localedata: dz_BT, bo_CN: convert to UTF-8
[glibc.git] / sysdeps / ia64 / fpu / s_erfcf.S
blob0157cc0eff8efeb7e654ce79f7f464d3d887ac0b
1 .file "erfcf.s"
4 // Copyright (c) 2002 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 // History
40 //==============================================================
41 // 01/17/02  Initial version
42 // 05/20/02  Cleaned up namespace and sf0 syntax
43 // 02/06/03  Reordered header: .section, .global, .proc, .align
44 // 03/31/05  Reformatted delimiters between data tables
46 // API
47 //==============================================================
48 // float erfcf(float)
50 // Overview of operation
51 //==============================================================
52 // 1. 0 <= x <= 10.06
54 //    erfcf(x)  = P15(x) * exp( -x^2 )
56 //    Comment:
58 //    Let x(0)=0, x(i) = 2^(i), i=1,...3, x(4)= 10.06
60 //    Let x(i)<= x < x(i+1).
61 //    We can find i as exponent of argument x (let i = 0 for 0<= x < 2  )
63 //    Let P15(x) - polynomial approximation of degree 15 for function
64 //    erfcf(x) * exp( x^2) and x(i) <= x <= x(i+1), i = 0,1,2,3
65 //    Polynomial coefficients we have in the table erfc_p_table.
67 //    So we can find result for erfcf(x) as above.
68 //    Algorithm description for exp function see below.
70 // 2. -4.4 <= x < 0
72 //    erfcf(x)  = 2.0 - erfcf(-x)
74 // 3. x > 10.06
76 //    erfcf(x)  ~=~ 0.0
78 // 4. x < -4.4
80 //    erfcf(x)  ~=~ 2.0
82 // Special values
83 //==============================================================
84 // erfcf(+0)    = 1.0
85 // erfcf(-0)    = 1.0
87 // erfcf(+qnan) = +qnan
88 // erfcf(-qnan) = -qnan
89 // erfcf(+snan) = +qnan
90 // erfcf(-snan) = -qnan
92 // erfcf(-inf)  = 2.0
93 // erfcf(+inf)  = +0
95 //==============================================================
96 // Take double exp(double) from libm_64.
98 // Overview of operation
99 //==============================================================
100 // Take the input x. w is "how many log2/128 in x?"
101 //  w = x * 128/log2
102 //  n = int(w)
103 //  x = n log2/128 + r + delta
105 //  n = 128M + index_1 + 2^4 index_2
106 //  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
108 //  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
109 //       Construct 2^M
110 //       Get 2^(index_1/128) from table_1;
111 //       Get 2^(index_2/8)   from table_2;
112 //       Calculate exp(r) by series
113 //          r = x - n (log2/128)_high
114 //          delta = - n (log2/128)_low
115 //       Calculate exp(delta) as 1 + delta
117 // Comment for erfcf:
119 // Let exp(r) = 1 + x + 0.5*x^2 + (1/6)*x^3
120 // Let delta  = 0.
121 //==============================================================
123 // Registers used
124 //==============================================================
125 // Floating Point registers used:
126 // f8, input
127 // f6,f7,f9 -> f11,  f32 -> f92
129 // General registers used:
130 // r14 -> r22,r32 -> r50
132 // Predicate registers used:
133 // p6 -> p15
135 // Assembly macros
136 //==============================================================
137 EXP_AD_TB1             = r14
138 exp_GR_sig_inv_ln2     = r15
139 exp_TB1_size           = r16
140 exp_GR_rshf_2to56      = r17
141 exp_GR_exp_2tom56      = r18
143 exp_GR_rshf            = r33
144 EXP_AD_TB2             = r34
145 EXP_AD_P               = r35
146 exp_GR_N               = r36
147 exp_GR_index_1         = r37
148 exp_GR_index_2_16      = r38
149 exp_GR_biased_M        = r39
150 EXP_AD_T1              = r40
151 EXP_AD_T2              = r41
152 exp_TB2_size           = r42
154 // GR for erfcf(x)
155 //==============================================================
156 GR_IndxPlusBias        = r19
157 GR_ExpMask             = r20
158 GR_BIAS                = r21
159 GR_ShftPi_bias         = r22
161 GR_P_POINT_1           = r43
162 GR_P_POINT_2           = r44
163 GR_P_POINT_3           = r45
164 GR_P_POINT_4           = r46
166 GR_ShftPi              = r47
167 GR_EpsNorm             = r48
169 GR_05                  = r49
