localedata: dz_BT, bo_CN: convert to UTF-8
[glibc.git] / sysdeps / ia64 / fpu / libm_reduce.S
blob01f16e423c290f3c970ce954c8785fe13f80b8ee
1 .file "libm_reduce.s"
4 // Copyright (c) 2000 - 2003, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 // History:
40 // 02/02/00 Initial Version
41 // 05/13/02 Rescheduled for speed, changed interface to pass
42 //          parameters in fp registers
43 // 02/10/03 Reordered header: .section, .global, .proc, .align;
44 //          used data8 for long double data storage
46 //*********************************************************************
47 //*********************************************************************
49 // Function:   __libm_pi_by_two_reduce(x) return r, c, and N where
50 //             x = N * pi/4 + (r+c) , where |r+c| <= pi/4.
51 //             This function is not designed to be used by the
52 //             general user.
54 //*********************************************************************
56 // Accuracy:       Returns double-precision values
58 //*********************************************************************
60 // Resources Used:
62 //    Floating-Point Registers:
63 //      f8  = Input x, return value r
64 //      f9  = return value c
65 //      f32-f70
67 //    General Purpose Registers:
68 //      r8  = return value N
69 //      r34-r64
71 //    Predicate Registers:      p6-p14
73 //*********************************************************************
75 // IEEE Special Conditions:
77 //    No conditions should be raised.
79 //*********************************************************************
81 // I. Introduction
82 // ===============
84 // For the forward trigonometric functions sin, cos, sincos, and
85 // tan, the original algorithms for IA 64 handle arguments up to
86 // 1 ulp less than 2^63 in magnitude. For double-extended arguments x,
87 // |x| >= 2^63, this routine returns N and r_hi, r_lo where
89 //    x  is accurately approximated by
90 //    2*K*pi  +  N * pi/2  +  r_hi + r_lo,  |r_hi+r_lo| <= pi/4.
91 //    CASE = 1 or 2.
92 //    CASE is 1 unless |r_hi + r_lo| < 2^(-33).
94 // The exact value of K is not determined, but that information is
95 // not required in trigonometric function computations.
97 // We first assume the argument x in question satisfies x >= 2^(63).
98 // In particular, it is positive. Negative x can be handled by symmetry:
100 //   -x  is accurately approximated by
101 //         -2*K*pi  +  (-N) * pi/2  -  (r_hi + r_lo),  |r_hi+r_lo| <= pi/4.
103 // The idea of the reduction is that
105 //       x  *  2/pi   =   N_big  +  N  +  f,      |f| <= 1/2
107 // Moreover, for double extended x, |f| >= 2^(-75). (This is an
108 // non-obvious fact found by enumeration using a special algorithm
109 // involving continued fraction.) The algorithm described below
110 // calculates N and an accurate approximation of f.
112 // Roughly speaking, an appropriate 256-bit (4 X 64) portion of
113 // 2/pi is multiplied with x to give the desired information.
115 // II. Representation of 2/PI
116 // ==========================
118 // The value of 2/pi in binary fixed-point is
120 //            .101000101111100110......
122 // We store 2/pi in a table, starting at the position corresponding
123 // to bit position 63
125 //   bit position  63 62 ... 0   -1 -2 -3 -4 -5 -6 -7  ....  -16576
127 //              0  0  ... 0  . 1  0  1  0  1  0  1  ....    X
129 //                              ^
130 //                               |__ implied binary pt
132 // III. Algorithm
133 // ==============
135 // This describes the algorithm in the most natural way using
136 // unsigned integer multiplication. The implementation section
137 // describes how the integer arithmetic is simulated.
139 // STEP 0. Initialization
140 // ----------------------
142 // Let the input argument x be
144 //     x = 2^m * ( 1. b_1 b_2 b_3 ... b_63 ),  63 <= m <= 16383.
146 // The first crucial step is to fetch four 64-bit portions of 2/pi.
147 // To fulfill this goal, we calculate the bit position L of the
148 // beginning of these 256-bit quantity by
150 //     L :=  62 - m.
152 // Note that -16321 <= L <= -1 because 63 <= m <= 16383; and that
153 // the storage of 2/pi is adequate.
155 // Fetch P_1, P_2, P_3, P_4 beginning at bit position L thus:
157 //      bit position  L  L-1  L-2    ...  L-63
159 //      P_1    =      b   b    b     ...    b
161 // each b can be 0 or 1. Also, let P_0 be the two bits corresponding to
162 // bit positions L+2 and L+1. So, when each of the P_j is interpreted
163 // with appropriate scaling, we have
165 //      2/pi  =  P_big  + P_0 + (P_1 + P_2 + P_3 + P_4)  +  P_small
167 // Note that P_big and P_small can be ignored. The reasons are as follow.
168 // First, consider P_big. If P_big = 0, we can certainly ignore it.
169 // Otherwise, P_big >= 2^(L+3). Now,
171 //        P_big * ulp(x) >=  2^(L+3) * 2^(m-63)
172 //                   >=  2^(65-m  +  m-63 )
173 //                   >=  2^2
175 // Thus, P_big * x is an integer of the form 4*K. So
177 //       x = 4*K * (pi/2) + x*(P_0 + P_1 + P_2 + P_3 + P_4)*(pi/2)
178 //                + x*P_small*(pi/2).
180 // Hence, P_big*x corresponds to information that can be ignored for
181 // trigonometic function evaluation.
183 // Next, we must estimate the effect of ignoring P_small. The absolute
184 // error made by ignoring P_small is bounded by
186 //       |P_small * x|  <=  ulp(P_4) * x
187 //                  <=  2^(L-255) * 2^(m+1)
188 //                  <=  2^(62-m-255 + m + 1)
189 //                  <=  2^(-192)
191 // Since for double-extended precision, x * 2/pi = integer + f,
192 // 0.5 >= |f| >= 2^(-75), the relative error introduced by ignoring
193 // P_small is bounded by 2^(-192+75) <= 2^(-117), which is acceptable.
195 // Further note that if x is split into x_hi + x_lo where x_lo is the
196 // two bits corresponding to bit positions 2^(m-62) and 2^(m-63); then
198 //       P_0 * x_hi
200 // is also an integer of the form 4*K; and thus can also be ignored.
201 // Let M := P_0 * x_lo which is a small integer. The main part of the
202 // calculation is really the multiplication of x with the four pieces
203 // P_1, P_2, P_3, and P_4.
205 // Unless the reduced argument is extremely small in magnitude, it
206 // suffices to carry out the multiplication of x with P_1, P_2, and
207 // P_3. x*P_4 will be carried out and added on as a correction only
208 // when it is found to be needed. Note also that x*P_4 need not be
209 // computed exactly. A straightforward multiplication suffices since
210 // the rounding error thus produced would be bounded by 2^(-3*64),
211 // that is 2^(-192) which is small enough as the reduced argument
212 // is bounded from below by 2^(-75).
214 // Now that we have four 64-bit data representing 2/pi and a
215 // 64-bit x. We first need to calculate a highly accurate product
216 // of x and P_1, P_2, P_3. This is best understood as integer
217 // multiplication.
