localedata: dz_BT, bo_CN: convert to UTF-8
[glibc.git] / sysdeps / ia64 / fpu / e_exp10.S
blob5edd877db94301b9a45541d8009fc1e1ea8373f2
1 .file "exp10.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 // History
40 //==============================================================
41 // 08/25/00 Initial version
42 // 05/20/02 Cleaned up namespace and sf0 syntax
43 // 09/06/02 Improved performance; no inexact flags on exact cases
44 // 01/29/03 Added missing } to bundle templates
45 // 12/16/04 Call error handling on underflow.
46 // 03/31/05 Reformatted delimiters between data tables
48 // API
49 //==============================================================
50 // double exp10(double)
52 // Overview of operation
53 //==============================================================
54 // Background
56 // Implementation
58 // Let x= (K + fh + fl + r)/log2(10), where
59 // K is an integer, fh= 0.b1 b2 b3 b4 b5,
60 // fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
61 // and |r|<2^{-11}
62 // Th is a table that stores 2^fh (32 entries) rounded to
63 // double extended precision (only mantissa is stored)
64 // Tl is a table that stores 2^fl (32 entries) rounded to
65 // double extended precision (only mantissa is stored)
67 // 10^x is approximated as
68 // 2^K * Th [ f ] * Tl [ f ] * (1+c1*e+c1*r+c2*r^2+c3*r^3+c4*r^4),
69 // where e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
71 // Note there are only 22 non-zero values that produce an exact result:
72 //  1.0, 2.0, ... 22.0.
73 // We test for these cases and use s1 to avoid setting the inexact flag.
75 // Special values
76 //==============================================================
77 // exp10(0)= 1
78 // exp10(+inf)= inf
79 // exp10(-inf)= 0
82 // Registers used
83 //==============================================================
84 // r2-r3, r14-r40
85 // f6-f15, f32-f52
86 // p6-p12
89 #include <shlib-compat.h>
92 GR_TBL_START        = r2
93 GR_LOG_TBL          = r3
95 GR_OF_LIMIT         = r14
96 GR_UF_LIMIT         = r15
97 GR_EXP_CORR         = r16
98 GR_F_low            = r17
99 GR_F_high           = r18
100 GR_K                = r19
101 GR_Flow_ADDR        = r20
103 GR_BIAS             = r21
104 GR_Fh               = r22
105 GR_Fh_ADDR          = r23
106 GR_EXPMAX           = r24
107 GR_BIAS53           = r25
109 GR_ROUNDVAL         = r26
110 GR_SNORM_LIMIT      = r26
111 GR_MASK             = r27
112 GR_KF0              = r28
113 GR_MASK_low         = r29
114 GR_COEFF_START      = r30
115 GR_exact_limit      = r31
117 GR_SAVE_B0          = r33
118 GR_SAVE_PFS         = r34
119 GR_SAVE_GP          = r35
120 GR_SAVE_SP          = r36
122 GR_Parameter_X      = r37
123 GR_Parameter_Y      = r38
124 GR_Parameter_RESULT = r39
125 GR_Parameter_TAG    = r40
128 FR_X                = f10
129 FR_Y                = f1
130 FR_RESULT           = f8
133 FR_COEFF1           = f6
134 FR_COEFF2           = f7
135 FR_R                = f9
136 FR_LOG2_10          = f10
138 FR_2P53             = f11
139 FR_KF0              = f12
140 FR_COEFF3           = f13
141 FR_COEFF4           = f14
142 FR_UF_LIMIT         = f15
144 FR_OF_LIMIT         = f32
145 FR_DX_L210          = f33
146 FR_ROUNDVAL         = f34
147 FR_KF               = f35
149 FR_2_TO_K           = f36
150 FR_T_low            = f37
151 FR_T_high           = f38
152 FR_P34              = f39
153 FR_R2               = f40
155 FR_P12              = f41
156 FR_T_low_K          = f42
157 FR_P14              = f43
158 FR_T                = f44
159 FR_P                = f45
161 FR_L2_10_low        = f46
162 FR_L2_10_high       = f47
163 FR_E0               = f48
164 FR_E                = f49
165 FR_exact_limit      = f50
167 FR_int_x            = f51
168 FR_SNORM_LIMIT      = f52
171 // Data tables
172 //==============================================================
174 RODATA
176 .align 16
178 LOCAL_OBJECT_START(poly_coeffs)
180 data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
181 data8 0x9257edfe9b5fb698, 0x3fbf // log2(10)_low (bits 64...127)
182 data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
183 data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
184 data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
185 LOCAL_OBJECT_END(poly_coeffs)
188 LOCAL_OBJECT_START(T_table)
190 // 2^{0.00000 b6 b7 b8 b9 b10}
191 data8 0x8000000000000000, 0x8016302f17467628
192 data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
193 data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
194 data8 0x80855ad965e88b83, 0x809ba2264dada76a
