localedata: dz_BT, bo_CN: convert to UTF-8
[glibc.git] / sysdeps / ia64 / fpu / e_powf.S
blobe353b08658d22cb9be5fe0af1be7bb8883e22caf
1 .file "powf.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 // History
40 //==============================================================
41 // 02/02/00 Initial version
42 // 02/03/00 Added p12 to definite over/under path. With odd power we did not
43 //          maintain the sign of x in this path.
44 // 04/04/00 Unwind support added
45 // 04/19/00 pow(+-1,inf) now returns NaN
46 //          pow(+-val, +-inf) returns 0 or inf, but now does not call error
47 //          support
48 //          Added s1 to fcvt.fx because invalid flag was incorrectly set.
49 // 08/15/00 Bundle added after call to __libm_error_support to properly
50 //          set [the previously overwritten] GR_Parameter_RESULT.
51 // 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
52 //          and tweaking the critical path
53 // 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
54 // 09/28/00 Updated NaN**0 path
55 // 01/20/01 Fixed denormal flag settings.
56 // 02/13/01 Improved speed.
57 // 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
58 //          problem in round up, down, and to zero modes.  Also corrected
59 //          overflow result when x negative, y odd in round up, down, zero.
60 // 06/14/01 Added brace missing from bundle
61 // 12/10/01 Corrected case where x negative, 2^23 <= |y| < 2^24, y odd integer.
62 // 02/08/02 Fixed overflow/underflow cases that were not calling error support.
63 // 05/20/02 Cleaned up namespace and sf0 syntax
64 // 08/29/02 Improved Itanium 2 performance
65 // 02/10/03 Reordered header: .section, .global, .proc, .align
66 // 10/09/03 Modified algorithm to improve performance, reduce table size, and
67 //          fix boundary case powf(2.0,-150.0)
68 // 03/31/05 Reformatted delimiters between data tables
70 // API
71 //==============================================================
72 // float powf(float x, float y)
74 // Overview of operation
75 //==============================================================
77 // Three steps...
78 // 1. Log(x)
79 // 2. y Log(x)
80 // 3. exp(y log(x))
82 // This means we work with the absolute value of x and merge in the sign later.
83 //      Log(x) = G + delta + r -rsq/2 + p
84 // G,delta depend on the exponent of x and table entries. The table entries are
85 // indexed by the exponent of x, called K.
87 // The G and delta come out of the reduction; r is the reduced x.
89 // B = frcpa(x)
90 // xB-1 is small means that B is the approximate inverse of x.
92 //      Log(x) = Log( (1/B)(Bx) )
93 //             = Log(1/B) + Log(Bx)
94 //             = Log(1/B) + Log( 1 + (Bx-1))
96 //      x  = 2^K 1.x_1x_2.....x_52
97 //      B= frcpa(x) = 2^-k Cm
98 //      Log(1/B) = Log(1/(2^-K Cm))
99 //      Log(1/B) = Log((2^K/ Cm))
100 //      Log(1/B) = K Log(2) + Log(1/Cm)
102 //      Log(x)   = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
104 // If you take the significand of x, set the exponent to true 0, then Cm is
105 // the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
106 // The frcpa table is indexed by 8 bits, the x_1 thru x_8.
107 // m = x_1x_2...x_8 is an 8-bit index.
109 //      Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
111 // We tabulate as one double, T for single precision power
113 //      Log(x)   = (K Log(2)_hi + T) + (K Log(2)_lo) + Log( 1 + (Bx-1))
114 //      Log(x)   =  G                +     delta     + Log( 1 + (Bx-1))
116 // The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
118 //      Log( 1 + (Bx-1)) = r - rsq/2 + p
119 //        where p = r^3(P0 + P1*r + P2*r^2)
121 // Then,
123 //      yLog(x) = yG + y delta + y(r-rsq/2) + yp
124 //      yLog(x) = Z1 + e3      + Z2         + Z3
127 //     exp(yLog(x)) = exp(Z1 + Z2) exp(Z3) exp(e3)
130 //       exp(Z3) is another series.
131 //       exp(e3) is approximated as f3 = 1 +  e3
133 //       exp(Z1 + Z2) = exp(Z)
134 //       Z (128/log2) = number of log2/128 in Z is N
136 //       s = Z - N log2/128
138 //       exp(Z)       = exp(s) exp(N log2/128)
140 //       exp(r)       = exp(Z - N log2/128)
142 //      r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
143 //                =  Z - N (log2/128)
145 //      Z         = s+d +N (log2/128)
147 //      exp(Z)    = exp(s) (1+d) exp(N log2/128)
149 //      N = M 128 + n
151 //      N log2/128 = M log2 + n log2/128
153 //      n is 8 binary digits = n_7n_6...n_1
155 //      n log2/128 = n_7n_6n_5 16 log2/128 + n_4n_3n_2n_1 log2/128
156 //      n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
157 //      n log2/128 = I2 log2/8 + I1 log2/128
159 //      N log2/128 = M log2 + I2 log2/8 + I1 log2/128
161 //      exp(Z)    = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
162 //      exp(Z)    = exp(s) f12 (2^M) 2^I2/8 2^I1/128
164 // I1, I2 are table indices. Use a series for exp(s).
165 // Then get exp(Z)
167 //     exp(yLog(x)) = exp(Z) exp(Z3) f3
168 //     exp(yLog(x)) = exp(Z)f3 exp(Z3)
169 //     exp(yLog(x)) = A exp(Z3)
171 // We actually calculate exp(Z3) -1.
172 // Then,
173 //     exp(yLog(x)) = A + A( exp(Z3)   -1)
176 // Table Generation
177 //==============================================================
179 // The log values
180 // ==============
181 // The operation (K*log2_hi) must be exact. K is the true exponent of x.
182 // If we allow gradual underflow (denormals), K can be represented in 12 bits
183 // (as a two's complement number). We assume 13 bits as an engineering
184 // precaution.
186 //           +------------+----------------+-+
187 //           |  13 bits   | 50 bits        | |
188 //           +------------+----------------+-+
189 //           0            1                66
190 //                        2                34
192 // So we want the lsb(log2_hi) to be 2^-50
193 // We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
195 //      0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
197 // Consider numbering the bits left to right, starting at 0 thru 127.
198 // Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
200 //  ...79ab
201 //     0111 1001 1010 1011
202 //     44
203 //     89
205 // So if we shift off the rightmost 14 bits, then (shift back only
206 // the top half) we get
208 //      0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
210 // Put the right 64-bit signficand in an FR register, convert to double;
211 // it is exact. Put the next 128 bits into a quad register and round to double.
212 // The true exponent of the low part is -51.
214 // hi is 0 fffe b17217f7d1cf4000
215 // lo is 0 ffcc e6af278ece601000
217 // Convert to double memory format and get
219 // hi is 0x3fe62e42fefa39e8
220 // lo is 0x3cccd5e4f1d9cc02
222 // log2_hi + log2_lo is an accurate value for log2.
225 // The T and t values
226 // ==================
227 // A similar method is used to generate the T and t values.
229 // K * log2_hi + T  must be exact.
231 // Smallest T,t
232 // ----------
233 // The smallest T,t is
234 //       T                   t
235 // 0x3f60040155d58800, 0x3c93bce0ce3ddd81  log(1/frcpa(1+0/256))=  +1.95503e-003
237 // The exponent is 0x3f6 (biased)  or -9 (true).
238 // For the smallest T value, what we want is to clip the significand such that
239 // when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
240 // specific for the first entry. In general, it is 0xffff - (biased 15-bit
241 // exponent).
243 // Independently, what we have calculated is the table value as a quad
244 // precision number.
245 // Table entry 1 is
246 // 0 fff6 80200aaeac44ef38 338f77605fdf8000
248 // We store this quad precision number in a data structure that is
249 //    sign:           1
250 //    exponent:      15
251 //    signficand_hi: 64 (includes explicit bit)
252 //    signficand_lo: 49
253 // Because the explicit bit is included, the significand is 113 bits.
255 // Consider significand_hi for table entry 1.
258 // +-+--- ... -------+--------------------+
259 // | |
260 // +-+--- ... -------+--------------------+
261 // 0 1               4444444455555555556666
262 //                   2345678901234567890123
264 // Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
265 // Bit 42 is 2^-42. If we shift to the right by 9, the bit in
266 // bit 42 goes in 51.
268 // So what we want to do is shift bits 43 thru 63 into significand_lo.
269 // This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
270 // Then shifting (just with signficaand_hi) back into bit 42.
272 // The shift_value is 63-42 = 21. In general, this is
273 //      63 - (51 -(0xffff - 0xfff6))
274 // For this example, it is
275 //      63 - (51 - 9) = 63 - 42  = 21
277 // This means we are shifting 21 bits into significand_lo. We must maintain more
278 // that a 128-bit signficand not to lose bits. So before the shift we put the
279 // 128-bit significand into a 256-bit signficand and then shift.
280 // The 256-bit significand has four parts: hh, hl, lh, and ll.
282 // Start off with
283 //      hh         hl         lh         ll
284 //      <64>       <49><15_0> <64_0>     <64_0>
286 // After shift by 21 (then return for significand_hi),
287 //      <43><21_0> <21><43>   <6><58_0>  <64_0>
289 // Take the hh part and convert to a double. There is no rounding here.
290 // The conversion is exact. The true exponent of the high part is the same as
291 // the true exponent of the input quad.
293 // We have some 64 plus significand bits for the low part. In this example, we
294 // have 70 bits. We want to round this to a double. Put them in a quad and then
295 // do a quad fnorm.