220 // STEP 1. Multiplication
221 // ----------------------
224 //                     ---------   ---------   ---------
225 //                    |  P_1  |   |  P_2  |   |  P_3  |
226 //                    ---------   ---------   ---------
228 //                                            ---------
229 //             X                              |   X   |
230 //                                            ---------
231 //      ----------------------------------------------------
233 //                                 ---------   ---------
234 //                               |  A_hi |   |  A_lo |
235 //                               ---------   ---------
238 //                    ---------   ---------
239 //                   |  B_hi |   |  B_lo |
240 //                   ---------   ---------
243 //        ---------   ---------
244 //       |  C_hi |   |  C_lo |
245 //       ---------   ---------
247 //      ====================================================
248 //       ---------   ---------   ---------   ---------
249 //       |  S_0  |   |  S_1  |   |  S_2  |   |  S_3  |
250 //       ---------   ---------   ---------   ---------
254 // STEP 2. Get N and f
255 // -------------------
257 // Conceptually, after the individual pieces S_0, S_1, ..., are obtained,
258 // we have to sum them and obtain an integer part, N, and a fraction, f.
259 // Here, |f| <= 1/2, and N is an integer. Note also that N need only to
260 // be known to module 2^k, k >= 2. In the case when |f| is small enough,
261 // we would need to add in the value x*P_4.
264 // STEP 3. Get reduced argument
265 // ----------------------------
267 // The value f is not yet the reduced argument that we seek. The
268 // equation
270 //       x * 2/pi = 4K  + N  + f
272 // says that
274 //         x   =  2*K*pi  + N * pi/2  +  f * (pi/2).
276 // Thus, the reduced argument is given by
278 //       reduced argument =  f * pi/2.
280 // This multiplication must be performed to extra precision.
282 // IV. Implementation
283 // ==================
285 // Step 0. Initialization
286 // ----------------------
288 // Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
290 // In memory, 2/pi is stored contiguously as
292 //  0x00000000 0x00000000 0xA2F....
293 //                       ^
294 //                       |__ implied binary bit
296 // Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m. Thus
297 // -1 <= L <= -16321. We fetch from memory 5 integer pieces of data.
299 // P_0 is the two bits corresponding to bit positions L+2 and L+1
300 // P_1 is the 64-bit starting at bit position  L
301 // P_2 is the 64-bit starting at bit position  L-64
302 // P_3 is the 64-bit starting at bit position  L-128
303 // P_4 is the 64-bit starting at bit position  L-192
305 // For example, if m = 63, P_0 would be 0 and P_1 would look like
306 // 0xA2F...
308 // If m = 65, P_0 would be the two msb of 0xA, thus, P_0 is 10 in binary.
309 // P_1 in binary would be  1 0 0 0 1 0 1 1 1 1 ....
311 // Step 1. Multiplication
312 // ----------------------
314 // At this point, P_1, P_2, P_3, P_4 are integers. They are
315 // supposed to be interpreted as
317 //  2^(L-63)     * P_1;
318 //  2^(L-63-64)  * P_2;
319 //  2^(L-63-128) * P_3;
320 // 2^(L-63-192) * P_4;
322 // Since each of them need to be multiplied to x, we would scale
323 // both x and the P_j's by some convenient factors: scale each
324 // of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
326 //   p_1 := fcvt.xf ( P_1 )
327 //   p_2 := fcvt.xf ( P_2 ) * 2^(-64)
328 //   p_3 := fcvt.xf ( P_3 ) * 2^(-128)
329 //   p_4 := fcvt.xf ( P_4 ) * 2^(-192)
330 //   x   := replace exponent of x by -1
331 //          because 2^m    * 1.xxxx...xxx  * 2^(L-63)
332 //          is      2^(-1) * 1.xxxx...xxx
334 // We are now faced with the task of computing the following
336 //                     ---------   ---------   ---------
337 //                    |  P_1  |   |  P_2  |   |  P_3  |
338 //                    ---------   ---------   ---------
340 //                                             ---------
341 //             X                              |   X   |
342 //                                            ---------
343 //       ----------------------------------------------------
345 //                                 ---------   ---------
346 //                                |  A_hi |   |  A_lo |
347 //                                ---------   ---------
349 //                     ---------   ---------
350 //                    |  B_hi |   |  B_lo |
351 //                    ---------   ---------
353 //         ---------   ---------
354 //        |  C_hi |   |  C_lo |
355 //        ---------   ---------
357 //      ====================================================
358 //       -----------   ---------   ---------   ---------
359 //       |    S_0  |   |  S_1  |   |  S_2  |   |  S_3  |
360 //       -----------   ---------   ---------   ---------
361 //        ^          ^
362 //        |          |___ binary point
363 //        |
364 //        |___ possibly one more bit
366 // Let FPSR3 be set to round towards zero with widest precision
367 // and exponent range. Unless an explicit FPSR is given,
368 // round-to-nearest with widest precision and exponent range is
369 // used.
371 // Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_C := 2^(-65).
373 // Tmp_C := fmpy.fpsr3( x, p_1 );
374 // If Tmp_C >= sigma_C then
375 //    C_hi := Tmp_C;
376 //    C_lo := x*p_1 - C_hi ...fma, exact
377 // Else
378 //    C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
379 //                   ...subtraction is exact, regardless
380 //                   ...of rounding direction
381 //    C_lo := x*p_1 - C_hi ...fma, exact
382 // End If
384 // Tmp_B := fmpy.fpsr3( x, p_2 );
385 // If Tmp_B >= sigma_B then
386 //    B_hi := Tmp_B;
387 //    B_lo := x*p_2 - B_hi ...fma, exact
388 // Else
389 //    B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
390 //                   ...subtraction is exact, regardless
391 //                   ...of rounding direction
392 //    B_lo := x*p_2 - B_hi ...fma, exact
393 // End If
395 // Tmp_A := fmpy.fpsr3( x, p_3 );
396 // If Tmp_A >= sigma_A then
397 //    A_hi := Tmp_A;
398 //    A_lo := x*p_3 - A_hi ...fma, exact
399 // Else
400 //    A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
401 //                   ...subtraction is exact, regardless
402 //                   ...of rounding direction
403 //    A_lo := x*p_3 - A_hi ...fma, exact
404 // End If
406 // ...Note that C_hi is of integer value. We need only the
407 // ...last few bits. Thus we can ensure C_hi is never a big
408 // ...integer, freeing us from overflow worry.
410 // Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
411 // ...Tmp_C is the upper portion of C_hi
412 // C_hi := C_hi - Tmp_C
413 // ...0 <= C_hi < 2^7
415 // Step 2. Get N and f
416 // -------------------
418 // At this point, we have all the components to obtain
419 // S_0, S_1, S_2, S_3 and thus N and f. We start by adding
420 // C_lo and B_hi. This sum together with C_hi gives a good
421 // estimation of N and f.
423 // A := fadd.fpsr3( B_hi, C_lo )
424 // B := max( B_hi, C_lo )
425 // b := min( B_hi, C_lo )
427 // a := (B - A) + b      ...exact. Note that a is either 0
428 //                   ...or 2^(-64).
430 // N := round_to_nearest_integer_value( A );
431 // f := A - N;            ...exact because lsb(A) >= 2^(-64)
432 //                   ...and |f| <= 1/2.
434 // f := f + a            ...exact because a is 0 or 2^(-64);
435 //                   ...the msb of the sum is <= 1/2
436 //                   ...lsb >= 2^(-64).