170 GR_1_by_6              = r50
172 // GR for __libm_support call
173 //==============================================================
175 GR_SAVE_B0             = r43
176 GR_SAVE_PFS            = r44
177 GR_SAVE_GP             = r45
178 GR_SAVE_SP             = r46
180 GR_Parameter_X         = r47
181 GR_Parameter_Y         = r48
182 GR_Parameter_RESULT    = r49
183 GR_Parameter_TAG       = r50
186 // FR for exp(-x^2)
187 //==============================================================
188 FR_X                   = f10
189 FR_Y                   = f1
190 FR_RESULT              = f8
192 EXP_2TOM56             = f6
193 EXP_INV_LN2_2TO63      = f7
194 EXP_W_2TO56_RSH        = f9
195 exp_ln2_by_128_hi      = f11
197 EXP_RSHF_2TO56         = f32
198 exp_ln2_by_128_lo      = f33
199 EXP_RSHF               = f34
200 EXP_Nfloat             = f35
201 exp_r                  = f36
202 exp_rsq                = f37
203 EXP_2M                 = f38
204 exp_S1                 = f39
205 exp_T1                 = f40
206 exp_P                  = f41
207 exp_S                  = f42
208 EXP_NORM_f8            = f43
209 exp_S2                 = f44
210 exp_T2                 = f45
212 // FR for erfcf(x)
213 //==============================================================
214 FR_AbsArg              = f46
215 FR_Tmp                 = f47
216 FR_Tmp1                = f48
217 FR_Tmpf                = f49
218 FR_NormX               = f50
220 FR_A15                 = f51
221 FR_A14                 = f52
223 FR_A13                 = f53
224 FR_A12                 = f54
226 FR_A11                 = f55
227 FR_A10                 = f56
229 FR_A9                  = f57
230 FR_A8                  = f58
232 FR_A7                  = f59
233 FR_A6                  = f60
235 FR_A5                  = f61
236 FR_A4                  = f62
238 FR_A3                  = f63
239 FR_A2                  = f64
241 FR_A1                  = f65
242 FR_A0                  = f66
244 FR_P15_0_1             = f67
245 FR_P15_1_1             = f68
246 FR_P15_1_2             = f69
247 FR_P15_2_1             = f70
248 FR_P15_2_2             = f71
249 FR_P15_3_1             = f72
250 FR_P15_3_2             = f73
251 FR_P15_4_1             = f74
252 FR_P15_4_2             = f75
253 FR_P15_7_1             = f76
254 FR_P15_7_2             = f77
255 FR_P15_8_1             = f78
256 FR_P15_9_1             = f79
257 FR_P15_9_2             = f80
258 FR_P15_13_1            = f81
259 FR_P15_14_1            = f82
260 FR_P15_14_2            = f83
262 FR_2                   = f84
263 FR_05                  = f85
264 FR_1_by_6              = f86
265 FR_Pol                 = f87
266 FR_Exp                 = f88
268 FR_POS_ARG_ASYMP       = f89
269 FR_NEG_ARG_ASYMP       = f90
271 FR_UnfBound            = f91
272 FR_EpsNorm             = f92
274 // Data tables
275 //==============================================================
276 RODATA
277 .align 16
279 // ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
281 // double-extended 1/ln(2)
282 // 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
283 // 3fff b8aa 3b29 5c17 f0bc
284 // For speed the significand will be loaded directly with a movl and setf.sig
285 //   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
286 //   computations need to scale appropriately.
287 // The constant 128/ln(2) is needed for the computation of w.  This is also
288 //   obtained by scaling the computations.
290 // Two shifting constants are loaded directly with movl and setf.d.
291 //   1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
292 //        This constant is added to x*1/ln2 to shift the integer part of
293 //        x*128/ln2 into the rightmost bits of the significand.
294 //        The result of this fma is EXP_W_2TO56_RSH.
295 //   2. EXP_RSHF       = 1.1000..00 * 2^(63)
296 //        This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
297 //        the integer part of w, n, as a floating-point number.
298 //        The result of this fms is EXP_Nfloat.
