102 .align 32
2103 lgammaf_overflow:
2104 { .mfi
2105       nop.m         0
2106       nop.f         0
2107       mov           r8 = 0x1FFFE
2109 { .mfi
2110       setf.exp      f9 = r8
2111       fmerge.s      FR_X = f8,f8
2112       mov           GR_TAG = 108 // overflow
2114 { .mfi
2115       mov           GR_ad_SignGam = r33
2116       nop.f         0
2117       // set p9  if signgum is 32-bit int
2118       // set p10 if signgum is 64-bit int
2119       cmp.eq        p10,p9 = 8,r34
2121 { .mfi
2122       nop.m         0
2123       fma.s.s0      f8 = f9,f9,f0 // Set I,O and +INF result
2124       nop.i         0
2126 // gate to __libm_error_support#
2127 //---------------------------------------------------------------------
2128 .align 32
2129 lgammaf_libm_err:
2130 { .mmi
2131       alloc        r32 = ar.pfs,1,4,4,0
2132       mov          GR_Parameter_TAG = GR_TAG
2133       nop.i        0
2135 .pred.rel "mutex",p9,p10
2136 { .mmi
2137       // store sign of gamma(x) as 32-bit int
2138 (p9)  st4          [GR_ad_SignGam] = GR_SignOfGamma
2139       // store sign of gamma(x) as 64-bit int
2140 (p10) st8          [GR_ad_SignGam] = GR_SignOfGamma
2141       nop.i        0
2143 GLOBAL_LIBM_END(__libm_lgammaf)
2146 LOCAL_LIBM_ENTRY(__libm_error_region)
2147 .prologue
2148 { .mfi
2149       add   GR_Parameter_Y=-32,sp             // Parameter 2 value
2150       nop.f 0
2151 .save ar.pfs,GR_SAVE_PFS
2152       mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
2154 { .mfi
2155 .fframe 64
2156       add sp=-64,sp                           // Create new stack
2157       nop.f 0
2158       mov GR_SAVE_GP=gp                       // Save gp
2160 { .mmi
2161       stfs [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
2162       add GR_Parameter_X = 16,sp              // Parameter 1 address
2163 .save   b0, GR_SAVE_B0
2164       mov GR_SAVE_B0=b0                       // Save b0
2166 .body
2167 { .mib
2168       stfs [GR_Parameter_X] = FR_X                  // STORE Parameter 1
2169                                                     // on stack
2170       add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
2171       nop.b 0
2173 { .mib
2174       stfs [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3
2175                                                     // on stack
2176       add   GR_Parameter_Y = -16,GR_Parameter_Y
2177       br.call.sptk b0=__libm_error_support#         // Call error handling
2178                                                     // function
2180 { .mmi
2181       nop.m 0
2182       nop.m 0
2183       add   GR_Parameter_RESULT = 48,sp
2185 { .mmi
2186       ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
2187 .restore sp
2188       add   sp = 64,sp                       // Restore stack pointer
2189       mov   b0 = GR_SAVE_B0                  // Restore return address
2191 { .mib
2192       mov   gp = GR_SAVE_GP                  // Restore gp
2193       mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
2194       br.ret.sptk     b0                     // Return
2197 LOCAL_LIBM_END(__libm_error_region)
2198 .type   __libm_error_support#,@function
2199 .global __libm_error_support#