438 // N := convert to integer format( C_hi + N );
439 // M := P_0 * x_lo;
440 // N := N + M;
442 // If sgn_x == 1 (that is original x was negative)
443 // N := 2^10 - N
444 // ...this maintains N to be non-negative, but still
445 // ...equivalent to the (negated N) mod 4.
446 // End If
448 // If |f| >= 2^(-33)
450 // ...Case 1
451 // CASE := 1
452 // g := A_hi + B_lo;
453 // s_hi := f + g;
454 // s_lo := (f - s_hi) + g;
456 // Else
458 // ...Case 2
459 // CASE := 2
460 // A := fadd.fpsr3( A_hi, B_lo )
461 // B := max( A_hi, B_lo )
462 // b := min( A_hi, B_lo )
464 // a := (B - A) + b      ...exact. Note that a is either 0
465 //                   ...or 2^(-128).
467 // f_hi := A + f;
468 // f_lo := (f - f_hi) + A;
469 // ...this is exact.
470 // ...f-f_hi is exact because either |f| >= |A|, in which
471 // ...case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
472 // ...means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
473 // ...If f = 2^(-64), f-f_hi involves cancellation and is
474 // ...exact. If f = -2^(-64), then A + f is exact. Hence
475 // ...f-f_hi is -A exactly, giving f_lo = 0.
477 // f_lo := f_lo + a;
479 // If |f| >= 2^(-50) then
480 //    s_hi := f_hi;
481 //    s_lo := f_lo;
482 // Else
483 //    f_lo := (f_lo + A_lo) + x*p_4
484 //    s_hi := f_hi + f_lo
485 //    s_lo := (f_hi - s_hi) + f_lo
486 // End If
488 // End If
490 // Step 3. Get reduced argument
491 // ----------------------------
493 // If sgn_x == 0 (that is original x is positive)
495 // D_hi := Pi_by_2_hi
496 // D_lo := Pi_by_2_lo
497 // ...load from table
499 // Else
501 // D_hi := neg_Pi_by_2_hi
502 // D_lo := neg_Pi_by_2_lo
503 // ...load from table
504 // End If
506 // r_hi :=  s_hi*D_hi
507 // r_lo :=  s_hi*D_hi - r_hi         ...fma
508 // r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
510 // Return  N, r_hi, r_lo
512 FR_input_X = f8
513 FR_r_hi    = f8
514 FR_r_lo    = f9
516 FR_X       = f32
517 FR_N       = f33
518 FR_p_1     = f34
519 FR_TWOM33  = f35
520 FR_TWOM50  = f36
521 FR_g       = f37
522 FR_p_2     = f38
523 FR_f       = f39
524 FR_s_lo    = f40
525 FR_p_3     = f41
526 FR_f_abs   = f42
527 FR_D_lo    = f43
528 FR_p_4     = f44
529 FR_D_hi    = f45
530 FR_Tmp2_C  = f46
531 FR_s_hi    = f47
532 FR_sigma_A = f48
533 FR_A       = f49
534 FR_sigma_B = f50
535 FR_B       = f51
536 FR_sigma_C = f52
537 FR_b       = f53
538 FR_ScaleP2 = f54
539 FR_ScaleP3 = f55
540 FR_ScaleP4 = f56
541 FR_Tmp_A   = f57
542 FR_Tmp_B   = f58
543 FR_Tmp_C   = f59
544 FR_A_hi    = f60
545 FR_f_hi    = f61
546 FR_RSHF    = f62
547 FR_A_lo    = f63
548 FR_B_hi    = f64
549 FR_a       = f65
550 FR_B_lo    = f66
551 FR_f_lo    = f67
552 FR_N_fix   = f68
553 FR_C_hi    = f69
554 FR_C_lo    = f70
556 GR_N       = r8
557 GR_Exp_x   = r36
558 GR_Temp    = r37
559 GR_BIASL63 = r38
560 GR_CASE    = r39
561 GR_x_lo    = r40
562 GR_sgn_x   = r41
563 GR_M       = r42
564 GR_BASE    = r43
565 GR_LENGTH1 = r44
566 GR_LENGTH2 = r45
567 GR_ASUB    = r46
568 GR_P_0     = r47
569 GR_P_1     = r48
570 GR_P_2     = r49
571 GR_P_3     = r50
572 GR_P_4     = r51
573 GR_START   = r52
574 GR_SEGMENT = r53
575 GR_A       = r54
576 GR_B       = r55
577 GR_C       = r56
578 GR_D       = r57
579 GR_E       = r58
580 GR_TEMP1   = r59
581 GR_TEMP2   = r60
582 GR_TEMP3   = r61
583 GR_TEMP4   = r62
584 GR_TEMP5   = r63
585 GR_TEMP6   = r64
586 GR_rshf    = r64
588 RODATA
589 .align 64
591 LOCAL_OBJECT_START(Constants_Bits_of_2_by_pi)
592 data8 0x0000000000000000,0xA2F9836E4E441529
593 data8 0xFC2757D1F534DDC0,0xDB6295993C439041
594 data8 0xFE5163ABDEBBC561,0xB7246E3A424DD2E0
595 data8 0x06492EEA09D1921C,0xFE1DEB1CB129A73E
596 data8 0xE88235F52EBB4484,0xE99C7026B45F7E41
597 data8 0x3991D639835339F4,0x9C845F8BBDF9283B
598 data8 0x1FF897FFDE05980F,0xEF2F118B5A0A6D1F
599 data8 0x6D367ECF27CB09B7,0x4F463F669E5FEA2D
600 data8 0x7527BAC7EBE5F17B,0x3D0739F78A5292EA
601 data8 0x6BFB5FB11F8D5D08,0x56033046FC7B6BAB
602 data8 0xF0CFBC209AF4361D,0xA9E391615EE61B08
603 data8 0x6599855F14A06840,0x8DFFD8804D732731
604 data8 0x06061556CA73A8C9,0x60E27BC08C6B47C4
605 data8 0x19C367CDDCE8092A,0x8359C4768B961CA6
606 data8 0xDDAF44D15719053E,0xA5FF07053F7E33E8
607 data8 0x32C2DE4F98327DBB,0xC33D26EF6B1E5EF8
608 data8 0x9F3A1F35CAF27F1D,0x87F121907C7C246A
609 data8 0xFA6ED5772D30433B,0x15C614B59D19C3C2
610 data8 0xC4AD414D2C5D000C,0x467D862D71E39AC6
611 data8 0x9B0062337CD2B497,0xA7B4D55537F63ED7
612 data8 0x1810A3FC764D2A9D,0x64ABD770F87C6357
613 data8 0xB07AE715175649C0,0xD9D63B3884A7CB23
614 data8 0x24778AD623545AB9,0x1F001B0AF1DFCE19
615 data8 0xFF319F6A1E666157,0x9947FBACD87F7EB7
616 data8 0x652289E83260BFE6,0xCDC4EF09366CD43F
617 data8 0x5DD7DE16DE3B5892,0x9BDE2822D2E88628
618 data8 0x4D58E232CAC616E3,0x08CB7DE050C017A7
619 data8 0x1DF35BE01834132E,0x6212830148835B8E
620 data8 0xF57FB0ADF2E91E43,0x4A48D36710D8DDAA
