2.9
[glibc/nacl-glibc.git] / sysdeps / ia64 / fpu / e_atanh.S
blob4ae5ee69269e4b551c43409f63dfc704cadc571f
1 .file "atanh.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // ==============================================================
41 // History
42 // ==============================================================
43 // 05/03/01  Initial version
44 // 05/20/02  Cleaned up namespace and sf0 syntax
45 // 02/06/03  Reordered header: .section, .global, .proc, .align
46 // 05/26/03  Improved performance, fixed to handle unorms
47 // 03/31/05  Reformatted delimiters between data tables
49 // API
50 // ==============================================================
51 // double atanh(double)
53 // Overview of operation
54 // ==============================================================
56 // There are 7 paths:
57 // 1. x = +/-0.0
58 //    Return atanh(x) = +/-0.0
60 // 2. 0.0 < |x| < 1/4
61 //    Return atanh(x) = Po2l(x),
62 //    where Po2l(x) = (((((((((C9*x^2 + C8)*x^2 + C7)*x^2 + C6)*x^2 +
63 //          C5)*x^2 + C4)*x^2 + C3)*x^2 + C2)*x^2 + C1)* x^2 + C0)*x^3 + x
64 // 3. 1/4 <= |x| < 1
65 //    Return atanh(x) = sign(x) * log((1 + |x|)/(1 - |x|))
66 //    To compute (1 + |x|)/(1 - |x|) modified Newton Raphson method is used
67 //    (3 iterations)
68 //    Algorithm description for log function see below.
70 // 4. |x| = 1
71 //    Return atanh(x) = sign(x) * +INF
73 // 5. 1 < |x| <= +INF
74 //    Return atanh(x) = QNaN
76 // 6. x = [S,Q]NaN
77 //    Return atanh(x) = QNaN
79 // 7. x = denormal
80 //    Return atanh(x) = x
82 //==============================================================
83 // Algorithm Description for log(x) function
84 // Below we are using the fact that inequality x - 1.0 > 2^(-6) is always true
85 // for this atanh implementation
87 // Consider  x = 2^N 1.f1 f2 f3 f4...f63
88 // Log(x) = log(x * frcpa(x) / frcpa(x))
89 //        = log(x * frcpa(x)) + log(1/frcpa(x))
90 //        = log(x * frcpa(x)) - log(frcpa(x))
92 // frcpa(x)       = 2^-N * frcpa(1.f1 f2 ... f63)
94 // -log(frcpa(x)) = -log(C)
95 //                = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
97 // -log(frcpa(x)) = -log(C)
98 //                = N*log2 - log(frcpa(1.f1 f2 ... f63))
101 // Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
103 // Log(x) = N*log2 + log(1./frcpa(1.f1 f2 ... f63)) + log(x * frcpa(x))
104 // Log(x) = N*log2 + T                              + log(frcpa(x) x)
106 // Log(x) = N*log2 + T                              + log(C * x)
108 // C * x = 1 + r
110 // Log(x) = N*log2 + T + log(1 + r)
111 // Log(x) = N*log2 + T + Series(r - r^2/2 + r^3/3 - r^4/4 + ...)
113 // 1.f1 f2 ... f8 has 256 entries.
114 // They are 1 + k/2^8, k = 0 ... 255
115 // These 256 values are the table entries.
117 // Implementation
118 //==============================================================
119 // C = frcpa(x)
120 // r = C * x - 1
122 // Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
124 // x = f * 2*N where f is 1.f_1f_2f_3...f_63
125 // Nfloat = float(n)  where n is the true unbiased exponent
126 // pre-index = f_1f_2....f_8
127 // index = pre_index * 16
128 // get the dxt table entry at index + offset = T
130 // result = (T + Nfloat * log(2)) + rseries
132 // The T table is calculated as follows
133 // Form x_k = 1 + k/2^8 where k goes from 0... 255
134 //      y_k = frcpa(x_k)
135 //      log(1/y_k)  in quad and round to double-extended
138 // Registers used
139 //==============================================================
140 // Floating Point registers used:
141 // f8, input
142 // f32 -> f77
144 // General registers used:
145 // r14 -> r27, r33 -> r39
147 // Predicate registers used:
148 // p6 -> p14
150 // p10, p11      to indicate is argument positive or negative
151 // p12           to filter out case when x = [Q,S]NaN or +/-0
152 // p13           to filter out case when x = denormal
153 // p6, p7        to filter out case when |x| >= 1
154 // p8            to filter out case when |x| < 1/4
156 // Assembly macros
157 //==============================================================
158 Data2Ptr              = r14
159 Data3Ptr              = r15
160 RcpTablePtr           = r16
161 rExpbMask             = r17
162 rBias                 = r18
163 rNearZeroBound        = r19
164 rArgSExpb             = r20
165 rArgExpb              = r21
166 rSExpb                = r22
167 rExpb                 = r23
168 rSig                  = r24
169 rN                    = r25
170 rInd                  = r26
171 DataPtr               = r27
