2.9
[glibc/nacl-glibc.git] / sysdeps / ia64 / fpu / e_exp10.S
blobeafa59dd7c769956195db31a66c25e9d0d06d5db
1 .file "exp10.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //==============================================================
42 // 08/25/00 Initial version
43 // 05/20/02 Cleaned up namespace and sf0 syntax
44 // 09/06/02 Improved performance; no inexact flags on exact cases
45 // 01/29/03 Added missing } to bundle templates
46 // 12/16/04 Call error handling on underflow.
47 // 03/31/05 Reformatted delimiters between data tables
49 // API
50 //==============================================================
51 // double exp10(double)
53 // Overview of operation
54 //==============================================================
55 // Background
57 // Implementation
59 // Let x= (K + fh + fl + r)/log2(10), where
60 // K is an integer, fh= 0.b1 b2 b3 b4 b5,
61 // fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
62 // and |r|<2^{-11}
63 // Th is a table that stores 2^fh (32 entries) rounded to
64 // double extended precision (only mantissa is stored)
65 // Tl is a table that stores 2^fl (32 entries) rounded to
66 // double extended precision (only mantissa is stored)
68 // 10^x is approximated as
69 // 2^K * Th [ f ] * Tl [ f ] * (1+c1*e+c1*r+c2*r^2+c3*r^3+c4*r^4),
70 // where e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
72 // Note there are only 22 non-zero values that produce an exact result:
73 //  1.0, 2.0, ... 22.0.
74 // We test for these cases and use s1 to avoid setting the inexact flag.
76 // Special values
77 //==============================================================
78 // exp10(0)= 1
79 // exp10(+inf)= inf
80 // exp10(-inf)= 0
83 // Registers used
84 //==============================================================
85 // r2-r3, r14-r40
86 // f6-f15, f32-f52
87 // p6-p12
91 GR_TBL_START        = r2
92 GR_LOG_TBL          = r3
94 GR_OF_LIMIT         = r14
95 GR_UF_LIMIT         = r15
96 GR_EXP_CORR         = r16
97 GR_F_low            = r17
98 GR_F_high           = r18
99 GR_K                = r19
100 GR_Flow_ADDR        = r20
102 GR_BIAS             = r21
103 GR_Fh               = r22
104 GR_Fh_ADDR          = r23
105 GR_EXPMAX           = r24
106 GR_BIAS53           = r25
108 GR_ROUNDVAL         = r26
109 GR_SNORM_LIMIT      = r26
110 GR_MASK             = r27
111 GR_KF0              = r28
112 GR_MASK_low         = r29
113 GR_COEFF_START      = r30
114 GR_exact_limit      = r31
116 GR_SAVE_B0          = r33
117 GR_SAVE_PFS         = r34
118 GR_SAVE_GP          = r35
119 GR_SAVE_SP          = r36
121 GR_Parameter_X      = r37
122 GR_Parameter_Y      = r38
123 GR_Parameter_RESULT = r39
124 GR_Parameter_TAG    = r40
127 FR_X                = f10
128 FR_Y                = f1
129 FR_RESULT           = f8
132 FR_COEFF1           = f6
133 FR_COEFF2           = f7
134 FR_R                = f9
135 FR_LOG2_10          = f10
137 FR_2P53             = f11
138 FR_KF0              = f12
139 FR_COEFF3           = f13
140 FR_COEFF4           = f14
141 FR_UF_LIMIT         = f15
143 FR_OF_LIMIT         = f32
144 FR_DX_L210          = f33
145 FR_ROUNDVAL         = f34
146 FR_KF               = f35
148 FR_2_TO_K           = f36
149 FR_T_low            = f37
150 FR_T_high           = f38
151 FR_P34              = f39
152 FR_R2               = f40
154 FR_P12              = f41
155 FR_T_low_K          = f42
156 FR_P14              = f43
157 FR_T                = f44
158 FR_P                = f45
160 FR_L2_10_low        = f46
161 FR_L2_10_high       = f47
162 FR_E0               = f48
163 FR_E                = f49
164 FR_exact_limit      = f50
166 FR_int_x            = f51
167 FR_SNORM_LIMIT      = f52
170 // Data tables
171 //==============================================================
173 RODATA
175 .align 16
177 LOCAL_OBJECT_START(poly_coeffs)
179 data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
180 data8 0x9257edfe9b5fb698, 0x3fbf // log2(10)_low (bits 64...127)
181 data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
182 data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
183 data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
184 LOCAL_OBJECT_END(poly_coeffs)
187 LOCAL_OBJECT_START(T_table)
189 // 2^{0.00000 b6 b7 b8 b9 b10}
190 data8 0x8000000000000000, 0x8016302f17467628
191 data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
192 data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
193 data8 0x80855ad965e88b83, 0x809ba2264dada76a
194 data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