195 data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
196 data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
197 data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
198 data8 0x813801881d886f7b, 0x814e67cceb90502c
199 data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
200 data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
201 data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
202 data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
203 data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
204 data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
205 data8 0x8272fb97b2a5894c, 0x828998760d01faf3
206 data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
208 // 2^{0.b1 b2 b3 b4 b5}
209 data8 0x8000000000000000, 0x82cd8698ac2ba1d7
210 data8 0x85aac367cc487b14, 0x88980e8092da8527
211 data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
212 data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
213 data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
214 data8 0x9ef5326091a111ad, 0xa27043030c496818
215 data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
216 data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
217 data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
218 data8 0xbd08a39f580c36be, 0xc12c4cca66709456
219 data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
220 data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
221 data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
222 data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
223 data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
224 data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
225 LOCAL_OBJECT_END(T_table)
229 .section .text
230 GLOBAL_IEEE754_ENTRY(exp10)
233 {.mfi
234        alloc r32= ar.pfs, 1, 4, 4, 0
235        // will continue only for non-zero normal/denormal numbers
236        fclass.nm.unc p12, p7= f8, 0x1b
237        mov GR_BIAS53= 0xffff+63-10
239 {.mlx
240        // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
241        addl GR_TBL_START= @ltoff(poly_coeffs), gp
242        movl GR_ROUNDVAL= 0x3fc00000             // 1.5 (SP)
246 {.mfi
247        ld8 GR_COEFF_START= [ GR_TBL_START ]     // Load pointer to coeff table
248        fcmp.lt.s1 p6, p8= f8, f0                // X<0 ?
249        nop.i 0
253 {.mlx
254        setf.exp FR_2P53= GR_BIAS53              // 2^{63-10}
255        movl GR_UF_LIMIT= 0xc07439b746e36b52     // (-2^10-51) / log2(10)
257 {.mlx
258        setf.s FR_ROUNDVAL= GR_ROUNDVAL
259        movl GR_OF_LIMIT= 0x40734413509f79fe     // Overflow threshold
263 {.mlx
264        ldfe FR_LOG2_10= [ GR_COEFF_START ], 16  // load log2(10)*2^(10-63)
265        movl GR_SNORM_LIMIT= 0xc0733a7146f72a41  // Smallest normal threshold
267 {.mib
268        nop.m 0
269        nop.i 0
270  (p12) br.cond.spnt SPECIAL_exp10               // Branch if nan, inf, zero
274 {.mmf
275        ldfe FR_L2_10_low= [ GR_COEFF_START ], 16 // load log2(10)_low
276        setf.d FR_OF_LIMIT= GR_OF_LIMIT           // Set overflow limit
277        fma.s0 f8= f8, f1, f0                     // normalize x
281 {.mfi
282        ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
283  (p8)  fcvt.fx.s1 FR_int_x = f8                   // Convert x to integer
284        nop.i 0
286 {.mfi
287        setf.d FR_UF_LIMIT= GR_UF_LIMIT            // Set underflow limit
288        fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
289                                                   //    1.5*2^63) * 2^(-63)
290        mov GR_EXP_CORR= 0xffff-126
294 {.mfi
295        setf.d FR_SNORM_LIMIT= GR_SNORM_LIMIT      // Set smallest normal limit
296        fma.s1 FR_L2_10_high= FR_LOG2_10, FR_2P53, f0 // FR_LOG2_10= log2(10)_hi
297        nop.i 0
301 {.mfi
302        ldfe FR_COEFF1= [ GR_COEFF_START ], 16    // load C_1
303        fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL     // (K+f)*2^(10-63)
304        mov GR_MASK= 1023
308 {.mfi
309        ldfe FR_COEFF2= [ GR_COEFF_START ], 16    // load C_2
310        fma.s1 FR_LOG2_10= f8, FR_L2_10_high, f0  // y0= x*log2(10)_hi
311        mov GR_MASK_low= 31
315 {.mlx
316        getf.sig GR_KF0= FR_KF0                   // (K+f)*2^10= round_to_int(y)
317  (p8)  movl GR_exact_limit= 0x41b00000           // Largest x for exact result,
318                                                  //  +22.0
322 {.mfi
323        add GR_LOG_TBL= 256, GR_COEFF_START       // Pointer to high T_table
324        fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT       // x>overflow threshold ?