173 GR_SAVE_B0            = r33
174 GR_SAVE_GP            = r34
175 GR_SAVE_PFS           = r35
177 GR_Parameter_X        = r36
178 GR_Parameter_Y        = r37
179 GR_Parameter_RESULT   = r38
180 atanh_GR_tag          = r39
182 //==============================================================
183 fAbsX                 = f32
184 fOneMx                = f33
185 fOnePx                = f34
186 fY                    = f35
187 fR                    = f36
188 fR2                   = f37
189 fR3                   = f38
190 fRcp                  = f39
191 fY4Rcp                = f40
192 fRcp0                 = f41
193 fRcp0n                = f42
194 fRcp1                 = f43
195 fRcp2                 = f44
196 fRcp3                 = f45
197 fN4Cvt                = f46
198 fN                    = f47
199 fY2                   = f48
200 fLog2                 = f49
201 fLogT                 = f50
202 fLogT_N               = f51
203 fX2                   = f52
204 fX3                   = f53
205 fX4                   = f54
206 fX8                   = f55
207 fP0                   = f56
208 fP5                   = f57
209 fP4                   = f58
210 fP3                   = f59
211 fP2                   = f60
212 fP1                   = f61
213 fNormX                = f62
214 fC9                   = f63
215 fC8                   = f64
216 fC7                   = f65
217 fC6                   = f66
218 fC5                   = f67
219 fC4                   = f68
220 fC3                   = f69
221 fC2                   = f70
222 fC1                   = f71
223 fC0                   = f72
224 fP98                  = f73
225 fP76                  = f74
226 fP54                  = f75
227 fP32                  = f76
228 fP10                  = f77
230 // Data tables
231 //==============================================================
232 RODATA
233 .align 16
235 LOCAL_OBJECT_START(atanh_data)
236 data8 0xBFC5555DA7212371              //   P5
237 data8 0x3FC999A19EEF5826              //   P4
238 data8 0xBFCFFFFFFFFEF009              //   P3
239 data8 0x3FD555555554ECB2              //   P2
240 data8 0xBFE0000000000000              //   P1 = -0.5
241 data8 0x0000000000000000              //   pad
242 data8 0xb17217f7d1cf79ac , 0x00003ffd //   0.5*log(2)
243 data8 0x0000000000000000 , 0x00000000 //   pad to eliminate bank conflicts
244 LOCAL_OBJECT_END(atanh_data)
246 LOCAL_OBJECT_START(atanh_data_2)
247 data8 0x8649FB89D3AD51FB , 0x00003FFB //   C9
248 data8 0xCC10AABEF160077A , 0x00003FFA //   C8
249 data8 0xF1EDB99AC0819CE2 , 0x00003FFA //   C7
250 data8 0x8881E53A809AD24D , 0x00003FFB //   C6
251 data8 0x9D8A116EF212F271 , 0x00003FFB //   C5
252 data8 0xBA2E8A6D1D756453 , 0x00003FFB //   C4
253 data8 0xE38E38E7A0945692 , 0x00003FFB //   C3
254 data8 0x924924924536891A , 0x00003FFC //   C2
255 data8 0xCCCCCCCCCCD08D51 , 0x00003FFC //   C1
256 data8 0xAAAAAAAAAAAAAA0C , 0x00003FFD //   C0
257 LOCAL_OBJECT_END(atanh_data_2)
260 LOCAL_OBJECT_START(atanh_data_3)
261 data8 0x80200aaeac44ef38 , 0x00003ff5 //   log(1/frcpa(1+0/2^-8))/2
263 data8 0xc09090a2c35aa070 , 0x00003ff6 //   log(1/frcpa(1+1/2^-8))/2
264 data8 0xa0c94fcb41977c75 , 0x00003ff7 //   log(1/frcpa(1+2/2^-8))/2
265 data8 0xe18b9c263af83301 , 0x00003ff7 //   log(1/frcpa(1+3/2^-8))/2
266 data8 0x8d35c8d6399c30ea , 0x00003ff8 //   log(1/frcpa(1+4/2^-8))/2
267 data8 0xadd4d2ecd601cbb8 , 0x00003ff8 //   log(1/frcpa(1+5/2^-8))/2
269 data8 0xce95403a192f9f01 , 0x00003ff8 //   log(1/frcpa(1+6/2^-8))/2
270 data8 0xeb59392cbcc01096 , 0x00003ff8 //   log(1/frcpa(1+7/2^-8))/2
271 data8 0x862c7d0cefd54c5d , 0x00003ff9 //   log(1/frcpa(1+8/2^-8))/2
272 data8 0x94aa63c65e70d499 , 0x00003ff9 //   log(1/frcpa(1+9/2^-8))/2
273 data8 0xa54a696d4b62b382 , 0x00003ff9 //   log(1/frcpa(1+10/2^-8))/2
275 data8 0xb3e4a796a5dac208 , 0x00003ff9 //   log(1/frcpa(1+11/2^-8))/2
276 data8 0xc28c45b1878340a9 , 0x00003ff9 //   log(1/frcpa(1+12/2^-8))/2
277 data8 0xd35c55f39d7a6235 , 0x00003ff9 //   log(1/frcpa(1+13/2^-8))/2
278 data8 0xe220f037b954f1f5 , 0x00003ff9 //   log(1/frcpa(1+14/2^-8))/2
279 data8 0xf0f3389b036834f3 , 0x00003ff9 //   log(1/frcpa(1+15/2^-8))/2
281 data8 0xffd3488d5c980465 , 0x00003ff9 //   log(1/frcpa(1+16/2^-8))/2
282 data8 0x87609ce2ed300490 , 0x00003ffa //   log(1/frcpa(1+17/2^-8))/2
283 data8 0x8ede9321e8c85927 , 0x00003ffa //   log(1/frcpa(1+18/2^-8))/2
284 data8 0x96639427f2f8e2f4 , 0x00003ffa //   log(1/frcpa(1+19/2^-8))/2
285 data8 0x9defad3e8f73217b , 0x00003ffa //   log(1/frcpa(1+20/2^-8))/2
287 data8 0xa582ebd50097029c , 0x00003ffa //   log(1/frcpa(1+21/2^-8))/2