621 data8 0x425FAECE616AA428,0x0AB499D3F2A6067F
622 data8 0x775C83C2A3883C61,0x78738A5A8CAFBDD7
623 data8 0x6F63A62DCBBFF4EF,0x818D67C12645CA55
624 data8 0x36D9CAD2A8288D61,0xC277C9121426049B
625 data8 0x4612C459C444C5C8,0x91B24DF31700AD43
626 data8 0xD4E5492910D5FDFC,0xBE00CC941EEECE70
627 data8 0xF53E1380F1ECC3E7,0xB328F8C79405933E
628 data8 0x71C1B3092EF3450B,0x9C12887B20AB9FB5
629 data8 0x2EC292472F327B6D,0x550C90A7721FE76B
630 data8 0x96CB314A1679E279,0x4189DFF49794E884
631 data8 0xE6E29731996BED88,0x365F5F0EFDBBB49A
632 data8 0x486CA46742727132,0x5D8DB8159F09E5BC
633 data8 0x25318D3974F71C05,0x30010C0D68084B58
634 data8 0xEE2C90AA4702E774,0x24D6BDA67DF77248
635 data8 0x6EEF169FA6948EF6,0x91B45153D1F20ACF
636 data8 0x3398207E4BF56863,0xB25F3EDD035D407F
637 data8 0x8985295255C06437,0x10D86D324832754C
638 data8 0x5BD4714E6E5445C1,0x090B69F52AD56614
639 data8 0x9D072750045DDB3B,0xB4C576EA17F9877D
640 data8 0x6B49BA271D296996,0xACCCC65414AD6AE2
641 data8 0x9089D98850722CBE,0xA4049407777030F3
642 data8 0x27FC00A871EA49C2,0x663DE06483DD9797
643 data8 0x3FA3FD94438C860D,0xDE41319D39928C70
644 data8 0xDDE7B7173BDF082B,0x3715A0805C93805A
645 data8 0x921110D8E80FAF80,0x6C4BFFDB0F903876
646 data8 0x185915A562BBCB61,0xB989C7BD401004F2
647 data8 0xD2277549F6B6EBBB,0x22DBAA140A2F2689
648 data8 0x768364333B091A94,0x0EAA3A51C2A31DAE
649 data8 0xEDAF12265C4DC26D,0x9C7A2D9756C0833F
650 data8 0x03F6F0098C402B99,0x316D07B43915200C
651 data8 0x5BC3D8C492F54BAD,0xC6A5CA4ECD37A736
652 data8 0xA9E69492AB6842DD,0xDE6319EF8C76528B
653 data8 0x6837DBFCABA1AE31,0x15DFA1AE00DAFB0C
654 data8 0x664D64B705ED3065,0x29BF56573AFF47B9
655 data8 0xF96AF3BE75DF9328,0x3080ABF68C6615CB
656 data8 0x040622FA1DE4D9A4,0xB33D8F1B5709CD36
657 data8 0xE9424EA4BE13B523,0x331AAAF0A8654FA5
658 data8 0xC1D20F3F0BCD785B,0x76F923048B7B7217
659 data8 0x8953A6C6E26E6F00,0xEBEF584A9BB7DAC4
660 data8 0xBA66AACFCF761D02,0xD12DF1B1C1998C77
661 data8 0xADC3DA4886A05DF7,0xF480C62FF0AC9AEC
662 data8 0xDDBC5C3F6DDED01F,0xC790B6DB2A3A25A3
663 data8 0x9AAF009353AD0457,0xB6B42D297E804BA7
664 data8 0x07DA0EAA76A1597B,0x2A12162DB7DCFDE5
665 data8 0xFAFEDB89FDBE896C,0x76E4FCA90670803E
666 data8 0x156E85FF87FD073E,0x2833676186182AEA
667 data8 0xBD4DAFE7B36E6D8F,0x3967955BBF3148D7
668 data8 0x8416DF30432DC735,0x6125CE70C9B8CB30
669 data8 0xFD6CBFA200A4E46C,0x05A0DD5A476F21D2
670 data8 0x1262845CB9496170,0xE0566B0152993755
671 data8 0x50B7D51EC4F1335F,0x6E13E4305DA92E85
672 data8 0xC3B21D3632A1A4B7,0x08D4B1EA21F716E4
673 data8 0x698F77FF2780030C,0x2D408DA0CD4F99A5
674 data8 0x20D3A2B30A5D2F42,0xF9B4CBDA11D0BE7D
675 data8 0xC1DB9BBD17AB81A2,0xCA5C6A0817552E55
676 data8 0x0027F0147F8607E1,0x640B148D4196DEBE
677 data8 0x872AFDDAB6256B34,0x897BFEF3059EBFB9
678 data8 0x4F6A68A82A4A5AC4,0x4FBCF82D985AD795
679 data8 0xC7F48D4D0DA63A20,0x5F57A4B13F149538
680 data8 0x800120CC86DD71B6,0xDEC9F560BF11654D
681 data8 0x6B0701ACB08CD0C0,0xB24855510EFB1EC3
682 data8 0x72953B06A33540C0,0x7BDC06CC45E0FA29
683 data8 0x4EC8CAD641F3E8DE,0x647CD8649B31BED9
684 data8 0xC397A4D45877C5E3,0x6913DAF03C3ABA46
685 data8 0x18465F7555F5BDD2,0xC6926E5D2EACED44
686 data8 0x0E423E1C87C461E9,0xFD29F3D6E7CA7C22
687 data8 0x35916FC5E0088DD7,0xFFE26A6EC6FDB0C1
688 data8 0x0893745D7CB2AD6B,0x9D6ECD7B723E6A11
689 data8 0xC6A9CFF7DF7329BA,0xC9B55100B70DB2E2
690 data8 0x24BA74607DE58AD8,0x742C150D0C188194
691 data8 0x667E162901767A9F,0xBEFDFDEF4556367E
692 data8 0xD913D9ECB9BA8BFC,0x97C427A831C36EF1
693 data8 0x36C59456A8D8B5A8,0xB40ECCCF2D891234
694 data8 0x576F89562CE3CE99,0xB920D6AA5E6B9C2A
695 data8 0x3ECC5F114A0BFDFB,0xF4E16D3B8E2C86E2
696 data8 0x84D4E9A9B4FCD1EE,0xEFC9352E61392F44
697 data8 0x2138C8D91B0AFC81,0x6A4AFBD81C2F84B4
698 data8 0x538C994ECC2254DC,0x552AD6C6C096190B
699 data8 0xB8701A649569605A,0x26EE523F0F117F11
700 data8 0xB5F4F5CBFC2DBC34,0xEEBC34CC5DE8605E
701 data8 0xDD9B8E67EF3392B8,0x17C99B5861BC57E1
702 data8 0xC68351103ED84871,0xDDDD1C2DA118AF46
703 data8 0x2C21D7F359987AD9,0xC0549EFA864FFC06
704 data8 0x56AE79E536228922,0xAD38DC9367AAE855
705 data8 0x3826829BE7CAA40D,0x51B133990ED7A948
706 data8 0x0569F0B265A7887F,0x974C8836D1F9B392
707 data8 0x214A827B21CF98DC,0x9F405547DC3A74E1
708 data8 0x42EB67DF9DFE5FD4,0x5EA4677B7AACBAA2
709 data8 0xF65523882B55BA41,0x086E59862A218347
710 data8 0x39E6E389D49EE540,0xFB49E956FFCA0F1C
711 data8 0x8A59C52BFA94C5C1,0xD3CFC50FAE5ADB86
712 data8 0xC5476243853B8621,0x94792C8761107B4C
713 data8 0x2A1A2C8012BF4390,0x2688893C78E4C4A8
714 data8 0x7BDBE5C23AC4EAF4,0x268A67F7BF920D2B
715 data8 0xA365B1933D0B7CBD,0xDC51A463DD27DDE1
716 data8 0x6919949A9529A828,0xCE68B4ED09209F44
717 data8 0xCA984E638270237C,0x7E32B90F8EF5A7E7
718 data8 0x561408F1212A9DB5,0x4D7E6F5119A5ABF9
719 data8 0xB5D6DF8261DD9602,0x36169F3AC4A1A283
720 data8 0x6DED727A8D39A9B8,0x825C326B5B2746ED
721 data8 0x34007700D255F4FC,0x4D59018071E0E13F
