2.9
[glibc/nacl-glibc.git] / manual / arith.texi
blobb1580a06f5ef35c173bb4e55a2c3d6b5c6e79bc6
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
11 @menu
12 * Integers::                    Basic integer types and concepts
13 * Integer Division::            Integer division with guaranteed rounding.
14 * Floating Point Numbers::      Basic concepts.  IEEE 754.
15 * Floating Point Classes::      The five kinds of floating-point number.
16 * Floating Point Errors::       When something goes wrong in a calculation.
17 * Rounding::                    Controlling how results are rounded.
18 * Control Functions::           Saving and restoring the FPU's state.
19 * Arithmetic Functions::        Fundamental operations provided by the library.
20 * Complex Numbers::             The types.  Writing complex constants.
21 * Operations on Complex::       Projection, conjugation, decomposition.
22 * Parsing of Numbers::          Converting strings to numbers.
23 * System V Number Conversion::  An archaic way to convert numbers to strings.
24 @end menu
26 @node Integers
27 @section Integers
28 @cindex integer
30 The C language defines several integer data types: integer, short integer,
31 long integer, and character, all in both signed and unsigned varieties.
32 The GNU C compiler extends the language to contain long long integers
33 as well.
34 @cindex signedness
36 The C integer types were intended to allow code to be portable among
37 machines with different inherent data sizes (word sizes), so each type
38 may have different ranges on different machines.  The problem with
39 this is that a program often needs to be written for a particular range
40 of integers, and sometimes must be written for a particular size of
41 storage, regardless of what machine the program runs on.
43 To address this problem, the GNU C library contains C type definitions
44 you can use to declare integers that meet your exact needs.  Because the
45 GNU C library header files are customized to a specific machine, your
46 program source code doesn't have to be.
48 These @code{typedef}s are in @file{stdint.h}.
49 @pindex stdint.h
51 If you require that an integer be represented in exactly N bits, use one
52 of the following types, with the obvious mapping to bit size and signedness:
54 @itemize @bullet
55 @item int8_t
56 @item int16_t
57 @item int32_t
58 @item int64_t
59 @item uint8_t
60 @item uint16_t
61 @item uint32_t
62 @item uint64_t
63 @end itemize
65 If your C compiler and target machine do not allow integers of a certain
66 size, the corresponding above type does not exist.
68 If you don't need a specific storage size, but want the smallest data
69 structure with @emph{at least} N bits, use one of these:
71 @itemize @bullet
72 @item int_least8_t
73 @item int_least16_t
74 @item int_least32_t
75 @item int_least64_t
76 @item uint_least8_t
77 @item uint_least16_t
78 @item uint_least32_t
79 @item uint_least64_t
80 @end itemize
82 If you don't need a specific storage size, but want the data structure
83 that allows the fastest access while having at least N bits (and
84 among data structures with the same access speed, the smallest one), use
85 one of these:
87 @itemize @bullet
88 @item int_fast8_t
89 @item int_fast16_t
90 @item int_fast32_t
91 @item int_fast64_t
92 @item uint_fast8_t
93 @item uint_fast16_t
94 @item uint_fast32_t
95 @item uint_fast64_t
96 @end itemize
98 If you want an integer with the widest range possible on the platform on
99 which it is being used, use one of the following.  If you use these,
100 you should write code that takes into account the variable size and range
101 of the integer.
103 @itemize @bullet
104 @item intmax_t
105 @item uintmax_t
106 @end itemize
108 The GNU C library also provides macros that tell you the maximum and
109 minimum possible values for each integer data type.  The macro names
110 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112 @code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
113 unsigned integer minima.  These are always zero.
114 @cindex maximum possible integer
115 @cindex minimum possible integer
117 There are similar macros for use with C's built in integer types which
118 should come with your C compiler.  These are described in @ref{Data Type
119 Measurements}.
121 Don't forget you can use the C @code{sizeof} function with any of these
122 data types to get the number of bytes of storage each uses.
125 @node Integer Division
126 @section Integer Division
127 @cindex integer division functions
129 This section describes functions for performing integer division.  These
130 functions are redundant when GNU CC is used, because in GNU C the
131 @samp{/} operator always rounds towards zero.  But in other C
132 implementations, @samp{/} may round differently with negative arguments.
133 @code{div} and @code{ldiv} are useful because they specify how to round
134 the quotient: towards zero.  The remainder has the same sign as the
135 numerator.
137 These functions are specified to return a result @var{r} such that the value
138 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139 @var{numerator}.
141 @pindex stdlib.h
142 To use these facilities, you should include the header file
143 @file{stdlib.h} in your program.
145 @comment stdlib.h
146 @comment ISO
147 @deftp {Data Type} div_t
148 This is a structure type used to hold the result returned by the @code{div}
149 function.  It has the following members:
151 @table @code
152 @item int quot
153 The quotient from the division.
155 @item int rem
156 The remainder from the division.
157 @end table
158 @end deftp
160 @comment stdlib.h
161 @comment ISO
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 This function @code{div} computes the quotient and remainder from
164 the division of @var{numerator} by @var{denominator}, returning the
165 result in a structure of type @code{div_t}.
167 If the result cannot be represented (as in a division by zero), the
168 behavior is undefined.
170 Here is an example, albeit not a very useful one.
172 @smallexample
173 div_t result;
174 result = div (20, -6);
175 @end smallexample
177 @noindent
178 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179 @end deftypefun
181 @comment stdlib.h
182 @comment ISO
183 @deftp {Data Type} ldiv_t
184 This is a structure type used to hold the result returned by the @code{ldiv}
185 function.  It has the following members:
187 @table @code
188 @item long int quot
189 The quotient from the division.
191 @item long int rem
192 The remainder from the division.
193 @end table
195 (This is identical to @code{div_t} except that the components are of
196 type @code{long int} rather than @code{int}.)
197 @end deftp
199 @comment stdlib.h
200 @comment ISO
201 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202 The @code{ldiv} function is similar to @code{div}, except that the
203 arguments are of type @code{long int} and the result is returned as a
204 structure of type @code{ldiv_t}.
205 @end deftypefun
207 @comment stdlib.h
208 @comment ISO
209 @deftp {Data Type} lldiv_t
210 This is a structure type used to hold the result returned by the @code{lldiv}
211 function.  It has the following members:
213 @table @code
214 @item long long int quot
215 The quotient from the division.
217 @item long long int rem
218 The remainder from the division.
219 @end table
221 (This is identical to @code{div_t} except that the components are of
222 type @code{long long int} rather than @code{int}.)
223 @end deftp
225 @comment stdlib.h
226 @comment ISO
227 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228 The @code{lldiv} function is like the @code{div} function, but the
229 arguments are of type @code{long long int} and the result is returned as
230 a structure of type @code{lldiv_t}.
232 The @code{lldiv} function was added in @w{ISO C99}.
233 @end deftypefun
235 @comment inttypes.h
236 @comment ISO
237 @deftp {Data Type} imaxdiv_t
238 This is a structure type used to hold the result returned by the @code{imaxdiv}
239 function.  It has the following members:
241 @table @code
242 @item intmax_t quot
243 The quotient from the division.
245 @item intmax_t rem
246 The remainder from the division.
247 @end table
249 (This is identical to @code{div_t} except that the components are of
250 type @code{intmax_t} rather than @code{int}.)
252 See @ref{Integers} for a description of the @code{intmax_t} type.
254 @end deftp
256 @comment inttypes.h
257 @comment ISO
258 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259 The @code{imaxdiv} function is like the @code{div} function, but the
260 arguments are of type @code{intmax_t} and the result is returned as
261 a structure of type @code{imaxdiv_t}.
263 See @ref{Integers} for a description of the @code{intmax_t} type.
265 The @code{imaxdiv} function was added in @w{ISO C99}.
266 @end deftypefun
269 @node Floating Point Numbers
270 @section Floating Point Numbers
271 @cindex floating point
272 @cindex IEEE 754
273 @cindex IEEE floating point
275 Most computer hardware has support for two different kinds of numbers:
276 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277 floating-point numbers.  Floating-point numbers have three parts: the
278 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
279 number represented by a floating-point value is given by
280 @tex
281 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282 @end tex
283 @ifnottex
284 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285 @end ifnottex
286 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287 the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
288 possible to have a different @dfn{base} for the exponent, but all modern
289 hardware uses @math{2}.)
291 Floating-point numbers can represent a finite subset of the real
292 numbers.  While this subset is large enough for most purposes, it is
293 important to remember that the only reals that can be represented
294 exactly are rational numbers that have a terminating binary expansion
295 shorter than the width of the mantissa.  Even simple fractions such as
296 @math{1/5} can only be approximated by floating point.
298 Mathematical operations and functions frequently need to produce values
299 that are not representable.  Often these values can be approximated
300 closely enough for practical purposes, but sometimes they can't.
301 Historically there was no way to tell when the results of a calculation
302 were inaccurate.  Modern computers implement the @w{IEEE 754} standard
303 for numerical computations, which defines a framework for indicating to
304 the program when the results of calculation are not trustworthy.  This
305 framework consists of a set of @dfn{exceptions} that indicate why a
306 result could not be represented, and the special values @dfn{infinity}
307 and @dfn{not a number} (NaN).
309 @node Floating Point Classes
310 @section Floating-Point Number Classification Functions
311 @cindex floating-point classes
312 @cindex classes, floating-point
313 @pindex math.h
315 @w{ISO C99} defines macros that let you determine what sort of
316 floating-point number a variable holds.
318 @comment math.h
319 @comment ISO
320 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321 This is a generic macro which works on all floating-point types and
322 which returns a value of type @code{int}.  The possible values are:
324 @vtable @code
325 @item FP_NAN
326 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327 and NaN})
328 @item FP_INFINITE
329 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330 and NaN})
331 @item FP_ZERO
332 The value of @var{x} is zero.  In floating-point formats like @w{IEEE
333 754}, where zero can be signed, this value is also returned if
334 @var{x} is negative zero.
335 @item FP_SUBNORMAL
336 Numbers whose absolute value is too small to be represented in the
337 normal format are represented in an alternate, @dfn{denormalized} format
338 (@pxref{Floating Point Concepts}).  This format is less precise but can
339 represent values closer to zero.  @code{fpclassify} returns this value
340 for values of @var{x} in this alternate format.
341 @item FP_NORMAL
342 This value is returned for all other values of @var{x}.  It indicates
343 that there is nothing special about the number.
344 @end vtable
346 @end deftypefn
348 @code{fpclassify} is most useful if more than one property of a number
349 must be tested.  There are more specific macros which only test one
350 property at a time.  Generally these macros execute faster than
351 @code{fpclassify}, since there is special hardware support for them.