288 data8 0xac06dbe75ab80fee , 0x00003ffa //   log(1/frcpa(1+22/2^-8))/2
289 data8 0xb3a78449b2d3ccca , 0x00003ffa //   log(1/frcpa(1+23/2^-8))/2
290 data8 0xbb4f79635ab46bb2 , 0x00003ffa //   log(1/frcpa(1+24/2^-8))/2
291 data8 0xc2fec93a83523f3f , 0x00003ffa //   log(1/frcpa(1+25/2^-8))/2
293 data8 0xc99af2eaca4c4571 , 0x00003ffa //   log(1/frcpa(1+26/2^-8))/2
294 data8 0xd1581106472fa653 , 0x00003ffa //   log(1/frcpa(1+27/2^-8))/2
295 data8 0xd8002560d4355f2e , 0x00003ffa //   log(1/frcpa(1+28/2^-8))/2
296 data8 0xdfcb43b4fe508632 , 0x00003ffa //   log(1/frcpa(1+29/2^-8))/2
297 data8 0xe67f6dff709d4119 , 0x00003ffa //   log(1/frcpa(1+30/2^-8))/2
299 data8 0xed393b1c22351280 , 0x00003ffa //   log(1/frcpa(1+31/2^-8))/2
300 data8 0xf5192bff087bcc35 , 0x00003ffa //   log(1/frcpa(1+32/2^-8))/2
301 data8 0xfbdf4ff6dfef2fa3 , 0x00003ffa //   log(1/frcpa(1+33/2^-8))/2
302 data8 0x81559a97f92f9cc7 , 0x00003ffb //   log(1/frcpa(1+34/2^-8))/2
303 data8 0x84be72bce90266e8 , 0x00003ffb //   log(1/frcpa(1+35/2^-8))/2
305 data8 0x88bc74113f23def2 , 0x00003ffb //   log(1/frcpa(1+36/2^-8))/2
306 data8 0x8c2ba3edf6799d11 , 0x00003ffb //   log(1/frcpa(1+37/2^-8))/2
307 data8 0x8f9dc92f92ea08b1 , 0x00003ffb //   log(1/frcpa(1+38/2^-8))/2
308 data8 0x9312e8f36efab5a7 , 0x00003ffb //   log(1/frcpa(1+39/2^-8))/2
309 data8 0x968b08643409ceb6 , 0x00003ffb //   log(1/frcpa(1+40/2^-8))/2
311 data8 0x9a062cba08a1708c , 0x00003ffb //   log(1/frcpa(1+41/2^-8))/2
312 data8 0x9d845b3abf95485c , 0x00003ffb //   log(1/frcpa(1+42/2^-8))/2
313 data8 0xa06fd841bc001bb4 , 0x00003ffb //   log(1/frcpa(1+43/2^-8))/2
314 data8 0xa3f3a74652fbe0db , 0x00003ffb //   log(1/frcpa(1+44/2^-8))/2
315 data8 0xa77a8fb2336f20f5 , 0x00003ffb //   log(1/frcpa(1+45/2^-8))/2
317 data8 0xab0497015d28b0a0 , 0x00003ffb //   log(1/frcpa(1+46/2^-8))/2
318 data8 0xae91c2be6ba6a615 , 0x00003ffb //   log(1/frcpa(1+47/2^-8))/2
319 data8 0xb189d1b99aebb20b , 0x00003ffb //   log(1/frcpa(1+48/2^-8))/2
320 data8 0xb51cced5de9c1b2c , 0x00003ffb //   log(1/frcpa(1+49/2^-8))/2
321 data8 0xb819bee9e720d42f , 0x00003ffb //   log(1/frcpa(1+50/2^-8))/2
323 data8 0xbbb2a0947b093a5d , 0x00003ffb //   log(1/frcpa(1+51/2^-8))/2
324 data8 0xbf4ec1505811684a , 0x00003ffb //   log(1/frcpa(1+52/2^-8))/2
325 data8 0xc2535bacfa8975ff , 0x00003ffb //   log(1/frcpa(1+53/2^-8))/2
326 data8 0xc55a3eafad187eb8 , 0x00003ffb //   log(1/frcpa(1+54/2^-8))/2
327 data8 0xc8ff2484b2c0da74 , 0x00003ffb //   log(1/frcpa(1+55/2^-8))/2
329 data8 0xcc0b1a008d53ab76 , 0x00003ffb //   log(1/frcpa(1+56/2^-8))/2
330 data8 0xcfb6203844b3209b , 0x00003ffb //   log(1/frcpa(1+57/2^-8))/2
331 data8 0xd2c73949a47a19f5 , 0x00003ffb //   log(1/frcpa(1+58/2^-8))/2
332 data8 0xd5daae18b49d6695 , 0x00003ffb //   log(1/frcpa(1+59/2^-8))/2
333 data8 0xd8f08248cf7e8019 , 0x00003ffb //   log(1/frcpa(1+60/2^-8))/2
335 data8 0xdca7749f1b3e540e , 0x00003ffb //   log(1/frcpa(1+61/2^-8))/2
336 data8 0xdfc28e033aaaf7c7 , 0x00003ffb //   log(1/frcpa(1+62/2^-8))/2
337 data8 0xe2e012a5f91d2f55 , 0x00003ffb //   log(1/frcpa(1+63/2^-8))/2
338 data8 0xe600064ed9e292a8 , 0x00003ffb //   log(1/frcpa(1+64/2^-8))/2
339 data8 0xe9226cce42b39f60 , 0x00003ffb //   log(1/frcpa(1+65/2^-8))/2
341 data8 0xec4749fd97a28360 , 0x00003ffb //   log(1/frcpa(1+66/2^-8))/2
342 data8 0xef6ea1bf57780495 , 0x00003ffb //   log(1/frcpa(1+67/2^-8))/2
343 data8 0xf29877ff38809091 , 0x00003ffb //   log(1/frcpa(1+68/2^-8))/2
344 data8 0xf5c4d0b245cb89be , 0x00003ffb //   log(1/frcpa(1+69/2^-8))/2
345 data8 0xf8f3afd6fcdef3aa , 0x00003ffb //   log(1/frcpa(1+70/2^-8))/2
347 data8 0xfc2519756be1abc7 , 0x00003ffb //   log(1/frcpa(1+71/2^-8))/2
348 data8 0xff59119f503e6832 , 0x00003ffb //   log(1/frcpa(1+72/2^-8))/2
349 data8 0x8147ce381ae0e146 , 0x00003ffc //   log(1/frcpa(1+73/2^-8))/2
350 data8 0x82e45f06cb1ad0f2 , 0x00003ffc //   log(1/frcpa(1+74/2^-8))/2
351 data8 0x842f5c7c573cbaa2 , 0x00003ffc //   log(1/frcpa(1+75/2^-8))/2
353 data8 0x85ce471968c8893a , 0x00003ffc //   log(1/frcpa(1+76/2^-8))/2
354 data8 0x876e8305bc04066d , 0x00003ffc //   log(1/frcpa(1+77/2^-8))/2
355 data8 0x891012678031fbb3 , 0x00003ffc //   log(1/frcpa(1+78/2^-8))/2
356 data8 0x8a5f1493d766a05f , 0x00003ffc //   log(1/frcpa(1+79/2^-8))/2
357 data8 0x8c030c778c56fa00 , 0x00003ffc //   log(1/frcpa(1+80/2^-8))/2
359 data8 0x8da85df17e31d9ae , 0x00003ffc //   log(1/frcpa(1+81/2^-8))/2
360 data8 0x8efa663e7921687e , 0x00003ffc //   log(1/frcpa(1+82/2^-8))/2
361 data8 0x90a22b6875c6a1f8 , 0x00003ffc //   log(1/frcpa(1+83/2^-8))/2