296 // For this example the true exponent of the low part is
297 //      true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
298 // In general, this is
299 //      true_exponent_of_high - (64 - shift_value)
302 // Largest T,t
303 // ----------
304 // The largest T,t is
305 // 0x3fe62643fecf9742, 0x3c9e3147684bd37d  log(1/frcpa(1+255/256))=+6.92171e-001
307 // Table entry 256 is
308 // 0 fffe b1321ff67cba178c 51da12f4df5a0000
310 // The shift value is
311 //      63 - (51 -(0xffff - 0xfffe)) = 13
313 // The true exponent of the low part is
314 //      true_exponent_of_high - (64 - shift_value)
315 //      -1 - (64-13) = -52
316 // Biased as a double, this is 0x3cb
320 // So then lsb(T) must be >= 2^-51
321 // msb(Klog2_hi) <= 2^12
323 //              +--------+---------+
324 //              |       51 bits    | <== largest T
325 //              +--------+---------+
326 //              | 9 bits | 42 bits | <== smallest T
327 // +------------+----------------+-+
328 // |  13 bits   | 50 bits        | |
329 // +------------+----------------+-+
331 // Note: For powf only the table of T is needed
334 // Special Cases
335 //==============================================================
337 //                                   double     float
338 // overflow                          error 24   30
340 // underflow                         error 25   31
342 // X zero  Y zero
343 //  +0     +0                 +1     error 26   32
344 //  -0     +0                 +1     error 26   32
345 //  +0     -0                 +1     error 26   32
346 //  -0     -0                 +1     error 26   32
348 // X zero  Y negative
349 //  +0     -odd integer       +inf   error 27   33  divide-by-zero
350 //  -0     -odd integer       -inf   error 27   33  divide-by-zero
351 //  +0     !-odd integer      +inf   error 27   33  divide-by-zero
352 //  -0     !-odd integer      +inf   error 27   33  divide-by-zero
353 //  +0     -inf               +inf   error 27   33  divide-by-zero
354 //  -0     -inf               +inf   error 27   33  divide-by-zero
356 // X zero  Y positive
357 //  +0     +odd integer       +0
358 //  -0     +odd integer       -0
359 //  +0     !+odd integer      +0
360 //  -0     !+odd integer      +0
361 //  +0     +inf               +0
362 //  -0     +inf               +0
363 //  +0     Y NaN              quiet Y               invalid if Y SNaN
364 //  -0     Y NaN              quiet Y               invalid if Y SNaN
366 // X one
367 //  -1     Y inf              +1
368 //  -1     Y NaN              quiet Y               invalid if Y SNaN
369 //  +1     Y NaN              +1                    invalid if Y SNaN
370 //  +1     Y any else         +1
372 // X -     Y not integer      QNAN   error 28   34  invalid
374 // X NaN   Y 0                +1     error 29   35
375 // X NaN   Y NaN              quiet X               invalid if X or Y SNaN
376 // X NaN   Y any else         quiet X               invalid if X SNaN
377 // X !+1   Y NaN              quiet Y               invalid if Y SNaN
380 // X +inf  Y >0               +inf
381 // X -inf  Y >0, !odd integer +inf
382 // X -inf  Y >0, odd integer  -inf
384 // X +inf  Y <0               +0
385 // X -inf  Y <0, !odd integer +0
386 // X -inf  Y <0, odd integer  -0
388 // X +inf  Y =0               +1
389 // X -inf  Y =0               +1
391 // |X|<1   Y +inf             +0
392 // |X|<1   Y -inf             +inf
393 // |X|>1   Y +inf             +inf
394 // |X|>1   Y -inf             +0
396 // X any   Y =0               +1
398 // Assembly macros
399 //==============================================================
401 // integer registers used
403 pow_GR_exp_half           = r10
404 pow_GR_signexp_Xm1        = r11
405 pow_GR_tmp                = r11
407 pow_GR_signexp_X          = r14
408 pow_GR_17ones             = r15
409 pow_GR_Fpsr               = r15
410 pow_AD_P                  = r16
411 pow_GR_rcs0_mask          = r16
412 pow_GR_exp_2tom8          = r17
413 pow_GR_rcs0               = r17
414 pow_GR_sig_X              = r18
415 pow_GR_10033              = r19
416 pow_GR_16ones             = r20
418 pow_AD_Tt                 = r21
419 pow_GR_exp_X              = r22
420 pow_AD_Q                  = r23
421 pow_GR_true_exp_X         = r24
422 pow_GR_y_zero             = r25
424 pow_GR_exp_Y              = r26
425 pow_AD_tbl1               = r27
426 pow_AD_tbl2               = r28
427 pow_GR_offset             = r29
428 pow_GR_exp_Xm1            = r30
429 pow_GR_xneg_yodd          = r31
431 pow_GR_int_N              = r38
432 pow_GR_index1             = r39
433 pow_GR_index2             = r40
435 pow_AD_T1                 = r41
436 pow_AD_T2                 = r42
437 pow_int_GR_M              = r43
438 pow_GR_sig_int_Y          = r44
439 pow_GR_sign_Y_Gpr         = r45
441 pow_GR_17ones_m1          = r46
442 pow_GR_one                = r47
443 pow_GR_sign_Y             = r48
444 pow_GR_signexp_Y_Gpr      = r49
445 pow_GR_exp_Y_Gpr          = r50
447 pow_GR_true_exp_Y_Gpr     = r51
448 pow_GR_signexp_Y          = r52
449 pow_GR_x_one              = r53
450 pow_GR_big_pos            = r55
452 pow_GR_big_neg            = r56
454 GR_SAVE_B0                = r50
455 GR_SAVE_GP                = r51
456 GR_SAVE_PFS               = r52
458 GR_Parameter_X            = r53
459 GR_Parameter_Y            = r54
460 GR_Parameter_RESULT       = r55
461 pow_GR_tag                = r56
464 // floating point registers used
466 POW_B                     = f32
467 POW_NORM_X                = f33
468 POW_Xm1                   = f34
469 POW_r1                    = f34
471 POW_NORM_Y                = f37
472 POW_Q2                    = f38
473 POW_eps                   = f39
474 POW_P2                    = f40
476 POW_P0                    = f42
477 POW_log2_lo               = f43
478 POW_r                     = f44
479 POW_Q0_half               = f45
481 POW_tmp                   = f47
482 POW_log2_hi               = f48
483 POW_Q1                    = f49
484 POW_P1                    = f50
486 POW_log2_by_128_hi        = f51
487 POW_inv_log2_by_128       = f52
488 POW_rsq                   = f53
489 POW_Yrcub                 = f54
490 POW_log2_by_128_lo        = f55
492 POW_xsq                   = f57
493 POW_v2                    = f59
494 POW_T                     = f60
496 POW_RSHF                  = f62
497 POW_v210                  = f63
498 POW_twoV                  = f65
500 POW_U                     = f66
501 POW_G                     = f67
502 POW_delta                 = f68
503 POW_V                     = f70
505 POW_p                     = f71
506 POW_Z                     = f72
507 POW_e3                    = f73
508 POW_Z2                    = f75
510 POW_W1                    = f77
511 POW_Z3                    = f80
513 POW_Z3sq                  = f85
515 POW_Nfloat                = f87
516 POW_f3                    = f89
517 POW_q                     = f90
519 POW_T1                    = f96
520 POW_T2                    = f97
521 POW_2M                    = f98
522 POW_s                     = f99
523 POW_f12                   = f100
525 POW_ssq                   = f101
526 POW_T1T2                  = f102
527 POW_1ps                   = f103
528 POW_A                     = f104
529 POW_es                    = f105
531 POW_Xp1                   = f106
532 POW_int_K                 = f107
533 POW_K                     = f108
534 POW_f123                  = f109
535 POW_Gpr                   = f110
537 POW_Y_Gpr                 = f111
538 POW_int_Y                 = f112
539 POW_2Mqp1                 = f113
541 POW_float_int_Y           = f116
542 POW_ftz_urm_f8            = f117
543 POW_wre_urm_f8            = f118
544 POW_big_neg               = f119
545 POW_big_pos               = f120
547 // Data tables
548 //==============================================================
550 RODATA
552 .align 16
554 LOCAL_OBJECT_START(pow_table_P)
555 data8 0x80000000000018E5, 0x0000BFFD  // P_1
556 data8 0xb8aa3b295c17f0bc, 0x00004006  // inv_ln2_by_128
559 data8 0x3FA5555555554A9E // Q_2
560 data8 0x0000000000000000 // Pad
561 data8 0x3FC5555555554733 // Q_1
562 data8 0x43e8000000000000 // Right shift constant for exp
563 data8 0xc9e3b39803f2f6af, 0x00003fb7  // ln2_by_128_lo
564 LOCAL_OBJECT_END(pow_table_P)
566 LOCAL_OBJECT_START(pow_table_Q)
567 data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC  // P_2
568 data8 0xAAAAAAAAAAAAB505, 0x00003FFD  // P_0
569 data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo =  +6.93147e-001