352 You should therefore use the specific macros whenever possible.
354 @comment math.h
355 @comment ISO
356 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357 This macro returns a nonzero value if @var{x} is finite: not plus or
358 minus infinity, and not NaN.  It is equivalent to
360 @smallexample
361 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
362 @end smallexample
364 @code{isfinite} is implemented as a macro which accepts any
365 floating-point type.
366 @end deftypefn
368 @comment math.h
369 @comment ISO
370 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371 This macro returns a nonzero value if @var{x} is finite and normalized.
372 It is equivalent to
374 @smallexample
375 (fpclassify (x) == FP_NORMAL)
376 @end smallexample
377 @end deftypefn
379 @comment math.h
380 @comment ISO
381 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382 This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
385 @smallexample
386 (fpclassify (x) == FP_NAN)
387 @end smallexample
388 @end deftypefn
390 Another set of floating-point classification functions was provided by
391 BSD.  The GNU C library also supports these functions; however, we
392 recommend that you use the ISO C99 macros in new code.  Those are standard
393 and will be available more widely.  Also, since they are macros, you do
394 not have to worry about the type of their argument.
396 @comment math.h
397 @comment BSD
398 @deftypefun int isinf (double @var{x})
399 @comment math.h
400 @comment BSD
401 @deftypefunx int isinff (float @var{x})
402 @comment math.h
403 @comment BSD
404 @deftypefunx int isinfl (long double @var{x})
405 This function returns @code{-1} if @var{x} represents negative infinity,
406 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
407 @end deftypefun
409 @comment math.h
410 @comment BSD
411 @deftypefun int isnan (double @var{x})
412 @comment math.h
413 @comment BSD
414 @deftypefunx int isnanf (float @var{x})
415 @comment math.h
416 @comment BSD
417 @deftypefunx int isnanl (long double @var{x})
418 This function returns a nonzero value if @var{x} is a ``not a number''
419 value, and zero otherwise.
421 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
422 the BSD function.  This is normally not a problem, because the two
423 routines behave identically.  However, if you really need to get the BSD
424 function for some reason, you can write
426 @smallexample
427 (isnan) (x)
428 @end smallexample
429 @end deftypefun
431 @comment math.h
432 @comment BSD
433 @deftypefun int finite (double @var{x})
434 @comment math.h
435 @comment BSD
436 @deftypefunx int finitef (float @var{x})
437 @comment math.h
438 @comment BSD
439 @deftypefunx int finitel (long double @var{x})
440 This function returns a nonzero value if @var{x} is finite or a ``not a
441 number'' value, and zero otherwise.
442 @end deftypefun
444 @strong{Portability Note:} The functions listed in this section are BSD
445 extensions.
448 @node Floating Point Errors
449 @section Errors in Floating-Point Calculations
451 @menu
452 * FP Exceptions::               IEEE 754 math exceptions and how to detect them.
453 * Infinity and NaN::            Special values returned by calculations.
454 * Status bit operations::       Checking for exceptions after the fact.
455 * Math Error Reporting::        How the math functions report errors.
456 @end menu
458 @node FP Exceptions
459 @subsection FP Exceptions
460 @cindex exception
461 @cindex signal
462 @cindex zero divide
463 @cindex division by zero
464 @cindex inexact exception
465 @cindex invalid exception
466 @cindex overflow exception
467 @cindex underflow exception
469 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
470 during a calculation.  Each corresponds to a particular sort of error,
471 such as overflow.
473 When exceptions occur (when exceptions are @dfn{raised}, in the language
474 of the standard), one of two things can happen.  By default the
475 exception is simply noted in the floating-point @dfn{status word}, and
476 the program continues as if nothing had happened.  The operation
477 produces a default value, which depends on the exception (see the table
478 below).  Your program can check the status word to find out which
479 exceptions happened.
481 Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
482 when an exception is raised, your program will receive the @code{SIGFPE}
483 signal.  The default action for this signal is to terminate the
484 program.  @xref{Signal Handling}, for how you can change the effect of
485 the signal.
487 @findex matherr
488 In the System V math library, the user-defined function @code{matherr}
489 is called when certain exceptions occur inside math library functions.
490 However, the Unix98 standard deprecates this interface.  We support it
491 for historical compatibility, but recommend that you do not use it in
492 new programs.
494 @noindent
495 The exceptions defined in @w{IEEE 754} are:
497 @table @samp
498 @item Invalid Operation
499 This exception is raised if the given operands are invalid for the
500 operation to be performed.  Examples are
501 (see @w{IEEE 754}, @w{section 7}):
502 @enumerate
503 @item
504 Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
505 @math{@infinity{} + @infinity{} = @infinity{}}).
506 @item
507 Multiplication: @math{0 @mul{} @infinity{}}.
508 @item
509 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
510 @item
511 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
512 infinite.
513 @item
514 Square root if the operand is less then zero.  More generally, any
515 mathematical function evaluated outside its domain produces this
516 exception.
517 @item
518 Conversion of a floating-point number to an integer or decimal
519 string, when the number cannot be represented in the target format (due
520 to overflow, infinity, or NaN).
521 @item
522 Conversion of an unrecognizable input string.
523 @item
524 Comparison via predicates involving @math{<} or @math{>}, when one or
525 other of the operands is NaN.  You can prevent this exception by using
526 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
527 @end enumerate
529 If the exception does not trap, the result of the operation is NaN.
531 @item Division by Zero
532 This exception is raised when a finite nonzero number is divided
533 by zero.  If no trap occurs the result is either @math{+@infinity{}} or
534 @math{-@infinity{}}, depending on the signs of the operands.
536 @item Overflow
537 This exception is raised whenever the result cannot be represented
538 as a finite value in the precision format of the destination.  If no trap
539 occurs the result depends on the sign of the intermediate result and the
540 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
541 @enumerate
542 @item
543 Round to nearest carries all overflows to @math{@infinity{}}
544 with the sign of the intermediate result.
545 @item
546 Round toward @math{0} carries all overflows to the largest representable
547 finite number with the sign of the intermediate result.
548 @item
549 Round toward @math{-@infinity{}} carries positive overflows to the
550 largest representable finite number and negative overflows to
551 @math{-@infinity{}}.
553 @item
554 Round toward @math{@infinity{}} carries negative overflows to the
555 most negative representable finite number and positive overflows
556 to @math{@infinity{}}.
557 @end enumerate
559 Whenever the overflow exception is raised, the inexact exception is also
560 raised.
562 @item Underflow
563 The underflow exception is raised when an intermediate result is too
564 small to be calculated accurately, or if the operation's result rounded
565 to the destination precision is too small to be normalized.
567 When no trap is installed for the underflow exception, underflow is
568 signaled (via the underflow flag) only when both tininess and loss of
569 accuracy have been detected.  If no trap handler is installed the
570 operation continues with an imprecise small value, or zero if the
571 destination precision cannot hold the small exact result.
573 @item Inexact
574 This exception is signalled if a rounded result is not exact (such as
575 when calculating the square root of two) or a result overflows without
576 an overflow trap.
577 @end table
579 @node Infinity and NaN
580 @subsection Infinity and NaN
581 @cindex infinity
582 @cindex not a number
583 @cindex NaN
585 @w{IEEE 754} floating point numbers can represent positive or negative
586 infinity, and @dfn{NaN} (not a number).  These three values arise from
587 calculations whose result is undefined or cannot be represented
588 accurately.  You can also deliberately set a floating-point variable to
589 any of them, which is sometimes useful.  Some examples of calculations
590 that produce infinity or NaN:
592 @ifnottex
593 @smallexample
594 @math{1/0 = @infinity{}}
595 @math{log (0) = -@infinity{}}
596 @math{sqrt (-1) = NaN}
597 @end smallexample
598 @end ifnottex
599 @tex
600 $${1\over0} = \infty$$
601 $$\log 0 = -\infty$$
602 $$\sqrt{-1} = \hbox{NaN}$$
603 @end tex
605 When a calculation produces any of these values, an exception also
606 occurs; see @ref{FP Exceptions}.
608 The basic operations and math functions all accept infinity and NaN and
609 produce sensible output.  Infinities propagate through calculations as
610 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
611 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
612 the other hand, infects any calculation that involves it.  Unless the
613 calculation would produce the same result no matter what real value
614 replaced NaN, the result is NaN.
616 In comparison operations, positive infinity is larger than all values
617 except itself and NaN, and negative infinity is smaller than all values
618 except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
619 greater than, or less than anything, @emph{including itself}. @code{x ==
620 x} is false if the value of @code{x} is NaN.  You can use this to test
621 whether a value is NaN or not, but the recommended way to test for NaN
622 is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
623 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
624 exception when applied to NaNs.
626 @file{math.h} defines macros that allow you to explicitly set a variable
627 to infinity or NaN.
629 @comment math.h
630 @comment ISO
631 @deftypevr Macro float INFINITY
632 An expression representing positive infinity.  It is equal to the value
633 produced  by mathematical operations like @code{1.0 / 0.0}.
634 @code{-INFINITY} represents negative infinity.
636 You can test whether a floating-point value is infinite by comparing it
637 to this macro.  However, this is not recommended; you should use the
638 @code{isfinite} macro instead.  @xref{Floating Point Classes}.
640 This macro was introduced in the @w{ISO C99} standard.
641 @end deftypevr
643 @comment math.h
644 @comment GNU
645 @deftypevr Macro float NAN
646 An expression representing a value which is ``not a number''.  This
647 macro is a GNU extension, available only on machines that support the
648 ``not a number'' value---that is to say, on all machines that support
649 IEEE floating point.
651 You can use @samp{#ifdef NAN} to test whether the machine supports
652 NaN.  (Of course, you must arrange for GNU extensions to be visible,
653 such as by defining @code{_GNU_SOURCE}, and then you must include
654 @file{math.h}.)
655 @end deftypevr
657 @w{IEEE 754} also allows for another unusual value: negative zero.  This
658 value is produced when you divide a positive number by negative
659 infinity, or when a negative result is smaller than the limits of
660 representation.  Negative zero behaves identically to zero in all
661 calculations, unless you explicitly test the sign bit with
662 @code{signbit} or @code{copysign}.
664 @node Status bit operations
665 @subsection Examining the FPU status word
667 @w{ISO C99} defines functions to query and manipulate the
668 floating-point status word.  You can use these functions to check for
669 untrapped exceptions when it's convenient, rather than worrying about
670 them in the middle of a calculation.
672 These constants represent the various @w{IEEE 754} exceptions.  Not all
673 FPUs report all the different exceptions.  Each constant is defined if
674 and only if the FPU you are compiling for supports that exception, so
675 you can test for FPU support with @samp{#ifdef}.  They are defined in
676 @file{fenv.h}.