195 data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
196 data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
197 data8 0x813801881d886f7b, 0x814e67cceb90502c
198 data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
199 data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
200 data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
201 data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
202 data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
203 data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
204 data8 0x8272fb97b2a5894c, 0x828998760d01faf3
205 data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
207 // 2^{0.b1 b2 b3 b4 b5}
208 data8 0x8000000000000000, 0x82cd8698ac2ba1d7
209 data8 0x85aac367cc487b14, 0x88980e8092da8527
210 data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
211 data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
212 data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
213 data8 0x9ef5326091a111ad, 0xa27043030c496818
214 data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
215 data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
216 data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
217 data8 0xbd08a39f580c36be, 0xc12c4cca66709456
218 data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
219 data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
220 data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
221 data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
222 data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
223 data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
224 LOCAL_OBJECT_END(T_table)
228 .section .text
229 GLOBAL_IEEE754_ENTRY(exp10)
232 {.mfi
233        alloc r32= ar.pfs, 1, 4, 4, 0
234        // will continue only for non-zero normal/denormal numbers
235        fclass.nm.unc p12, p7= f8, 0x1b
236        mov GR_BIAS53= 0xffff+63-10
238 {.mlx
239        // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
240        addl GR_TBL_START= @ltoff(poly_coeffs), gp
241        movl GR_ROUNDVAL= 0x3fc00000             // 1.5 (SP)
245 {.mfi
246        ld8 GR_COEFF_START= [ GR_TBL_START ]     // Load pointer to coeff table
247        fcmp.lt.s1 p6, p8= f8, f0                // X<0 ?
248        nop.i 0
252 {.mlx
253        setf.exp FR_2P53= GR_BIAS53              // 2^{63-10}
254        movl GR_UF_LIMIT= 0xc07439b746e36b52     // (-2^10-51) / log2(10)
256 {.mlx
257        setf.s FR_ROUNDVAL= GR_ROUNDVAL
258        movl GR_OF_LIMIT= 0x40734413509f79fe     // Overflow threshold
262 {.mlx
263        ldfe FR_LOG2_10= [ GR_COEFF_START ], 16  // load log2(10)*2^(10-63)
264        movl GR_SNORM_LIMIT= 0xc0733a7146f72a41  // Smallest normal threshold
266 {.mib
267        nop.m 0
268        nop.i 0
269  (p12) br.cond.spnt SPECIAL_exp10               // Branch if nan, inf, zero
273 {.mmf
274        ldfe FR_L2_10_low= [ GR_COEFF_START ], 16 // load log2(10)_low
275        setf.d FR_OF_LIMIT= GR_OF_LIMIT           // Set overflow limit
276        fma.s0 f8= f8, f1, f0                     // normalize x
280 {.mfi
281        ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
282  (p8)  fcvt.fx.s1 FR_int_x = f8                   // Convert x to integer
283        nop.i 0
285 {.mfi
286        setf.d FR_UF_LIMIT= GR_UF_LIMIT            // Set underflow limit
287        fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
288                                                   //    1.5*2^63) * 2^(-63)
289        mov GR_EXP_CORR= 0xffff-126
293 {.mfi
294        setf.d FR_SNORM_LIMIT= GR_SNORM_LIMIT      // Set smallest normal limit
295        fma.s1 FR_L2_10_high= FR_LOG2_10, FR_2P53, f0 // FR_LOG2_10= log2(10)_hi
296        nop.i 0
300 {.mfi
301        ldfe FR_COEFF1= [ GR_COEFF_START ], 16    // load C_1
302        fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL     // (K+f)*2^(10-63)
303        mov GR_MASK= 1023
307 {.mfi
308        ldfe FR_COEFF2= [ GR_COEFF_START ], 16    // load C_2
309        fma.s1 FR_LOG2_10= f8, FR_L2_10_high, f0  // y0= x*log2(10)_hi
310        mov GR_MASK_low= 31
314 {.mlx
315        getf.sig GR_KF0= FR_KF0                   // (K+f)*2^10= round_to_int(y)
316  (p8)  movl GR_exact_limit= 0x41b00000           // Largest x for exact result,
317                                                  //  +22.0
321 {.mfi
322        add GR_LOG_TBL= 256, GR_COEFF_START       // Pointer to high T_table
323        fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT       // x>overflow threshold ?