570 data8 0xb17217f7d1cf79ab, 0x00003ff7  // ln2_by_128_hi
571 LOCAL_OBJECT_END(pow_table_Q)
574 LOCAL_OBJECT_START(pow_Tt)
575 data8 0x3f60040155d58800 // log(1/frcpa(1+0/256))=  +1.95503e-003
576 data8 0x3f78121214586a00 // log(1/frcpa(1+1/256))=  +5.87661e-003
577 data8 0x3f841929f9683200 // log(1/frcpa(1+2/256))=  +9.81362e-003
578 data8 0x3f8c317384c75f00 // log(1/frcpa(1+3/256))=  +1.37662e-002
579 data8 0x3f91a6b91ac73380 // log(1/frcpa(1+4/256))=  +1.72376e-002
580 data8 0x3f95ba9a5d9ac000 // log(1/frcpa(1+5/256))=  +2.12196e-002
581 data8 0x3f99d2a807432580 // log(1/frcpa(1+6/256))=  +2.52177e-002
582 data8 0x3f9d6b2725979800 // log(1/frcpa(1+7/256))=  +2.87291e-002
583 data8 0x3fa0c58fa19dfa80 // log(1/frcpa(1+8/256))=  +3.27573e-002
584 data8 0x3fa2954c78cbce00 // log(1/frcpa(1+9/256))=  +3.62953e-002
585 data8 0x3fa4a94d2da96c40 // log(1/frcpa(1+10/256))=  +4.03542e-002
586 data8 0x3fa67c94f2d4bb40 // log(1/frcpa(1+11/256))=  +4.39192e-002
587 data8 0x3fa85188b630f040 // log(1/frcpa(1+12/256))=  +4.74971e-002
588 data8 0x3faa6b8abe73af40 // log(1/frcpa(1+13/256))=  +5.16017e-002
589 data8 0x3fac441e06f72a80 // log(1/frcpa(1+14/256))=  +5.52072e-002
590 data8 0x3fae1e6713606d00 // log(1/frcpa(1+15/256))=  +5.88257e-002
591 data8 0x3faffa6911ab9300 // log(1/frcpa(1+16/256))=  +6.24574e-002
592 data8 0x3fb0ec139c5da600 // log(1/frcpa(1+17/256))=  +6.61022e-002
593 data8 0x3fb1dbd2643d1900 // log(1/frcpa(1+18/256))=  +6.97605e-002
594 data8 0x3fb2cc7284fe5f00 // log(1/frcpa(1+19/256))=  +7.34321e-002
595 data8 0x3fb3bdf5a7d1ee60 // log(1/frcpa(1+20/256))=  +7.71173e-002
596 data8 0x3fb4b05d7aa012e0 // log(1/frcpa(1+21/256))=  +8.08161e-002
597 data8 0x3fb580db7ceb5700 // log(1/frcpa(1+22/256))=  +8.39975e-002
598 data8 0x3fb674f089365a60 // log(1/frcpa(1+23/256))=  +8.77219e-002
599 data8 0x3fb769ef2c6b5680 // log(1/frcpa(1+24/256))=  +9.14602e-002
600 data8 0x3fb85fd927506a40 // log(1/frcpa(1+25/256))=  +9.52125e-002
601 data8 0x3fb9335e5d594980 // log(1/frcpa(1+26/256))=  +9.84401e-002
602 data8 0x3fba2b0220c8e5e0 // log(1/frcpa(1+27/256))=  +1.02219e-001
603 data8 0x3fbb0004ac1a86a0 // log(1/frcpa(1+28/256))=  +1.05469e-001
604 data8 0x3fbbf968769fca00 // log(1/frcpa(1+29/256))=  +1.09274e-001
605 data8 0x3fbccfedbfee13a0 // log(1/frcpa(1+30/256))=  +1.12548e-001
606 data8 0x3fbda727638446a0 // log(1/frcpa(1+31/256))=  +1.15832e-001
607 data8 0x3fbea3257fe10f60 // log(1/frcpa(1+32/256))=  +1.19677e-001
608 data8 0x3fbf7be9fedbfde0 // log(1/frcpa(1+33/256))=  +1.22985e-001
609 data8 0x3fc02ab352ff25f0 // log(1/frcpa(1+34/256))=  +1.26303e-001
610 data8 0x3fc097ce579d2040 // log(1/frcpa(1+35/256))=  +1.29633e-001
611 data8 0x3fc1178e8227e470 // log(1/frcpa(1+36/256))=  +1.33531e-001
612 data8 0x3fc185747dbecf30 // log(1/frcpa(1+37/256))=  +1.36885e-001
613 data8 0x3fc1f3b925f25d40 // log(1/frcpa(1+38/256))=  +1.40250e-001
614 data8 0x3fc2625d1e6ddf50 // log(1/frcpa(1+39/256))=  +1.43627e-001
615 data8 0x3fc2d1610c868130 // log(1/frcpa(1+40/256))=  +1.47015e-001
616 data8 0x3fc340c597411420 // log(1/frcpa(1+41/256))=  +1.50414e-001
617 data8 0x3fc3b08b6757f2a0 // log(1/frcpa(1+42/256))=  +1.53825e-001
618 data8 0x3fc40dfb08378000 // log(1/frcpa(1+43/256))=  +1.56677e-001
619 data8 0x3fc47e74e8ca5f70 // log(1/frcpa(1+44/256))=  +1.60109e-001
620 data8 0x3fc4ef51f6466de0 // log(1/frcpa(1+45/256))=  +1.63553e-001
621 data8 0x3fc56092e02ba510 // log(1/frcpa(1+46/256))=  +1.67010e-001
622 data8 0x3fc5d23857cd74d0 // log(1/frcpa(1+47/256))=  +1.70478e-001
623 data8 0x3fc6313a37335d70 // log(1/frcpa(1+48/256))=  +1.73377e-001
624 data8 0x3fc6a399dabbd380 // log(1/frcpa(1+49/256))=  +1.76868e-001
625 data8 0x3fc70337dd3ce410 // log(1/frcpa(1+50/256))=  +1.79786e-001
626 data8 0x3fc77654128f6120 // log(1/frcpa(1+51/256))=  +1.83299e-001
627 data8 0x3fc7e9d82a0b0220 // log(1/frcpa(1+52/256))=  +1.86824e-001
628 data8 0x3fc84a6b759f5120 // log(1/frcpa(1+53/256))=  +1.89771e-001
629 data8 0x3fc8ab47d5f5a300 // log(1/frcpa(1+54/256))=  +1.92727e-001
630 data8 0x3fc91fe490965810 // log(1/frcpa(1+55/256))=  +1.96286e-001
631 data8 0x3fc981634011aa70 // log(1/frcpa(1+56/256))=  +1.99261e-001
632 data8 0x3fc9f6c407089660 // log(1/frcpa(1+57/256))=  +2.02843e-001
633 data8 0x3fca58e729348f40 // log(1/frcpa(1+58/256))=  +2.05838e-001
634 data8 0x3fcabb55c31693a0 // log(1/frcpa(1+59/256))=  +2.08842e-001
635 data8 0x3fcb1e104919efd0 // log(1/frcpa(1+60/256))=  +2.11855e-001
636 data8 0x3fcb94ee93e367c0 // log(1/frcpa(1+61/256))=  +2.15483e-001
637 data8 0x3fcbf851c0675550 // log(1/frcpa(1+62/256))=  +2.18516e-001
638 data8 0x3fcc5c0254bf23a0 // log(1/frcpa(1+63/256))=  +2.21558e-001
639 data8 0x3fccc000c9db3c50 // log(1/frcpa(1+64/256))=  +2.24609e-001
640 data8 0x3fcd244d99c85670 // log(1/frcpa(1+65/256))=  +2.27670e-001
641 data8 0x3fcd88e93fb2f450 // log(1/frcpa(1+66/256))=  +2.30741e-001
642 data8 0x3fcdedd437eaef00 // log(1/frcpa(1+67/256))=  +2.33820e-001
643 data8 0x3fce530effe71010 // log(1/frcpa(1+68/256))=  +2.36910e-001
644 data8 0x3fceb89a1648b970 // log(1/frcpa(1+69/256))=  +2.40009e-001
645 data8 0x3fcf1e75fadf9bd0 // log(1/frcpa(1+70/256))=  +2.43117e-001
646 data8 0x3fcf84a32ead7c30 // log(1/frcpa(1+71/256))=  +2.46235e-001
647 data8 0x3fcfeb2233ea07c0 // log(1/frcpa(1+72/256))=  +2.49363e-001
648 data8 0x3fd028f9c7035c18 // log(1/frcpa(1+73/256))=  +2.52501e-001
649 data8 0x3fd05c8be0d96358 // log(1/frcpa(1+74/256))=  +2.55649e-001
650 data8 0x3fd085eb8f8ae790 // log(1/frcpa(1+75/256))=  +2.58174e-001
651 data8 0x3fd0b9c8e32d1910 // log(1/frcpa(1+76/256))=  +2.61339e-001
652 data8 0x3fd0edd060b78080 // log(1/frcpa(1+77/256))=  +2.64515e-001
653 data8 0x3fd122024cf00638 // log(1/frcpa(1+78/256))=  +2.67701e-001
654 data8 0x3fd14be2927aecd0 // log(1/frcpa(1+79/256))=  +2.70257e-001
655 data8 0x3fd180618ef18ad8 // log(1/frcpa(1+80/256))=  +2.73461e-001
656 data8 0x3fd1b50bbe2fc638 // log(1/frcpa(1+81/256))=  +2.76675e-001
657 data8 0x3fd1df4cc7cf2428 // log(1/frcpa(1+82/256))=  +2.79254e-001
658 data8 0x3fd214456d0eb8d0 // log(1/frcpa(1+83/256))=  +2.82487e-001
659 data8 0x3fd23ec5991eba48 // log(1/frcpa(1+84/256))=  +2.85081e-001
660 data8 0x3fd2740d9f870af8 // log(1/frcpa(1+85/256))=  +2.88333e-001
661 data8 0x3fd29ecdabcdfa00 // log(1/frcpa(1+86/256))=  +2.90943e-001
662 data8 0x3fd2d46602adcce8 // log(1/frcpa(1+87/256))=  +2.94214e-001
663 data8 0x3fd2ff66b04ea9d0 // log(1/frcpa(1+88/256))=  +2.96838e-001
664 data8 0x3fd335504b355a30 // log(1/frcpa(1+89/256))=  +3.00129e-001
665 data8 0x3fd360925ec44f58 // log(1/frcpa(1+90/256))=  +3.02769e-001
666 data8 0x3fd38bf1c3337e70 // log(1/frcpa(1+91/256))=  +3.05417e-001
667 data8 0x3fd3c25277333180 // log(1/frcpa(1+92/256))=  +3.08735e-001
668 data8 0x3fd3edf463c16838 // log(1/frcpa(1+93/256))=  +3.11399e-001
669 data8 0x3fd419b423d5e8c0 // log(1/frcpa(1+94/256))=  +3.14069e-001
670 data8 0x3fd44591e0539f48 // log(1/frcpa(1+95/256))=  +3.16746e-001
671 data8 0x3fd47c9175b6f0a8 // log(1/frcpa(1+96/256))=  +3.20103e-001
672 data8 0x3fd4a8b341552b08 // log(1/frcpa(1+97/256))=  +3.22797e-001
673 data8 0x3fd4d4f390890198 // log(1/frcpa(1+98/256))=  +3.25498e-001
674 data8 0x3fd501528da1f960 // log(1/frcpa(1+99/256))=  +3.28206e-001
675 data8 0x3fd52dd06347d4f0 // log(1/frcpa(1+100/256))=  +3.30921e-001
676 data8 0x3fd55a6d3c7b8a88 // log(1/frcpa(1+101/256))=  +3.33644e-001
677 data8 0x3fd5925d2b112a58 // log(1/frcpa(1+102/256))=  +3.37058e-001
678 data8 0x3fd5bf406b543db0 // log(1/frcpa(1+103/256))=  +3.39798e-001
679 data8 0x3fd5ec433d5c35a8 // log(1/frcpa(1+104/256))=  +3.42545e-001
680 data8 0x3fd61965cdb02c18 // log(1/frcpa(1+105/256))=  +3.45300e-001
681 data8 0x3fd646a84935b2a0 // log(1/frcpa(1+106/256))=  +3.48063e-001
682 data8 0x3fd6740add31de90 // log(1/frcpa(1+107/256))=  +3.50833e-001
683 data8 0x3fd6a18db74a58c0 // log(1/frcpa(1+108/256))=  +3.53610e-001
684 data8 0x3fd6cf31058670e8 // log(1/frcpa(1+109/256))=  +3.56396e-001
685 data8 0x3fd6f180e852f0b8 // log(1/frcpa(1+110/256))=  +3.58490e-001
686 data8 0x3fd71f5d71b894e8 // log(1/frcpa(1+111/256))=  +3.61289e-001
687 data8 0x3fd74d5aefd66d58 // log(1/frcpa(1+112/256))=  +3.64096e-001
688 data8 0x3fd77b79922bd378 // log(1/frcpa(1+113/256))=  +3.66911e-001
689 data8 0x3fd7a9b9889f19e0 // log(1/frcpa(1+114/256))=  +3.69734e-001
690 data8 0x3fd7d81b037eb6a0 // log(1/frcpa(1+115/256))=  +3.72565e-001
691 data8 0x3fd8069e33827230 // log(1/frcpa(1+116/256))=  +3.75404e-001
692 data8 0x3fd82996d3ef8bc8 // log(1/frcpa(1+117/256))=  +3.77538e-001