301 LOCAL_OBJECT_START(exp_table_1)
303 data4 0x4120f5c3, 0x408ccccd      //POS_ARG_ASYMP = 10.06, NEG_ARG_ASYMP = 4.4
304 data4 0x41131Cdf, 0x00800000     //UnfBound ~=~ 9.1, EpsNorm ~=~ 1.1754944e-38
306 data8 0xb17217f7d1cf79ab , 0x00003ff7                            // ln2/128 hi
307 data8 0xc9e3b39803f2f6af , 0x00003fb7                            // ln2/128 lo
309 // Table 1 is 2^(index_1/128) where
310 // index_1 goes from 0 to 15
312 data8 0x8000000000000000 , 0x00003FFF
313 data8 0x80B1ED4FD999AB6C , 0x00003FFF
314 data8 0x8164D1F3BC030773 , 0x00003FFF
315 data8 0x8218AF4373FC25EC , 0x00003FFF
316 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
317 data8 0x8383594EEFB6EE37 , 0x00003FFF
318 data8 0x843A28C3ACDE4046 , 0x00003FFF
319 data8 0x84F1F656379C1A29 , 0x00003FFF
320 data8 0x85AAC367CC487B15 , 0x00003FFF
321 data8 0x8664915B923FBA04 , 0x00003FFF
322 data8 0x871F61969E8D1010 , 0x00003FFF
323 data8 0x87DB357FF698D792 , 0x00003FFF
324 data8 0x88980E8092DA8527 , 0x00003FFF
325 data8 0x8955EE03618E5FDD , 0x00003FFF
326 data8 0x8A14D575496EFD9A , 0x00003FFF
327 data8 0x8AD4C6452C728924 , 0x00003FFF
328 LOCAL_OBJECT_END(exp_table_1)
330 // Table 2 is 2^(index_1/8) where
331 // index_2 goes from 0 to 7
333 LOCAL_OBJECT_START(exp_table_2)
335 data8 0x8000000000000000 , 0x00003FFF
336 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
337 data8 0x9837F0518DB8A96F , 0x00003FFF
338 data8 0xA5FED6A9B15138EA , 0x00003FFF
339 data8 0xB504F333F9DE6484 , 0x00003FFF
340 data8 0xC5672A115506DADD , 0x00003FFF
341 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
342 data8 0xEAC0C6E7DD24392F , 0x00003FFF
343 LOCAL_OBJECT_END(exp_table_2)
345 LOCAL_OBJECT_START(erfc_p_table)
347 // Pol_0
348 data8 0xBEA3260C63CB0446             //A15 = -5.70673541831883454676e-07
349 data8 0x3EE63D6178077654             //A14 = +1.06047480138940182343e-05
350 data8 0xBF18646BC5FC70A7             //A13 = -9.30491237309283694347e-05
351 data8 0x3F40F92F909117FE             //A12 = +5.17986512144075019133e-04
352 data8 0xBF611344289DE1E6             //A11 = -2.08438217390159994419e-03
353 data8 0x3F7AF9FE6AD16DC0             //A10 = +6.58606893292862351928e-03
354 data8 0xBF91D219E196CBA7             //A9 = -1.74030345858217321001e-02
355 data8 0x3FA4AFDDA355854C             //A8 = +4.04042493708041968315e-02
356 data8 0xBFB5D465BB7025AE             //A7 = -8.52721769916999425445e-02
357 data8 0x3FC54C15A95B717D             //A6 = +1.66384418195672549029e-01
358 data8 0xBFD340A75B4B1AB5             //A5 = -3.00821150926292166899e-01
359 data8 0x3FDFFFC0BFCD247F             //A4 = +4.99984919839853542841e-01
360 data8 0xBFE81270C361852B             //A3 = -7.52251035312075583309e-01
361 data8 0x3FEFFFFFC67295FC             //A2 = +9.99999892800303301771e-01
362 data8 0xBFF20DD74F8CD2BF             //A1 = -1.12837916445020868099e+00
363 data8 0x3FEFFFFFFFFE7C1D             //A0 = +9.99999999988975570714e-01
364 // Pol_1
365 data8 0xBDE8EC4BDD953B56             //A15 = -1.81338928934942767144e-10
366 data8 0x3E43607F269E2A1C             //A14 = +9.02309090272196442358e-09
367 data8 0xBE8C4D9E69C10E02             //A13 = -2.10875261143659275328e-07
368 data8 0x3EC9CF2F84566725             //A12 = +3.07671055805877356583e-06
369 data8 0xBF007980B1B46A4D             //A11 = -3.14228438702169818945e-05
370 data8 0x3F2F4C3AD6DEF24A             //A10 = +2.38783056770846320260e-04
371 data8 0xBF56F5129F8D30FA             //A9 = -1.40120333363130546426e-03
372 data8 0x3F7AA6C7ABFC38EE             //A8 = +6.50671002200751820429e-03
373 data8 0xBF98E7522CB84BEF             //A7 = -2.43199195666185511109e-02
374 data8 0x3FB2F68EB1C3D073             //A6 = +7.40746673580490638637e-02
375 data8 0xBFC7C16055AC6385             //A5 = -1.85588876564704611769e-01
376 data8 0x3FD8A707AEF5A440             //A4 = +3.85194702967570635211e-01