324        nop.i 0
328 {.mfi
329  (p8)  setf.s FR_exact_limit = GR_exact_limit    // Largest x for exact result
330  (p8)  fcvt.xf FR_int_x = FR_int_x               // Integral part of x
331        shr GR_K= GR_KF0, 10                      // K
333 {.mfi
334        and GR_F_high= GR_MASK, GR_KF0            // f_high*32
335        fnma.s1 FR_R= FR_KF, FR_2P53, FR_LOG2_10  // r= x*log2(10)-2^{63-10}*
336                                                  //    [ (K+f)*2^{10-63} ]
337        and GR_F_low= GR_KF0, GR_MASK_low         // f_low
341 {.mmi
342        shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
343        add GR_BIAS= GR_K, GR_EXP_CORR            // K= bias-2*63
344        shr GR_Fh= GR_F_high, 5                   // f_high
348 {.mfi
349        setf.exp FR_2_TO_K= GR_BIAS               // 2^{K-126}
350  (p7)  fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT       // x<underflow threshold ?
351        shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL   // address of 2^{f_high}
353 {.mfi
354        ldf8 FR_T_low= [ GR_Flow_ADDR ]           // load T_low= 2^{f_low}
355        fms.s1 FR_DX_L210= f8, FR_L2_10_high, FR_LOG2_10 // x*log2(10)_hi-
356                                                  //        RN(x*log2(10)_hi)
357        nop.i 0
361 {.mfi
362        ldf8 FR_T_high= [ GR_Fh_ADDR ]            // load T_high= 2^{f_high}
363        fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
364        nop.i 0
366 {.mfb
367        nop.m 0
368        fma.s1 FR_R2= FR_R, FR_R, f0              // r*r
369  (p12) br.cond.spnt OUT_RANGE_exp10
373 {.mfi
374        nop.m 0
375        // e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
376        fma.s1 FR_E0= f8, FR_L2_10_low, FR_DX_L210
377        cmp.eq p7,p9= r0,r0                       // Assume inexact result
379 {.mfi
380        nop.m 0
381        fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
382        nop.i 0
386 {.mfi
387        nop.m 0
388  (p8)  fcmp.eq.s1 p9,p7= FR_int_x, f8            // Test x positive integer
389        nop.i 0
391 {.mfi
392        nop.m 0
393        fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
394        nop.i 0
398 {.mfi
399        nop.m 0
400        fcmp.ge.s1 p11,p0= f8, FR_SNORM_LIMIT      // Test x for normal range
401        nop.i 0
405 {.mfi
406        nop.m 0
407        fma.s1 FR_E= FR_E0, FR_COEFF1, f0          // E= C_1*e
408        nop.i 0
410 {.mfi
411        nop.m 0
412        fma.s1 FR_P14= FR_R2, FR_P34, FR_P12       // P14= P12+r2*P34
413        nop.i 0
417 // If x a positive integer, will it produce an exact result?
418 //   p7 result will be inexact
419 //   p9 result will be exact
420 {.mfi
421        nop.m 0
422  (p9)  fcmp.le.s1 p9,p7= f8, FR_exact_limit       // Test x gives exact result
423        nop.i 0
425 {.mfi
426        nop.m 0
427        fma.s1 FR_T= FR_T_low_K, FR_T_high, f0     // T= T*T_high
428        nop.i 0
432 {.mfi
433        nop.m 0
434        fma.s1 FR_P= FR_P14, FR_R, FR_E            // P= P14*r+E
435        nop.i 0
439 .pred.rel "mutex",p7,p9
440 {.mfi
441        nop.m 0
442  (p7)  fma.d.s0 f8= FR_P, FR_T, FR_T              // result= T+T*P, inexact set
443        nop.i 0
445 {.mfb
446        nop.m 0
447  (p9)  fma.d.s1 f8= FR_P, FR_T, FR_T              // result= T+T*P, exact use s1
448  (p11) br.ret.sptk b0                             // return, if result normal
452 // Here if result in denormal range (and not zero)
453 {.mib
454        nop.m 0
455        mov GR_Parameter_TAG= 265
456        br.cond.sptk __libm_error_region           // Branch to error handling
460 SPECIAL_exp10:
461 {.mfi
462        nop.m 0
463        fclass.m p6, p0= f8, 0x22                  // x= -Infinity ?