693 data8 0x3fd85855776dcbf8 // log(1/frcpa(1+118/256))=  +3.80391e-001
694 data8 0x3fd8873658327cc8 // log(1/frcpa(1+119/256))=  +3.83253e-001
695 data8 0x3fd8aa75973ab8c8 // log(1/frcpa(1+120/256))=  +3.85404e-001
696 data8 0x3fd8d992dc8824e0 // log(1/frcpa(1+121/256))=  +3.88280e-001
697 data8 0x3fd908d2ea7d9510 // log(1/frcpa(1+122/256))=  +3.91164e-001
698 data8 0x3fd92c59e79c0e50 // log(1/frcpa(1+123/256))=  +3.93332e-001
699 data8 0x3fd95bd750ee3ed0 // log(1/frcpa(1+124/256))=  +3.96231e-001
700 data8 0x3fd98b7811a3ee58 // log(1/frcpa(1+125/256))=  +3.99138e-001
701 data8 0x3fd9af47f33d4068 // log(1/frcpa(1+126/256))=  +4.01323e-001
702 data8 0x3fd9df270c1914a0 // log(1/frcpa(1+127/256))=  +4.04245e-001
703 data8 0x3fda0325ed14fda0 // log(1/frcpa(1+128/256))=  +4.06442e-001
704 data8 0x3fda33440224fa78 // log(1/frcpa(1+129/256))=  +4.09379e-001
705 data8 0x3fda57725e80c380 // log(1/frcpa(1+130/256))=  +4.11587e-001
706 data8 0x3fda87d0165dd198 // log(1/frcpa(1+131/256))=  +4.14539e-001
707 data8 0x3fdaac2e6c03f890 // log(1/frcpa(1+132/256))=  +4.16759e-001
708 data8 0x3fdadccc6fdf6a80 // log(1/frcpa(1+133/256))=  +4.19726e-001
709 data8 0x3fdb015b3eb1e790 // log(1/frcpa(1+134/256))=  +4.21958e-001
710 data8 0x3fdb323a3a635948 // log(1/frcpa(1+135/256))=  +4.24941e-001
711 data8 0x3fdb56fa04462908 // log(1/frcpa(1+136/256))=  +4.27184e-001
712 data8 0x3fdb881aa659bc90 // log(1/frcpa(1+137/256))=  +4.30182e-001
713 data8 0x3fdbad0bef3db160 // log(1/frcpa(1+138/256))=  +4.32437e-001
714 data8 0x3fdbd21297781c28 // log(1/frcpa(1+139/256))=  +4.34697e-001
715 data8 0x3fdc039236f08818 // log(1/frcpa(1+140/256))=  +4.37718e-001
716 data8 0x3fdc28cb1e4d32f8 // log(1/frcpa(1+141/256))=  +4.39990e-001
717 data8 0x3fdc4e19b84723c0 // log(1/frcpa(1+142/256))=  +4.42267e-001
718 data8 0x3fdc7ff9c74554c8 // log(1/frcpa(1+143/256))=  +4.45311e-001
719 data8 0x3fdca57b64e9db00 // log(1/frcpa(1+144/256))=  +4.47600e-001
720 data8 0x3fdccb130a5ceba8 // log(1/frcpa(1+145/256))=  +4.49895e-001
721 data8 0x3fdcf0c0d18f3268 // log(1/frcpa(1+146/256))=  +4.52194e-001
722 data8 0x3fdd232075b5a200 // log(1/frcpa(1+147/256))=  +4.55269e-001
723 data8 0x3fdd490246defa68 // log(1/frcpa(1+148/256))=  +4.57581e-001
724 data8 0x3fdd6efa918d25c8 // log(1/frcpa(1+149/256))=  +4.59899e-001
725 data8 0x3fdd9509707ae528 // log(1/frcpa(1+150/256))=  +4.62221e-001
726 data8 0x3fddbb2efe92c550 // log(1/frcpa(1+151/256))=  +4.64550e-001
727 data8 0x3fddee2f3445e4a8 // log(1/frcpa(1+152/256))=  +4.67663e-001
728 data8 0x3fde148a1a2726c8 // log(1/frcpa(1+153/256))=  +4.70004e-001
729 data8 0x3fde3afc0a49ff38 // log(1/frcpa(1+154/256))=  +4.72350e-001
730 data8 0x3fde6185206d5168 // log(1/frcpa(1+155/256))=  +4.74702e-001
731 data8 0x3fde882578823d50 // log(1/frcpa(1+156/256))=  +4.77060e-001
732 data8 0x3fdeaedd2eac9908 // log(1/frcpa(1+157/256))=  +4.79423e-001
733 data8 0x3fded5ac5f436be0 // log(1/frcpa(1+158/256))=  +4.81792e-001
734 data8 0x3fdefc9326d16ab8 // log(1/frcpa(1+159/256))=  +4.84166e-001
735 data8 0x3fdf2391a21575f8 // log(1/frcpa(1+160/256))=  +4.86546e-001
736 data8 0x3fdf4aa7ee031928 // log(1/frcpa(1+161/256))=  +4.88932e-001
737 data8 0x3fdf71d627c30bb0 // log(1/frcpa(1+162/256))=  +4.91323e-001
738 data8 0x3fdf991c6cb3b378 // log(1/frcpa(1+163/256))=  +4.93720e-001
739 data8 0x3fdfc07ada69a908 // log(1/frcpa(1+164/256))=  +4.96123e-001
740 data8 0x3fdfe7f18eb03d38 // log(1/frcpa(1+165/256))=  +4.98532e-001
741 data8 0x3fe007c053c5002c // log(1/frcpa(1+166/256))=  +5.00946e-001
742 data8 0x3fe01b942198a5a0 // log(1/frcpa(1+167/256))=  +5.03367e-001
743 data8 0x3fe02f74400c64e8 // log(1/frcpa(1+168/256))=  +5.05793e-001
744 data8 0x3fe04360be7603ac // log(1/frcpa(1+169/256))=  +5.08225e-001
745 data8 0x3fe05759ac47fe30 // log(1/frcpa(1+170/256))=  +5.10663e-001
746 data8 0x3fe06b5f1911cf50 // log(1/frcpa(1+171/256))=  +5.13107e-001
747 data8 0x3fe078bf0533c568 // log(1/frcpa(1+172/256))=  +5.14740e-001
748 data8 0x3fe08cd9687e7b0c // log(1/frcpa(1+173/256))=  +5.17194e-001
749 data8 0x3fe0a10074cf9018 // log(1/frcpa(1+174/256))=  +5.19654e-001
750 data8 0x3fe0b5343a234474 // log(1/frcpa(1+175/256))=  +5.22120e-001
751 data8 0x3fe0c974c89431cc // log(1/frcpa(1+176/256))=  +5.24592e-001
752 data8 0x3fe0ddc2305b9884 // log(1/frcpa(1+177/256))=  +5.27070e-001
753 data8 0x3fe0eb524bafc918 // log(1/frcpa(1+178/256))=  +5.28726e-001
754 data8 0x3fe0ffb54213a474 // log(1/frcpa(1+179/256))=  +5.31214e-001
755 data8 0x3fe114253da97d9c // log(1/frcpa(1+180/256))=  +5.33709e-001
756 data8 0x3fe128a24f1d9afc // log(1/frcpa(1+181/256))=  +5.36210e-001
757 data8 0x3fe1365252bf0864 // log(1/frcpa(1+182/256))=  +5.37881e-001
758 data8 0x3fe14ae558b4a92c // log(1/frcpa(1+183/256))=  +5.40393e-001
759 data8 0x3fe15f85a19c7658 // log(1/frcpa(1+184/256))=  +5.42910e-001
760 data8 0x3fe16d4d38c119f8 // log(1/frcpa(1+185/256))=  +5.44592e-001
761 data8 0x3fe18203c20dd130 // log(1/frcpa(1+186/256))=  +5.47121e-001
762 data8 0x3fe196c7bc4b1f38 // log(1/frcpa(1+187/256))=  +5.49656e-001
763 data8 0x3fe1a4a738b7a33c // log(1/frcpa(1+188/256))=  +5.51349e-001
764 data8 0x3fe1b981c0c9653c // log(1/frcpa(1+189/256))=  +5.53895e-001
765 data8 0x3fe1ce69e8bb1068 // log(1/frcpa(1+190/256))=  +5.56447e-001
766 data8 0x3fe1dc619de06944 // log(1/frcpa(1+191/256))=  +5.58152e-001
767 data8 0x3fe1f160a2ad0da0 // log(1/frcpa(1+192/256))=  +5.60715e-001
768 data8 0x3fe2066d7740737c // log(1/frcpa(1+193/256))=  +5.63285e-001
769 data8 0x3fe2147dba47a390 // log(1/frcpa(1+194/256))=  +5.65001e-001
770 data8 0x3fe229a1bc5ebac0 // log(1/frcpa(1+195/256))=  +5.67582e-001
771 data8 0x3fe237c1841a502c // log(1/frcpa(1+196/256))=  +5.69306e-001
772 data8 0x3fe24cfce6f80d98 // log(1/frcpa(1+197/256))=  +5.71898e-001
773 data8 0x3fe25b2c55cd5760 // log(1/frcpa(1+198/256))=  +5.73630e-001
774 data8 0x3fe2707f4d5f7c40 // log(1/frcpa(1+199/256))=  +5.76233e-001
775 data8 0x3fe285e0842ca380 // log(1/frcpa(1+200/256))=  +5.78842e-001
776 data8 0x3fe294294708b770 // log(1/frcpa(1+201/256))=  +5.80586e-001
777 data8 0x3fe2a9a2670aff0c // log(1/frcpa(1+202/256))=  +5.83207e-001
778 data8 0x3fe2b7fb2c8d1cc0 // log(1/frcpa(1+203/256))=  +5.84959e-001
779 data8 0x3fe2c65a6395f5f4 // log(1/frcpa(1+204/256))=  +5.86713e-001
780 data8 0x3fe2dbf557b0df40 // log(1/frcpa(1+205/256))=  +5.89350e-001
781 data8 0x3fe2ea64c3f97654 // log(1/frcpa(1+206/256))=  +5.91113e-001
782 data8 0x3fe3001823684d70 // log(1/frcpa(1+207/256))=  +5.93762e-001
783 data8 0x3fe30e97e9a8b5cc // log(1/frcpa(1+208/256))=  +5.95531e-001
784 data8 0x3fe32463ebdd34e8 // log(1/frcpa(1+209/256))=  +5.98192e-001
785 data8 0x3fe332f4314ad794 // log(1/frcpa(1+210/256))=  +5.99970e-001
786 data8 0x3fe348d90e7464cc // log(1/frcpa(1+211/256))=  +6.02643e-001
787 data8 0x3fe35779f8c43d6c // log(1/frcpa(1+212/256))=  +6.04428e-001
788 data8 0x3fe36621961a6a98 // log(1/frcpa(1+213/256))=  +6.06217e-001
789 data8 0x3fe37c299f3c3668 // log(1/frcpa(1+214/256))=  +6.08907e-001
790 data8 0x3fe38ae2171976e4 // log(1/frcpa(1+215/256))=  +6.10704e-001
791 data8 0x3fe399a157a603e4 // log(1/frcpa(1+216/256))=  +6.12504e-001
792 data8 0x3fe3afccfe77b9d0 // log(1/frcpa(1+217/256))=  +6.15210e-001
793 data8 0x3fe3be9d503533b4 // log(1/frcpa(1+218/256))=  +6.17018e-001
794 data8 0x3fe3cd7480b4a8a0 // log(1/frcpa(1+219/256))=  +6.18830e-001
795 data8 0x3fe3e3c43918f76c // log(1/frcpa(1+220/256))=  +6.21554e-001
796 data8 0x3fe3f2acb27ed6c4 // log(1/frcpa(1+221/256))=  +6.23373e-001
797 data8 0x3fe4019c2125ca90 // log(1/frcpa(1+222/256))=  +6.25197e-001
798 data8 0x3fe4181061389720 // log(1/frcpa(1+223/256))=  +6.27937e-001
799 data8 0x3fe42711518df544 // log(1/frcpa(1+224/256))=  +6.29769e-001
800 data8 0x3fe436194e12b6bc // log(1/frcpa(1+225/256))=  +6.31604e-001
801 data8 0x3fe445285d68ea68 // log(1/frcpa(1+226/256))=  +6.33442e-001
802 data8 0x3fe45bcc464c8938 // log(1/frcpa(1+227/256))=  +6.36206e-001
803 data8 0x3fe46aed21f117fc // log(1/frcpa(1+228/256))=  +6.38053e-001
804 data8 0x3fe47a1527e8a2d0 // log(1/frcpa(1+229/256))=  +6.39903e-001
805 data8 0x3fe489445efffcc8 // log(1/frcpa(1+230/256))=  +6.41756e-001
806 data8 0x3fe4a018bcb69834 // log(1/frcpa(1+231/256))=  +6.44543e-001
807 data8 0x3fe4af5a0c9d65d4 // log(1/frcpa(1+232/256))=  +6.46405e-001
808 data8 0x3fe4bea2a5bdbe84 // log(1/frcpa(1+233/256))=  +6.48271e-001
809 data8 0x3fe4cdf28f10ac44 // log(1/frcpa(1+234/256))=  +6.50140e-001
810 data8 0x3fe4dd49cf994058 // log(1/frcpa(1+235/256))=  +6.52013e-001