362 data8 0x91f62cc8f5d24837 , 0x00003ffc //   log(1/frcpa(1+84/2^-8))/2
363 data8 0x93a06cfc3857d980 , 0x00003ffc //   log(1/frcpa(1+85/2^-8))/2
365 data8 0x94f66d5e6fd01ced , 0x00003ffc //   log(1/frcpa(1+86/2^-8))/2
366 data8 0x96a330156e6772f2 , 0x00003ffc //   log(1/frcpa(1+87/2^-8))/2
367 data8 0x97fb3582754ea25b , 0x00003ffc //   log(1/frcpa(1+88/2^-8))/2
368 data8 0x99aa8259aad1bbf2 , 0x00003ffc //   log(1/frcpa(1+89/2^-8))/2
369 data8 0x9b0492f6227ae4a8 , 0x00003ffc //   log(1/frcpa(1+90/2^-8))/2
371 data8 0x9c5f8e199bf3a7a5 , 0x00003ffc //   log(1/frcpa(1+91/2^-8))/2
372 data8 0x9e1293b9998c1daa , 0x00003ffc //   log(1/frcpa(1+92/2^-8))/2
373 data8 0x9f6fa31e0b41f308 , 0x00003ffc //   log(1/frcpa(1+93/2^-8))/2
374 data8 0xa0cda11eaf46390e , 0x00003ffc //   log(1/frcpa(1+94/2^-8))/2
375 data8 0xa22c8f029cfa45aa , 0x00003ffc //   log(1/frcpa(1+95/2^-8))/2
377 data8 0xa3e48badb7856b34 , 0x00003ffc //   log(1/frcpa(1+96/2^-8))/2
378 data8 0xa5459a0aa95849f9 , 0x00003ffc //   log(1/frcpa(1+97/2^-8))/2
379 data8 0xa6a79c84480cfebd , 0x00003ffc //   log(1/frcpa(1+98/2^-8))/2
380 data8 0xa80a946d0fcb3eb2 , 0x00003ffc //   log(1/frcpa(1+99/2^-8))/2
381 data8 0xa96e831a3ea7b314 , 0x00003ffc //   log(1/frcpa(1+100/2^-8))/2
383 data8 0xaad369e3dc544e3b , 0x00003ffc //   log(1/frcpa(1+101/2^-8))/2
384 data8 0xac92e9588952c815 , 0x00003ffc //   log(1/frcpa(1+102/2^-8))/2
385 data8 0xadfa035aa1ed8fdc , 0x00003ffc //   log(1/frcpa(1+103/2^-8))/2
386 data8 0xaf6219eae1ad6e34 , 0x00003ffc //   log(1/frcpa(1+104/2^-8))/2
387 data8 0xb0cb2e6d8160f753 , 0x00003ffc //   log(1/frcpa(1+105/2^-8))/2
389 data8 0xb2354249ad950f72 , 0x00003ffc //   log(1/frcpa(1+106/2^-8))/2
390 data8 0xb3a056e98ef4a3b4 , 0x00003ffc //   log(1/frcpa(1+107/2^-8))/2
391 data8 0xb50c6dba52c6292a , 0x00003ffc //   log(1/frcpa(1+108/2^-8))/2
392 data8 0xb679882c33876165 , 0x00003ffc //   log(1/frcpa(1+109/2^-8))/2
393 data8 0xb78c07429785cedc , 0x00003ffc //   log(1/frcpa(1+110/2^-8))/2
395 data8 0xb8faeb8dc4a77d24 , 0x00003ffc //   log(1/frcpa(1+111/2^-8))/2
396 data8 0xba6ad77eb36ae0d6 , 0x00003ffc //   log(1/frcpa(1+112/2^-8))/2
397 data8 0xbbdbcc915e9bee50 , 0x00003ffc //   log(1/frcpa(1+113/2^-8))/2
398 data8 0xbd4dcc44f8cf12ef , 0x00003ffc //   log(1/frcpa(1+114/2^-8))/2
399 data8 0xbec0d81bf5b531fa , 0x00003ffc //   log(1/frcpa(1+115/2^-8))/2
401 data8 0xc034f19c139186f4 , 0x00003ffc //   log(1/frcpa(1+116/2^-8))/2
402 data8 0xc14cb69f7c5e55ab , 0x00003ffc //   log(1/frcpa(1+117/2^-8))/2
403 data8 0xc2c2abbb6e5fd56f , 0x00003ffc //   log(1/frcpa(1+118/2^-8))/2
404 data8 0xc439b2c193e6771e , 0x00003ffc //   log(1/frcpa(1+119/2^-8))/2
405 data8 0xc553acb9d5c67733 , 0x00003ffc //   log(1/frcpa(1+120/2^-8))/2
407 data8 0xc6cc96e441272441 , 0x00003ffc //   log(1/frcpa(1+121/2^-8))/2
408 data8 0xc8469753eca88c30 , 0x00003ffc //   log(1/frcpa(1+122/2^-8))/2
409 data8 0xc962cf3ce072b05c , 0x00003ffc //   log(1/frcpa(1+123/2^-8))/2
410 data8 0xcadeba8771f694aa , 0x00003ffc //   log(1/frcpa(1+124/2^-8))/2
411 data8 0xcc5bc08d1f72da94 , 0x00003ffc //   log(1/frcpa(1+125/2^-8))/2
413 data8 0xcd7a3f99ea035c29 , 0x00003ffc //   log(1/frcpa(1+126/2^-8))/2
414 data8 0xcef93860c8a53c35 , 0x00003ffc //   log(1/frcpa(1+127/2^-8))/2
415 data8 0xd0192f68a7ed23df , 0x00003ffc //   log(1/frcpa(1+128/2^-8))/2
416 data8 0xd19a201127d3c645 , 0x00003ffc //   log(1/frcpa(1+129/2^-8))/2
417 data8 0xd2bb92f4061c172c , 0x00003ffc //   log(1/frcpa(1+130/2^-8))/2
419 data8 0xd43e80b2ee8cc8fc , 0x00003ffc //   log(1/frcpa(1+131/2^-8))/2
420 data8 0xd56173601fc4ade4 , 0x00003ffc //   log(1/frcpa(1+132/2^-8))/2
421 data8 0xd6e6637efb54086f , 0x00003ffc //   log(1/frcpa(1+133/2^-8))/2
422 data8 0xd80ad9f58f3c8193 , 0x00003ffc //   log(1/frcpa(1+134/2^-8))/2
423 data8 0xd991d1d31aca41f8 , 0x00003ffc //   log(1/frcpa(1+135/2^-8))/2
425 data8 0xdab7d02231484a93 , 0x00003ffc //   log(1/frcpa(1+136/2^-8))/2
426 data8 0xdc40d532cde49a54 , 0x00003ffc //   log(1/frcpa(1+137/2^-8))/2
427 data8 0xdd685f79ed8b265e , 0x00003ffc //   log(1/frcpa(1+138/2^-8))/2
428 data8 0xde9094bbc0e17b1d , 0x00003ffc //   log(1/frcpa(1+139/2^-8))/2
429 data8 0xe01c91b78440c425 , 0x00003ffc //   log(1/frcpa(1+140/2^-8))/2
431 data8 0xe14658f26997e729 , 0x00003ffc //   log(1/frcpa(1+141/2^-8))/2
432 data8 0xe270cdc2391e0d23 , 0x00003ffc //   log(1/frcpa(1+142/2^-8))/2
433 data8 0xe3ffce3a2aa64922 , 0x00003ffc //   log(1/frcpa(1+143/2^-8))/2
434 data8 0xe52bdb274ed82887 , 0x00003ffc //   log(1/frcpa(1+144/2^-8))/2
435 data8 0xe6589852e75d7df6 , 0x00003ffc //   log(1/frcpa(1+145/2^-8))/2