678 @vtable @code
679 @comment fenv.h
680 @comment ISO
681 @item FE_INEXACT
682  The inexact exception.
683 @comment fenv.h
684 @comment ISO
685 @item FE_DIVBYZERO
686  The divide by zero exception.
687 @comment fenv.h
688 @comment ISO
689 @item FE_UNDERFLOW
690  The underflow exception.
691 @comment fenv.h
692 @comment ISO
693 @item FE_OVERFLOW
694  The overflow exception.
695 @comment fenv.h
696 @comment ISO
697 @item FE_INVALID
698  The invalid exception.
699 @end vtable
701 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
702 which are supported by the FP implementation.
704 These functions allow you to clear exception flags, test for exceptions,
705 and save and restore the set of exceptions flagged.
707 @comment fenv.h
708 @comment ISO
709 @deftypefun int feclearexcept (int @var{excepts})
710 This function clears all of the supported exception flags indicated by
711 @var{excepts}.
713 The function returns zero in case the operation was successful, a
714 non-zero value otherwise.
715 @end deftypefun
717 @comment fenv.h
718 @comment ISO
719 @deftypefun int feraiseexcept (int @var{excepts})
720 This function raises the supported exceptions indicated by
721 @var{excepts}.  If more than one exception bit in @var{excepts} is set
722 the order in which the exceptions are raised is undefined except that
723 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
724 raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
725 underflow the inexact exception is also raised is also implementation
726 dependent.
728 The function returns zero in case the operation was successful, a
729 non-zero value otherwise.
730 @end deftypefun
732 @comment fenv.h
733 @comment ISO
734 @deftypefun int fetestexcept (int @var{excepts})
735 Test whether the exception flags indicated by the parameter @var{except}
736 are currently set.  If any of them are, a nonzero value is returned
737 which specifies which exceptions are set.  Otherwise the result is zero.
738 @end deftypefun
740 To understand these functions, imagine that the status word is an
741 integer variable named @var{status}.  @code{feclearexcept} is then
742 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
743 equivalent to @samp{(status & excepts)}.  The actual implementation may
744 be very different, of course.
746 Exception flags are only cleared when the program explicitly requests it,
747 by calling @code{feclearexcept}.  If you want to check for exceptions
748 from a set of calculations, you should clear all the flags first.  Here
749 is a simple example of the way to use @code{fetestexcept}:
751 @smallexample
753   double f;
754   int raised;
755   feclearexcept (FE_ALL_EXCEPT);
756   f = compute ();
757   raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
758   if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
759   if (raised & FE_INVALID) @{ /* @dots{} */ @}
760   /* @dots{} */
762 @end smallexample
764 You cannot explicitly set bits in the status word.  You can, however,
765 save the entire status word and restore it later.  This is done with the
766 following functions:
768 @comment fenv.h
769 @comment ISO
770 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
771 This function stores in the variable pointed to by @var{flagp} an
772 implementation-defined value representing the current setting of the
773 exception flags indicated by @var{excepts}.
775 The function returns zero in case the operation was successful, a
776 non-zero value otherwise.
777 @end deftypefun
779 @comment fenv.h
780 @comment ISO
781 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
782 This function restores the flags for the exceptions indicated by
783 @var{excepts} to the values stored in the variable pointed to by
784 @var{flagp}.
786 The function returns zero in case the operation was successful, a
787 non-zero value otherwise.
788 @end deftypefun
790 Note that the value stored in @code{fexcept_t} bears no resemblance to
791 the bit mask returned by @code{fetestexcept}.  The type may not even be
792 an integer.  Do not attempt to modify an @code{fexcept_t} variable.
794 @node Math Error Reporting
795 @subsection Error Reporting by Mathematical Functions
796 @cindex errors, mathematical
797 @cindex domain error
798 @cindex range error
800 Many of the math functions are defined only over a subset of the real or
801 complex numbers.  Even if they are mathematically defined, their result
802 may be larger or smaller than the range representable by their return
803 type.  These are known as @dfn{domain errors}, @dfn{overflows}, and
804 @dfn{underflows}, respectively.  Math functions do several things when
805 one of these errors occurs.  In this manual we will refer to the
806 complete response as @dfn{signalling} a domain error, overflow, or
807 underflow.
809 When a math function suffers a domain error, it raises the invalid
810 exception and returns NaN.  It also sets @var{errno} to @code{EDOM};
811 this is for compatibility with old systems that do not support @w{IEEE
812 754} exception handling.  Likewise, when overflow occurs, math
813 functions raise the overflow exception and return @math{@infinity{}} or
814 @math{-@infinity{}} as appropriate.  They also set @var{errno} to
815 @code{ERANGE}.  When underflow occurs, the underflow exception is
816 raised, and zero (appropriately signed) is returned.  @var{errno} may be
817 set to @code{ERANGE}, but this is not guaranteed.
819 Some of the math functions are defined mathematically to result in a
820 complex value over parts of their domains.  The most familiar example of
821 this is taking the square root of a negative number.  The complex math
822 functions, such as @code{csqrt}, will return the appropriate complex value
823 in this case.  The real-valued functions, such as @code{sqrt}, will
824 signal a domain error.
826 Some older hardware does not support infinities.  On that hardware,
827 overflows instead return a particular very large number (usually the
828 largest representable number).  @file{math.h} defines macros you can use
829 to test for overflow on both old and new hardware.
831 @comment math.h
832 @comment ISO
833 @deftypevr Macro double HUGE_VAL
834 @comment math.h
835 @comment ISO
836 @deftypevrx Macro float HUGE_VALF
837 @comment math.h
838 @comment ISO
839 @deftypevrx Macro {long double} HUGE_VALL
840 An expression representing a particular very large number.  On machines
841 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
842 On other machines, it's typically the largest positive number that can
843 be represented.
845 Mathematical functions return the appropriately typed version of
846 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
847 to be represented.
848 @end deftypevr
850 @node Rounding
851 @section Rounding Modes
853 Floating-point calculations are carried out internally with extra
854 precision, and then rounded to fit into the destination type.  This
855 ensures that results are as precise as the input data.  @w{IEEE 754}
856 defines four possible rounding modes:
858 @table @asis
859 @item Round to nearest.
860 This is the default mode.  It should be used unless there is a specific
861 need for one of the others.  In this mode results are rounded to the
862 nearest representable value.  If the result is midway between two
863 representable values, the even representable is chosen. @dfn{Even} here
864 means the lowest-order bit is zero.  This rounding mode prevents
865 statistical bias and guarantees numeric stability: round-off errors in a
866 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
868 @c @item Round toward @math{+@infinity{}}
869 @item Round toward plus Infinity.
870 All results are rounded to the smallest representable value
871 which is greater than the result.
873 @c @item Round toward @math{-@infinity{}}
874 @item Round toward minus Infinity.
875 All results are rounded to the largest representable value which is less
876 than the result.
878 @item Round toward zero.
879 All results are rounded to the largest representable value whose
880 magnitude is less than that of the result.  In other words, if the
881 result is negative it is rounded up; if it is positive, it is rounded
882 down.
883 @end table
885 @noindent
886 @file{fenv.h} defines constants which you can use to refer to the
887 various rounding modes.  Each one will be defined if and only if the FPU
888 supports the corresponding rounding mode.
890 @table @code
891 @comment fenv.h
892 @comment ISO
893 @vindex FE_TONEAREST
894 @item FE_TONEAREST
895 Round to nearest.
897 @comment fenv.h
898 @comment ISO
899 @vindex FE_UPWARD
900 @item FE_UPWARD
901 Round toward @math{+@infinity{}}.
903 @comment fenv.h
904 @comment ISO
905 @vindex FE_DOWNWARD
906 @item FE_DOWNWARD
907 Round toward @math{-@infinity{}}.
909 @comment fenv.h
910 @comment ISO
911 @vindex FE_TOWARDZERO
912 @item FE_TOWARDZERO
913 Round toward zero.
914 @end table
916 Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
917 numbers are always normalized (@pxref{Floating Point Concepts}).
918 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
919 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
920 normalized numbers.  Rounding all such numbers to zero or @math{2^r}
921 would cause some algorithms to fail at 0.  Therefore, they are left in
922 denormalized form.  That produces loss of precision, since some bits of
923 the mantissa are stolen to indicate the decimal point.
925 If a result is too small to be represented as a denormalized number, it
926 is rounded to zero.  However, the sign of the result is preserved; if
927 the calculation was negative, the result is @dfn{negative zero}.
928 Negative zero can also result from some operations on infinity, such as
929 @math{4/-@infinity{}}.  Negative zero behaves identically to zero except
930 when the @code{copysign} or @code{signbit} functions are used to check
931 the sign bit directly.
933 At any time one of the above four rounding modes is selected.  You can
934 find out which one with this function:
936 @comment fenv.h
937 @comment ISO
938 @deftypefun int fegetround (void)
939 Returns the currently selected rounding mode, represented by one of the
940 values of the defined rounding mode macros.
941 @end deftypefun
943 @noindent
944 To change the rounding mode, use this function:
946 @comment fenv.h
947 @comment ISO
948 @deftypefun int fesetround (int @var{round})
949 Changes the currently selected rounding mode to @var{round}.  If
950 @var{round} does not correspond to one of the supported rounding modes
951 nothing is changed.  @code{fesetround} returns zero if it changed the
952 rounding mode, a nonzero value if the mode is not supported.
953 @end deftypefun
955 You should avoid changing the rounding mode if possible.  It can be an
956 expensive operation; also, some hardware requires you to compile your
957 program differently for it to work.  The resulting code may run slower.
958 See your compiler documentation for details.
959 @c This section used to claim that functions existed to round one number
960 @c in a specific fashion.  I can't find any functions in the library
961 @c that do that. -zw
963 @node Control Functions
964 @section Floating-Point Control Functions
966 @w{IEEE 754} floating-point implementations allow the programmer to
967 decide whether traps will occur for each of the exceptions, by setting
968 bits in the @dfn{control word}.  In C, traps result in the program
969 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
971 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
972 the exceptional situation, and can set the result value.  C signals do
973 not provide any mechanism to pass this information back and forth.
974 Trapping exceptions in C is therefore not very useful.
976 It is sometimes necessary to save the state of the floating-point unit
977 while you perform some calculation.  The library provides functions
978 which save and restore the exception flags, the set of exceptions that
979 generate traps, and the rounding mode.  This information is known as the
980 @dfn{floating-point environment}.
982 The functions to save and restore the floating-point environment all use
983 a variable of type @code{fenv_t} to store information.  This type is
984 defined in @file{fenv.h}.  Its size and contents are
985 implementation-defined.  You should not attempt to manipulate a variable
986 of this type directly.