811 data8 0x3fe4eca86e64a680 // log(1/frcpa(1+236/256))=  +6.53889e-001
812 data8 0x3fe503c43cd8eb68 // log(1/frcpa(1+237/256))=  +6.56710e-001
813 data8 0x3fe513356667fc54 // log(1/frcpa(1+238/256))=  +6.58595e-001
814 data8 0x3fe522ae0738a3d4 // log(1/frcpa(1+239/256))=  +6.60483e-001
815 data8 0x3fe5322e26867854 // log(1/frcpa(1+240/256))=  +6.62376e-001
816 data8 0x3fe541b5cb979808 // log(1/frcpa(1+241/256))=  +6.64271e-001
817 data8 0x3fe55144fdbcbd60 // log(1/frcpa(1+242/256))=  +6.66171e-001
818 data8 0x3fe560dbc45153c4 // log(1/frcpa(1+243/256))=  +6.68074e-001
819 data8 0x3fe5707a26bb8c64 // log(1/frcpa(1+244/256))=  +6.69980e-001
820 data8 0x3fe587f60ed5b8fc // log(1/frcpa(1+245/256))=  +6.72847e-001
821 data8 0x3fe597a7977c8f30 // log(1/frcpa(1+246/256))=  +6.74763e-001
822 data8 0x3fe5a760d634bb88 // log(1/frcpa(1+247/256))=  +6.76682e-001
823 data8 0x3fe5b721d295f10c // log(1/frcpa(1+248/256))=  +6.78605e-001
824 data8 0x3fe5c6ea94431ef8 // log(1/frcpa(1+249/256))=  +6.80532e-001
825 data8 0x3fe5d6bb22ea86f4 // log(1/frcpa(1+250/256))=  +6.82462e-001
826 data8 0x3fe5e6938645d38c // log(1/frcpa(1+251/256))=  +6.84397e-001
827 data8 0x3fe5f673c61a2ed0 // log(1/frcpa(1+252/256))=  +6.86335e-001
828 data8 0x3fe6065bea385924 // log(1/frcpa(1+253/256))=  +6.88276e-001
829 data8 0x3fe6164bfa7cc068 // log(1/frcpa(1+254/256))=  +6.90222e-001
830 data8 0x3fe62643fecf9740 // log(1/frcpa(1+255/256))=  +6.92171e-001
831 LOCAL_OBJECT_END(pow_Tt)
834 // Table 1 is 2^(index_1/128) where
835 // index_1 goes from 0 to 15
836 LOCAL_OBJECT_START(pow_tbl1)
837 data8 0x8000000000000000 , 0x00003FFF
838 data8 0x80B1ED4FD999AB6C , 0x00003FFF
839 data8 0x8164D1F3BC030773 , 0x00003FFF
840 data8 0x8218AF4373FC25EC , 0x00003FFF
841 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
842 data8 0x8383594EEFB6EE37 , 0x00003FFF
843 data8 0x843A28C3ACDE4046 , 0x00003FFF
844 data8 0x84F1F656379C1A29 , 0x00003FFF
845 data8 0x85AAC367CC487B15 , 0x00003FFF
846 data8 0x8664915B923FBA04 , 0x00003FFF
847 data8 0x871F61969E8D1010 , 0x00003FFF
848 data8 0x87DB357FF698D792 , 0x00003FFF
849 data8 0x88980E8092DA8527 , 0x00003FFF
850 data8 0x8955EE03618E5FDD , 0x00003FFF
851 data8 0x8A14D575496EFD9A , 0x00003FFF
852 data8 0x8AD4C6452C728924 , 0x00003FFF
853 LOCAL_OBJECT_END(pow_tbl1)
856 // Table 2 is 2^(index_1/8) where
857 // index_2 goes from 0 to 7
858 LOCAL_OBJECT_START(pow_tbl2)
859 data8 0x8000000000000000 , 0x00003FFF
860 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
861 data8 0x9837F0518DB8A96F , 0x00003FFF
862 data8 0xA5FED6A9B15138EA , 0x00003FFF
863 data8 0xB504F333F9DE6484 , 0x00003FFF
864 data8 0xC5672A115506DADD , 0x00003FFF
865 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
866 data8 0xEAC0C6E7DD24392F , 0x00003FFF
867 LOCAL_OBJECT_END(pow_tbl2)
869 .section .text
870 WEAK_LIBM_ENTRY(powf)
872 // Get exponent of x.  Will be used to calculate K.
873 { .mfi
874           getf.exp     pow_GR_signexp_X = f8
875           fms.s1 POW_Xm1 = f8,f1,f1     // Will be used for r1 if x>0
876           mov           pow_GR_17ones   = 0x1FFFF
878 { .mfi
879           addl          pow_AD_P        = @ltoff(pow_table_P), gp
880           fma.s1 POW_Xp1 = f8,f1,f1     // Will be used for r1 if x<0
881           nop.i 999
885 // Get significand of x.  Will be used to get index to fetch T, Tt.
886 { .mfi
887           getf.sig      pow_GR_sig_X    = f8
888           frcpa.s1      POW_B, p6       = f1,f8
889           mov           pow_GR_exp_half = 0xFFFE   // Exponent for 0.5
891 { .mfi
892           ld8 pow_AD_P = [pow_AD_P]
893           fma.s1        POW_NORM_X      = f8,f1,f0
894           mov          pow_GR_exp_2tom8 = 0xFFF7
898 // DOUBLE 0x10033  exponent limit at which y is an integer
899 { .mfi
900           nop.m 999
901           fcmp.lt.s1 p8,p9 = f8, f0     // Test for x<0
902           addl pow_GR_10033             = 0x10033, r0
904 { .mfi
905           mov           pow_GR_16ones   = 0xFFFF
906           fma.s1        POW_NORM_Y      = f9,f1,f0
907           nop.i 999
911 // p13 = TRUE ==> X is unorm
912 { .mfi
913           setf.exp      POW_Q0_half     = pow_GR_exp_half  // Form 0.5
914           fclass.m  p13,p0              = f8, 0x0b  // Test for x unorm
915           adds          pow_AD_Tt       = pow_Tt - pow_table_P,  pow_AD_P
917 { .mfi
918           adds          pow_AD_Q        = pow_table_Q - pow_table_P,  pow_AD_P
919           nop.f 999
920           nop.i 999
924 // p14 = TRUE ==> X is ZERO
925 { .mfi
926           ldfe          POW_P2          = [pow_AD_Q], 16
927           fclass.m  p14,p0              = f8, 0x07
928           nop.i 999
930 // Note POW_Xm1 and POW_r1 are used interchangeably
931 { .mfb
932           nop.m 999
933 (p8)      fnma.s1        POW_Xm1        = POW_Xp1,f1,f0
934 (p13)     br.cond.spnt POW_X_DENORM
938 // Continue normal and denormal paths here
939 POW_COMMON:
940 // p11 = TRUE ==> Y is a NAN
941 { .mfi
942           and           pow_GR_exp_X    = pow_GR_signexp_X, pow_GR_17ones
943           fclass.m  p11,p0              = f9, 0xc3
944           nop.i 999
946 { .mfi
947           nop.m 999
948           fms.s1        POW_r           = POW_B, POW_NORM_X,f1
949           mov pow_GR_y_zero = 0
953 // Get exponent of |x|-1 to use in comparison to 2^-8
954 { .mmi
955           getf.exp  pow_GR_signexp_Xm1  = POW_Xm1
956           sub       pow_GR_true_exp_X   = pow_GR_exp_X, pow_GR_16ones
957           extr.u        pow_GR_offset   = pow_GR_sig_X, 55, 8
961 { .mfi
962           alloc         r32=ar.pfs,2,19,4,0
963           fcvt.fx.s1   POW_int_Y        = POW_NORM_Y
964           shladd pow_AD_Tt = pow_GR_offset, 3, pow_AD_Tt
966 { .mfi
967           setf.sig POW_int_K            = pow_GR_true_exp_X
968           nop.f 999
969           nop.i 999
973 // p12 = TRUE if Y is ZERO
974 // Compute xsq to decide later if |x|=1
975 { .mfi
976           ldfe          POW_P1          = [pow_AD_P], 16
977           fclass.m      p12,p0          = f9, 0x07
978           nop.i 999
980 { .mfb
981           ldfe          POW_P0          = [pow_AD_Q], 16
982           fma.s1        POW_xsq = POW_NORM_X, POW_NORM_X, f0
983 (p11)     br.cond.spnt  POW_Y_NAN       // Branch if y=nan
987 { .mmf
988           getf.exp  pow_GR_signexp_Y    = POW_NORM_Y
989           ldfd  POW_T                   = [pow_AD_Tt]
990           fma.s1        POW_rsq         = POW_r, POW_r,f0
994 // p11 = TRUE ==> X is a NAN
995 { .mfi
996           ldfpd         POW_log2_hi, POW_log2_lo  = [pow_AD_Q], 16
997           fclass.m      p11,p0          = POW_NORM_X, 0xc3
998           nop.i 999
1000 { .mfi
1001           ldfe          POW_inv_log2_by_128 = [pow_AD_P], 16
1002           fma.s1 POW_delta              = f0,f0,f0 // delta=0 in case |x| near 1
1003 (p12)     mov pow_GR_y_zero = 1
1007 { .mfi
1008           ldfd   POW_Q2                 = [pow_AD_P], 16
1009           fnma.s1 POW_twoV              = POW_r, POW_Q0_half,f1
1010           and       pow_GR_exp_Xm1      = pow_GR_signexp_Xm1, pow_GR_17ones
1012 { .mfi
1013           nop.m 999
1014           fma.s1 POW_U                  = POW_NORM_Y,POW_r,f0
1015           nop.i 999
1019 // Determine if we will use the |x| near 1 path (p6) or normal path (p7)
1020 { .mfi
1021           nop.m 999
1022           fcvt.xf POW_K                 = POW_int_K
1023           cmp.lt p6,p7                  = pow_GR_exp_Xm1, pow_GR_exp_2tom8
1025 { .mfb
1026           nop.m 999
1027           fma.s1 POW_G                  = f0,f0,f0  // G=0 in case |x| near 1
1028 (p11)     br.cond.spnt  POW_X_NAN       // Branch if x=nan and y not nan
1032 // If on the x near 1 path, assign r1 to r
1033 { .mfi
1034           ldfpd  POW_Q1, POW_RSHF       = [pow_AD_P], 16
1035 (p6)      fma.s1    POW_r               = POW_r1, f1, f0
1036           nop.i 999
1038 { .mfb
1039           nop.m 999
1040 (p6)      fma.s1    POW_rsq             = POW_r1, POW_r1, f0
1041 (p14)     br.cond.spnt POW_X_0          // Branch if x zero and y not nan
1045 { .mfi
1046           getf.sig pow_GR_sig_int_Y     = POW_int_Y
1047 (p6)      fnma.s1 POW_twoV              = POW_r1, POW_Q0_half,f1
1048           and pow_GR_exp_Y              = pow_GR_signexp_Y, pow_GR_17ones
1050 { .mfb
1051           andcm pow_GR_sign_Y           = pow_GR_signexp_Y, pow_GR_17ones
1052 (p6)      fma.s1 POW_U                  = POW_NORM_Y,POW_r1,f0
1053 (p12)     br.cond.spnt POW_Y_0   // Branch if y=zero, x not zero or nan
1057 { .mfi
1058           ldfe      POW_log2_by_128_lo  = [pow_AD_P], 16