437 data8 0xe786068c79937a7d , 0x00003ffc //   log(1/frcpa(1+146/2^-8))/2
438 data8 0xe91903adad100911 , 0x00003ffc //   log(1/frcpa(1+147/2^-8))/2
439 data8 0xea481236f7d35bb0 , 0x00003ffc //   log(1/frcpa(1+148/2^-8))/2
440 data8 0xeb77d48c692e6b14 , 0x00003ffc //   log(1/frcpa(1+149/2^-8))/2
441 data8 0xeca84b83d7297b87 , 0x00003ffc //   log(1/frcpa(1+150/2^-8))/2
443 data8 0xedd977f4962aa158 , 0x00003ffc //   log(1/frcpa(1+151/2^-8))/2
444 data8 0xef7179a22f257754 , 0x00003ffc //   log(1/frcpa(1+152/2^-8))/2
445 data8 0xf0a450d139366ca7 , 0x00003ffc //   log(1/frcpa(1+153/2^-8))/2
446 data8 0xf1d7e0524ff9ffdb , 0x00003ffc //   log(1/frcpa(1+154/2^-8))/2
447 data8 0xf30c29036a8b6cae , 0x00003ffc //   log(1/frcpa(1+155/2^-8))/2
449 data8 0xf4412bc411ea8d92 , 0x00003ffc //   log(1/frcpa(1+156/2^-8))/2
450 data8 0xf576e97564c8619d , 0x00003ffc //   log(1/frcpa(1+157/2^-8))/2
451 data8 0xf6ad62fa1b5f172f , 0x00003ffc //   log(1/frcpa(1+158/2^-8))/2
452 data8 0xf7e499368b55c542 , 0x00003ffc //   log(1/frcpa(1+159/2^-8))/2
453 data8 0xf91c8d10abaffe22 , 0x00003ffc //   log(1/frcpa(1+160/2^-8))/2
455 data8 0xfa553f7018c966f3 , 0x00003ffc //   log(1/frcpa(1+161/2^-8))/2
456 data8 0xfb8eb13e185d802c , 0x00003ffc //   log(1/frcpa(1+162/2^-8))/2
457 data8 0xfcc8e3659d9bcbed , 0x00003ffc //   log(1/frcpa(1+163/2^-8))/2
458 data8 0xfe03d6d34d487fd2 , 0x00003ffc //   log(1/frcpa(1+164/2^-8))/2
459 data8 0xff3f8c7581e9f0ae , 0x00003ffc //   log(1/frcpa(1+165/2^-8))/2
461 data8 0x803e029e280173ae , 0x00003ffd //   log(1/frcpa(1+166/2^-8))/2
462 data8 0x80dca10cc52d0757 , 0x00003ffd //   log(1/frcpa(1+167/2^-8))/2
463 data8 0x817ba200632755a1 , 0x00003ffd //   log(1/frcpa(1+168/2^-8))/2
464 data8 0x821b05f3b01d6774 , 0x00003ffd //   log(1/frcpa(1+169/2^-8))/2
465 data8 0x82bacd623ff19d06 , 0x00003ffd //   log(1/frcpa(1+170/2^-8))/2
467 data8 0x835af8c88e7a8f47 , 0x00003ffd //   log(1/frcpa(1+171/2^-8))/2
468 data8 0x83c5f8299e2b4091 , 0x00003ffd //   log(1/frcpa(1+172/2^-8))/2
469 data8 0x8466cb43f3d87300 , 0x00003ffd //   log(1/frcpa(1+173/2^-8))/2
470 data8 0x850803a67c80ca4b , 0x00003ffd //   log(1/frcpa(1+174/2^-8))/2
471 data8 0x85a9a1d11a23b461 , 0x00003ffd //   log(1/frcpa(1+175/2^-8))/2
473 data8 0x864ba644a18e6e05 , 0x00003ffd //   log(1/frcpa(1+176/2^-8))/2
474 data8 0x86ee1182dcc432f7 , 0x00003ffd //   log(1/frcpa(1+177/2^-8))/2
475 data8 0x875a925d7e48c316 , 0x00003ffd //   log(1/frcpa(1+178/2^-8))/2
476 data8 0x87fdaa109d23aef7 , 0x00003ffd //   log(1/frcpa(1+179/2^-8))/2
477 data8 0x88a129ed4becfaf2 , 0x00003ffd //   log(1/frcpa(1+180/2^-8))/2
479 data8 0x89451278ecd7f9cf , 0x00003ffd //   log(1/frcpa(1+181/2^-8))/2
480 data8 0x89b29295f8432617 , 0x00003ffd //   log(1/frcpa(1+182/2^-8))/2
481 data8 0x8a572ac5a5496882 , 0x00003ffd //   log(1/frcpa(1+183/2^-8))/2
482 data8 0x8afc2d0ce3b2dadf , 0x00003ffd //   log(1/frcpa(1+184/2^-8))/2
483 data8 0x8b6a69c608cfd3af , 0x00003ffd //   log(1/frcpa(1+185/2^-8))/2
485 data8 0x8c101e106e899a83 , 0x00003ffd //   log(1/frcpa(1+186/2^-8))/2
486 data8 0x8cb63de258f9d626 , 0x00003ffd //   log(1/frcpa(1+187/2^-8))/2
487 data8 0x8d2539c5bd19e2b1 , 0x00003ffd //   log(1/frcpa(1+188/2^-8))/2
488 data8 0x8dcc0e064b29e6f1 , 0x00003ffd //   log(1/frcpa(1+189/2^-8))/2
489 data8 0x8e734f45d88357ae , 0x00003ffd //   log(1/frcpa(1+190/2^-8))/2
491 data8 0x8ee30cef034a20db , 0x00003ffd //   log(1/frcpa(1+191/2^-8))/2
492 data8 0x8f8b0515686d1d06 , 0x00003ffd //   log(1/frcpa(1+192/2^-8))/2
493 data8 0x90336bba039bf32f , 0x00003ffd //   log(1/frcpa(1+193/2^-8))/2
494 data8 0x90a3edd23d1c9d58 , 0x00003ffd //   log(1/frcpa(1+194/2^-8))/2
495 data8 0x914d0de2f5d61b32 , 0x00003ffd //   log(1/frcpa(1+195/2^-8))/2
497 data8 0x91be0c20d28173b5 , 0x00003ffd //   log(1/frcpa(1+196/2^-8))/2
498 data8 0x9267e737c06cd34a , 0x00003ffd //   log(1/frcpa(1+197/2^-8))/2
499 data8 0x92d962ae6abb1237 , 0x00003ffd //   log(1/frcpa(1+198/2^-8))/2
500 data8 0x9383fa6afbe2074c , 0x00003ffd //   log(1/frcpa(1+199/2^-8))/2
501 data8 0x942f0421651c1c4e , 0x00003ffd //   log(1/frcpa(1+200/2^-8))/2
503 data8 0x94a14a3845bb985e , 0x00003ffd //   log(1/frcpa(1+201/2^-8))/2
504 data8 0x954d133857f861e7 , 0x00003ffd //   log(1/frcpa(1+202/2^-8))/2
505 data8 0x95bfd96468e604c4 , 0x00003ffd //   log(1/frcpa(1+203/2^-8))/2
506 data8 0x9632d31cafafa858 , 0x00003ffd //   log(1/frcpa(1+204/2^-8))/2
507 data8 0x96dfaabd86fa1647 , 0x00003ffd //   log(1/frcpa(1+205/2^-8))/2
509 data8 0x9753261fcbb2a594 , 0x00003ffd //   log(1/frcpa(1+206/2^-8))/2