988 To save the state of the FPU, use one of these functions:
990 @comment fenv.h
991 @comment ISO
992 @deftypefun int fegetenv (fenv_t *@var{envp})
993 Store the floating-point environment in the variable pointed to by
994 @var{envp}.
996 The function returns zero in case the operation was successful, a
997 non-zero value otherwise.
998 @end deftypefun
1000 @comment fenv.h
1001 @comment ISO
1002 @deftypefun int feholdexcept (fenv_t *@var{envp})
1003 Store the current floating-point environment in the object pointed to by
1004 @var{envp}.  Then clear all exception flags, and set the FPU to trap no
1005 exceptions.  Not all FPUs support trapping no exceptions; if
1006 @code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1007 succeeds, it returns zero.
1008 @end deftypefun
1010 The functions which restore the floating-point environment can take these
1011 kinds of arguments:
1013 @itemize @bullet
1014 @item
1015 Pointers to @code{fenv_t} objects, which were initialized previously by a
1016 call to @code{fegetenv} or @code{feholdexcept}.
1017 @item
1018 @vindex FE_DFL_ENV
1019 The special macro @code{FE_DFL_ENV} which represents the floating-point
1020 environment as it was available at program start.
1021 @item
1022 Implementation defined macros with names starting with @code{FE_} and
1023 having type @code{fenv_t *}.
1025 @vindex FE_NOMASK_ENV
1026 If possible, the GNU C Library defines a macro @code{FE_NOMASK_ENV}
1027 which represents an environment where every exception raised causes a
1028 trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1029 only defined if @code{_GNU_SOURCE} is defined.
1031 Some platforms might define other predefined environments.
1032 @end itemize
1034 @noindent
1035 To set the floating-point environment, you can use either of these
1036 functions:
1038 @comment fenv.h
1039 @comment ISO
1040 @deftypefun int fesetenv (const fenv_t *@var{envp})
1041 Set the floating-point environment to that described by @var{envp}.
1043 The function returns zero in case the operation was successful, a
1044 non-zero value otherwise.
1045 @end deftypefun
1047 @comment fenv.h
1048 @comment ISO
1049 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1050 Like @code{fesetenv}, this function sets the floating-point environment
1051 to that described by @var{envp}.  However, if any exceptions were
1052 flagged in the status word before @code{feupdateenv} was called, they
1053 remain flagged after the call.  In other words, after @code{feupdateenv}
1054 is called, the status word is the bitwise OR of the previous status word
1055 and the one saved in @var{envp}.
1057 The function returns zero in case the operation was successful, a
1058 non-zero value otherwise.
1059 @end deftypefun
1061 @noindent
1062 To control for individual exceptions if raising them causes a trap to
1063 occur, you can use the following two functions.
1065 @strong{Portability Note:} These functions are all GNU extensions.
1067 @comment fenv.h
1068 @comment GNU
1069 @deftypefun int feenableexcept (int @var{excepts})
1070 This functions enables traps for each of the exceptions as indicated by
1071 the parameter @var{except}.  The individual excepetions are described in
1072 @ref{Status bit operations}.  Only the specified exceptions are
1073 enabled, the status of the other exceptions is not changed.
1075 The function returns the previous enabled exceptions in case the
1076 operation was successful, @code{-1} otherwise.
1077 @end deftypefun
1079 @comment fenv.h
1080 @comment GNU
1081 @deftypefun int fedisableexcept (int @var{excepts})
1082 This functions disables traps for each of the exceptions as indicated by
1083 the parameter @var{except}.  The individual excepetions are described in
1084 @ref{Status bit operations}.  Only the specified exceptions are
1085 disabled, the status of the other exceptions is not changed.
1087 The function returns the previous enabled exceptions in case the
1088 operation was successful, @code{-1} otherwise.
1089 @end deftypefun
1091 @comment fenv.h
1092 @comment GNU
1093 @deftypefun int fegetexcept (int @var{excepts})
1094 The function returns a bitmask of all currently enabled exceptions.  It
1095 returns @code{-1} in case of failure.
1096 @end deftypefun
1098 @node Arithmetic Functions
1099 @section Arithmetic Functions
1101 The C library provides functions to do basic operations on
1102 floating-point numbers.  These include absolute value, maximum and minimum,
1103 normalization, bit twiddling, rounding, and a few others.
1105 @menu
1106 * Absolute Value::              Absolute values of integers and floats.
1107 * Normalization Functions::     Extracting exponents and putting them back.
1108 * Rounding Functions::          Rounding floats to integers.
1109 * Remainder Functions::         Remainders on division, precisely defined.
1110 * FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1111 * FP Comparison Functions::     Comparisons without risk of exceptions.
1112 * Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1113 @end menu
1115 @node Absolute Value
1116 @subsection Absolute Value
1117 @cindex absolute value functions
1119 These functions are provided for obtaining the @dfn{absolute value} (or
1120 @dfn{magnitude}) of a number.  The absolute value of a real number
1121 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1122 negative.  For a complex number @var{z}, whose real part is @var{x} and
1123 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1124 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1126 @pindex math.h
1127 @pindex stdlib.h
1128 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1129 @code{imaxabs} is declared in @file{inttypes.h};
1130 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1131 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1133 @comment stdlib.h
1134 @comment ISO
1135 @deftypefun int abs (int @var{number})
1136 @comment stdlib.h
1137 @comment ISO
1138 @deftypefunx {long int} labs (long int @var{number})
1139 @comment stdlib.h
1140 @comment ISO
1141 @deftypefunx {long long int} llabs (long long int @var{number})
1142 @comment inttypes.h
1143 @comment ISO
1144 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1145 These functions return the absolute value of @var{number}.
1147 Most computers use a two's complement integer representation, in which
1148 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1149 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1151 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1153 See @ref{Integers} for a description of the @code{intmax_t} type.
1155 @end deftypefun
1157 @comment math.h
1158 @comment ISO
1159 @deftypefun double fabs (double @var{number})
1160 @comment math.h
1161 @comment ISO
1162 @deftypefunx float fabsf (float @var{number})
1163 @comment math.h
1164 @comment ISO
1165 @deftypefunx {long double} fabsl (long double @var{number})
1166 This function returns the absolute value of the floating-point number
1167 @var{number}.
1168 @end deftypefun
1170 @comment complex.h
1171 @comment ISO
1172 @deftypefun double cabs (complex double @var{z})
1173 @comment complex.h
1174 @comment ISO
1175 @deftypefunx float cabsf (complex float @var{z})
1176 @comment complex.h
1177 @comment ISO
1178 @deftypefunx {long double} cabsl (complex long double @var{z})
1179 These functions return the absolute  value of the complex number @var{z}
1180 (@pxref{Complex Numbers}).  The absolute value of a complex number is:
1182 @smallexample
1183 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1184 @end smallexample
1186 This function should always be used instead of the direct formula
1187 because it takes special care to avoid losing precision.  It may also
1188 take advantage of hardware support for this operation. See @code{hypot}
1189 in @ref{Exponents and Logarithms}.
1190 @end deftypefun
1192 @node Normalization Functions
1193 @subsection Normalization Functions
1194 @cindex normalization functions (floating-point)
1196 The functions described in this section are primarily provided as a way
1197 to efficiently perform certain low-level manipulations on floating point
1198 numbers that are represented internally using a binary radix;
1199 see @ref{Floating Point Concepts}.  These functions are required to
1200 have equivalent behavior even if the representation does not use a radix
1201 of 2, but of course they are unlikely to be particularly efficient in
1202 those cases.
1204 @pindex math.h
1205 All these functions are declared in @file{math.h}.
1207 @comment math.h
1208 @comment ISO
1209 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1210 @comment math.h
1211 @comment ISO
1212 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1213 @comment math.h
1214 @comment ISO
1215 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1216 These functions are used to split the number @var{value}
1217 into a normalized fraction and an exponent.
1219 If the argument @var{value} is not zero, the return value is @var{value}
1220 times a power of two, and is always in the range 1/2 (inclusive) to 1
1221 (exclusive).  The corresponding exponent is stored in
1222 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1223 exponent equals the original number @var{value}.
1225 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1226 stores @code{4} in @code{exponent}.
1228 If @var{value} is zero, then the return value is zero and
1229 zero is stored in @code{*@var{exponent}}.
1230 @end deftypefun
1232 @comment math.h
1233 @comment ISO
1234 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1235 @comment math.h
1236 @comment ISO
1237 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1238 @comment math.h
1239 @comment ISO
1240 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1241 These functions return the result of multiplying the floating-point
1242 number @var{value} by 2 raised to the power @var{exponent}.  (It can
1243 be used to reassemble floating-point numbers that were taken apart
1244 by @code{frexp}.)
1246 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1247 @end deftypefun
1249 The following functions, which come from BSD, provide facilities
1250 equivalent to those of @code{ldexp} and @code{frexp}.  See also the
1251 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1253 @comment math.h
1254 @comment BSD
1255 @deftypefun double scalb (double @var{value}, int @var{exponent})
1256 @comment math.h
1257 @comment BSD
1258 @deftypefunx float scalbf (float @var{value}, int @var{exponent})
1259 @comment math.h
1260 @comment BSD
1261 @deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent})
1262 The @code{scalb} function is the BSD name for @code{ldexp}.
1263 @end deftypefun
1265 @comment math.h
1266 @comment BSD
1267 @deftypefun {long long int} scalbn (double @var{x}, int n)
1268 @comment math.h
1269 @comment BSD
1270 @deftypefunx {long long int} scalbnf (float @var{x}, int n)
1271 @comment math.h
1272 @comment BSD
1273 @deftypefunx {long long int} scalbnl (long double @var{x}, int n)
1274 @code{scalbn} is identical to @code{scalb}, except that the exponent
1275 @var{n} is an @code{int} instead of a floating-point number.
1276 @end deftypefun
1278 @comment math.h
1279 @comment BSD
1280 @deftypefun {long long int} scalbln (double @var{x}, long int n)
1281 @comment math.h
1282 @comment BSD
1283 @deftypefunx {long long int} scalblnf (float @var{x}, long int n)
1284 @comment math.h
1285 @comment BSD
1286 @deftypefunx {long long int} scalblnl (long double @var{x}, long int n)
1287 @code{scalbln} is identical to @code{scalb}, except that the exponent
1288 @var{n} is a @code{long int} instead of a floating-point number.
1289 @end deftypefun
1291 @comment math.h
1292 @comment BSD
1293 @deftypefun {long long int} significand (double @var{x})
1294 @comment math.h
1295 @comment BSD
1296 @deftypefunx {long long int} significandf (float @var{x})
1297 @comment math.h
1298 @comment BSD
1299 @deftypefunx {long long int} significandl (long double @var{x})
1300 @code{significand} returns the mantissa of @var{x} scaled to the range
1301 @math{[1, 2)}.