325        nop.i 0
329 {.mfi
330  (p8)  setf.s FR_exact_limit = GR_exact_limit    // Largest x for exact result
331  (p8)  fcvt.xf FR_int_x = FR_int_x               // Integral part of x
332        shr GR_K= GR_KF0, 10                      // K
334 {.mfi
335        and GR_F_high= GR_MASK, GR_KF0            // f_high*32
336        fnma.s1 FR_R= FR_KF, FR_2P53, FR_LOG2_10  // r= x*log2(10)-2^{63-10}*
337                                                  //    [ (K+f)*2^{10-63} ]
338        and GR_F_low= GR_KF0, GR_MASK_low         // f_low
342 {.mmi
343        shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
344        add GR_BIAS= GR_K, GR_EXP_CORR            // K= bias-2*63
345        shr GR_Fh= GR_F_high, 5                   // f_high
349 {.mfi
350        setf.exp FR_2_TO_K= GR_BIAS               // 2^{K-126}
351  (p7)  fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT       // x<underflow threshold ?
352        shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL   // address of 2^{f_high}
354 {.mfi
355        ldf8 FR_T_low= [ GR_Flow_ADDR ]           // load T_low= 2^{f_low}
356        fms.s1 FR_DX_L210= f8, FR_L2_10_high, FR_LOG2_10 // x*log2(10)_hi-
357                                                  //        RN(x*log2(10)_hi)
358        nop.i 0
362 {.mfi
363        ldf8 FR_T_high= [ GR_Fh_ADDR ]            // load T_high= 2^{f_high}
364        fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
365        nop.i 0
367 {.mfb
368        nop.m 0
369        fma.s1 FR_R2= FR_R, FR_R, f0              // r*r
370  (p12) br.cond.spnt OUT_RANGE_exp10
374 {.mfi
375        nop.m 0
376        // e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
377        fma.s1 FR_E0= f8, FR_L2_10_low, FR_DX_L210
378        cmp.eq p7,p9= r0,r0                       // Assume inexact result
380 {.mfi
381        nop.m 0
382        fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
383        nop.i 0
387 {.mfi
388        nop.m 0
389  (p8)  fcmp.eq.s1 p9,p7= FR_int_x, f8            // Test x positive integer
390        nop.i 0
392 {.mfi
393        nop.m 0
394        fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
395        nop.i 0
399 {.mfi
400        nop.m 0
401        fcmp.ge.s1 p11,p0= f8, FR_SNORM_LIMIT      // Test x for normal range
402        nop.i 0
406 {.mfi
407        nop.m 0
408        fma.s1 FR_E= FR_E0, FR_COEFF1, f0          // E= C_1*e
409        nop.i 0
411 {.mfi
412        nop.m 0
413        fma.s1 FR_P14= FR_R2, FR_P34, FR_P12       // P14= P12+r2*P34
414        nop.i 0
418 // If x a positive integer, will it produce an exact result?
419 //   p7 result will be inexact
420 //   p9 result will be exact
421 {.mfi
422        nop.m 0
423  (p9)  fcmp.le.s1 p9,p7= f8, FR_exact_limit       // Test x gives exact result
424        nop.i 0
426 {.mfi
427        nop.m 0
428        fma.s1 FR_T= FR_T_low_K, FR_T_high, f0     // T= T*T_high
429        nop.i 0
433 {.mfi
434        nop.m 0
435        fma.s1 FR_P= FR_P14, FR_R, FR_E            // P= P14*r+E
436        nop.i 0
440 .pred.rel "mutex",p7,p9
441 {.mfi
442        nop.m 0
443  (p7)  fma.d.s0 f8= FR_P, FR_T, FR_T              // result= T+T*P, inexact set
444        nop.i 0
446 {.mfb
447        nop.m 0
448  (p9)  fma.d.s1 f8= FR_P, FR_T, FR_T              // result= T+T*P, exact use s1
449  (p11) br.ret.sptk b0                             // return, if result normal
453 // Here if result in denormal range (and not zero)
454 {.mib
455        nop.m 0
456        mov GR_Parameter_TAG= 265
457        br.cond.sptk __libm_error_region           // Branch to error handling
461 SPECIAL_exp10:
462 {.mfi
463        nop.m 0
464        fclass.m p6, p0= f8, 0x22                  // x= -Infinity ?
