Enable AVX2 optimized memset only if -mavx2 works
[glibc.git] / soft-fp / extended.h
blob940bdf1a1a98bfddb5939e98948d33b9ffe689b6
1 /* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU Lesser General Public
13 License, the Free Software Foundation gives you unlimited
14 permission to link the compiled version of this file into
15 combinations with other programs, and to distribute those
16 combinations without any restriction coming from the use of this
17 file. (The Lesser General Public License restrictions do apply in
18 other respects; for example, they cover modification of the file,
19 and distribution when not linked into a combine executable.)
21 The GNU C Library is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 Lesser General Public License for more details.
26 You should have received a copy of the GNU Lesser General Public
27 License along with the GNU C Library; if not, see
28 <http://www.gnu.org/licenses/>. */
30 #if _FP_W_TYPE_SIZE < 32
31 # error "Here's a nickel, kid. Go buy yourself a real computer."
32 #endif
34 #if _FP_W_TYPE_SIZE < 64
35 # define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
36 # define _FP_FRACTBITS_DW_E (8*_FP_W_TYPE_SIZE)
37 #else
38 # define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
39 # define _FP_FRACTBITS_DW_E (4*_FP_W_TYPE_SIZE)
40 #endif
42 #define _FP_FRACBITS_E 64
43 #define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
44 #define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
45 #define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
46 #define _FP_EXPBITS_E 15
47 #define _FP_EXPBIAS_E 16383
48 #define _FP_EXPMAX_E 32767
50 #define _FP_QNANBIT_E \
51 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
52 #define _FP_QNANBIT_SH_E \
53 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
54 #define _FP_IMPLBIT_E \
55 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
56 #define _FP_IMPLBIT_SH_E \
57 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
58 #define _FP_OVERFLOW_E \
59 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
61 #define _FP_WFRACBITS_DW_E (2 * _FP_WFRACBITS_E)
62 #define _FP_WFRACXBITS_DW_E (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
63 #define _FP_HIGHBIT_DW_E \
64 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
66 typedef float XFtype __attribute__ ((mode (XF)));
68 #if _FP_W_TYPE_SIZE < 64
70 union _FP_UNION_E
72 XFtype flt;
73 struct _FP_STRUCT_LAYOUT
75 # if __BYTE_ORDER == __BIG_ENDIAN
76 unsigned long pad1 : _FP_W_TYPE_SIZE;
77 unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
78 unsigned long sign : 1;
79 unsigned long exp : _FP_EXPBITS_E;
80 unsigned long frac1 : _FP_W_TYPE_SIZE;
81 unsigned long frac0 : _FP_W_TYPE_SIZE;
82 # else
83 unsigned long frac0 : _FP_W_TYPE_SIZE;
84 unsigned long frac1 : _FP_W_TYPE_SIZE;
85 unsigned exp : _FP_EXPBITS_E;
86 unsigned sign : 1;
87 # endif /* not bigendian */
88 } bits __attribute__ ((packed));
92 # define FP_DECL_E(X) _FP_DECL (4, X)
94 # define FP_UNPACK_RAW_E(X, val) \
95 do \
96 { \
97 union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
98 FP_UNPACK_RAW_E_flo.flt = (val); \
100 X##_f[2] = 0; \
101 X##_f[3] = 0; \
102 X##_f[0] = FP_UNPACK_RAW_E_flo.bits.frac0; \
103 X##_f[1] = FP_UNPACK_RAW_E_flo.bits.frac1; \
104 X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
105 X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