1302 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1304 This function exists mainly for use in certain standardized tests
1305 of @w{IEEE 754} conformance.
1306 @end deftypefun
1308 @node Rounding Functions
1309 @subsection Rounding Functions
1310 @cindex converting floats to integers
1312 @pindex math.h
1313 The functions listed here perform operations such as rounding and
1314 truncation of floating-point values. Some of these functions convert
1315 floating point numbers to integer values.  They are all declared in
1316 @file{math.h}.
1318 You can also convert floating-point numbers to integers simply by
1319 casting them to @code{int}.  This discards the fractional part,
1320 effectively rounding towards zero.  However, this only works if the
1321 result can actually be represented as an @code{int}---for very large
1322 numbers, this is impossible.  The functions listed here return the
1323 result as a @code{double} instead to get around this problem.
1325 @comment math.h
1326 @comment ISO
1327 @deftypefun double ceil (double @var{x})
1328 @comment math.h
1329 @comment ISO
1330 @deftypefunx float ceilf (float @var{x})
1331 @comment math.h
1332 @comment ISO
1333 @deftypefunx {long double} ceill (long double @var{x})
1334 These functions round @var{x} upwards to the nearest integer,
1335 returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1336 is @code{2.0}.
1337 @end deftypefun
1339 @comment math.h
1340 @comment ISO
1341 @deftypefun double floor (double @var{x})
1342 @comment math.h
1343 @comment ISO
1344 @deftypefunx float floorf (float @var{x})
1345 @comment math.h
1346 @comment ISO
1347 @deftypefunx {long double} floorl (long double @var{x})
1348 These functions round @var{x} downwards to the nearest
1349 integer, returning that value as a @code{double}.  Thus, @code{floor
1350 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1351 @end deftypefun
1353 @comment math.h
1354 @comment ISO
1355 @deftypefun double trunc (double @var{x})
1356 @comment math.h
1357 @comment ISO
1358 @deftypefunx float truncf (float @var{x})
1359 @comment math.h
1360 @comment ISO
1361 @deftypefunx {long double} truncl (long double @var{x})
1362 The @code{trunc} functions round @var{x} towards zero to the nearest
1363 integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1364 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1365 @end deftypefun
1367 @comment math.h
1368 @comment ISO
1369 @deftypefun double rint (double @var{x})
1370 @comment math.h
1371 @comment ISO
1372 @deftypefunx float rintf (float @var{x})
1373 @comment math.h
1374 @comment ISO
1375 @deftypefunx {long double} rintl (long double @var{x})
1376 These functions round @var{x} to an integer value according to the
1377 current rounding mode.  @xref{Floating Point Parameters}, for
1378 information about the various rounding modes.  The default
1379 rounding mode is to round to the nearest integer; some machines
1380 support other modes, but round-to-nearest is always used unless
1381 you explicitly select another.
1383 If @var{x} was not initially an integer, these functions raise the
1384 inexact exception.
1385 @end deftypefun
1387 @comment math.h
1388 @comment ISO
1389 @deftypefun double nearbyint (double @var{x})
1390 @comment math.h
1391 @comment ISO
1392 @deftypefunx float nearbyintf (float @var{x})
1393 @comment math.h
1394 @comment ISO
1395 @deftypefunx {long double} nearbyintl (long double @var{x})
1396 These functions return the same value as the @code{rint} functions, but
1397 do not raise the inexact exception if @var{x} is not an integer.
1398 @end deftypefun
1400 @comment math.h
1401 @comment ISO
1402 @deftypefun double round (double @var{x})
1403 @comment math.h
1404 @comment ISO
1405 @deftypefunx float roundf (float @var{x})
1406 @comment math.h
1407 @comment ISO
1408 @deftypefunx {long double} roundl (long double @var{x})
1409 These functions are similar to @code{rint}, but they round halfway
1410 cases away from zero instead of to the nearest even integer.
1411 @end deftypefun
1413 @comment math.h
1414 @comment ISO
1415 @deftypefun {long int} lrint (double @var{x})
1416 @comment math.h
1417 @comment ISO
1418 @deftypefunx {long int} lrintf (float @var{x})
1419 @comment math.h
1420 @comment ISO
1421 @deftypefunx {long int} lrintl (long double @var{x})
1422 These functions are just like @code{rint}, but they return a
1423 @code{long int} instead of a floating-point number.
1424 @end deftypefun
1426 @comment math.h
1427 @comment ISO
1428 @deftypefun {long long int} llrint (double @var{x})
1429 @comment math.h
1430 @comment ISO
1431 @deftypefunx {long long int} llrintf (float @var{x})
1432 @comment math.h
1433 @comment ISO
1434 @deftypefunx {long long int} llrintl (long double @var{x})
1435 These functions are just like @code{rint}, but they return a
1436 @code{long long int} instead of a floating-point number.
1437 @end deftypefun
1439 @comment math.h
1440 @comment ISO
1441 @deftypefun {long int} lround (double @var{x})
1442 @comment math.h
1443 @comment ISO
1444 @deftypefunx {long int} lroundf (float @var{x})
1445 @comment math.h
1446 @comment ISO
1447 @deftypefunx {long int} lroundl (long double @var{x})
1448 These functions are just like @code{round}, but they return a
1449 @code{long int} instead of a floating-point number.
1450 @end deftypefun
1452 @comment math.h
1453 @comment ISO
1454 @deftypefun {long long int} llround (double @var{x})
1455 @comment math.h
1456 @comment ISO
1457 @deftypefunx {long long int} llroundf (float @var{x})
1458 @comment math.h
1459 @comment ISO
1460 @deftypefunx {long long int} llroundl (long double @var{x})
1461 These functions are just like @code{round}, but they return a
1462 @code{long long int} instead of a floating-point number.
1463 @end deftypefun
1466 @comment math.h
1467 @comment ISO
1468 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1469 @comment math.h
1470 @comment ISO
1471 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1472 @comment math.h
1473 @comment ISO
1474 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1475 These functions break the argument @var{value} into an integer part and a
1476 fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1477 equals @var{value}.  Each of the parts has the same sign as @var{value},
1478 and the integer part is always rounded toward zero.
1480 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1481 returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1482 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1483 @end deftypefun
1485 @node Remainder Functions
1486 @subsection Remainder Functions
1488 The functions in this section compute the remainder on division of two
1489 floating-point numbers.  Each is a little different; pick the one that
1490 suits your problem.
1492 @comment math.h
1493 @comment ISO
1494 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1495 @comment math.h
1496 @comment ISO
1497 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1498 @comment math.h
1499 @comment ISO
1500 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1501 These functions compute the remainder from the division of
1502 @var{numerator} by @var{denominator}.  Specifically, the return value is
1503 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1504 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1505 towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1506 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1508 The result has the same sign as the @var{numerator} and has magnitude
1509 less than the magnitude of the @var{denominator}.
1511 If @var{denominator} is zero, @code{fmod} signals a domain error.
1512 @end deftypefun
1514 @comment math.h
1515 @comment BSD
1516 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1517 @comment math.h
1518 @comment BSD
1519 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1520 @comment math.h
1521 @comment BSD
1522 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1523 These functions are like @code{fmod} except that they round the
1524 internal quotient @var{n} to the nearest integer instead of towards zero
1525 to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1526 which is @code{6.5} minus @code{6.9}.
1528 The absolute value of the result is less than or equal to half the
1529 absolute value of the @var{denominator}.  The difference between
1530 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1531 (@var{numerator}, @var{denominator})} is always either
1532 @var{denominator}, minus @var{denominator}, or zero.
1534 If @var{denominator} is zero, @code{drem} signals a domain error.
1535 @end deftypefun
1537 @comment math.h
1538 @comment BSD
1539 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1540 @comment math.h
1541 @comment BSD
1542 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1543 @comment math.h
1544 @comment BSD
1545 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1546 This function is another name for @code{drem}.
1547 @end deftypefun
1549 @node FP Bit Twiddling
1550 @subsection Setting and modifying single bits of FP values
1551 @cindex FP arithmetic
1553 There are some operations that are too complicated or expensive to
1554 perform by hand on floating-point numbers.  @w{ISO C99} defines
1555 functions to do these operations, which mostly involve changing single
1556 bits.
1558 @comment math.h
1559 @comment ISO
1560 @deftypefun double copysign (double @var{x}, double @var{y})
1561 @comment math.h
1562 @comment ISO
1563 @deftypefunx float copysignf (float @var{x}, float @var{y})
1564 @comment math.h
1565 @comment ISO
1566 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1567 These functions return @var{x} but with the sign of @var{y}.  They work
1568 even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1569 sign (although not all implementations support it) and this is one of
1570 the few operations that can tell the difference.
1572 @code{copysign} never raises an exception.
1573 @c except signalling NaNs
1575 This function is defined in @w{IEC 559} (and the appendix with
1576 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1577 @end deftypefun
1579 @comment math.h
1580 @comment ISO
1581 @deftypefun int signbit (@emph{float-type} @var{x})
1582 @code{signbit} is a generic macro which can work on all floating-point
1583 types.  It returns a nonzero value if the value of @var{x} has its sign
1584 bit set.
1586 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1587 point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1588 false, but @code{signbit (-0.0)} will return a nonzero value.
1589 @end deftypefun
1591 @comment math.h
1592 @comment ISO
1593 @deftypefun double nextafter (double @var{x}, double @var{y})
1594 @comment math.h
1595 @comment ISO
1596 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1597 @comment math.h
1598 @comment ISO
1599 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1600 The @code{nextafter} function returns the next representable neighbor of
1601 @var{x} in the direction towards @var{y}.  The size of the step between
1602 @var{x} and the result depends on the type of the result.  If
1603 @math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1604 value is @code{NaN}, @code{NaN} is returned.  Otherwise
1605 a value corresponding to the value of the least significant bit in the
1606 mantissa is added or subtracted, depending on the direction.
1607 @code{nextafter} will signal overflow or underflow if the result goes
1608 outside of the range of normalized numbers.
1610 This function is defined in @w{IEC 559} (and the appendix with
1611 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1612 @end deftypefun
1614 @comment math.h
1615 @comment ISO
1616 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1617 @comment math.h
1618 @comment ISO
1619 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1620 @comment math.h
1621 @comment ISO
1622 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1623 These functions are identical to the corresponding versions of
1624 @code{nextafter} except that their second argument is a @code{long
1625 double}.