465        nop.i 0
469 {.mfi
470        nop.m 0
471        fclass.m p7, p0= f8, 0x21                  // x= +Infinity ?
472        nop.i 0
476 {.mfi
477        nop.m 0
478        fclass.m p8, p0= f8, 0x7                   // x= +/-Zero ?
479        nop.i 0
481 {.mfb
482        nop.m 0
483  (p6)  mov f8= f0                                 // exp10(-Infinity)= 0
484  (p6)  br.ret.spnt b0
488 {.mfb
489        nop.m 0
490        nop.f 0
491  (p7)  br.ret.spnt b0                             // exp10(+Infinity)= +Infinity
495 {.mfb
496        nop.m 0
497  (p8)  mov f8= f1                                 // exp10(+/-0)= 1
498  (p8)  br.ret.spnt b0
502 {.mfb
503        nop.m 0
504        fma.d.s0 f8= f8, f1, f0                    // Remaining cases: NaNs
505        br.ret.sptk b0
510 OUT_RANGE_exp10:
512 // underflow: p6= 1
513 // overflow: p8= 1
515 .pred.rel "mutex",p6,p8
516 {.mmi
517  (p8)  mov GR_EXPMAX= 0x1fffe
518  (p6)  mov GR_EXPMAX= 1
519        nop.i 0
523 {.mii
524        setf.exp FR_R= GR_EXPMAX
525  (p8)  mov GR_Parameter_TAG= 166
526  (p6)  mov GR_Parameter_TAG= 265
530 {.mfb
531        nop.m 0
532        fma.d.s0 f8= FR_R, FR_R, f0                // Create overflow/underflow
533        br.cond.sptk __libm_error_region           // Branch to error handling
537 GLOBAL_IEEE754_END(exp10)
538 libm_alias_double_other (__exp10, exp10)
539 #if SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27)
540 compat_symbol (libm, exp10, pow10, GLIBC_2_2)
541 #endif
544 LOCAL_LIBM_ENTRY(__libm_error_region)
546 .prologue
547 {.mfi
548        add GR_Parameter_Y= -32, sp                // Parameter 2 value
549        nop.f 0
550 .save ar.pfs, GR_SAVE_PFS
551        mov GR_SAVE_PFS= ar.pfs                    // Save ar.pfs
554 {.mfi
555 .fframe 64
556        add sp= -64, sp                            // Create new stack
557        nop.f 0
558        mov GR_SAVE_GP= gp                         // Save gp
562 {.mmi
563        stfd [ GR_Parameter_Y ]= FR_Y, 16          // STORE Parameter 2 on stack
564        add GR_Parameter_X= 16, sp                 // Parameter 1 address
565 .save b0, GR_SAVE_B0
566        mov GR_SAVE_B0= b0                         // Save b0
570 .body
571 {.mib
572        stfd [ GR_Parameter_X ]= FR_X              // STORE Parameter 1 on stack
573        add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
574        nop.b 0
576 {.mib
577        stfd [ GR_Parameter_Y ]= FR_RESULT         // STORE Parameter 3 on stack
578        add GR_Parameter_Y= -16, GR_Parameter_Y
579        br.call.sptk b0= __libm_error_support#    // Call error handling function
583 {.mmi
584        add GR_Parameter_RESULT= 48, sp
585        nop.m 0
586        nop.i 0
590 {.mmi
591        ldfd f8= [ GR_Parameter_RESULT ]          // Get return result off stack
592 .restore sp
593        add sp= 64, sp                            // Restore stack pointer
594        mov b0= GR_SAVE_B0                        // Restore return address
598 {.mib
599        mov gp= GR_SAVE_GP                        // Restore gp
600        mov ar.pfs= GR_SAVE_PFS                   // Restore ar.pfs
601        br.ret.sptk b0                            // Return
606 LOCAL_LIBM_END(__libm_error_region)
608 .type __libm_error_support#, @function
609 .global __libm_error_support#