722 data8 0x89B295F364A8F1AE,0xA74B38FC4CEAB2BB
723 LOCAL_OBJECT_END(Constants_Bits_of_2_by_pi)
725 LOCAL_OBJECT_START(Constants_Bits_of_pi_by_2)
726 data8 0xC90FDAA22168C234,0x00003FFF
727 data8 0xC4C6628B80DC1CD1,0x00003FBF
728 LOCAL_OBJECT_END(Constants_Bits_of_pi_by_2)
730 .section .text
731 .global __libm_pi_by_2_reduce#
732 .proc __libm_pi_by_2_reduce#
733 .align 32
735 __libm_pi_by_2_reduce:
737 //    X is in f8
738 //    Place the two-piece result r (r_hi) in f8 and c (r_lo) in f9
739 //    N is returned in r8
741 { .mfi
742       alloc  r34 = ar.pfs,2,34,0,0
743       fsetc.s3 0x00,0x7F     // Set sf3 to round to zero, 82-bit prec, td, ftz
744       nop.i 999
746 { .mfi
747       addl           GR_BASE   = @ltoff(Constants_Bits_of_2_by_pi#), gp
748       nop.f 999
749       mov GR_BIASL63 = 0x1003E
754 //    L         -1-2-3-4
755 //    0 0 0 0 0. 1 0 1 0
756 //    M          0 1 2 .... 63, 64 65 ... 127, 128
757 //     ---------------------------------------------
758 //    Segment 0.        1     ,      2       ,    3
759 //    START = M - 63                        M = 128 becomes 65
760 //    LENGTH1  = START & 0x3F               65 become position 1
761 //    SEGMENT  = shr(START,6) + 1      0 maps to 1,   64 maps to 2,
762 //    LENGTH2  = 64 - LENGTH1
763 //    Address_BASE = shladd(SEGMENT,3) + BASE
766 { .mmi
767       getf.exp GR_Exp_x = FR_input_X
768       ld8 GR_BASE = [GR_BASE]
769       mov GR_TEMP5 = 0x0FFFE
773 //    Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_A := 2^(-65).
774 { .mmi
775       getf.sig GR_x_lo = FR_input_X
776       mov GR_TEMP6 = 0x0FFBE
777       nop.i 999
781 //    Special Code for testing DE arguments
782 //          movl GR_BIASL63 = 0x0000000000013FFE
783 //          movl GR_x_lo = 0xFFFFFFFFFFFFFFFF
784 //          setf.exp FR_X = GR_BIASL63
785 //          setf.sig FR_ScaleP3 = GR_x_lo
786 //          fmerge.se FR_X = FR_X,FR_ScaleP3
787 //    Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
788 //    2/pi is stored contiguously as
789 //    0x00000000 0x00000000.0xA2F....
790 //    M = EXP - BIAS  ( M >= 63)
791 //    Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m.
792 //    Thus -1 <= L <= -16321.
793 { .mmi
794       setf.exp FR_sigma_B = GR_TEMP5
795       setf.exp FR_sigma_A = GR_TEMP6
796       extr.u GR_M = GR_Exp_x,0,17
800 { .mii
801       and  GR_x_lo = 0x03,GR_x_lo
802       sub  GR_START = GR_M,GR_BIASL63
803       add  GR_BASE = 8,GR_BASE           // To effectively add 1 to SEGMENT
807 { .mii
808       and  GR_LENGTH1 = 0x3F,GR_START
809       shr.u  GR_SEGMENT = GR_START,6
810       nop.i 999
814 { .mmi
815       shladd GR_BASE = GR_SEGMENT,3,GR_BASE
816       sub  GR_LENGTH2 = 0x40,GR_LENGTH1
817       cmp.le p6,p7 = 0x2,GR_LENGTH1
821 //    P_0 is the two bits corresponding to bit positions L+2 and L+1
822 //    P_1 is the 64-bit starting at bit position  L
823 //    P_2 is the 64-bit starting at bit position  L-64
824 //    P_3 is the 64-bit starting at bit position  L-128
825 //    P_4 is the 64-bit starting at bit position  L-192
826 //    P_1 is made up of Alo and Bhi
827 //    P_1 = deposit Alo, position 0, length2  into P_1,position length1
828 //          deposit Bhi, position length2, length1 into P_1, position 0
829 //    P_2 is made up of Blo and Chi
830 //    P_2 = deposit Blo, position 0, length2  into P_2, position length1
831 //          deposit Chi, position length2, length1 into P_2, position 0
832 //    P_3 is made up of Clo and Dhi
833 //    P_3 = deposit Clo, position 0, length2  into P_3, position length1
834 //          deposit Dhi, position length2, length1 into P_3, position 0
835 //    P_4 is made up of Clo and Dhi
836 //    P_4 = deposit Dlo, position 0, length2  into P_4, position length1
837 //          deposit Ehi, position length2, length1 into P_4, position 0
838 { .mfi
839       ld8 GR_A = [GR_BASE],8
840       fabs FR_X = FR_input_X
841 (p7)  cmp.eq.unc p8,p9 = 0x1,GR_LENGTH1
845 //    ld_64 A at Base and increment Base by 8
846 //    ld_64 B at Base and increment Base by 8
847 //    ld_64 C at Base and increment Base by 8
848 //    ld_64 D at Base and increment Base by 8
849 //    ld_64 E at Base and increment Base by 8
850 //                                          A/B/C/D
851 //                                    ---------------------
852 //    A, B, C, D, and E look like    | length1 | length2   |
853 //                                    ---------------------
854 //                                       hi        lo
855 { .mlx
856       ld8 GR_B = [GR_BASE],8
857       movl GR_rshf = 0x43e8000000000000   // 1.10000 2^63 for right shift N_fix
861 { .mmi
862       ld8 GR_C = [GR_BASE],8
863       nop.m 999
864 (p8)  extr.u GR_Temp = GR_A,63,1
868 //    If length1 >= 2,
869 //       P_0 = deposit Ahi, position length2, 2 bit into P_0 at position 0.