1626 @end deftypefun
1628 @cindex NaN
1629 @comment math.h
1630 @comment ISO
1631 @deftypefun double nan (const char *@var{tagp})
1632 @comment math.h
1633 @comment ISO
1634 @deftypefunx float nanf (const char *@var{tagp})
1635 @comment math.h
1636 @comment ISO
1637 @deftypefunx {long double} nanl (const char *@var{tagp})
1638 The @code{nan} function returns a representation of NaN, provided that
1639 NaN is supported by the target platform.
1640 @code{nan ("@var{n-char-sequence}")} is equivalent to
1641 @code{strtod ("NAN(@var{n-char-sequence})")}.
1643 The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1644 754} systems, there are many representations of NaN, and @var{tagp}
1645 selects one.  On other systems it may do nothing.
1646 @end deftypefun
1648 @node FP Comparison Functions
1649 @subsection Floating-Point Comparison Functions
1650 @cindex unordered comparison
1652 The standard C comparison operators provoke exceptions when one or other
1653 of the operands is NaN.  For example,
1655 @smallexample
1656 int v = a < 1.0;
1657 @end smallexample
1659 @noindent
1660 will raise an exception if @var{a} is NaN.  (This does @emph{not}
1661 happen with @code{==} and @code{!=}; those merely return false and true,
1662 respectively, when NaN is examined.)  Frequently this exception is
1663 undesirable.  @w{ISO C99} therefore defines comparison functions that
1664 do not raise exceptions when NaN is examined.  All of the functions are
1665 implemented as macros which allow their arguments to be of any
1666 floating-point type.  The macros are guaranteed to evaluate their
1667 arguments only once.
1669 @comment math.h
1670 @comment ISO
1671 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1672 This macro determines whether the argument @var{x} is greater than
1673 @var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1674 exception is raised if @var{x} or @var{y} are NaN.
1675 @end deftypefn
1677 @comment math.h
1678 @comment ISO
1679 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1680 This macro determines whether the argument @var{x} is greater than or
1681 equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1682 exception is raised if @var{x} or @var{y} are NaN.
1683 @end deftypefn
1685 @comment math.h
1686 @comment ISO
1687 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1688 This macro determines whether the argument @var{x} is less than @var{y}.
1689 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1690 raised if @var{x} or @var{y} are NaN.
1691 @end deftypefn
1693 @comment math.h
1694 @comment ISO
1695 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1696 This macro determines whether the argument @var{x} is less than or equal
1697 to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1698 exception is raised if @var{x} or @var{y} are NaN.
1699 @end deftypefn
1701 @comment math.h
1702 @comment ISO
1703 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1704 This macro determines whether the argument @var{x} is less or greater
1705 than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
1706 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1707 once), but no exception is raised if @var{x} or @var{y} are NaN.
1709 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1710 expression is true if @var{x} or @var{y} are NaN.
1711 @end deftypefn
1713 @comment math.h
1714 @comment ISO
1715 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1716 This macro determines whether its arguments are unordered.  In other
1717 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1718 @end deftypefn
1720 Not all machines provide hardware support for these operations.  On
1721 machines that don't, the macros can be very slow.  Therefore, you should
1722 not use these functions when NaN is not a concern.
1724 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
1725 They are unnecessary, because the @code{==} and @code{!=} operators do
1726 @emph{not} throw an exception if one or both of the operands are NaN.
1728 @node Misc FP Arithmetic
1729 @subsection Miscellaneous FP arithmetic functions
1730 @cindex minimum
1731 @cindex maximum
1732 @cindex positive difference
1733 @cindex multiply-add
1735 The functions in this section perform miscellaneous but common
1736 operations that are awkward to express with C operators.  On some
1737 processors these functions can use special machine instructions to
1738 perform these operations faster than the equivalent C code.
1740 @comment math.h
1741 @comment ISO
1742 @deftypefun double fmin (double @var{x}, double @var{y})
1743 @comment math.h
1744 @comment ISO
1745 @deftypefunx float fminf (float @var{x}, float @var{y})
1746 @comment math.h
1747 @comment ISO
1748 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
1749 The @code{fmin} function returns the lesser of the two values @var{x}
1750 and @var{y}.  It is similar to the expression
1751 @smallexample
1752 ((x) < (y) ? (x) : (y))
1753 @end smallexample
1754 except that @var{x} and @var{y} are only evaluated once.
1756 If an argument is NaN, the other argument is returned.  If both arguments
1757 are NaN, NaN is returned.
1758 @end deftypefun
1760 @comment math.h
1761 @comment ISO
1762 @deftypefun double fmax (double @var{x}, double @var{y})
1763 @comment math.h
1764 @comment ISO
1765 @deftypefunx float fmaxf (float @var{x}, float @var{y})
1766 @comment math.h
1767 @comment ISO
1768 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
1769 The @code{fmax} function returns the greater of the two values @var{x}
1770 and @var{y}.
1772 If an argument is NaN, the other argument is returned.  If both arguments
1773 are NaN, NaN is returned.
1774 @end deftypefun
1776 @comment math.h
1777 @comment ISO
1778 @deftypefun double fdim (double @var{x}, double @var{y})
1779 @comment math.h
1780 @comment ISO
1781 @deftypefunx float fdimf (float @var{x}, float @var{y})
1782 @comment math.h
1783 @comment ISO
1784 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
1785 The @code{fdim} function returns the positive difference between
1786 @var{x} and @var{y}.  The positive difference is @math{@var{x} -
1787 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
1789 If @var{x}, @var{y}, or both are NaN, NaN is returned.
1790 @end deftypefun
1792 @comment math.h
1793 @comment ISO
1794 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
1795 @comment math.h
1796 @comment ISO
1797 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
1798 @comment math.h
1799 @comment ISO
1800 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1801 @cindex butterfly
1802 The @code{fma} function performs floating-point multiply-add.  This is
1803 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1804 intermediate result is not rounded to the destination type.  This can
1805 sometimes improve the precision of a calculation.
1807 This function was introduced because some processors have a special
1808 instruction to perform multiply-add.  The C compiler cannot use it
1809 directly, because the expression @samp{x*y + z} is defined to round the
1810 intermediate result.  @code{fma} lets you choose when you want to round
1811 only once.
1813 @vindex FP_FAST_FMA
1814 On processors which do not implement multiply-add in hardware,
1815 @code{fma} can be very slow since it must avoid intermediate rounding.
1816 @file{math.h} defines the symbols @code{FP_FAST_FMA},
1817 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1818 version of @code{fma} is no slower than the expression @samp{x*y + z}.
1819 In the GNU C library, this always means the operation is implemented in
1820 hardware.
1821 @end deftypefun
1823 @node Complex Numbers
1824 @section Complex Numbers
1825 @pindex complex.h
1826 @cindex complex numbers
1828 @w{ISO C99} introduces support for complex numbers in C.  This is done
1829 with a new type qualifier, @code{complex}.  It is a keyword if and only
1830 if @file{complex.h} has been included.  There are three complex types,
1831 corresponding to the three real types:  @code{float complex},
1832 @code{double complex}, and @code{long double complex}.
1834 To construct complex numbers you need a way to indicate the imaginary
1835 part of a number.  There is no standard notation for an imaginary
1836 floating point constant.  Instead, @file{complex.h} defines two macros
1837 that can be used to create complex numbers.
1839 @deftypevr Macro {const float complex} _Complex_I
1840 This macro is a representation of the complex number ``@math{0+1i}''.
1841 Multiplying a real floating-point value by @code{_Complex_I} gives a
1842 complex number whose value is purely imaginary.  You can use this to
1843 construct complex constants:
1845 @smallexample
1846 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1847 @end smallexample
1849 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1850 the type of that value is @code{complex}.
1851 @end deftypevr
1853 @c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
1854 @ignore
1855 @noindent
1856 Without an optimizing compiler this is more expensive than the use of
1857 @code{_Imaginary_I} but with is better than nothing.  You can avoid all
1858 the hassles if you use the @code{I} macro below if the name is not
1859 problem.
1861 @deftypevr Macro {const float imaginary} _Imaginary_I
1862 This macro is a representation of the value ``@math{1i}''.  I.e., it is
1863 the value for which
1865 @smallexample
1866 _Imaginary_I * _Imaginary_I = -1
1867 @end smallexample
1869 @noindent
1870 The result is not of type @code{float imaginary} but instead @code{float}.
1871 One can use it to easily construct complex number like in
1873 @smallexample
1874 3.0 - _Imaginary_I * 4.0
1875 @end smallexample
1877 @noindent
1878 which results in the complex number with a real part of 3.0 and a
1879 imaginary part -4.0.
1880 @end deftypevr
1881 @end ignore
1883 @noindent
1884 @code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
1885 a shorter name for the same constant.
1887 @deftypevr Macro {const float complex} I
1888 This macro has exactly the same value as @code{_Complex_I}.  Most of the
1889 time it is preferable.  However, it causes problems if you want to use
1890 the identifier @code{I} for something else.  You can safely write
1892 @smallexample
1893 #include <complex.h>
1894 #undef I
1895 @end smallexample
1897 @noindent
1898 if you need @code{I} for your own purposes.  (In that case we recommend
1899 you also define some other short name for @code{_Complex_I}, such as
1900 @code{J}.)
1902 @ignore
1903 If the implementation does not support the @code{imaginary} types
1904 @code{I} is defined as @code{_Complex_I} which is the second best
1905 solution.  It still can be used in the same way but requires a most
1906 clever compiler to get the same results.
1907 @end ignore
1908 @end deftypevr
1910 @node Operations on Complex
1911 @section Projections, Conjugates, and Decomposing of Complex Numbers
1912 @cindex project complex numbers
1913 @cindex conjugate complex numbers
1914 @cindex decompose complex numbers
1915 @pindex complex.h
1917 @w{ISO C99} also defines functions that perform basic operations on
1918 complex numbers, such as decomposition and conjugation.  The prototypes
1919 for all these functions are in @file{complex.h}.  All functions are
1920 available in three variants, one for each of the three complex types.