377 data8 0xBFE547BFE39AE2EA             //A3 = -6.65008492032112467310e-01
378 data8 0x3FEE7C91BDF13578             //A2 = +9.52706213932898128515e-01
379 data8 0xBFF1CB5B61F8C589             //A1 = -1.11214769621105541214e+00
380 data8 0x3FEFEA56BC81FD37             //A0 = +9.97355812243688815239e-01
381 // Pol_2
382 data8 0xBD302724A12F46E0             //A15 = -5.73866382814058809406e-14
383 data8 0x3D98889B75D3102E             //A14 = +5.57829983681360947356e-12
384 data8 0xBDF16EA15074A1E9             //A13 = -2.53671153922423457844e-10
385 data8 0x3E3EC6E688CFEE5F             //A12 = +7.16581828336436419561e-09
386 data8 0xBE82E5ED44C52609             //A11 = -1.40802202239825487803e-07
387 data8 0x3EC120BE5CE42353             //A10 = +2.04180535157522081699e-06
388 data8 0xBEF7B8B0311A1911             //A9 = -2.26225266204633600888e-05
389 data8 0x3F29A281F43FC238             //A8 = +1.95577968156184077632e-04
390 data8 0xBF55E19858B3B7A4             //A7 = -1.33552434527526534043e-03
391 data8 0x3F7DAC8C3D12E5FD             //A6 = +7.24463253680473816303e-03
392 data8 0xBF9FF9C04613FB47             //A5 = -3.12261622211693854028e-02
393 data8 0x3FBB3D5DBF9D9366             //A4 = +1.06405123978743883370e-01
394 data8 0xBFD224DE9F62C258             //A3 = -2.83500342989133623476e-01
395 data8 0x3FE28A95CB8C6D3E             //A2 = +5.79417131000276437708e-01
396 data8 0xBFEC21205D358672             //A1 = -8.79043752717008257224e-01
397 data8 0x3FEDAE44D5EDFE5B             //A0 = +9.27523057776805771830e-01
398 // Pol_3
399 data8 0xBCA3BCA734AC82F1             //A15 = -1.36952437983096410260e-16
400 data8 0x3D16740DC3990612             //A14 = +1.99425676175410093285e-14
401 data8 0xBD77F4353812C46A             //A13 = -1.36162367755616790260e-12
402 data8 0x3DCFD0BE13C73DB4             //A12 = +5.78718761040355136007e-11
403 data8 0xBE1D728DF71189B4             //A11 = -1.71406885583934105120e-09
404 data8 0x3E64252C8CB710B5             //A10 = +3.75233795940731111303e-08
405 data8 0xBEA514B93180F33D             //A9 = -6.28261292774310809962e-07
406 data8 0x3EE1381118CC7151             //A8 = +8.21066421390821904504e-06
407 data8 0xBF1634404FB0FA72             //A7 = -8.47019436358372148764e-05
408 data8 0x3F46B2CBBCF0EB32             //A6 = +6.92700845213200923490e-04
409 data8 0xBF725C2B445E6D81             //A5 = -4.48243046949004063741e-03
410 data8 0x3F974E7CFA4D89D9             //A4 = +2.27603462002522228717e-02
411 data8 0xBFB6D7BAC2E342D1             //A3 = -8.92292714882032736443e-02
412 data8 0x3FD0D156AD9CE2A6             //A2 = +2.62777013343603696631e-01
413 data8 0xBFE1C228572AADB0             //A1 = -5.54950876471982857725e-01
414 data8 0x3FE8A739F48B9A3B             //A0 = +7.70413377406675619766e-01
415 LOCAL_OBJECT_END(erfc_p_table)
418 .section .text
419 GLOBAL_LIBM_ENTRY(erfcf)
421 // Form index i for table erfc_p_table as exponent of x
422 // We use i + bias in real calculations
423 { .mlx
424       getf.exp       GR_IndxPlusBias = f8          // (sign + exp + bias) of x
425       movl           exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc //signif.of 1/ln2
427 { .mlx
428       addl           EXP_AD_TB1    = @ltoff(exp_table_1), gp
429       movl           exp_GR_rshf_2to56 = 0x4768000000000000 // 1.100 2^(63+56)
433 // Form argument EXP_NORM_f8 for exp(-x^2)
434 { .mfi
435       ld8            EXP_AD_TB1    = [EXP_AD_TB1]
436       fcmp.ge.s1     p6,p7 = f8, f0                     // p6: x >= 0 ,p7: x<0
437       mov            GR_BIAS = 0x0FFFF
439 { .mfi
440       mov            exp_GR_exp_2tom56 = 0xffff-56
441       fnma.s1        EXP_NORM_f8   = f8, f8, f0                       //  -x^2
442       mov            GR_ExpMask  = 0x1ffff
446 // Form two constants we need
447 //  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
448 //  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
450 // p9:  x = 0,+inf,-inf,nan,unnorm.