107 while (0)
109 # define FP_UNPACK_RAW_EP(X, val) \
110 do \
112 union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
113 = (union _FP_UNION_E *) (val); \
115 X##_f[2] = 0; \
116 X##_f[3] = 0; \
117 X##_f[0] = FP_UNPACK_RAW_EP_flo->bits.frac0; \
118 X##_f[1] = FP_UNPACK_RAW_EP_flo->bits.frac1; \
119 X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
120 X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
122 while (0)
124 # define FP_PACK_RAW_E(val, X) \
125 do \
127 union _FP_UNION_E FP_PACK_RAW_E_flo; \
129 if (X##_e) \
130 X##_f[1] |= _FP_IMPLBIT_E; \
131 else \
132 X##_f[1] &= ~(_FP_IMPLBIT_E); \
133 FP_PACK_RAW_E_flo.bits.frac0 = X##_f[0]; \
134 FP_PACK_RAW_E_flo.bits.frac1 = X##_f[1]; \
135 FP_PACK_RAW_E_flo.bits.exp = X##_e; \
136 FP_PACK_RAW_E_flo.bits.sign = X##_s; \
138 (val) = FP_PACK_RAW_E_flo.flt; \
140 while (0)
142 # define FP_PACK_RAW_EP(val, X) \
143 do \
145 if (!FP_INHIBIT_RESULTS) \
147 union _FP_UNION_E *FP_PACK_RAW_EP_flo \
148 = (union _FP_UNION_E *) (val); \
150 if (X##_e) \
151 X##_f[1] |= _FP_IMPLBIT_E; \
152 else \
153 X##_f[1] &= ~(_FP_IMPLBIT_E); \
154 FP_PACK_RAW_EP_flo->bits.frac0 = X##_f[0]; \
155 FP_PACK_RAW_EP_flo->bits.frac1 = X##_f[1]; \
156 FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
157 FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
160 while (0)
162 # define FP_UNPACK_E(X, val) \
163 do \
165 FP_UNPACK_RAW_E (X, val); \
166 _FP_UNPACK_CANONICAL (E, 4, X); \
168 while (0)
170 # define FP_UNPACK_EP(X, val) \
171 do \
173 FP_UNPACK_RAW_EP (X, val); \
174 _FP_UNPACK_CANONICAL (E, 4, X); \
176 while (0)
178 # define FP_UNPACK_SEMIRAW_E(X, val) \
179 do \
181 FP_UNPACK_RAW_E (X, val); \
182 _FP_UNPACK_SEMIRAW (E, 4, X); \
184 while (0)
186 # define FP_UNPACK_SEMIRAW_EP(X, val) \
187 do \
189 FP_UNPACK_RAW_EP (X, val); \
190 _FP_UNPACK_SEMIRAW (E, 4, X); \
192 while (0)
194 # define FP_PACK_E(val, X) \
195 do \
197 _FP_PACK_CANONICAL (E, 4, X); \
198 FP_PACK_RAW_E (val, X); \
200 while (0)
202 # define FP_PACK_EP(val, X) \
203 do \
205 _FP_PACK_CANONICAL (E, 4, X); \
206 FP_PACK_RAW_EP (val, X); \
208 while (0)
210 # define FP_PACK_SEMIRAW_E(val, X) \
211 do \
213 _FP_PACK_SEMIRAW (E, 4, X); \
214 FP_PACK_RAW_E (val, X); \
216 while (0)
218 # define FP_PACK_SEMIRAW_EP(val, X) \
219 do \
221 _FP_PACK_SEMIRAW (E, 4, X); \
222 FP_PACK_RAW_EP (val, X); \
224 while (0)
226 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 4, X)
227 # define FP_NEG_E(R, X) _FP_NEG (E, 4, R, X)
228 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 4, R, X, Y)
229 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 4, R, X, Y)
230 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 4, R, X, Y)
231 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 4, R, X, Y)
232 # define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X)
233 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z)
236 * Square root algorithms:
237 * We have just one right now, maybe Newton approximation
238 * should be added for those machines where division is fast.
239 * This has special _E version because standard _4 square
240 * root would not work (it has to start normally with the
241 * second word and not the first), but as we have to do it
242 * anyway, we optimize it by doing most of the calculations
243 * in two UWtype registers instead of four.