1922 @comment complex.h
1923 @comment ISO
1924 @deftypefun double creal (complex double @var{z})
1925 @comment complex.h
1926 @comment ISO
1927 @deftypefunx float crealf (complex float @var{z})
1928 @comment complex.h
1929 @comment ISO
1930 @deftypefunx {long double} creall (complex long double @var{z})
1931 These functions return the real part of the complex number @var{z}.
1932 @end deftypefun
1934 @comment complex.h
1935 @comment ISO
1936 @deftypefun double cimag (complex double @var{z})
1937 @comment complex.h
1938 @comment ISO
1939 @deftypefunx float cimagf (complex float @var{z})
1940 @comment complex.h
1941 @comment ISO
1942 @deftypefunx {long double} cimagl (complex long double @var{z})
1943 These functions return the imaginary part of the complex number @var{z}.
1944 @end deftypefun
1946 @comment complex.h
1947 @comment ISO
1948 @deftypefun {complex double} conj (complex double @var{z})
1949 @comment complex.h
1950 @comment ISO
1951 @deftypefunx {complex float} conjf (complex float @var{z})
1952 @comment complex.h
1953 @comment ISO
1954 @deftypefunx {complex long double} conjl (complex long double @var{z})
1955 These functions return the conjugate value of the complex number
1956 @var{z}.  The conjugate of a complex number has the same real part and a
1957 negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
1958 @end deftypefun
1960 @comment complex.h
1961 @comment ISO
1962 @deftypefun double carg (complex double @var{z})
1963 @comment complex.h
1964 @comment ISO
1965 @deftypefunx float cargf (complex float @var{z})
1966 @comment complex.h
1967 @comment ISO
1968 @deftypefunx {long double} cargl (complex long double @var{z})
1969 These functions return the argument of the complex number @var{z}.
1970 The argument of a complex number is the angle in the complex plane
1971 between the positive real axis and a line passing through zero and the
1972 number.  This angle is measured in the usual fashion and ranges from @math{0}
1973 to @math{2@pi{}}.
1975 @code{carg} has a branch cut along the positive real axis.
1976 @end deftypefun
1978 @comment complex.h
1979 @comment ISO
1980 @deftypefun {complex double} cproj (complex double @var{z})
1981 @comment complex.h
1982 @comment ISO
1983 @deftypefunx {complex float} cprojf (complex float @var{z})
1984 @comment complex.h
1985 @comment ISO
1986 @deftypefunx {complex long double} cprojl (complex long double @var{z})
1987 These functions return the projection of the complex value @var{z} onto
1988 the Riemann sphere.  Values with a infinite imaginary part are projected
1989 to positive infinity on the real axis, even if the real part is NaN.  If
1990 the real part is infinite, the result is equivalent to
1992 @smallexample
1993 INFINITY + I * copysign (0.0, cimag (z))
1994 @end smallexample
1995 @end deftypefun
1997 @node Parsing of Numbers
1998 @section Parsing of Numbers
1999 @cindex parsing numbers (in formatted input)
2000 @cindex converting strings to numbers
2001 @cindex number syntax, parsing
2002 @cindex syntax, for reading numbers
2004 This section describes functions for ``reading'' integer and
2005 floating-point numbers from a string.  It may be more convenient in some
2006 cases to use @code{sscanf} or one of the related functions; see
2007 @ref{Formatted Input}.  But often you can make a program more robust by
2008 finding the tokens in the string by hand, then converting the numbers
2009 one by one.
2011 @menu
2012 * Parsing of Integers::         Functions for conversion of integer values.
2013 * Parsing of Floats::           Functions for conversion of floating-point
2014                                  values.
2015 @end menu
2017 @node Parsing of Integers
2018 @subsection Parsing of Integers
2020 @pindex stdlib.h
2021 @pindex wchar.h
2022 The @samp{str} functions are declared in @file{stdlib.h} and those
2023 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2024 wonder about the use of @code{restrict} in the prototypes of the
2025 functions in this section.  It is seemingly useless but the @w{ISO C}
2026 standard uses it (for the functions defined there) so we have to do it
2027 as well.
2029 @comment stdlib.h
2030 @comment ISO
2031 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2032 The @code{strtol} (``string-to-long'') function converts the initial
2033 part of @var{string} to a signed integer, which is returned as a value
2034 of type @code{long int}.
2036 This function attempts to decompose @var{string} as follows:
2038 @itemize @bullet
2039 @item
2040 A (possibly empty) sequence of whitespace characters.  Which characters
2041 are whitespace is determined by the @code{isspace} function
2042 (@pxref{Classification of Characters}).  These are discarded.
2044 @item
2045 An optional plus or minus sign (@samp{+} or @samp{-}).
2047 @item
2048 A nonempty sequence of digits in the radix specified by @var{base}.
2050 If @var{base} is zero, decimal radix is assumed unless the series of
2051 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2052 @samp{0X} (specifying hexadecimal radix); in other words, the same
2053 syntax used for integer constants in C.
2055 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2056 If @var{base} is @code{16}, the digits may optionally be preceded by
2057 @samp{0x} or @samp{0X}.  If base has no legal value the value returned
2058 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2060 @item
2061 Any remaining characters in the string.  If @var{tailptr} is not a null
2062 pointer, @code{strtol} stores a pointer to this tail in
2063 @code{*@var{tailptr}}.
2064 @end itemize
2066 If the string is empty, contains only whitespace, or does not contain an
2067 initial substring that has the expected syntax for an integer in the
2068 specified @var{base}, no conversion is performed.  In this case,
2069 @code{strtol} returns a value of zero and the value stored in
2070 @code{*@var{tailptr}} is the value of @var{string}.
2072 In a locale other than the standard @code{"C"} locale, this function
2073 may recognize additional implementation-dependent syntax.
2075 If the string has valid syntax for an integer but the value is not
2076 representable because of overflow, @code{strtol} returns either
2077 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2078 appropriate for the sign of the value.  It also sets @code{errno}
2079 to @code{ERANGE} to indicate there was overflow.
2081 You should not check for errors by examining the return value of
2082 @code{strtol}, because the string might be a valid representation of
2083 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2084 @var{tailptr} points to what you expect after the number
2085 (e.g. @code{'\0'} if the string should end after the number).  You also
2086 need to clear @var{errno} before the call and check it afterward, in
2087 case there was overflow.
2089 There is an example at the end of this section.
2090 @end deftypefun
2092 @comment wchar.h
2093 @comment ISO
2094 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2095 The @code{wcstol} function is equivalent to the @code{strtol} function
2096 in nearly all aspects but handles wide character strings.
2098 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2099 @end deftypefun
2101 @comment stdlib.h
2102 @comment ISO
2103 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2104 The @code{strtoul} (``string-to-unsigned-long'') function is like
2105 @code{strtol} except it converts to an @code{unsigned long int} value.
2106 The syntax is the same as described above for @code{strtol}.  The value
2107 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2109 If @var{string} depicts a negative number, @code{strtoul} acts the same
2110 as @var{strtol} but casts the result to an unsigned integer.  That means
2111 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2112 and an input more negative than @code{LONG_MIN} returns
2113 (@code{ULONG_MAX} + 1) / 2.
2115 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2116 range, or @code{ERANGE} on overflow.
2117 @end deftypefun
2119 @comment wchar.h
2120 @comment ISO
2121 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2122 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2123 in nearly all aspects but handles wide character strings.
2125 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2126 @end deftypefun
2128 @comment stdlib.h
2129 @comment ISO
2130 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2131 The @code{strtoll} function is like @code{strtol} except that it returns
2132 a @code{long long int} value, and accepts numbers with a correspondingly
2133 larger range.
2135 If the string has valid syntax for an integer but the value is not
2136 representable because of overflow, @code{strtoll} returns either
2137 @code{LONG_LONG_MAX} or @code{LONG_LONG_MIN} (@pxref{Range of Type}), as
2138 appropriate for the sign of the value.  It also sets @code{errno} to
2139 @code{ERANGE} to indicate there was overflow.
2141 The @code{strtoll} function was introduced in @w{ISO C99}.
2142 @end deftypefun
2144 @comment wchar.h
2145 @comment ISO
2146 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2147 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2148 in nearly all aspects but handles wide character strings.
2150 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2151 @end deftypefun
2153 @comment stdlib.h
2154 @comment BSD
2155 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2156 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2157 @end deftypefun
2159 @comment wchar.h
2160 @comment GNU
2161 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2162 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2163 in nearly all aspects but handles wide character strings.
2165 The @code{wcstoq} function is a GNU extension.
2166 @end deftypefun
2168 @comment stdlib.h
2169 @comment ISO
2170 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2171 The @code{strtoull} function is related to @code{strtoll} the same way
2172 @code{strtoul} is related to @code{strtol}.
2174 The @code{strtoull} function was introduced in @w{ISO C99}.
2175 @end deftypefun
2177 @comment wchar.h
2178 @comment ISO
2179 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2180 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2181 in nearly all aspects but handles wide character strings.
2183 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2184 @end deftypefun
2186 @comment stdlib.h
2187 @comment BSD
2188 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2189 @code{strtouq} is the BSD name for @code{strtoull}.
2190 @end deftypefun
2192 @comment wchar.h
2193 @comment GNU
2194 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2195 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2196 in nearly all aspects but handles wide character strings.
2198 The @code{wcstouq} function is a GNU extension.
2199 @end deftypefun
2201 @comment inttypes.h
2202 @comment ISO
2203 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2204 The @code{strtoimax} function is like @code{strtol} except that it returns
2205 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2207 If the string has valid syntax for an integer but the value is not
2208 representable because of overflow, @code{strtoimax} returns either
2209 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2210 appropriate for the sign of the value.  It also sets @code{errno} to
2211 @code{ERANGE} to indicate there was overflow.
2213 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2214 @code{strtoimax} function was introduced in @w{ISO C99}.
2215 @end deftypefun
2217 @comment wchar.h
2218 @comment ISO
2219 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2220 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2221 in nearly all aspects but handles wide character strings.
2223 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2224 @end deftypefun
2226 @comment inttypes.h
2227 @comment ISO
2228 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2229 The @code{strtoumax} function is related to @code{strtoimax}
2230 the same way that @code{strtoul} is related to @code{strtol}.
2232 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2233 @code{strtoumax} function was introduced in @w{ISO C99}.
2234 @end deftypefun
2236 @comment wchar.h
2237 @comment ISO
2238 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2239 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2240 in nearly all aspects but handles wide character strings.
2242 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2243 @end deftypefun
2245 @comment stdlib.h
2246 @comment ISO
2247 @deftypefun {long int} atol (const char *@var{string})
2248 This function is similar to the @code{strtol} function with a @var{base}
2249 argument of @code{10}, except that it need not detect overflow errors.
2250 The @code{atol} function is provided mostly for compatibility with
2251 existing code; using @code{strtol} is more robust.
2252 @end deftypefun
2254 @comment stdlib.h
2255 @comment ISO
2256 @deftypefun int atoi (const char *@var{string})
2257 This function is like @code{atol}, except that it returns an @code{int}.
2258 The @code{atoi} function is also considered obsolete; use @code{strtol}
2259 instead.
2260 @end deftypefun
2262 @comment stdlib.h
2263 @comment ISO
2264 @deftypefun {long long int} atoll (const char *@var{string})
2265 This function is similar to @code{atol}, except it returns a @code{long
2266 long int}.