451 // p10: x!= 0,+inf,-inf,nan,unnorm.
452 { .mfi
453       setf.sig       EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // Form 1/ln2*2^63
454       fclass.m       p9,p10 = f8,0xef
455       shl            GR_ShftPi_bias = GR_BIAS, 7
457 { .mfi
458       setf.d         EXP_RSHF_2TO56 = exp_GR_rshf_2to56 //Const 1.10*2^(63+56)
459       nop.f          0
460       and            GR_IndxPlusBias = GR_IndxPlusBias, GR_ExpMask // i + bias
464 { .mfi
465       alloc          r32 = ar.pfs, 0, 15, 4, 0
466 (p6)  fma.s1         FR_AbsArg = f1, f0, f8                  // |x| if x >= 0
467       cmp.lt         p15,p0 = GR_IndxPlusBias, GR_BIAS//p15: i < 0 (for |x|<1)
469 { .mlx
470       setf.exp       EXP_2TOM56 = exp_GR_exp_2tom56 //2^-56 for scaling Nfloat
471       movl           exp_GR_rshf = 0x43e8000000000000 //1.10 2^63,right shift.
475 { .mfi
476       ldfps          FR_POS_ARG_ASYMP, FR_NEG_ARG_ASYMP = [EXP_AD_TB1],8
477       nop.f          0
478 (p15) mov            GR_IndxPlusBias = GR_BIAS            //Let i = 0 if i < 0
480 { .mlx
481       mov            GR_P_POINT_3 = 0x1A0
482       movl           GR_05 = 0x3fe0000000000000
486 // Form shift GR_ShftPi from the beginning of erfc_p_table
487 // to the polynomial with number i
488 { .mfi
489       ldfps          FR_UnfBound, FR_EpsNorm = [EXP_AD_TB1],8
490       nop.f          0
491       shl            GR_ShftPi = GR_IndxPlusBias, 7
493 { .mfi
494       setf.d         EXP_RSHF = exp_GR_rshf   // Form right shift 1.100 * 2^63
495 (p7)  fms.s1         FR_AbsArg = f1, f0, f8                   // |x|  if x < 0
496       mov            exp_TB1_size  = 0x100
500 // Form pointer GR_P_POINT_3 to the beginning of erfc_p_table
501 { .mfi
502       setf.d         FR_05 = GR_05
503       nop.f          0
504       sub            GR_ShftPi = GR_ShftPi,GR_ShftPi_bias
506 { .mfb
507       add            GR_P_POINT_3 = GR_P_POINT_3, EXP_AD_TB1
508       nop.f          0
509 (p9)  br.cond.spnt   SPECIAL                  // For x = 0,+inf,-inf,nan,unnorm
513 { .mfi
514       add            GR_P_POINT_1 = GR_P_POINT_3, GR_ShftPi
515       nop.f          0
516       add            GR_P_POINT_2 = GR_P_POINT_3, GR_ShftPi
518 { .mfi
519       ldfe           exp_ln2_by_128_hi  = [EXP_AD_TB1],16
520       fma.s1         FR_NormX = f8,f1,f0
521       add            GR_P_POINT_3 = GR_P_POINT_3, GR_ShftPi
525 // Load coefficients for polynomial P15(x)
526 { .mfi
527       ldfpd          FR_A15, FR_A14 = [GR_P_POINT_1], 16
528       nop.f          0