1059 (p7)      fma.s1 POW_Z2                 = POW_twoV, POW_U, f0
1060           nop.i 999
1062 { .mfi
1063           ldfe      POW_log2_by_128_hi  = [pow_AD_Q], 16
1064           nop.f 999
1065           nop.i 999
1069 { .mfi
1070           nop.m 999
1071           fcvt.xf   POW_float_int_Y     = POW_int_Y
1072           nop.i 999
1074 { .mfi
1075           nop.m 999
1076 (p7)      fma.s1 POW_G                  = POW_K, POW_log2_hi, POW_T
1077           adds          pow_AD_tbl1     = pow_tbl1 - pow_Tt,  pow_AD_Q
1081 // p11 = TRUE ==> X is NEGATIVE but not inf
1082 { .mfi
1083           nop.m 999
1084           fclass.m  p11,p0              = POW_NORM_X, 0x1a
1085           nop.i 999
1087 { .mfi
1088           nop.m 999
1089 (p7)      fma.s1 POW_delta              = POW_K, POW_log2_lo, f0
1090           adds pow_AD_tbl2              = pow_tbl2 - pow_tbl1,  pow_AD_tbl1
1094 { .mfi
1095           nop.m 999
1096 (p6)      fma.s1 POW_Z                  = POW_twoV, POW_U, f0
1097           nop.i 999
1099 { .mfi
1100           nop.m 999
1101           fma.s1 POW_v2                 = POW_P1, POW_r,  POW_P0
1102           nop.i 999
1106 // p11 = TRUE ==> X is NEGATIVE but not inf
1107 //    p12 = TRUE ==> X is NEGATIVE  AND  Y  already even int
1108 //    p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
1109 { .mfi
1110           nop.m 999
1111 (p7)      fma.s1 POW_Z                  = POW_NORM_Y, POW_G, POW_Z2
1112 (p11)     cmp.gt.unc  p12,p13           = pow_GR_exp_Y, pow_GR_10033
1114 { .mfi
1115           nop.m 999
1116           fma.s1 POW_Gpr                = POW_G, f1, POW_r
1117           nop.i 999
1121 { .mfi
1122           nop.m 999
1123           fma.s1 POW_Yrcub              = POW_rsq, POW_U, f0
1124           nop.i 999
1126 { .mfi
1127           nop.m 999
1128           fma.s1 POW_p                  = POW_rsq, POW_P2, POW_v2
1129           nop.i 999
1133 // Test if x inf
1134 { .mfi
1135           nop.m 999
1136           fclass.m p15,p0 = POW_NORM_X,  0x23
1137           nop.i 999
1139 // By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
1140 { .mfi
1141           nop.m 999
1142           fma.s1 POW_W1  = POW_Z, POW_inv_log2_by_128, POW_RSHF
1143           nop.i 999
1147 // p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
1148 //     p10 = TRUE ==> X is NEG and Y is an int
1149 //     p12 = TRUE ==> X is NEG and Y is not an int
1150 { .mfi
1151           nop.m 999
1152 (p13)     fcmp.eq.unc.s1 p10,p12        = POW_float_int_Y,  POW_NORM_Y
1153           mov pow_GR_xneg_yodd = 0
1155 { .mfi
1156           nop.m 999
1157           fma.s1 POW_Y_Gpr              = POW_NORM_Y, POW_Gpr, f0
1158           nop.i 999
1162 // p11 = TRUE ==> X is +1.0
1163 { .mfi
1164           nop.m 999
1165           fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
1166           nop.i 999
1170 // Extract rounded integer from rightmost significand of POW_W1
1171 // By subtracting RSHF we get rounded integer POW_Nfloat
1172 { .mfi
1173           getf.sig pow_GR_int_N        = POW_W1
1174           fms.s1 POW_Nfloat  = POW_W1, f1, POW_RSHF
1175           nop.i 999
1177 { .mfb
1178           nop.m 999
1179           fma.s1 POW_Z3                 = POW_p, POW_Yrcub, f0
1180 (p12)     br.cond.spnt POW_X_NEG_Y_NONINT  // Branch if x neg, y not integer
1184 // p7  = TRUE ==> Y is +1.0
1185 // p12 = TRUE ==> X is NEGATIVE  AND Y is an odd integer
1186 { .mfi
1187           getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
1188           fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1  // Test for y=1.0
1189 (p10)     tbit.nz.unc  p12,p0           = pow_GR_sig_int_Y,0
1191 { .mfb
1192           nop.m 999
1193 (p11)     fma.s.s0 f8 = f1,f1,f0    // If x=1, result is +1
1194 (p15)     br.cond.spnt POW_X_INF
1198 // Test x and y and flag denormal
1199 { .mfi
1200           nop.m 999
1201           fcmp.eq.s0 p15,p0 = f8,f9
1202           nop.i 999
1204 { .mfb
1205           nop.m 999
1206           fma.s1 POW_e3                 = POW_NORM_Y, POW_delta, f0
1207 (p11)     br.ret.spnt b0            // Early exit if x=1.0, result is +1
1211 { .mfi
1212 (p12)     mov pow_GR_xneg_yodd = 1
1213           fnma.s1 POW_f12  = POW_Nfloat, POW_log2_by_128_lo, f1
1214           nop.i 999
1216 { .mfb
1217           nop.m 999
1218           fnma.s1 POW_s  = POW_Nfloat, POW_log2_by_128_hi, POW_Z
1219 (p7)      br.ret.spnt b0        // Early exit if y=1.0, result is x
1223 { .mmi
1224           and pow_GR_index1             = 0x0f, pow_GR_int_N
1225           and pow_GR_index2             = 0x70, pow_GR_int_N
1226           shr pow_int_GR_M              = pow_GR_int_N, 7    // M = N/128
1230 { .mfi
1231           shladd pow_AD_T1              = pow_GR_index1, 4, pow_AD_tbl1
1232           fma.s1 POW_q                  = POW_Z3, POW_Q1, POW_Q0_half
1233           add pow_int_GR_M              = pow_GR_16ones, pow_int_GR_M
1235 { .mfi
1236           add pow_AD_T2                 = pow_AD_tbl2, pow_GR_index2
1237           fma.s1 POW_Z3sq               = POW_Z3, POW_Z3, f0
1238           nop.i 999
1242 { .mmi
1243           ldfe POW_T1                   = [pow_AD_T1]
1244           ldfe POW_T2                   = [pow_AD_T2]
1245           nop.i 999
1249 // f123 = f12*(e3+1) = f12*e3+f12
1250 { .mfi
1251           setf.exp POW_2M               = pow_int_GR_M
1252           fma.s1 POW_f123               = POW_e3,POW_f12,POW_f12
1253           nop.i 999
1255 { .mfi
1256           nop.m 999
1257           fma.s1 POW_ssq                = POW_s, POW_s, f0
1258           nop.i 999
1262 { .mfi
1263           nop.m 999
1264           fma.s1 POW_v2                 = POW_s, POW_Q2, POW_Q1
1265           and pow_GR_exp_Y_Gpr          = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1269 { .mfi
1270           cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
1271           fma.s1 POW_q                  = POW_Z3sq, POW_q, POW_Z3
1272           sub pow_GR_true_exp_Y_Gpr     = pow_GR_exp_Y_Gpr, pow_GR_16ones
1276 // p8 TRUE ==> |Y(G + r)| >= 7
1278 // single
1279 //     -2^7   -2^6             2^6   2^7
1280 // -----+-----+----+ ... +-----+-----+-----
1281 //  p8  |             p9             |  p8
1282 //      |     |       p10      |     |
1284 // Form signexp of constants to indicate overflow
1285 { .mfi
1286           mov         pow_GR_big_pos    = 0x1007f
1287           nop.f 999
1288           cmp.le p8,p9                  = 7, pow_GR_true_exp_Y_Gpr
1290 { .mfi
1291           mov         pow_GR_big_neg    = 0x3007f
1292           nop.f 999
1293           andcm pow_GR_sign_Y_Gpr       = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1297 // Form big positive and negative constants to test for possible overflow
1298 // Scale both terms of the polynomial by POW_f123
1299 { .mfi
1300           setf.exp POW_big_pos          = pow_GR_big_pos
1301           fma.s1 POW_ssq                = POW_ssq, POW_f123, f0
1302 (p9)      cmp.le.unc p0,p10             = 6, pow_GR_true_exp_Y_Gpr
1304 { .mfb
1305           setf.exp POW_big_neg          = pow_GR_big_neg
1306           fma.s1 POW_1ps                = POW_s, POW_f123, POW_f123
1307 (p8)      br.cond.spnt POW_OVER_UNDER_X_NOT_INF
1311 { .mfi
1312           nop.m 999
1313 (p12)     fnma.s1 POW_T1T2              = POW_T1, POW_T2, f0
1314           nop.i 999
1316 { .mfi
1317           nop.m 999
1318 (p13)     fma.s1 POW_T1T2               = POW_T1, POW_T2, f0
1319           nop.i 999
1323 { .mfi
1324           nop.m 999
1325           fma.s1 POW_v210               = POW_s, POW_v2, POW_Q0_half
1326           nop.i 999
1328 { .mfi
1329           nop.m 999
1330           fma.s1 POW_2Mqp1              = POW_2M, POW_q, POW_2M
1331           nop.i 999
1335 { .mfi
1336           nop.m 999
1337           fma.s1 POW_es                 = POW_ssq, POW_v210, POW_1ps
1338           nop.i 999
1340 { .mfi
1341           nop.m 999
1342           fma.s1 POW_A                  = POW_T1T2, POW_2Mqp1, f0
1343           nop.i 999
1347 // Dummy op to set inexact
1348 { .mfi
1349           nop.m 999
1350           fma.s0 POW_tmp                = POW_2M, POW_q, POW_2M
1351           nop.i 999
1355 { .mfb
1356           nop.m 999
1357           fma.s.s0 f8                   = POW_A, POW_es, f0
1358 (p10)     br.ret.sptk     b0            // Exit main branch if no over/underflow
1362 // POSSIBLE_OVER_UNDER
1363 // p6 = TRUE ==> Y_Gpr negative
1364 // Result is already computed.  We just need to know if over/underflow occurred.