246 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
247 do \
249 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
250 _FP_FRAC_SRL_4 (X, (_FP_WORKBITS)); \
251 while (q) \
253 T##_f[1] = S##_f[1] + q; \
254 if (T##_f[1] <= X##_f[1]) \
256 S##_f[1] = T##_f[1] + q; \
257 X##_f[1] -= T##_f[1]; \
258 R##_f[1] += q; \
260 _FP_FRAC_SLL_2 (X, 1); \
261 q >>= 1; \
263 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
264 while (q) \
266 T##_f[0] = S##_f[0] + q; \
267 T##_f[1] = S##_f[1]; \
268 if (T##_f[1] < X##_f[1] \
269 || (T##_f[1] == X##_f[1] \
270 && T##_f[0] <= X##_f[0])) \
272 S##_f[0] = T##_f[0] + q; \
273 S##_f[1] += (T##_f[0] > S##_f[0]); \
274 _FP_FRAC_DEC_2 (X, T); \
275 R##_f[0] += q; \
277 _FP_FRAC_SLL_2 (X, 1); \
278 q >>= 1; \
280 _FP_FRAC_SLL_4 (R, (_FP_WORKBITS)); \
281 if (X##_f[0] | X##_f[1]) \
283 if (S##_f[1] < X##_f[1] \
284 || (S##_f[1] == X##_f[1] \
285 && S##_f[0] < X##_f[0])) \
286 R##_f[0] |= _FP_WORK_ROUND; \
287 R##_f[0] |= _FP_WORK_STICKY; \
290 while (0)
292 # define FP_CMP_E(r, X, Y, un) _FP_CMP (E, 4, r, X, Y, un)
293 # define FP_CMP_EQ_E(r, X, Y) _FP_CMP_EQ (E, 4, r, X, Y)
294 # define FP_CMP_UNORD_E(r, X, Y) _FP_CMP_UNORD (E, 4, r, X, Y)
296 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 4, r, X, rsz, rsg)
297 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 4, X, r, rs, rt)
299 # define _FP_FRAC_HIGH_E(X) (X##_f[2])
300 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
302 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[4])
304 #else /* not _FP_W_TYPE_SIZE < 64 */
305 union _FP_UNION_E
307 XFtype flt;
308 struct _FP_STRUCT_LAYOUT
310 # if __BYTE_ORDER == __BIG_ENDIAN
311 _FP_W_TYPE pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
312 unsigned sign : 1;
313 unsigned exp : _FP_EXPBITS_E;
314 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
315 # else
316 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
317 unsigned exp : _FP_EXPBITS_E;
318 unsigned sign : 1;
319 # endif
320 } bits;
323 # define FP_DECL_E(X) _FP_DECL (2, X)
325 # define FP_UNPACK_RAW_E(X, val) \
326 do \
328 union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
329 FP_UNPACK_RAW_E_flo.flt = (val); \
331 X##_f0 = FP_UNPACK_RAW_E_flo.bits.frac; \
332 X##_f1 = 0; \
333 X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
334 X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
336 while (0)
338 # define FP_UNPACK_RAW_EP(X, val) \
339 do \
341 union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
342 = (union _FP_UNION_E *) (val); \
344 X##_f0 = FP_UNPACK_RAW_EP_flo->bits.frac; \
345 X##_f1 = 0; \
346 X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
347 X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
349 while (0)
351 # define FP_PACK_RAW_E(val, X) \
352 do \
354 union _FP_UNION_E FP_PACK_RAW_E_flo; \
356 if (X##_e) \
357 X##_f0 |= _FP_IMPLBIT_E; \
358 else \
359 X##_f0 &= ~(_FP_IMPLBIT_E); \
360 FP_PACK_RAW_E_flo.bits.frac = X##_f0; \
361 FP_PACK_RAW_E_flo.bits.exp = X##_e; \
362 FP_PACK_RAW_E_flo.bits.sign = X##_s; \
364 (val) = FP_PACK_RAW_E_flo.flt; \
366 while (0)
368 # define FP_PACK_RAW_EP(fs, val, X) \
369 do \
371 if (!FP_INHIBIT_RESULTS) \
373 union _FP_UNION_E *FP_PACK_RAW_EP_flo \