529       add            GR_P_POINT_3 = 0x30, GR_P_POINT_3
531 { .mfi
532       ldfe           exp_ln2_by_128_lo  = [EXP_AD_TB1], 16
533       nop.f          0
534       add            GR_P_POINT_2 = 0x20, GR_P_POINT_2
538 // Now EXP_AD_TB1 points to the beginning of table 1
539 { .mlx
540       ldfpd          FR_A13, FR_A12 = [GR_P_POINT_1]
541       movl           GR_1_by_6 = 0x3FC5555555555555
543 { .mfi
544       add            GR_P_POINT_4 = 0x30, GR_P_POINT_2
545       nop.f          0
546       nop.i          0
550 { .mfi
551       ldfpd          FR_A11, FR_A10 = [GR_P_POINT_2]
552       fma.s1         FR_2 = f1, f1, f1
553       mov            exp_TB2_size  = 0x80
555 { .mfi
556       ldfpd          FR_A9, FR_A8 = [GR_P_POINT_3],16
557       nop.f          0
558       add            GR_P_POINT_1 = 0x60 ,GR_P_POINT_1
562 // W = X * Inv_log2_by_128
563 // By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
564 // We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
565 { .mfi
566       ldfpd          FR_A7, FR_A6 = [GR_P_POINT_3]
567       fma.s1     EXP_W_2TO56_RSH = EXP_NORM_f8,EXP_INV_LN2_2TO63,EXP_RSHF_2TO56
568       add            EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
571 { .mfi
572       ldfpd          FR_A5, FR_A4 = [GR_P_POINT_4], 16
573       nop.f          0
574       nop.i          0
578 { .mfi
579       ldfpd          FR_A3, FR_A2 = [GR_P_POINT_4]
580       fmerge.s       FR_X = f8,f8
581       nop.i          0
583 { .mfi
584       ldfpd          FR_A1, FR_A0 = [GR_P_POINT_1]
585       nop.f          0
586       nop.i          0
590 //p14: x < - NEG_ARG_ASYMP = -4.4 -> erfcf(x) ~=~ 2.0
591 { .mfi
592       setf.d         FR_1_by_6  = GR_1_by_6
593 (p7)  fcmp.gt.unc.s1 p14,p0 = FR_AbsArg, FR_NEG_ARG_ASYMP          //p7: x < 0
594       nop.i          0
598 //p15: x > POS_ARG_ASYMP = 10.06 -> erfcf(x) ~=~ 0.0
599 { .mfi
600       nop.m          0
601 (p6)  fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP          //p6: x > 0
602       nop.i          0
606 { .mfi
607       nop.m          0
608       fcmp.le.s1     p8,p0 = FR_NormX, FR_UnfBound        // p8: x <= UnfBound
609       nop.i          0
611 { .mfb
612       nop.m          0
613 (p14) fnma.s.s0      FR_RESULT = FR_EpsNorm, FR_EpsNorm, FR_2//y = 2 if x <-4.4
614 (p14) br.ret.spnt    b0
618 // Nfloat = round_int(W)
619 // The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
620 // as a twos complement number in the lower bits (that is, it may be negative).
621 // That twos complement number (called N) is put into exp_GR_N.