510 data8 0x9800c11b426b996d , 0x00003ffd //   log(1/frcpa(1+207/2^-8))/2
511 data8 0x9874bf4d45ae663c , 0x00003ffd //   log(1/frcpa(1+208/2^-8))/2
512 data8 0x99231f5ee9a74f79 , 0x00003ffd //   log(1/frcpa(1+209/2^-8))/2
513 data8 0x9997a18a56bcad28 , 0x00003ffd //   log(1/frcpa(1+210/2^-8))/2
515 data8 0x9a46c873a3267e79 , 0x00003ffd //   log(1/frcpa(1+211/2^-8))/2
516 data8 0x9abbcfc621eb6cb6 , 0x00003ffd //   log(1/frcpa(1+212/2^-8))/2
517 data8 0x9b310cb0d354c990 , 0x00003ffd //   log(1/frcpa(1+213/2^-8))/2
518 data8 0x9be14cf9e1b3515c , 0x00003ffd //   log(1/frcpa(1+214/2^-8))/2
519 data8 0x9c5710b8cbb73a43 , 0x00003ffd //   log(1/frcpa(1+215/2^-8))/2
521 data8 0x9ccd0abd301f399c , 0x00003ffd //   log(1/frcpa(1+216/2^-8))/2
522 data8 0x9d7e67f3bdce8888 , 0x00003ffd //   log(1/frcpa(1+217/2^-8))/2
523 data8 0x9df4ea81a99daa01 , 0x00003ffd //   log(1/frcpa(1+218/2^-8))/2
524 data8 0x9e6ba405a54514ba , 0x00003ffd //   log(1/frcpa(1+219/2^-8))/2
525 data8 0x9f1e21c8c7bb62b3 , 0x00003ffd //   log(1/frcpa(1+220/2^-8))/2
527 data8 0x9f956593f6b6355c , 0x00003ffd //   log(1/frcpa(1+221/2^-8))/2
528 data8 0xa00ce1092e5498c3 , 0x00003ffd //   log(1/frcpa(1+222/2^-8))/2
529 data8 0xa0c08309c4b912c1 , 0x00003ffd //   log(1/frcpa(1+223/2^-8))/2
530 data8 0xa1388a8c6faa2afa , 0x00003ffd //   log(1/frcpa(1+224/2^-8))/2
531 data8 0xa1b0ca7095b5f985 , 0x00003ffd //   log(1/frcpa(1+225/2^-8))/2
533 data8 0xa22942eb47534a00 , 0x00003ffd //   log(1/frcpa(1+226/2^-8))/2
534 data8 0xa2de62326449d0a3 , 0x00003ffd //   log(1/frcpa(1+227/2^-8))/2
535 data8 0xa357690f88bfe345 , 0x00003ffd //   log(1/frcpa(1+228/2^-8))/2
536 data8 0xa3d0a93f45169a4b , 0x00003ffd //   log(1/frcpa(1+229/2^-8))/2
537 data8 0xa44a22f7ffe65f30 , 0x00003ffd //   log(1/frcpa(1+230/2^-8))/2
539 data8 0xa500c5e5b4c1aa36 , 0x00003ffd //   log(1/frcpa(1+231/2^-8))/2
540 data8 0xa57ad064eb2ebbc2 , 0x00003ffd //   log(1/frcpa(1+232/2^-8))/2
541 data8 0xa5f5152dedf4384e , 0x00003ffd //   log(1/frcpa(1+233/2^-8))/2
542 data8 0xa66f9478856233ec , 0x00003ffd //   log(1/frcpa(1+234/2^-8))/2
543 data8 0xa6ea4e7cca02c32e , 0x00003ffd //   log(1/frcpa(1+235/2^-8))/2
545 data8 0xa765437325341ccf , 0x00003ffd //   log(1/frcpa(1+236/2^-8))/2
546 data8 0xa81e21e6c75b4020 , 0x00003ffd //   log(1/frcpa(1+237/2^-8))/2
547 data8 0xa899ab333fe2b9ca , 0x00003ffd //   log(1/frcpa(1+238/2^-8))/2
548 data8 0xa9157039c51ebe71 , 0x00003ffd //   log(1/frcpa(1+239/2^-8))/2
549 data8 0xa991713433c2b999 , 0x00003ffd //   log(1/frcpa(1+240/2^-8))/2
551 data8 0xaa0dae5cbcc048b3 , 0x00003ffd //   log(1/frcpa(1+241/2^-8))/2
552 data8 0xaa8a27ede5eb13ad , 0x00003ffd //   log(1/frcpa(1+242/2^-8))/2
553 data8 0xab06de228a9e3499 , 0x00003ffd //   log(1/frcpa(1+243/2^-8))/2
554 data8 0xab83d135dc633301 , 0x00003ffd //   log(1/frcpa(1+244/2^-8))/2
555 data8 0xac3fb076adc7fe7a , 0x00003ffd //   log(1/frcpa(1+245/2^-8))/2
557 data8 0xacbd3cbbe47988f1 , 0x00003ffd //   log(1/frcpa(1+246/2^-8))/2
558 data8 0xad3b06b1a5dc57c3 , 0x00003ffd //   log(1/frcpa(1+247/2^-8))/2
559 data8 0xadb90e94af887717 , 0x00003ffd //   log(1/frcpa(1+248/2^-8))/2
560 data8 0xae3754a218f7c816 , 0x00003ffd //   log(1/frcpa(1+249/2^-8))/2
561 data8 0xaeb5d9175437afa2 , 0x00003ffd //   log(1/frcpa(1+250/2^-8))/2
563 data8 0xaf349c322e9c7cee , 0x00003ffd //   log(1/frcpa(1+251/2^-8))/2
564 data8 0xafb39e30d1768d1c , 0x00003ffd //   log(1/frcpa(1+252/2^-8))/2
565 data8 0xb032df51c2c93116 , 0x00003ffd //   log(1/frcpa(1+253/2^-8))/2
566 data8 0xb0b25fd3e6035ad9 , 0x00003ffd //   log(1/frcpa(1+254/2^-8))/2
567 data8 0xb1321ff67cba178c , 0x00003ffd //   log(1/frcpa(1+255/2^-8))/2
568 LOCAL_OBJECT_END(atanh_data_3)
572 .section .text
573 GLOBAL_LIBM_ENTRY(atanh)
575 { .mfi
576       getf.exp      rArgSExpb = f8                  // Must recompute if x unorm
577       fclass.m      p13,p0 = f8, 0x0b               // is arg denormal ?
578       mov           rExpbMask = 0x1ffff
580 { .mfi
581       addl          DataPtr = @ltoff(atanh_data), gp
582       fnma.s1       fOneMx = f8, f1, f1             // fOneMx = 1 - x
583       mov           rBias = 0xffff
587 { .mfi
588       mov           rNearZeroBound = 0xfffd         // biased exp of 1/4
589       fclass.m      p12,p0 = f8, 0xc7               // is arg NaN or +/-0 ?
590       nop.i         0
592 { .mfi
593       ld8           DataPtr = [DataPtr]
594       fma.s1        fOnePx = f8, f1, f1             // fOnePx = 1 + x
595       nop.i         0
599 { .mfi
600       nop.m         0
601       fcmp.lt.s1    p10,p11 = f8,f0                 // is x < 0 ?