2268 The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2269 obsolete (despite having just been added); use @code{strtoll} instead.
2270 @end deftypefun
2272 All the functions mentioned in this section so far do not handle
2273 alternative representations of characters as described in the locale
2274 data.  Some locales specify thousands separator and the way they have to
2275 be used which can help to make large numbers more readable.  To read
2276 such numbers one has to use the @code{scanf} functions with the @samp{'}
2277 flag.
2279 Here is a function which parses a string as a sequence of integers and
2280 returns the sum of them:
2282 @smallexample
2284 sum_ints_from_string (char *string)
2286   int sum = 0;
2288   while (1) @{
2289     char *tail;
2290     int next;
2292     /* @r{Skip whitespace by hand, to detect the end.}  */
2293     while (isspace (*string)) string++;
2294     if (*string == 0)
2295       break;
2297     /* @r{There is more nonwhitespace,}  */
2298     /* @r{so it ought to be another number.}  */
2299     errno = 0;
2300     /* @r{Parse it.}  */
2301     next = strtol (string, &tail, 0);
2302     /* @r{Add it in, if not overflow.}  */
2303     if (errno)
2304       printf ("Overflow\n");
2305     else
2306       sum += next;
2307     /* @r{Advance past it.}  */
2308     string = tail;
2309   @}
2311   return sum;
2313 @end smallexample
2315 @node Parsing of Floats
2316 @subsection Parsing of Floats
2318 @pindex stdlib.h
2319 The @samp{str} functions are declared in @file{stdlib.h} and those
2320 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2321 wonder about the use of @code{restrict} in the prototypes of the
2322 functions in this section.  It is seemingly useless but the @w{ISO C}
2323 standard uses it (for the functions defined there) so we have to do it
2324 as well.
2326 @comment stdlib.h
2327 @comment ISO
2328 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2329 The @code{strtod} (``string-to-double'') function converts the initial
2330 part of @var{string} to a floating-point number, which is returned as a
2331 value of type @code{double}.
2333 This function attempts to decompose @var{string} as follows:
2335 @itemize @bullet
2336 @item
2337 A (possibly empty) sequence of whitespace characters.  Which characters
2338 are whitespace is determined by the @code{isspace} function
2339 (@pxref{Classification of Characters}).  These are discarded.
2341 @item
2342 An optional plus or minus sign (@samp{+} or @samp{-}).
2344 @item A floating point number in decimal or hexadecimal format.  The
2345 decimal format is:
2346 @itemize @minus
2348 @item
2349 A nonempty sequence of digits optionally containing a decimal-point
2350 character---normally @samp{.}, but it depends on the locale
2351 (@pxref{General Numeric}).
2353 @item
2354 An optional exponent part, consisting of a character @samp{e} or
2355 @samp{E}, an optional sign, and a sequence of digits.
2357 @end itemize
2359 The hexadecimal format is as follows:
2360 @itemize @minus
2362 @item
2363 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2364 optionally containing a decimal-point character---normally @samp{.}, but
2365 it depends on the locale (@pxref{General Numeric}).
2367 @item
2368 An optional binary-exponent part, consisting of a character @samp{p} or
2369 @samp{P}, an optional sign, and a sequence of digits.
2371 @end itemize
2373 @item
2374 Any remaining characters in the string.  If @var{tailptr} is not a null
2375 pointer, a pointer to this tail of the string is stored in
2376 @code{*@var{tailptr}}.
2377 @end itemize
2379 If the string is empty, contains only whitespace, or does not contain an
2380 initial substring that has the expected syntax for a floating-point
2381 number, no conversion is performed.  In this case, @code{strtod} returns
2382 a value of zero and the value returned in @code{*@var{tailptr}} is the
2383 value of @var{string}.
2385 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2386 this function may recognize additional locale-dependent syntax.
2388 If the string has valid syntax for a floating-point number but the value
2389 is outside the range of a @code{double}, @code{strtod} will signal
2390 overflow or underflow as described in @ref{Math Error Reporting}.
2392 @code{strtod} recognizes four special input strings.  The strings
2393 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2394 or to the largest representable value if the floating-point format
2395 doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
2396 to specify the sign.  Case is ignored when scanning these strings.
2398 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2399 to NaN.  Again, case is ignored.  If @var{chars@dots{}} are provided, they
2400 are used in some unspecified fashion to select a particular
2401 representation of NaN (there can be several).
2403 Since zero is a valid result as well as the value returned on error, you
2404 should check for errors in the same way as for @code{strtol}, by
2405 examining @var{errno} and @var{tailptr}.
2406 @end deftypefun
2408 @comment stdlib.h
2409 @comment ISO
2410 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2411 @comment stdlib.h
2412 @comment ISO
2413 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2414 These functions are analogous to @code{strtod}, but return @code{float}
2415 and @code{long double} values respectively.  They report errors in the
2416 same way as @code{strtod}.  @code{strtof} can be substantially faster
2417 than @code{strtod}, but has less precision; conversely, @code{strtold}
2418 can be much slower but has more precision (on systems where @code{long
2419 double} is a separate type).
2421 These functions have been GNU extensions and are new to @w{ISO C99}.
2422 @end deftypefun
2424 @comment wchar.h
2425 @comment ISO
2426 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2427 @comment stdlib.h
2428 @comment ISO
2429 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2430 @comment stdlib.h
2431 @comment ISO
2432 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2433 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2434 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2435 @code{strtold} functions but it handles wide character string.
2437 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2438 C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
2439 @w{ISO C99}.
2440 @end deftypefun
2442 @comment stdlib.h
2443 @comment ISO
2444 @deftypefun double atof (const char *@var{string})
2445 This function is similar to the @code{strtod} function, except that it
2446 need not detect overflow and underflow errors.  The @code{atof} function
2447 is provided mostly for compatibility with existing code; using
2448 @code{strtod} is more robust.
2449 @end deftypefun
2451 The GNU C library also provides @samp{_l} versions of these functions,
2452 which take an additional argument, the locale to use in conversion.
2453 @xref{Parsing of Integers}.
2455 @node System V Number Conversion
2456 @section Old-fashioned System V number-to-string functions
2458 The old @w{System V} C library provided three functions to convert
2459 numbers to strings, with unusual and hard-to-use semantics.  The GNU C
2460 library also provides these functions and some natural extensions.
2462 These functions are only available in glibc and on systems descended
2463 from AT&T Unix.  Therefore, unless these functions do precisely what you
2464 need, it is better to use @code{sprintf}, which is standard.
2466 All these functions are defined in @file{stdlib.h}.
2468 @comment stdlib.h
2469 @comment SVID, Unix98
2470 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2471 The function @code{ecvt} converts the floating-point number @var{value}
2472 to a string with at most @var{ndigit} decimal digits.  The
2473 returned string contains no decimal point or sign. The first digit of
2474 the string is non-zero (unless @var{value} is actually zero) and the
2475 last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
2476 index in the string of the first digit after the decimal point.
2477 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2478 zero otherwise.
2480 If @var{ndigit} decimal digits would exceed the precision of a
2481 @code{double} it is reduced to a system-specific value.
2483 The returned string is statically allocated and overwritten by each call
2484 to @code{ecvt}.
2486 If @var{value} is zero, it is implementation defined whether
2487 @code{*@var{decpt}} is @code{0} or @code{1}.
2489 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2490 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2491 @end deftypefun
2493 @comment stdlib.h
2494 @comment SVID, Unix98
2495 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2496 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2497 the number of digits after the decimal point.  If @var{ndigit} is less
2498 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2499 left of the decimal point.  For example, if @var{ndigit} is @code{-1},
2500 @var{value} will be rounded to the nearest 10.  If @var{ndigit} is
2501 negative and larger than the number of digits to the left of the decimal
2502 point in @var{value}, @var{value} will be rounded to one significant digit.
2504 If @var{ndigit} decimal digits would exceed the precision of a
2505 @code{double} it is reduced to a system-specific value.
2507 The returned string is statically allocated and overwritten by each call
2508 to @code{fcvt}.
2509 @end deftypefun
2511 @comment stdlib.h
2512 @comment SVID, Unix98
2513 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
2514 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2515 ndigit, value}.  It is provided only for compatibility's sake.  It
2516 returns @var{buf}.
2518 If @var{ndigit} decimal digits would exceed the precision of a
2519 @code{double} it is reduced to a system-specific value.
2520 @end deftypefun
2522 As extensions, the GNU C library provides versions of these three
2523 functions that take @code{long double} arguments.
2525 @comment stdlib.h
2526 @comment GNU
2527 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2528 This function is equivalent to @code{ecvt} except that it takes a
2529 @code{long double} for the first parameter and that @var{ndigit} is
2530 restricted by the precision of a @code{long double}.
2531 @end deftypefun
2533 @comment stdlib.h
2534 @comment GNU
2535 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2536 This function is equivalent to @code{fcvt} except that it
2537 takes a @code{long double} for the first parameter and that @var{ndigit} is
2538 restricted by the precision of a @code{long double}.
2539 @end deftypefun
2541 @comment stdlib.h
2542 @comment GNU
2543 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
2544 This function is equivalent to @code{gcvt} except that it takes a
2545 @code{long double} for the first parameter and that @var{ndigit} is
2546 restricted by the precision of a @code{long double}.
2547 @end deftypefun
2550 @cindex gcvt_r
2551 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2552 equivalents, all return a string located in a static buffer which is
2553 overwritten by the next call to the function.  The GNU C library
2554 provides another set of extended functions which write the converted
2555 string into a user-supplied buffer.  These have the conventional
2556 @code{_r} suffix.
2558 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2559 user-supplied buffer.
2561 @comment stdlib.h
2562 @comment GNU
2563 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2564 The @code{ecvt_r} function is the same as @code{ecvt}, except
2565 that it places its result into the user-specified buffer pointed to by
2566 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2567 case of an error and zero otherwise.
2569 This function is a GNU extension.
2570 @end deftypefun
2572 @comment stdlib.h
2573 @comment SVID, Unix98
2574 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2575 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2576 places its result into the user-specified buffer pointed to by
2577 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2578 case of an error and zero otherwise.
2580 This function is a GNU extension.
2581 @end deftypefun
2583 @comment stdlib.h
2584 @comment GNU
2585 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2586 The @code{qecvt_r} function is the same as @code{qecvt}, except
2587 that it places its result into the user-specified buffer pointed to by
2588 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2589 case of an error and zero otherwise.
2591 This function is a GNU extension.
2592 @end deftypefun
2594 @comment stdlib.h
2595 @comment GNU
2596 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2597 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2598 that it places its result into the user-specified buffer pointed to by
2599 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2600 case of an error and zero otherwise.
2602 This function is a GNU extension.
2603 @end deftypefun