623 // Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
624 // before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
625 // Thus, EXP_Nfloat contains the floating point version of N
627 { .mfi
628       nop.m          0
629       fms.s1         EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
630       nop.i          0
632 { .mfb
633 (p15) mov            GR_Parameter_TAG = 209
634 (p15) fma.s.s0       FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0 //Result.for x>10.06
635 (p15) br.cond.spnt   __libm_error_region
639 // Now we can calculate polynomial P15(x)
640 { .mfi
641       nop.m          0
642       fma.s1         FR_P15_1_1 = FR_AbsArg, FR_AbsArg, f0             // x ^2
643       nop.i          0
645 { .mfi
646       nop.m          0
647       fma.s1         FR_P15_0_1 = FR_A15, FR_AbsArg, FR_A14
648       nop.i          0
652 { .mfi
653       nop.m          0
654       fma.s1         FR_P15_1_2 = FR_A13, FR_AbsArg, FR_A12
655       nop.i          0
659 { .mfi
660       getf.sig       exp_GR_N        = EXP_W_2TO56_RSH
661       fma.s1         FR_P15_2_1 = FR_A9, FR_AbsArg, FR_A8
662       nop.i          0
664 { .mfi
665       nop.m          0
666       fma.s1         FR_P15_2_2 = FR_A11, FR_AbsArg, FR_A10
667       nop.i          0
671 { .mfi
672       nop.m          0
673       fma.s1         FR_P15_3_1 = FR_A5, FR_AbsArg, FR_A4
674       nop.i          0
676 { .mfi
677       nop.m          0
678       fma.s1         FR_P15_3_2 = FR_A7, FR_AbsArg, FR_A6
679       nop.i          0
683 // exp_GR_index_1 has index_1
684 // exp_GR_index_2_16 has index_2 * 16
685 // exp_GR_biased_M has M
686 // exp_GR_index_1_16 has index_1 * 16
688 // r2 has true M
689 { .mfi
690       and            exp_GR_index_1 = 0x0f, exp_GR_N
691       fma.s1         FR_P15_4_1 = FR_A1, FR_AbsArg, FR_A0
692       shr            r2 = exp_GR_N,  0x7
695 { .mfi
696       and            exp_GR_index_2_16 = 0x70, exp_GR_N
697       fma.s1         FR_P15_4_2 = FR_A3, FR_AbsArg, FR_A2
698       nop.i          0
702 // EXP_AD_T1 has address of T1
703 // EXP_AD_T2 has address if T2
705 { .mfi
706       add            EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
707       nop.f          0
708       shladd         EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
710 { .mfi
711       addl           exp_GR_biased_M = 0xffff, r2
712       fnma.s1        exp_r   = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
713       nop.i          0
717 // Create Scale = 2^M
718 // r = x - Nfloat * ln2_by_128_hi
720 { .mfi
721       setf.exp       EXP_2M = exp_GR_biased_M
722       fma.s1         FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
723       nop.i          0
725 { .mfi
726       ldfe           exp_T2  = [EXP_AD_T2]
727       nop.f          0
728       nop.i          0
732 // Load T1 and T2
734 { .mfi
735       ldfe           exp_T1  = [EXP_AD_T1]
736       fma.s1         FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0            // x^4
737       nop.i          0
739 { .mfi
740       nop.m          0
741       fma.s1         FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
742       nop.i          0
746 { .mfi
747       nop.m          0
748       fma.s1         FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_P15_4_1
749       nop.i          0
751 { .mfi
752       nop.m          0
753       fma.s1         FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
754       nop.i          0
758 { .mfi
759       nop.m          0
760       fma.s1         exp_P = FR_1_by_6, exp_r, FR_05
761       nop.i          0
763 { .mfi
764       nop.m          0
765       fma.s1         exp_rsq = exp_r, exp_r, f0
766       nop.i          0
770 { .mfi
771       nop.m          0
772       fma.s1         FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
773       nop.i          0
777 { .mfi
778       nop.m          0
779       fma.s1         FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
780       nop.i          0
782 { .mfi
783       nop.m          0
784       fma.s1         FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0           // x^8
785       nop.i          0
789 { .mfi
790       nop.m          0
791       fma.s1         exp_P     = exp_P, exp_rsq, exp_r
792       nop.i          0
794 { .mfi
795       nop.m          0
796       fma.s1         exp_S1  = EXP_2M, exp_T2, f0
797       nop.i          0
801 { .mfi
802       nop.m          0
803       fma.s1         FR_Pol = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1  // P15(x)
804       nop.i          0
808 { .mfi
809       nop.m          0
810       fma.s1         exp_S   = exp_S1, exp_T1, f0
811       nop.i          0
815 { .mfi
816       nop.m          0