602       nop.i         0
604 { .mfb
605       nop.m         0
606       fnorm.s1      fNormX = f8                     // Normalize x
607 (p13) br.cond.spnt  ATANH_UNORM                     // Branch if x=unorm
611 ATANH_COMMON:
612 // Return here if x=unorm and not denorm
613 { .mfi
614       adds          Data2Ptr = 0x50, DataPtr
615       fma.s1        fX2 = f8, f8, f0                // x^2
616       nop.i         0
618 { .mfb
619       adds          Data3Ptr = 0xC0, DataPtr
620 (p12) fma.d.s0      f8 = f8,f1,f8                   // NaN or +/-0
621 (p12) br.ret.spnt   b0                              // Exit for x Nan or zero
625 { .mfi
626       ldfe          fC9 = [Data2Ptr], 16
627 (p11) frcpa.s1      fRcp0, p0 = f1, fOneMx
628       nop.i         0
632 { .mfi
633       ldfe          fC8 = [Data2Ptr], 16
634 (p10) frcpa.s1      fRcp0n, p0 = f1, fOnePx
635       and           rArgExpb = rArgSExpb, rExpbMask // biased exponent
637 { .mfi
638       nop.m         0
639 (p10) fma.s1        fOneMx = fOnePx, f1, f0         // fOnePx = 1 - |x|
640       nop.i         0
644 { .mfi
645       ldfe          fC7 = [Data2Ptr], 16
646 (p10) fnma.s1       fOnePx = fNormX, f1, f1         // fOnePx = 1 + |x|
647       cmp.ge        p6,p0 = rArgExpb, rBias         // is Expb(Arg) >= Expb(1) ?
649 { .mfb
650       nop.m         0
651       nop.f         0
652 (p6)  br.cond.spnt  atanh_ge_one                    // Branch if |x| >=1.0
656 { .mfi
657       ldfe          fC6 = [Data2Ptr], 16
658       nop.f         0
659       nop.i         0
663 { .mfi
664       ldfe          fC5 = [Data2Ptr], 16
665       fma.s1        fX4 = fX2, fX2, f0              // x^4
666       cmp.gt        p8,p0 = rNearZeroBound, rArgExpb
668 { .mfb
669       ldfe          fC2 = [Data3Ptr], 16
670       fma.s1        fX3 = fX2, fNormX, f0           // x^3
671 (p8)  br.cond.spnt  atanh_near_zero                 // Exit if 0 < |x| < 0.25
675 // Main path: 0.25 <= |x| < 1.0
676 // NR method: iteration #1
677 .pred.rel "mutex",p11,p10
678 { .mfi
679       ldfpd         fP5, fP4 = [DataPtr], 16
680 (p11) fnma.s1       fRcp1 = fRcp0, fOneMx, f1       // t = 1 - r0*x
681       nop.i         0
683 { .mfi
684       nop.m         0
685 (p10) fnma.s1       fRcp1 = fRcp0n, fOneMx, f1      // t = 1 - r0*x
686       nop.i         0
690 { .mfi
691       ldfpd         fP3, fP2 = [DataPtr], 16
692       // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
693 (p11) fma.s1        fRcp1 = fRcp0, fRcp1, fRcp0
694       nop.i         0
696 { .mfi
697       nop.m         0
698       // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
699 (p10) fma.s1        fRcp1 = fRcp0n, fRcp1, fRcp0n
700       nop.i         0
704 // NR method: iteration #2
705 { .mfi
706       ldfd          fP1 = [DataPtr], 16
707       fnma.s1       fRcp2 = fRcp1, fOneMx, f1       // t = 1 - r1*x
708       nop.i         0
712 { .mfi
713       ldfe          fLog2 = [DataPtr], 16
714       // r2 = r1 + r1*t = r1 + r1*(1 - r1*x)
715       fma.s1        fRcp2 = fRcp1, fRcp2, fRcp1
716       nop.i         0
720 // NR method: iteration #3
721 { .mfi
722       adds          RcpTablePtr = 0xB0, DataPtr
723       fnma.s1       fRcp3 = fRcp2, fOneMx, f1       // t = 1 - r2*x
724       nop.i         0
726 { .mfi
727       nop.m         0
728       fma.s1        fY4Rcp = fRcp2, fOnePx, f0      // fY4Rcp = r2*(1 + x)
729       nop.i         0
733 // polynomial approximation & final reconstruction
734 { .mfi
735       nop.m         0
736       frcpa.s1      fRcp, p0 = f1, fY4Rcp
737       nop.i         0
739 { .mfi
740       nop.m         0
741       // y = r2 * (1 + x) + r2 * (1 + x) * t = (1 + x) * (r2 + r2*(1 - r2*x))
742       fma.s1        fY = fY4Rcp, fRcp3, fY4Rcp
743       nop.i         0
747 { .mmi
748       getf.exp      rSExpb = fY4Rcp                 // biased exponent and sign
750       getf.sig      rSig = fY4Rcp                   // significand
751       nop.i         0
755 { .mfi
756       nop.m         0
757       fms.s1        fR = fY, fRcp, f1               // fR = fY * fRcp - 1
758       nop.i         0
762 { .mmi
763       and           rExpb = rSExpb, rExpbMask
765       sub           rN = rExpb, rBias               // exponent
766       extr.u        rInd = rSig,55,8                // Extract 8 bits
770 { .mmi
771       setf.sig      fN4Cvt = rN
772       shladd        RcpTablePtr = rInd, 4, RcpTablePtr
773       nop.i         0
777 { .mfi
778       ldfe          fLogT = [RcpTablePtr]
779       fma.s1        fR2 = fR, fR, f0                // r^2
780       nop.i         0
783       nop.m         0
784       fma.s1        fP54 = fP5, fR, fP4             // P5*r + P4
785       nop.i         0
789 { .mfi
790       nop.m         0
791       fma.s1        fP32 = fP3, fR, fP2             // P3*r + P2
792       nop.i         0
796 { .mfi
797       nop.m         0
798       fma.s1        fR3 = fR2, fR, f0               // r^3
799       nop.i         0
801 { .mfi
802       nop.m         0
803       fma.s1        fP10 = fP1, fR2, fR             // P1*r^2 + r
804       nop.i         0
808 { .mfi
809       nop.m         0
810       fcvt.xf       fN = fN4Cvt
811       nop.i         0
813 { .mfi
814       nop.m         0
815       fma.s1        fP54 = fP54, fR2, fP32      // (P5*r + P4)*r^2 + P3*r + P2
816       nop.i         0
820 { .mfi
821       nop.m         0
822       fma.s1        fLogT_N = fN, fLog2, fLogT      // N*Log2 + LogT
823       nop.i         0
825 { .mfi
826       nop.m         0
827       // ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
828       fma.s1        fP54 = fP54, fR3, fP10
829       nop.i         0
833 .pred.rel "mutex",p11,p10
834 { .mfi
835       nop.m         0
836       // 0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) + 0.5*(N*Log2 + T)
837 (p11) fnma.d.s0     f8 = fP54, fP1, fLogT_N
838       nop.i         0
840 { .mfb
841       nop.m         0