870 { .mii
871       ld8 GR_D = [GR_BASE],8
872       shl GR_TEMP1 = GR_A,GR_LENGTH1   // MM instruction
873 (p6)  shr.u GR_P_0 = GR_A,GR_LENGTH2   // MM instruction
877 { .mii
878       ld8 GR_E = [GR_BASE],-40
879       shl GR_TEMP2 = GR_B,GR_LENGTH1   // MM instruction
880       shr.u GR_P_1 = GR_B,GR_LENGTH2   // MM instruction
884 //    Else
885 //       Load 16 bit of ASUB from (Base_Address_of_A - 2)
886 //       P_0 = ASUB & 0x3
887 //       If length1 == 0,
888 //          P_0 complete
889 //       Else
890 //          Deposit element 63 from Ahi and place in element 0 of P_0.
891 //       Endif
892 //    Endif
894 { .mii
895 (p7)  ld2 GR_ASUB = [GR_BASE],8
896       shl GR_TEMP3 = GR_C,GR_LENGTH1   // MM instruction
897       shr.u GR_P_2 = GR_C,GR_LENGTH2   // MM instruction
901 { .mii
902       setf.d FR_RSHF = GR_rshf         // Form right shift const 1.100 * 2^63
903       shl GR_TEMP4 = GR_D,GR_LENGTH1   // MM instruction
904       shr.u GR_P_3 = GR_D,GR_LENGTH2   // MM instruction
908 { .mmi
909 (p7)  and GR_P_0 = 0x03,GR_ASUB
910 (p6)  and GR_P_0 = 0x03,GR_P_0
911       shr.u GR_P_4 = GR_E,GR_LENGTH2   // MM instruction
915 { .mmi
916       nop.m 999
917       or GR_P_1 = GR_P_1,GR_TEMP1
918 (p8)  and GR_P_0 = 0x1,GR_P_0
922 { .mmi
923       setf.sig FR_p_1 = GR_P_1
924       or GR_P_2 = GR_P_2,GR_TEMP2
925 (p8)  shladd GR_P_0 = GR_P_0,1,GR_Temp
929 { .mmf
930       setf.sig FR_p_2 = GR_P_2
931       or GR_P_3 = GR_P_3,GR_TEMP3
932       fmerge.se FR_X = FR_sigma_B,FR_X
936 { .mmi
937       setf.sig FR_p_3 = GR_P_3
938       or GR_P_4 = GR_P_4,GR_TEMP4
939       pmpy2.r GR_M = GR_P_0,GR_x_lo
943 //    P_1, P_2, P_3, P_4 are integers. They should be
944 //    2^(L-63)     * P_1;
945 //    2^(L-63-64)  * P_2;
946 //    2^(L-63-128) * P_3;
947 //    2^(L-63-192) * P_4;
948 //    Since each of them need to be multiplied to x, we would scale
949 //    both x and the P_j's by some convenient factors: scale each
950 //    of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
951 //    p_1 := fcvt.xf ( P_1 )
952 //    p_2 := fcvt.xf ( P_2 ) * 2^(-64)
953 //    p_3 := fcvt.xf ( P_3 ) * 2^(-128)
954 //    p_4 := fcvt.xf ( P_4 ) * 2^(-192)
955 //    x= Set x's exp to -1 because 2^m*1.x...x *2^(L-63)=2^(-1)*1.x...xxx
956 //             ---------   ---------   ---------
957 //             |  P_1  |   |  P_2  |   |  P_3  |
958 //             ---------   ---------   ---------
959 //                                           ---------
960 //            X                              |   X   |
961 //                                           ---------
962 //      ----------------------------------------------------
963 //                               ---------   ---------
964 //                               |  A_hi |   |  A_lo |
965 //                               ---------   ---------
966 //                   ---------   ---------
967 //                   |  B_hi |   |  B_lo |
968 //                   ---------   ---------
969 //       ---------   ---------
970 //       |  C_hi |   |  C_lo |
971 //       ---------   ---------
972 //     ====================================================
973 //    -----------   ---------   ---------   ---------
974 //    |    S_0  |   |  S_1  |   |  S_2  |   |  S_3  |
975 //    -----------   ---------   ---------   ---------
976 //    |            |___ binary point
977 //    |___ possibly one more bit
979 //    Let FPSR3 be set to round towards zero with widest precision
980 //    and exponent range. Unless an explicit FPSR is given,
981 //    round-to-nearest with widest precision and exponent range is
982 //    used.
983 { .mmi
984       setf.sig FR_p_4 = GR_P_4
985       mov GR_TEMP1 = 0x0FFBF
986       nop.i 999
990 { .mmi
991       setf.exp FR_ScaleP2 = GR_TEMP1
992       mov GR_TEMP2 = 0x0FF7F
993       nop.i 999
997 { .mmi
998       setf.exp FR_ScaleP3 = GR_TEMP2
999       mov GR_TEMP4 = 0x1003E
1000       nop.i 999
1004 { .mmf
1005       setf.exp FR_sigma_C = GR_TEMP4
1006       mov GR_Temp = 0x0FFDE
1007       fcvt.xuf.s1 FR_p_1 = FR_p_1
1011 { .mfi
1012       setf.exp FR_TWOM33 = GR_Temp
1013       fcvt.xuf.s1 FR_p_2 = FR_p_2
1014       nop.i 999
1018 { .mfi
1019       nop.m 999
1020       fcvt.xuf.s1 FR_p_3 = FR_p_3
1021       nop.i 999
1025 { .mfi
1026       nop.m 999
1027       fcvt.xuf.s1 FR_p_4 = FR_p_4
1028       nop.i 999
1032 //    Tmp_C := fmpy.fpsr3( x, p_1 );
1033 //    Tmp_B := fmpy.fpsr3( x, p_2 );
1034 //    Tmp_A := fmpy.fpsr3( x, p_3 );
1035 //    If Tmp_C >= sigma_C then
1036 //      C_hi := Tmp_C;
1037 //      C_lo := x*p_1 - C_hi ...fma, exact
1038 //    Else
1039 //      C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
1040 //      C_lo := x*p_1 - C_hi ...fma, exact
1041 //    End If
1042 //    If Tmp_B >= sigma_B then
1043 //      B_hi := Tmp_B;
1044 //      B_lo := x*p_2 - B_hi ...fma, exact
1045 //    Else
1046 //      B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
1047 //      B_lo := x*p_2 - B_hi ...fma, exact
1048 //    End If
1049 //    If Tmp_A >= sigma_A then
1050 //      A_hi := Tmp_A;
1051 //      A_lo := x*p_3 - A_hi ...fma, exact
1052 //    Else
1053 //      A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
1054 //      Exact, regardless ...of rounding direction
1055 //      A_lo := x*p_3 - A_hi ...fma, exact
1056 //    Endif
1057 { .mfi
1058       nop.m 999
1059       fmpy.s3 FR_Tmp_C = FR_X,FR_p_1
1060       nop.i 999
1064 { .mfi
1065       mov GR_TEMP3 = 0x0FF3F
1066       fmpy.s1 FR_p_2 = FR_p_2,FR_ScaleP2
1067       nop.i 999
1071 { .mmf
1072       setf.exp FR_ScaleP4 = GR_TEMP3
1073       mov GR_TEMP4 = 0x10045
1074       fmpy.s1 FR_p_3 = FR_p_3,FR_ScaleP3
1078 { .mfi
1079       nop.m 999
1080       fadd.s3 FR_C_hi = FR_sigma_C,FR_Tmp_C   // For Tmp_C < sigma_C case