374 = (union _FP_UNION_E *) (val); \
376 if (X##_e) \
377 X##_f0 |= _FP_IMPLBIT_E; \
378 else \
379 X##_f0 &= ~(_FP_IMPLBIT_E); \
380 FP_PACK_RAW_EP_flo->bits.frac = X##_f0; \
381 FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
382 FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
385 while (0)
388 # define FP_UNPACK_E(X, val) \
389 do \
391 FP_UNPACK_RAW_E (X, val); \
392 _FP_UNPACK_CANONICAL (E, 2, X); \
394 while (0)
396 # define FP_UNPACK_EP(X, val) \
397 do \
399 FP_UNPACK_RAW_EP (X, val); \
400 _FP_UNPACK_CANONICAL (E, 2, X); \
402 while (0)
404 # define FP_UNPACK_SEMIRAW_E(X, val) \
405 do \
407 FP_UNPACK_RAW_E (X, val); \
408 _FP_UNPACK_SEMIRAW (E, 2, X); \
410 while (0)
412 # define FP_UNPACK_SEMIRAW_EP(X, val) \
413 do \
415 FP_UNPACK_RAW_EP (X, val); \
416 _FP_UNPACK_SEMIRAW (E, 2, X); \
418 while (0)
420 # define FP_PACK_E(val, X) \
421 do \
423 _FP_PACK_CANONICAL (E, 2, X); \
424 FP_PACK_RAW_E (val, X); \
426 while (0)
428 # define FP_PACK_EP(val, X) \
429 do \
431 _FP_PACK_CANONICAL (E, 2, X); \
432 FP_PACK_RAW_EP (val, X); \
434 while (0)
436 # define FP_PACK_SEMIRAW_E(val, X) \
437 do \
439 _FP_PACK_SEMIRAW (E, 2, X); \
440 FP_PACK_RAW_E (val, X); \
442 while (0)
444 # define FP_PACK_SEMIRAW_EP(val, X) \
445 do \
447 _FP_PACK_SEMIRAW (E, 2, X); \
448 FP_PACK_RAW_EP (val, X); \
450 while (0)
452 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 2, X)
453 # define FP_NEG_E(R, X) _FP_NEG (E, 2, R, X)
454 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 2, R, X, Y)
455 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 2, R, X, Y)
456 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 2, R, X, Y)
457 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 2, R, X, Y)
458 # define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X)
459 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z)
462 * Square root algorithms:
463 * We have just one right now, maybe Newton approximation
464 * should be added for those machines where division is fast.
465 * We optimize it by doing most of the calculations
466 * in one UWtype registers instead of two, although we don't
467 * have to.
469 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
470 do \
472 q = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
473 _FP_FRAC_SRL_2 (X, (_FP_WORKBITS)); \
474 while (q) \
476 T##_f0 = S##_f0 + q; \
477 if (T##_f0 <= X##_f0) \
479 S##_f0 = T##_f0 + q; \
480 X##_f0 -= T##_f0; \
481 R##_f0 += q; \
483 _FP_FRAC_SLL_1 (X, 1); \
484 q >>= 1; \
486 _FP_FRAC_SLL_2 (R, (_FP_WORKBITS)); \
487 if (X##_f0) \
489 if (S##_f0 < X##_f0) \
490 R##_f0 |= _FP_WORK_ROUND; \
491 R##_f0 |= _FP_WORK_STICKY; \
494 while (0)
496 # define FP_CMP_E(r, X, Y, un) _FP_CMP (E, 2, r, X, Y, un)
497 # define FP_CMP_EQ_E(r, X, Y) _FP_CMP_EQ (E, 2, r, X, Y)
498 # define FP_CMP_UNORD_E(r, X, Y) _FP_CMP_UNORD (E, 2, r, X, Y)
500 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 2, r, X, rsz, rsg)
501 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 2, X, r, rs, rt)
503 # define _FP_FRAC_HIGH_E(X) (X##_f1)
504 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
506 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[2])
508 #endif /* not _FP_W_TYPE_SIZE < 64 */