1366 { .mfb
1367         cmp.eq p0,p6                    = pow_GR_sign_Y_Gpr, r0
1368         nop.f 999
1369 (p6)    br.cond.spnt POW_POSSIBLE_UNDER
1373 // POSSIBLE_OVER
1374 // We got an answer.
1375 // overflow is a possibility, not a certainty
1378 // We define an overflow when the answer with
1379 //    WRE set
1380 //    user-defined rounding mode
1382 // double
1383 // Largest double is 7FE (biased double)
1384 //                   7FE - 3FF + FFFF = 103FE
1385 // Create + largest_double_plus_ulp
1386 // Create - largest_double_plus_ulp
1387 // Calculate answer with WRE set.
1389 // single
1390 // Largest single is FE (biased double)
1391 //                   FE - 7F + FFFF = 1007E
1392 // Create + largest_single_plus_ulp
1393 // Create - largest_single_plus_ulp
1394 // Calculate answer with WRE set.
1396 // Cases when answer is ldn+1  are as follows:
1397 //  ldn                   ldn+1
1398 // --+----------|----------+------------
1399 //              |
1400 //    +inf          +inf      -inf
1401 //                  RN         RN
1402 //                             RZ
1404 // Put in s2 (td set, wre set)
1405 { .mfi
1406         nop.m 999
1407         fsetc.s2 0x7F,0x42
1408         nop.i 999
1412 { .mfi
1413         nop.m 999
1414         fma.s.s2 POW_wre_urm_f8         = POW_A, POW_es, f0
1415         nop.i 999
1419 // Return s2 to default
1420 { .mfi
1421         nop.m 999
1422         fsetc.s2 0x7F,0x40
1423         nop.i 999
1427 // p7 = TRUE ==> yes, we have an overflow
1428 { .mfi
1429         nop.m 999
1430         fcmp.ge.s1 p7, p8               =  POW_wre_urm_f8, POW_big_pos
1431         nop.i 999
1435 { .mfi
1436         nop.m 999
1437 (p8)    fcmp.le.s1 p7, p0               =  POW_wre_urm_f8, POW_big_neg
1438         nop.i 999
1442 { .mbb
1443 (p7)   mov pow_GR_tag                   = 30
1444 (p7)   br.cond.spnt __libm_error_region // Branch if overflow
1445        br.ret.sptk     b0               // Exit if did not overflow
1450 POW_POSSIBLE_UNDER:
1451 // We got an answer. input was < -2^9 but > -2^10 (double)
1452 // We got an answer. input was < -2^6 but > -2^7  (float)
1453 // underflow is a possibility, not a certainty
1455 // We define an underflow when the answer with
1456 //    ftz set
1457 // is zero (tiny numbers become zero)
1458 // Notice (from below) that if we have an unlimited exponent range,
1459 // then there is an extra machine number E between the largest denormal and
1460 // the smallest normal.
1461 // So if with unbounded exponent we round to E or below, then we are
1462 // tiny and underflow has occurred.
1463 // But notice that you can be in a situation where we are tiny, namely
1464 // rounded to E, but when the exponent is bounded we round to smallest
1465 // normal. So the answer can be the smallest normal with underflow.
1466 //                           E
1467 // -----+--------------------+--------------------+-----
1468 //      |                    |                    |
1469 //   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
1470 //   0.1...11 2^-3ffe                                   (biased, 1)
1471 //    largest dn                               smallest normal
1473 // Form small constant (2^-170) to correct underflow result near region of
1474 // smallest denormal in round-nearest.
1476 // Put in s2 (td set, ftz set)
1477 .pred.rel "mutex",p12,p13
1478 { .mfi
1479         mov pow_GR_Fpsr = ar40          // Read the fpsr--need to check rc.s0
1480         fsetc.s2 0x7F,0x41
1481         mov pow_GR_rcs0_mask            = 0x0c00 // Set mask for rc.s0
1483 { .mfi
1484 (p12)   mov pow_GR_tmp                  = 0x2ffff - 170
1485         nop.f 999
1486 (p13)   mov pow_GR_tmp                  = 0x0ffff - 170
1490 { .mfi
1491         setf.exp POW_eps                = pow_GR_tmp        // Form 2^-170
1492         fma.s.s2 POW_ftz_urm_f8         = POW_A, POW_es, f0
1493         nop.i 999
1497 // Return s2 to default
1498 { .mfi
1499         nop.m 999
1500         fsetc.s2 0x7F,0x40
1501         nop.i 999
1505 // p7 = TRUE ==> yes, we have an underflow
1506 { .mfi
1507         nop.m 999
1508         fcmp.eq.s1 p7, p0               =  POW_ftz_urm_f8, f0
1509         nop.i 999
1513 { .mmi
1514 (p7)    and pow_GR_rcs0  = pow_GR_rcs0_mask, pow_GR_Fpsr  // Isolate rc.s0
1516 (p7)    cmp.eq.unc p6,p0 = pow_GR_rcs0, r0    // Test for round to nearest
1517         nop.i 999
1521 // Tweak result slightly if underflow to get correct rounding near smallest
1522 // denormal if round-nearest
1523 { .mfi
1524         nop.m 999
1525 (p6)    fms.s.s0 f8                     = POW_A, POW_es, POW_eps
1526         nop.i 999
1528 { .mbb
1529 (p7)    mov pow_GR_tag                  = 31
1530 (p7)    br.cond.spnt __libm_error_region // Branch if underflow
1531         br.ret.sptk     b0               // Exit if did not underflow
1535 POW_X_DENORM:
1536 // Here if x unorm. Use the NORM_X for getf instructions, and then back
1537 // to normal path
1538 { .mfi
1539         getf.exp      pow_GR_signexp_X  = POW_NORM_X
1540         nop.f 999
1541         nop.i 999
1545 { .mib
1546         getf.sig      pow_GR_sig_X      = POW_NORM_X
1547         nop.i 999
1548         br.cond.sptk    POW_COMMON
1552 POW_X_0:
1553 // Here if x=0 and y not nan
1555 // We have the following cases:
1556 //  p6  x=0  and  y>0 and is an integer (may be even or odd)
1557 //  p7  x=0  and  y>0 and is NOT an integer, return +0
1558 //  p8  x=0  and  y>0 and so big as to always be an even integer, return +0
1559 //  p9  x=0  and  y>0 and may not be integer
1560 //  p10 x=0  and  y>0 and is an odd  integer, return x
1561 //  p11 x=0  and  y>0 and is an even integer, return +0
1562 //  p12 used in dummy fcmp to set denormal flag if y=unorm
1563 //  p13 x=0  and  y>0
1564 //  p14 x=0  and  y=0, branch to code for calling error handling
1565 //  p15 x=0  and  y<0, branch to code for calling error handling
1567 { .mfi
1568         getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
1569         fcmp.lt.s1 p15,p13 = f9, f0           // Test for y<0
1570         and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
1572 { .mfb
1573         cmp.ne p14,p0 = pow_GR_y_zero,r0      // Test for y=0
1574         fcvt.xf   POW_float_int_Y = POW_int_Y
1575 (p14)   br.cond.spnt POW_X_0_Y_0              // Branch if x=0 and y=0
1579 // If x=0 and y>0, test y and flag denormal
1580 { .mfb
1581 (p13)   cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
1582 (p13)   fcmp.eq.s0 p12,p0 = f9,f0    // If x=0, y>0 dummy op to flag denormal
1583 (p15)   br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
1587 // Here if x=0 and y>0
1588 { .mfi
1589         nop.m 999
1590 (p9)    fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y,  POW_NORM_Y // Test y=int
1591         nop.i 999
1593 { .mfi
1594         nop.m 999
1595 (p8)    fma.s.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
1596         nop.i 999
1600 { .mfi
1601         nop.m 999
1602 (p7)    fma.s.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y>0 and not integer
1603 (p6)    tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
1607 // Note if x=0, y>0 and odd integer, just return x
1608 { .mfb
1609         nop.m 999
1610 (p11)   fma.s.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y even integer
1611         br.ret.sptk b0            // Exit if x=0 and y>0
1615 POW_X_0_Y_0:
1616 // When X is +-0 and Y is +-0, IEEE returns 1.0
1617 // We call error support with this value
1619 { .mfb
1620         mov pow_GR_tag                  = 32
1621         fma.s.s0 f8                     = f1,f1,f0
1622         br.cond.sptk __libm_error_region
1626 POW_X_0_Y_NEG:
1627 // When X is +-0 and Y is negative, IEEE returns
1628 // X     Y           answer
1629 // +0    -odd int    +inf
1630 // -0    -odd int    -inf
1632 // +0    !-odd int   +inf
1633 // -0    !-odd int   +inf
1635 // p6 == Y is a floating point number outside the integer.
1636 //       Hence it is an integer and is even.
1637 //       return +inf
1639 // p7 == Y is a floating point number within the integer range.
1640 //      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1641 //           p11 odd
1642 //              return (sign_of_x)inf
1643 //           p12 even
1644 //              return +inf
1645 //      p10 == Y is not an integer
1646 //         return +inf
1649 { .mfi
1650           nop.m 999
1651           nop.f 999
1652           cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
1656 { .mfi
1657           mov pow_GR_tag                = 33
1658 (p7)      fcmp.eq.unc.s1 p9,p10         = POW_float_int_Y,  POW_NORM_Y
1659           nop.i 999
1663 { .mfb
1664           nop.m 999
1665 (p6)      frcpa.s0 f8,p13               = f1, f0
1666 (p6)      br.cond.sptk __libm_error_region   // x=0, y<0, y large neg int
1670 { .mfb
1671           nop.m 999
1672 (p10)     frcpa.s0 f8,p13               = f1, f0
1673 (p10)     br.cond.sptk __libm_error_region   // x=0, y<0, y not int
1677 // x=0, y<0, y an int
1678 { .mib
1679           nop.m 999
1680 (p9)      tbit.nz.unc p11,p12           = pow_GR_sig_int_Y,0
1681           nop.b 999
1685 { .mfi
1686           nop.m 999
1687 (p12)     frcpa.s0 f8,p13               = f1,f0
1688           nop.i 999
1692 { .mfb
1693           nop.m 999
1694 (p11)     frcpa.s0 f8,p13               = f1,f8
1695           br.cond.sptk __libm_error_region
1700 POW_Y_0:
1701 // Here for y zero, x anything but zero and nan
1702 // Set flag if x denormal
1703 // Result is +1.0
1704 { .mfi
1705         nop.m 999
1706         fcmp.eq.s0 p6,p0 = f8,f0    // Sets flag if x denormal
1707         nop.i 999
1709 { .mfb
1710         nop.m 999
1711         fma.s.s0 f8 = f1,f1,f0
1712         br.ret.sptk b0
1717 POW_X_INF:
1718 // Here when X is +-inf
1720 // X +inf  Y +inf             +inf
1721 // X -inf  Y +inf             +inf
1723 // X +inf  Y >0               +inf
1724 // X -inf  Y >0, !odd integer +inf     <== (-inf)^0.5 = +inf !!