1081       nop.i 999
1085 { .mmf
1086       setf.exp FR_Tmp2_C = GR_TEMP4
1087       nop.m 999
1088       fmpy.s3 FR_Tmp_B = FR_X,FR_p_2
1092 { .mfi
1093       addl           GR_BASE   = @ltoff(Constants_Bits_of_pi_by_2#), gp
1094       fcmp.ge.s1 p12,  p9 = FR_Tmp_C,FR_sigma_C
1095       nop.i 999
1097 { .mfi
1098       nop.m 999
1099       fmpy.s3 FR_Tmp_A = FR_X,FR_p_3
1100       nop.i 99
1104 { .mfi
1105       ld8 GR_BASE = [GR_BASE]
1106 (p12) mov FR_C_hi = FR_Tmp_C
1107       nop.i 999
1109 { .mfi
1110       nop.m 999
1111 (p9)  fsub.s1 FR_C_hi = FR_C_hi,FR_sigma_C
1112       nop.i 999
1118 //   End If
1119 //   Step 3. Get reduced argument
1120 //   If sgn_x == 0 (that is original x is positive)
1121 //      D_hi := Pi_by_2_hi
1122 //      D_lo := Pi_by_2_lo
1123 //      Load from table
1124 //   Else
1125 //      D_hi := neg_Pi_by_2_hi
1126 //      D_lo := neg_Pi_by_2_lo
1127 //      Load from table
1128 //   End If
1130 { .mfi
1131       nop.m 999
1132       fmpy.s1 FR_p_4 = FR_p_4,FR_ScaleP4
1133       nop.i 999
1135 { .mfi
1136       nop.m 999
1137       fadd.s3 FR_B_hi = FR_sigma_B,FR_Tmp_B     // For Tmp_B < sigma_B case
1138       nop.i 999
1142 { .mfi
1143       nop.m 999
1144       fadd.s3 FR_A_hi = FR_sigma_A,FR_Tmp_A     // For Tmp_A < sigma_A case
1145       nop.i 999
1149 { .mfi
1150       nop.m 999
1151       fcmp.ge.s1 p13, p10 = FR_Tmp_B,FR_sigma_B
1152       nop.i 999
1154 { .mfi
1155       nop.m 999
1156       fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
1157       nop.i 999
1161 { .mfi
1162       ldfe FR_D_hi = [GR_BASE],16
1163       fcmp.ge.s1 p14, p11 = FR_Tmp_A,FR_sigma_A
1164       nop.i 999
1168 { .mfi
1169       ldfe FR_D_lo = [GR_BASE]
1170 (p13) mov FR_B_hi = FR_Tmp_B
1171       nop.i 999
1173 { .mfi
1174       nop.m 999
1175 (p10) fsub.s1 FR_B_hi = FR_B_hi,FR_sigma_B
1176       nop.i 999
1180 { .mfi
1181       nop.m 999
1182 (p14) mov FR_A_hi = FR_Tmp_A
1183       nop.i 999
1185 { .mfi
1186       nop.m 999
1187 (p11) fsub.s1 FR_A_hi = FR_A_hi,FR_sigma_A
1188       nop.i 999
1192 //    Note that C_hi is of integer value. We need only the
1193 //    last few bits. Thus we can ensure C_hi is never a big
1194 //    integer, freeing us from overflow worry.
1195 //    Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
1196 //    Tmp_C is the upper portion of C_hi
1197 { .mfi
1198       nop.m 999
1199       fadd.s3 FR_Tmp_C = FR_C_hi,FR_Tmp2_C
1200       tbit.z p12,p9 = GR_Exp_x, 17
1204 { .mfi
1205       nop.m 999
1206       fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
1207       nop.i 999
1209 { .mfi
1210       nop.m 999
1211       fadd.s3 FR_A = FR_B_hi,FR_C_lo
1212       nop.i 999
1216 { .mfi
1217       nop.m 999
1218       fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
1219       nop.i 999
1223 { .mfi
1224       nop.m 999
1225       fsub.s1 FR_Tmp_C = FR_Tmp_C,FR_Tmp2_C
1226       nop.i 999
1230 //    *******************
1231 //    Step 2. Get N and f
1232 //    *******************
1233 //    We have all the components to obtain
1234 //    S_0, S_1, S_2, S_3 and thus N and f. We start by adding
1235 //    C_lo and B_hi. This sum together with C_hi estimates
1236 //    N and f well.
1237 //    A := fadd.fpsr3( B_hi, C_lo )
1238 //    B := max( B_hi, C_lo )
1239 //    b := min( B_hi, C_lo )
1240 { .mfi
1241       nop.m 999
1242       fmax.s1 FR_B = FR_B_hi,FR_C_lo
1243       nop.i 999
1247 // We use a right-shift trick to get the integer part of A into the rightmost
1248 // bits of the significand by adding 1.1000..00 * 2^63.  This operation is good
1249 // if |A| < 2^61, which it is in this case.  We are doing this to save a few
1250 // cycles over using fcvt.fx followed by fnorm.  The second step of the trick
1251 // is to subtract the same constant to float the rounded integer into a fp reg.
1253 { .mfi
1254       nop.m 999
1255 //    N := round_to_nearest_integer_value( A );
1256       fma.s1 FR_N_fix = FR_A, f1, FR_RSHF
1257       nop.i 999
1261 { .mfi
1262       nop.m 999
1263       fmin.s1 FR_b = FR_B_hi,FR_C_lo
1264       nop.i 999
1266 { .mfi
1267       nop.m 999
1268 //    C_hi := C_hi - Tmp_C ...0 <= C_hi < 2^7
1269       fsub.s1 FR_C_hi = FR_C_hi,FR_Tmp_C
1270       nop.i 999
1274 { .mfi
1275       nop.m 999
1276 //    a := (B - A) + b: Exact - note that a is either 0 or 2^(-64).
1277       fsub.s1 FR_a = FR_B,FR_A
1278       nop.i 999
1282 { .mfi
1283       nop.m 999
1284       fms.s1 FR_N = FR_N_fix, f1, FR_RSHF
1285       nop.i 999
1289 { .mfi
1290       nop.m 999
1291       fadd.s1 FR_a = FR_a,FR_b
1292       nop.i 999
1296 //    f := A - N; Exact because lsb(A) >= 2^(-64) and |f| <= 1/2.
1297 //    N := convert to integer format( C_hi + N );
1298 //    M := P_0 * x_lo;
1299 //    N := N + M;
1300 { .mfi
1301       nop.m 999
1302       fsub.s1 FR_f = FR_A,FR_N
1303       nop.i 999
1305 { .mfi
1306       nop.m 999
1307       fadd.s1 FR_N = FR_N,FR_C_hi
1308       nop.i 999
1312 { .mfi
1313       nop.m 999
1314 (p9)  fsub.s1 FR_D_hi = f0, FR_D_hi
1315       nop.i 999
1317 { .mfi
1318       nop.m 999
1319 (p9)  fsub.s1 FR_D_lo = f0, FR_D_lo
1320       nop.i 999
1324 { .mfi
1325       nop.m 999
1326       fadd.s1 FR_g = FR_A_hi,FR_B_lo          // For Case 1, g=A_hi+B_lo
1327       nop.i 999
1329 { .mfi
1330       nop.m 999
1331       fadd.s3 FR_A = FR_A_hi,FR_B_lo          // For Case 2, A=A_hi+B_lo w/ sf3
1332       nop.i 999
1336 { .mfi
1337       mov GR_Temp = 0x0FFCD                   // For Case 2, exponent of 2^-50
1338       fmax.s1 FR_B = FR_A_hi,FR_B_lo          // For Case 2, B=max(A_hi,B_lo)
1339       nop.i 999
1343 //    f = f + a      Exact because a is 0 or 2^(-64);
1344 //    the msb of the sum is <= 1/2 and lsb >= 2^(-64).