817       fma.s1         FR_Exp = exp_S, exp_P, exp_S                 // exp(-x^2)
818       nop.i          0
822 { .mfi
823       nop.m          0
824       fma.s.s0       FR_Tmpf = f8, f1, f0                          //  Flag  d
825       nop.i          0
829 //p6: result for     0 < x < = POS_ARG_ASYMP
830 //p7: result for   - NEG_ARG_ASYMP  <= x < 0
831 //p8: exit   for   - NEG_ARG_ASYMP <= x <= UnfBound, x!=0
832 .pred.rel "mutex",p6,p7
833 { .mfi
834       nop.m          0
835 (p6)  fma.s.s0       f8 = FR_Exp, FR_Pol, f0
836       nop.i          0
838 { .mfb
839       mov            GR_Parameter_TAG = 209
840 (p7)  fnma.s.s0      f8 = FR_Exp, FR_Pol, FR_2
841 (p8)  br.ret.sptk    b0
845 //p10: branch for  UnfBound < x < = POS_ARG_ASYMP
846 { .mfb
847       nop.m          0
848       nop.f          0
849 (p10) br.cond.spnt   __libm_error_region
853 //Only via (p9)  br.cond.spnt   SPECIAL  for x = 0,+inf,-inf,nan,unnorm
854 SPECIAL:
856 { .mfi
857       nop.m          0
858       fclass.m.unc   p10,p0 = f8,0x07                            // p10: x = 0
859       nop.i          0
863 { .mfi
864       nop.m          0
865       fclass.m.unc   p11,p0 = f8,0x21                         // p11: x = +inf
866       nop.i          0
870 { .mfi
871       nop.m          0
872       fclass.m.unc   p12,p0 = f8,0x22                          // p12 x = -inf
873       nop.i          0
875 { .mfb
876       nop.m          0
877 (p10) fma.s.s0       f8 = f1, f1, f0
878 (p10) br.ret.sptk    b0                                // Quick exit for x = 0
882 { .mfi
883       nop.m          0
884       fclass.m.unc   p13,p0 = f8,0xc3                          // p13: x = nan
885       nop.i          0
887 { .mfb
888       nop.m          0
889 (p11) fma.s.s0       f8 = f0, f1, f0
890 (p11) br.ret.spnt    b0                             // Quick exit for x = +inf
893 { .mfi
894       nop.m          0
895       fclass.m.unc   p14,p0 = f8,0x0b                 // P14: x = unnormalized
896       nop.i          0
898 { .mfb
899       nop.m          0
900 (p12) fma.s.s0       f8 = f1, f1, f1
901 (p12) br.ret.spnt    b0                             // Quick exit for x = -inf
905 { .mfb
906       nop.m          0
907 (p13) fma.s.s0       f8 = f8, f1, f0
908 (p13) br.ret.sptk    b0                              // Quick exit for x = nan
912 { .mfb
913       nop.m          0
914 (p14) fnma.s.s0      f8 = f8, f1, f1
915 (p14) br.ret.sptk    b0                     // Quick exit for x = unnormalized
919 GLOBAL_LIBM_END(erfcf)
920 libm_alias_float_other (erfc, erfc)
923 // Call via (p10) br.cond.spnt   __libm_error_region
924 //          for  UnfBound < x < = POS_ARG_ASYMP
925 // and
927 // call via (p15) br.cond.spnt   __libm_error_region
928 //          for  x > POS_ARG_ASYMP
930 LOCAL_LIBM_ENTRY(__libm_error_region)
931 .prologue
932 { .mfi
933         add   GR_Parameter_Y=-32,sp                       // Parameter 2 value
934         nop.f 0
935 .save   ar.pfs,GR_SAVE_PFS
936         mov  GR_SAVE_PFS=ar.pfs                                 // Save ar.pfs
938 { .mfi
939 .fframe 64
940         add sp=-64,sp                                      // Create new stack
941         nop.f 0
942         mov GR_SAVE_GP=gp                                           // Save gp
944 { .mmi
945         stfs [GR_Parameter_Y] = FR_Y,16          // STORE Parameter 2 on stack
946         add GR_Parameter_X = 16,sp                      // Parameter 1 address
947 .save   b0, GR_SAVE_B0
948         mov GR_SAVE_B0=b0                                           // Save b0
950 .body
951 { .mib
952         stfs [GR_Parameter_X] = FR_X             // STORE Parameter 1 on stack
953         add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
954         nop.b 0
956 { .mib
957         stfs [GR_Parameter_Y] = FR_RESULT        // STORE Parameter 3 on stack
958         add   GR_Parameter_Y = -16,GR_Parameter_Y
959         br.call.sptk b0=__libm_error_support#  // Call error handling function
961 { .mmi
962         nop.m 0
963         nop.m 0
964         add   GR_Parameter_RESULT = 48,sp
966 { .mmi
967         ldfs  f8 = [GR_Parameter_RESULT]        // Get return result off stack
968 .restore sp
969         add   sp = 64,sp                              // Restore stack pointer
970         mov   b0 = GR_SAVE_B0                        // Restore return address
972 { .mib
973         mov   gp = GR_SAVE_GP                                    // Restore gp
974         mov   ar.pfs = GR_SAVE_PFS                           // Restore ar.pfs
975         br.ret.sptk     b0                                           // Return
978 LOCAL_LIBM_END(__libm_error_region)
979 .type   __libm_error_support#,@function
980 .global __libm_error_support#