1725 // X -inf  Y >0,  odd integer -inf
1727 // X +inf  Y -inf             +0
1728 // X -inf  Y -inf             +0
1730 // X +inf  Y <0               +0
1731 // X -inf  Y <0, !odd integer +0
1732 // X -inf  Y <0, odd integer  -0
1734 // X + inf Y=+0                +1
1735 // X + inf Y=-0                +1
1736 // X - inf Y=+0                +1
1737 // X - inf Y=-0                +1
1739 // p13 == Y negative
1740 // p14 == Y positive
1742 // p6 == Y is a floating point number outside the integer.
1743 //       Hence it is an integer and is even.
1744 //       p13 == (Y negative)
1745 //          return +inf
1746 //       p14 == (Y positive)
1747 //          return +0
1749 // p7 == Y is a floating point number within the integer range.
1750 //      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1751 //           p11 odd
1752 //              p13 == (Y negative)
1753 //                 return (sign_of_x)inf
1754 //              p14 == (Y positive)
1755 //                 return (sign_of_x)0
1756 //           pxx even
1757 //              p13 == (Y negative)
1758 //                 return +inf
1759 //              p14 == (Y positive)
1760 //                 return +0
1762 //      pxx == Y is not an integer
1763 //           p13 == (Y negative)
1764 //                 return +inf
1765 //           p14 == (Y positive)
1766 //                 return +0
1769 // If x=inf, test y and flag denormal
1770 { .mfi
1771           nop.m 999
1772           fcmp.eq.s0 p10,p11 = f9,f0
1773           nop.i 999
1777 { .mfi
1778           nop.m 999
1779           fcmp.lt.s0 p13,p14            = POW_NORM_Y,f0
1780           cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
1782 { .mfi
1783           nop.m 999
1784           fclass.m p12,p0               = f9, 0x23 //@inf
1785           nop.i 999
1789 { .mfi
1790           nop.m 999
1791           fclass.m p15,p0               = f9, 0x07 //@zero
1792           nop.i 999
1796 { .mfb
1797           nop.m 999
1798 (p15)     fmerge.s f8 = f1,f1      // Return +1.0 if x=inf, y=0
1799 (p15)     br.ret.spnt b0           // Exit if x=inf, y=0
1803 { .mfi
1804           nop.m 999
1805 (p14)     frcpa.s1 f8,p10 = f1,f0  // If x=inf, y>0, assume result +inf
1806           nop.i 999
1808 { .mfb
1809           nop.m 999
1810 (p13)     fma.s.s0 f8 = f0,f0,f0   // If x=inf, y<0, assume result +0.0
1811 (p12)     br.ret.spnt b0           // Exit if x=inf, y=inf
1815 // Here if x=inf, and 0 < |y| < inf.  Need to correct results if y odd integer.
1816 { .mfi
1817           nop.m 999
1818 (p7)      fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y,  POW_NORM_Y // Is y integer?
1819           nop.i 999
1823 { .mfi
1824           nop.m 999
1825           nop.f 999
1826 (p9)      tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0  // Test for y odd integer
1830 { .mfb
1831           nop.m 999
1832 (p11)     fmerge.s f8 = POW_NORM_X,f8    // If y odd integer use sign of x
1833           br.ret.sptk b0                 // Exit for x=inf, 0 < |y| < inf
1838 POW_X_NEG_Y_NONINT:
1839 // When X is negative and Y is a non-integer, IEEE
1840 // returns a qnan indefinite.
1841 // We call error support with this value
1843 { .mfb
1844          mov pow_GR_tag                 = 34
1845          frcpa.s0 f8,p6                 = f0,f0
1846          br.cond.sptk __libm_error_region
1850 POW_X_NAN:
1851 // Here if x=nan, y not nan
1852 { .mfi
1853          nop.m 999
1854          fclass.m  p9,p13 = f9, 0x07 // Test y=zero
1855          nop.i 999
1859 { .mfb
1860          nop.m 999
1861 (p13)    fma.s.s0 f8 = f8,f1,f0
1862 (p13)    br.ret.sptk  b0            // Exit if x nan, y anything but zero or nan
1866 POW_X_NAN_Y_0:
1867 // When X is a NAN and Y is zero, IEEE returns 1.
1868 // We call error support with this value.
1869 { .mfi
1870          nop.m 999
1871          fcmp.eq.s0 p6,p0 = f8,f0       // Dummy op to set invalid on snan
1872          nop.i 999
1874 { .mfb
1875          mov pow_GR_tag                 = 35
1876          fma.s.s0 f8 = f0,f0,f1
1877          br.cond.sptk __libm_error_region
1882 POW_OVER_UNDER_X_NOT_INF:
1884 // p8 is TRUE for overflow
1885 // p9 is TRUE for underflow
1887 // if y is infinity, we should not over/underflow
1889 { .mfi
1890           nop.m 999
1891           fcmp.eq.s1     p14, p13       = POW_xsq,f1  // Test |x|=1
1892           cmp.eq p8,p9                  = pow_GR_sign_Y_Gpr, r0
1896 { .mfi
1897           nop.m 999
1898 (p14)     fclass.m.unc       p15, p0    = f9, 0x23 // If |x|=1, test y=inf
1899           nop.i 999
1901 { .mfi
1902           nop.m 999
1903 (p13)     fclass.m.unc       p11,p0     = f9, 0x23 // If |x| not 1, test y=inf
1904           nop.i 999
1908 // p15 = TRUE if |x|=1, y=inf, return +1
1909 { .mfb
1910           nop.m 999
1911 (p15)     fma.s.s0          f8          = f1,f1,f0 // If |x|=1, y=inf, result +1
1912 (p15)     br.ret.spnt b0                // Exit if |x|=1, y=inf
1916 .pred.rel "mutex",p8,p9
1917 {  .mfb
1918 (p8)      setf.exp           f8 = pow_GR_17ones // If exp(+big), result inf
1919 (p9)      fmerge.s           f8 = f0,f0         // If exp(-big), result 0
1920 (p11)     br.ret.sptk b0                // Exit if |x| not 1, y=inf
1924 { .mfb
1925           nop.m 999
1926           nop.f 999
1927           br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
1932 POW_Y_NAN:
1933 // Here if y=nan, x anything
1934 // If x = +1 then result is +1, else result is quiet Y
1935 { .mfi
1936        nop.m 999
1937        fcmp.eq.s1         p10,p9        = POW_NORM_X, f1
1938        nop.i 999
1942 { .mfi
1943        nop.m 999
1944 (p10)  fcmp.eq.s0 p6,p0 = f9,f1   // Set invalid, even if x=+1
1945        nop.i 999
1949 { .mfi
1950        nop.m 999
1951 (p10)  fma.s.s0 f8 = f1,f1,f0
1952        nop.i 999
1954 { .mfb
1955        nop.m 999
1956 (p9)   fma.s.s0 f8 = f9,f8,f0
1957        br.ret.sptk b0             // Exit y=nan
1962 POW_OVER_UNDER_ERROR:
1963 // Here if we have overflow or underflow.
1964 // Enter with p12 true if x negative and y odd int to force -0 or -inf
1966 { .mfi
1967          sub   pow_GR_17ones_m1         = pow_GR_17ones, r0, 1
1968          nop.f 999
1969          mov pow_GR_one                 = 0x1
1973 // overflow, force inf with O flag
1974 { .mmb
1975 (p8)     mov pow_GR_tag                 = 30
1976 (p8)     setf.exp POW_tmp               = pow_GR_17ones_m1
1977          nop.b 999
1981 // underflow, force zero with I, U flags
1982 { .mmi
1983 (p9)    mov pow_GR_tag                  = 31
1984 (p9)    setf.exp POW_tmp                = pow_GR_one
1985         nop.i 999
1989 { .mfi
1990         nop.m 999
1991         fma.s.s0 f8                     = POW_tmp, POW_tmp, f0
1992         nop.i 999
1996 // p12 x is negative and y is an odd integer, change sign of result
1997 { .mfi
1998         nop.m 999
1999 (p12)   fnma.s.s0 f8                    = POW_tmp, POW_tmp, f0
2000         nop.i 999
2004 WEAK_LIBM_END(powf)
2005 libm_alias_float_other (__pow, pow)
2006 #ifdef SHARED
2007 .symver powf,powf@@GLIBC_2.27
2008 .weak __powf_compat
2009 .set __powf_compat,__powf
2010 .symver __powf_compat,powf@GLIBC_2.2
2011 #endif
2014 LOCAL_LIBM_ENTRY(__libm_error_region)
2016 .prologue
2017 { .mfi
2018         add   GR_Parameter_Y=-32,sp     // Parameter 2 value
2019         nop.f 0
2020 .save   ar.pfs,GR_SAVE_PFS
2021         mov  GR_SAVE_PFS=ar.pfs         // Save ar.pfs
2023 { .mfi
2024 .fframe 64
2025         add sp=-64,sp                   // Create new stack
2026         nop.f 0
2027         mov GR_SAVE_GP=gp               // Save gp
2030 { .mmi
2031         stfs [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
2032         add GR_Parameter_X = 16,sp      // Parameter 1 address
2033 .save   b0, GR_SAVE_B0
2034         mov GR_SAVE_B0=b0               // Save b0
2037 .body
2038 { .mib
2039         stfs [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
2040         add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
2041         nop.b 0
2043 { .mib
2044         stfs [GR_Parameter_Y] = f8      // STORE Parameter 3 on stack
2045         add   GR_Parameter_Y = -16,GR_Parameter_Y
2046         br.call.sptk b0=__libm_error_support# // Call error handling function
2049 { .mmi
2050         add   GR_Parameter_RESULT = 48,sp
2051         nop.m 0
2052         nop.i 0
2055 { .mmi
2056         ldfs  f8 = [GR_Parameter_RESULT] // Get return result off stack
2057 .restore sp
2058         add   sp = 64,sp                 // Restore stack pointer
2059         mov   b0 = GR_SAVE_B0            // Restore return address
2062 { .mib
2063         mov   gp = GR_SAVE_GP            // Restore gp
2064         mov   ar.pfs = GR_SAVE_PFS       // Restore ar.pfs
2065         br.ret.sptk     b0               // Return
2068 LOCAL_LIBM_END(__libm_error_region)
2070 .type   __libm_error_support#,@function
2071 .global __libm_error_support#