464        nop.i 0
468 {.mfi
469        nop.m 0
470        fclass.m p7, p0= f8, 0x21                  // x= +Infinity ?
471        nop.i 0
475 {.mfi
476        nop.m 0
477        fclass.m p8, p0= f8, 0x7                   // x= +/-Zero ?
478        nop.i 0
480 {.mfb
481        nop.m 0
482  (p6)  mov f8= f0                                 // exp10(-Infinity)= 0
483  (p6)  br.ret.spnt b0
487 {.mfb
488        nop.m 0
489        nop.f 0
490  (p7)  br.ret.spnt b0                             // exp10(+Infinity)= +Infinity
494 {.mfb
495        nop.m 0
496  (p8)  mov f8= f1                                 // exp10(+/-0)= 1
497  (p8)  br.ret.spnt b0
501 {.mfb
502        nop.m 0
503        fma.d.s0 f8= f8, f1, f0                    // Remaining cases: NaNs
504        br.ret.sptk b0
509 OUT_RANGE_exp10:
511 // underflow: p6= 1
512 // overflow: p8= 1
514 .pred.rel "mutex",p6,p8
515 {.mmi
516  (p8)  mov GR_EXPMAX= 0x1fffe
517  (p6)  mov GR_EXPMAX= 1
518        nop.i 0
522 {.mii
523        setf.exp FR_R= GR_EXPMAX
524  (p8)  mov GR_Parameter_TAG= 166
525  (p6)  mov GR_Parameter_TAG= 265
529 {.mfb
530        nop.m 0
531        fma.d.s0 f8= FR_R, FR_R, f0                // Create overflow/underflow
532        br.cond.sptk __libm_error_region           // Branch to error handling
536 GLOBAL_IEEE754_END(exp10)
537 weak_alias (exp10, pow10)
540 LOCAL_LIBM_ENTRY(__libm_error_region)
542 .prologue
543 {.mfi
544        add GR_Parameter_Y= -32, sp                // Parameter 2 value
545        nop.f 0
546 .save ar.pfs, GR_SAVE_PFS
547        mov GR_SAVE_PFS= ar.pfs                    // Save ar.pfs
550 {.mfi
551 .fframe 64
552        add sp= -64, sp                            // Create new stack
553        nop.f 0
554        mov GR_SAVE_GP= gp                         // Save gp
558 {.mmi
559        stfd [ GR_Parameter_Y ]= FR_Y, 16          // STORE Parameter 2 on stack
560        add GR_Parameter_X= 16, sp                 // Parameter 1 address
561 .save b0, GR_SAVE_B0
562        mov GR_SAVE_B0= b0                         // Save b0
566 .body
567 {.mib
568        stfd [ GR_Parameter_X ]= FR_X              // STORE Parameter 1 on stack
569        add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
570        nop.b 0
572 {.mib
573        stfd [ GR_Parameter_Y ]= FR_RESULT         // STORE Parameter 3 on stack
574        add GR_Parameter_Y= -16, GR_Parameter_Y
575        br.call.sptk b0= __libm_error_support#    // Call error handling function
579 {.mmi
580        add GR_Parameter_RESULT= 48, sp
581        nop.m 0
582        nop.i 0
586 {.mmi
587        ldfd f8= [ GR_Parameter_RESULT ]          // Get return result off stack
588 .restore sp
589        add sp= 64, sp                            // Restore stack pointer
590        mov b0= GR_SAVE_B0                        // Restore return address
594 {.mib
595        mov gp= GR_SAVE_GP                        // Restore gp
596        mov ar.pfs= GR_SAVE_PFS                   // Restore ar.pfs
597        br.ret.sptk b0                            // Return
602 LOCAL_LIBM_END(__libm_error_region)
604 .type __libm_error_support#, @function
605 .global __libm_error_support#