842      // -0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) - 0.5*(N*Log2 + T)
843 (p10) fms.d.s0      f8 = fP54, fP1, fLogT_N
844       br.ret.sptk   b0                          // Exit for 0.25 <= |x| < 1.0
848 // Here if 0 < |x| < 0.25
849 atanh_near_zero:
850 { .mfi
851       ldfe          fC4 = [Data2Ptr], 16
852       fma.s1        fP98 = fC9, fX2, fC8           // C9*x^2 + C8
853       nop.i         0
855 { .mfi
856       ldfe          fC1 = [Data3Ptr], 16
857       fma.s1        fP76 = fC7, fX2, fC6           // C7*x^2 + C6
858       nop.i         0
862 { .mfi
863       ldfe          fC3 = [Data2Ptr], 16
864       fma.s1        fX8 = fX4, fX4, f0             // x^8
865       nop.i         0
867 { .mfi
868       ldfe          fC0 = [Data3Ptr], 16
869       nop.f         0
870       nop.i         0
874 { .mfi
875       nop.m         0
876       fma.s1        fP98 = fP98, fX4, fP76     // C9*x^6 + C8*x^4 + C7*x^2 + C6
877       nop.i         0
881 { .mfi
882       nop.m         0
883       fma.s1        fP54 = fC5, fX2, fC4           // C5*x^2 + C4
884       nop.i         0
888 { .mfi
889       nop.m         0
890       fma.s1        fP32 = fC3, fX2, fC2           // C3*x^2 + C2
891       nop.i         0
895 { .mfi
896       nop.m         0
897       fma.s1        fP10 = fC1, fX2, fC0           // C1*x^2 + C0
898       nop.i         0
902 { .mfi
903       nop.m         0
904       fma.s1        fP54 = fP54, fX4, fP32      // C5*x^6 + C4*x^4 + C3*x^2 + C2
905       nop.i         0
909 { .mfi
910       nop.m         0
911       // C9*x^14 + C8*x^12 + C7*x^10 + C6*x^8 + C5*x^6 + C4*x^4 + C3*x^2 + C2
912       fma.s1        fP98 = fP98, fX8, fP54
913       nop.i         0
917 { .mfi
918       nop.m         0
919       // C9*x^18 + C8*x^16 + C7*x^14 + C6*x^12 + C5*x^10 + C4*x^8 + C3*x^6 +
920       // C2*x^4 + C1*x^2 + C0
921       fma.s1        fP98 = fP98, fX4, fP10
922       nop.i         0
926 { .mfb
927       nop.m         0
928       // C9*x^21 + C8*x^19 + C7*x^17 + C6*x^15 + C5*x^13 + C4*x^11 + C3*x^9 +
929       // C2*x^7 + C1*x^5 + C0*x^3 + x
930       fma.d.s0      f8 = fP98, fX3, fNormX
931       br.ret.sptk   b0                           // Exit for 0 < |x| < 0.25
935 ATANH_UNORM:
936 // Here if x=unorm
937 { .mfi
938       getf.exp      rArgSExpb = fNormX           // Recompute if x unorm
939       fclass.m      p0,p13 = fNormX, 0x0b        // Test x denorm
940       nop.i         0
944 { .mfb
945       nop.m         0
946       fcmp.eq.s0    p7,p0 = f8, f0        // Dummy to set denormal flag
947 (p13) br.cond.sptk  ATANH_COMMON          // Continue if x unorm and not denorm
951 .pred.rel "mutex",p10,p11
952 { .mfi
953       nop.m         0
954 (p10) fnma.d.s0     f8 = f8,f8,f8                // Result x-x^2 if x=-denorm
955       nop.i         0
957 { .mfb
958       nop.m         0
959 (p11) fma.d.s0      f8 = f8,f8,f8                // Result x+x^2 if x=+denorm
960       br.ret.spnt   b0                           // Exit if denorm
964 // Here if |x| >= 1.0
965 atanh_ge_one:
966 { .mfi
967       alloc         r32 = ar.pfs,1,3,4,0
968       fmerge.s      fAbsX = f0, f8          // Form |x|
969       nop.i         0
973 { .mfi
974       nop.m         0
975       fmerge.s      f10 = f8, f8            // Save input for error call
976       nop.i         0
980 { .mfi
981       nop.m         0
982       fcmp.eq.s1    p6,p7 = fAbsX, f1       // Test for |x| = 1.0
983       nop.i         0
987 // Set error tag and result, and raise invalid flag if |x| > 1.0
988 { .mfi
989 (p7)  mov           atanh_GR_tag = 131
990 (p7)  frcpa.s0      f8, p0 = f0, f0         // Get QNaN, and raise invalid
991       nop.i         0
995 // Set error tag and result, and raise Z flag if |x| = 1.0
996 { .mfi
997       nop.m         0
998 (p6)  frcpa.s0      fRcp, p0 = f1, f0       // Get inf, and raise Z flag
999       nop.i         0
1003 { .mfb
1004 (p6)  mov           atanh_GR_tag = 132
1005 (p6)  fmerge.s      f8 = f8, fRcp           // result is +-inf
1006       br.cond.sptk  __libm_error_region     // Exit if |x| >= 1.0
1010 GLOBAL_LIBM_END(atanh)
1013 LOCAL_LIBM_ENTRY(__libm_error_region)
1014 .prologue
1016 { .mfi
1017       add           GR_Parameter_Y=-32,sp        // Parameter 2 value
1018       nop.f         0
1019 .save   ar.pfs,GR_SAVE_PFS
1020       mov           GR_SAVE_PFS=ar.pfs           // Save ar.pfs
1022 { .mfi
1023 .fframe 64
1024       add sp=-64,sp                              // Create new stack
1025       nop.f 0
1026       mov GR_SAVE_GP=gp                          // Save gp
1029 { .mmi
1030       stfd [GR_Parameter_Y] = f1,16              // STORE Parameter 2 on stack
1031       add GR_Parameter_X = 16,sp                 // Parameter 1 address
1032 .save   b0, GR_SAVE_B0
1033       mov GR_SAVE_B0=b0                          // Save b0
1036 .body
1037 { .mib
1038       stfd [GR_Parameter_X] = f10                // STORE Parameter 1 on stack
1039       add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
1040       nop.b 0
1042 { .mib
1043       stfd [GR_Parameter_Y] = f8                 // STORE Parameter 3 on stack
1044       add   GR_Parameter_Y = -16,GR_Parameter_Y
1045       br.call.sptk b0=__libm_error_support#      // Call error handling function
1048 { .mmi
1049       add   GR_Parameter_RESULT = 48,sp
1050       nop.m 0
1051       nop.i 0
1054 { .mmi
1055       ldfd  f8 = [GR_Parameter_RESULT]           // Get return result off stack
1056 .restore sp
1057       add   sp = 64,sp                           // Restore stack pointer
1058       mov   b0 = GR_SAVE_B0                      // Restore return address
1061 { .mib
1062       mov   gp = GR_SAVE_GP                      // Restore gp
1063       mov   ar.pfs = GR_SAVE_PFS                 // Restore ar.pfs
1064       br.ret.sptk     b0                         // Return
1067 LOCAL_LIBM_END(__libm_error_region)
1070 .type   __libm_error_support#,@function
1071 .global __libm_error_support#