1345 { .mfi
1346       setf.exp FR_TWOM50 = GR_Temp            // For Case 2, form 2^-50
1347       fcvt.fx.s1 FR_N = FR_N
1348       nop.i 999
1350 { .mfi
1351       nop.m 999
1352       fadd.s1 FR_f = FR_f,FR_a
1353       nop.i 999
1357 { .mfi
1358       nop.m 999
1359       fmin.s1 FR_b = FR_A_hi,FR_B_lo          // For Case 2, b=min(A_hi,B_lo)
1360       nop.i 999
1364 { .mfi
1365       nop.m 999
1366       fsub.s1 FR_a = FR_B,FR_A                // For Case 2, a=B-A
1367       nop.i 999
1371 { .mfi
1372       nop.m 999
1373       fadd.s1 FR_s_hi = FR_f,FR_g             // For Case 1, s_hi=f+g
1374       nop.i 999
1376 { .mfi
1377       nop.m 999
1378       fadd.s1 FR_f_hi = FR_A,FR_f             // For Case 2, f_hi=A+f
1379       nop.i 999
1383 { .mfi
1384       nop.m 999
1385       fabs FR_f_abs = FR_f
1386       nop.i 999
1390 { .mfi
1391       getf.sig GR_N = FR_N
1392       fsetc.s3 0x7F,0x40                 // Reset sf3 to user settings + td
1393       nop.i 999
1397 { .mfi
1398       nop.m 999
1399       fsub.s1 FR_s_lo = FR_f,FR_s_hi          // For Case 1, s_lo=f-s_hi
1400       nop.i 999
1402 { .mfi
1403       nop.m 999
1404       fsub.s1 FR_f_lo = FR_f,FR_f_hi          // For Case 2, f_lo=f-f_hi
1405       nop.i 999
1409 { .mfi
1410       nop.m 999
1411       fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi       // For Case 1, r_hi=s_hi*D_hi
1412       nop.i 999
1414 { .mfi
1415       nop.m 999
1416       fadd.s1 FR_a = FR_a,FR_b                // For Case 2, a=a+b
1417       nop.i 999
1422 //    If sgn_x == 1 (that is original x was negative)
1423 //       N := 2^10 - N
1424 //       this maintains N to be non-negative, but still
1425 //       equivalent to the (negated N) mod 4.
1426 //    End If
1427 { .mfi
1428       add GR_N = GR_N,GR_M
1429       fcmp.ge.s1 p13, p10 = FR_f_abs,FR_TWOM33
1430       mov GR_Temp = 0x00400
1434 { .mfi
1435 (p9)  sub GR_N = GR_Temp,GR_N
1436       fadd.s1 FR_s_lo = FR_s_lo,FR_g           // For Case 1, s_lo=s_lo+g
1437       nop.i 999
1439 { .mfi
1440       nop.m 999
1441       fadd.s1 FR_f_lo = FR_f_lo,FR_A           // For Case 2, f_lo=f_lo+A
1442       nop.i 999
1446 //       a := (B - A) + b      Exact.
1447 //       Note that a is either 0 or 2^(-128).
1448 //       f_hi := A + f;
1449 //       f_lo := (f - f_hi) + A
1450 //       f_lo=f-f_hi is exact because either |f| >= |A|, in which
1451 //       case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
1452 //       means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
1453 //       If f = 2^(-64), f-f_hi involves cancellation and is
1454 //       exact. If f = -2^(-64), then A + f is exact. Hence
1455 //       f-f_hi is -A exactly, giving f_lo = 0.
1456 //       f_lo := f_lo + a;
1458 //    If |f| >= 2^(-33)
1459 //       Case 1
1460 //       CASE := 1
1461 //       g := A_hi + B_lo;
1462 //       s_hi := f + g;
1463 //       s_lo := (f - s_hi) + g;
1464 //   Else
1465 //       Case 2
1466 //       CASE := 2
1467 //       A := fadd.fpsr3( A_hi, B_lo )
1468 //       B := max( A_hi, B_lo )
1469 //       b := min( A_hi, B_lo )
1471 { .mfi
1472       nop.m 999
1473 (p10) fcmp.ge.unc.s1 p14, p11 = FR_f_abs,FR_TWOM50
1474       nop.i 999
1476 { .mfi
1477       nop.m 999
1478 (p13) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi //For Case 1, r_lo=s_hi*D_hi+r_hi
1479       nop.i 999
1483 //       If |f| >= 2^(-50) then
1484 //          s_hi := f_hi;
1485 //          s_lo := f_lo;
1486 //       Else
1487 //          f_lo := (f_lo + A_lo) + x*p_4
1488 //          s_hi := f_hi + f_lo
1489 //          s_lo := (f_hi - s_hi) + f_lo
1490 //       End If
1491 { .mfi
1492       nop.m 999
1493 (p14) mov FR_s_hi = FR_f_hi
1494       nop.i 999
1496 { .mfi
1497       nop.m 999
1498 (p10) fadd.s1 FR_f_lo = FR_f_lo,FR_a
1499       nop.i 999
1503 { .mfi
1504       nop.m 999
1505 (p14) mov FR_s_lo = FR_f_lo
1506       nop.i 999
1508 { .mfi
1509       nop.m 999
1510 (p11) fadd.s1 FR_f_lo = FR_f_lo,FR_A_lo
1511       nop.i 999
1515 { .mfi
1516       nop.m 999
1517 (p11) fma.s1 FR_f_lo = FR_X,FR_p_4,FR_f_lo
1518       nop.i 999
1522 { .mfi
1523       nop.m 999
1524 (p13) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo //For Case 1, r_lo=s_hi*D_lo+r_lo
1525       nop.i 999
1527 { .mfi
1528       nop.m 999
1529 (p11) fadd.s1 FR_s_hi = FR_f_hi,FR_f_lo
1530       nop.i 999
1534 //   r_hi :=  s_hi*D_hi
1535 //   r_lo :=  s_hi*D_hi - r_hi  with fma
1536 //   r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
1537 { .mfi
1538       nop.m 999
1539 (p10) fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi
1540       nop.i 999
1542 { .mfi
1543       nop.m 999
1544 (p11) fsub.s1 FR_s_lo = FR_f_hi,FR_s_hi
1545       nop.i 999
1549 { .mfi
1550       nop.m 999
1551 (p10) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi
1552       nop.i 999
1554 { .mfi
1555       nop.m 999
1556 (p11) fadd.s1 FR_s_lo = FR_s_lo,FR_f_lo
1557       nop.i 999
1561 { .mfi
1562       nop.m 999
1563 (p10) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo
1564       nop.i 999
1568 //   Return  N, r_hi, r_lo
1569 //   We do not return CASE
1570 { .mfb
1571       nop.m 999
1572       fma.s1 FR_r_lo = FR_s_lo,FR_D_hi,FR_r_lo
1573       br.ret.sptk   b0
1577 .endp __libm_pi_by_2_reduce#