Update copyright notices with scripts/update-copyrights
[glibc.git] / sysdeps / x86 / fpu / powl_helper.c
blobc9c92e13545e1ca8ee96c3f7765e246f2ab5b409
1 /* Implement powl for x86 using extra-precision log.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #include <math.h>
20 #include <math_private.h>
22 /* High parts and low parts of -log (k/16), for integer k from 12 to
23 24. */
25 static const long double powl_log_table[] =
27 0x4.9a58844d36e49e1p-4L, -0x1.0522624fd558f574p-68L,
28 0x3.527da7915b3c6de4p-4L, 0x1.7d4ef4b901b99b9ep-68L,
29 0x2.22f1d044fc8f7bc8p-4L, -0x1.8e97c071a42fc388p-68L,
30 0x1.08598b59e3a0688ap-4L, 0x3.fd9bf503372c12fcp-72L,
31 -0x0p+0L, 0x0p+0L,
32 -0xf.85186008b15330cp-8L, 0x1.9b47488a6687672cp-72L,
33 -0x1.e27076e2af2e5e9ep-4L, -0xa.87ffe1fe9e155dcp-72L,
34 -0x2.bfe60e14f27a791p-4L, 0x1.83bebf1bdb88a032p-68L,
35 -0x3.91fef8f353443584p-4L, -0xb.b03de5ff734495cp-72L,
36 -0x4.59d72aeae98380e8p-4L, 0xc.e0aa3be4747dc1p-72L,
37 -0x5.1862f08717b09f4p-4L, -0x2.decdeccf1cd10578p-68L,
38 -0x5.ce75fdaef401a738p-4L, -0x9.314feb4fbde5aaep-72L,
39 -0x6.7cc8fb2fe612fcbp-4L, 0x2.5ca2642feb779f98p-68L,
42 /* High 32 bits of log2 (e), and remainder rounded to 64 bits. */
43 static const long double log2e_hi = 0x1.71547652p+0L;
44 static const long double log2e_lo = 0xb.82fe1777d0ffda1p-36L;
46 /* Given a number with high part HI and low part LO, add the number X
47 to it and store the result in *RHI and *RLO. It is given that
48 either |X| < |0.7 * HI|, or HI == LO == 0, and that the values are
49 small enough that no overflow occurs. The result does not need to
50 be exact to 128 bits; 78-bit accuracy of the final accumulated
51 result suffices. */
53 static inline void
54 acc_split (long double *rhi, long double *rlo, long double hi, long double lo,
55 long double x)
57 long double thi = hi + x;
58 long double tlo = (hi - thi) + x + lo;
59 *rhi = thi + tlo;
60 *rlo = (thi - *rhi) + tlo;
63 extern long double __powl_helper (long double x, long double y);
64 libm_hidden_proto (__powl_helper)
66 /* Given X a value that is finite and nonzero, or a NaN, and only
67 negative if Y is not an integer, and Y a finite nonzero value with
68 0x1p-79 <= |Y| <= 0x1p78, compute X to the power Y. */
70 long double
71 __powl_helper (long double x, long double y)
73 if (isnan (x) || x < 0)
74 return __ieee754_expl (y * __ieee754_logl (x));
76 /* We need to compute Y * log2 (X) to at least 64 bits after the
77 point for normal results (that is, to at least 78 bits
78 precision). */
79 int x_int_exponent;
80 long double x_frac;
81 x_frac = __frexpl (x, &x_int_exponent);
82 if (x_frac <= 0x0.aaaaaaaaaaaaaaaap0L) /* 2.0L / 3.0L, rounded down */
84 x_frac *= 2.0;
85 x_int_exponent--;
88 long double log_x_frac_hi, log_x_frac_lo;
89 /* Determine an initial approximation to log (X_FRAC) using
90 POWL_LOG_TABLE, and multiply by a value K/16 to reduce to an
91 interval (24/25, 26/25). */
92 int k = (int) ((16.0L / x_frac) + 0.5L);
93 log_x_frac_hi = powl_log_table[2 * k - 24];
94 log_x_frac_lo = powl_log_table[2 * k - 23];
95 long double x_frac_low;
96 if (k == 16)
97 x_frac_low = 0.0L;
98 else
100 /* Mask off low 5 bits of X_FRAC so the multiplication by K/16
101 is exact. These bits are small enough that they can be
102 corrected for by adding log2 (e) * X_FRAC_LOW to the final
103 result. */
104 int32_t se;
105 u_int32_t i0, i1;
106 GET_LDOUBLE_WORDS (se, i0, i1, x_frac);
107 x_frac_low = x_frac;
108 i1 &= 0xffffffe0;
109 SET_LDOUBLE_WORDS (x_frac, se, i0, i1);
110 x_frac_low -= x_frac;
111 x_frac_low /= x_frac;
112 x_frac *= k / 16.0L;
115 /* Now compute log (X_FRAC) for X_FRAC in (24/25, 26/25). Separate
116 W = X_FRAC - 1 into high 16 bits and remaining bits, so that
117 multiplications for low-order power series terms are exact. The
118 remaining bits are small enough that adding a 64-bit value of
119 log2 (1 + W_LO / (1 + W_HI)) will be a sufficient correction for
120 them. */
121 long double w = x_frac - 1;
122 long double w_hi, w_lo;
123 int32_t se;
124 u_int32_t i0, i1;
125 GET_LDOUBLE_WORDS (se, i0, i1, w);
126 i0 &= 0xffff0000;
127 i1 = 0;
128 SET_LDOUBLE_WORDS (w_hi, se, i0, i1);
129 w_lo = w - w_hi;
130 long double wp = w_hi;
131 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp);
132 wp *= -w_hi;
133 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
134 wp / 2.0L);
135 wp *= -w_hi;
136 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
137 wp * 0x0.5555p0L); /* -W_HI**3 / 3, high part. */
138 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
139 wp * 0x0.5555555555555555p-16L); /* -W_HI**3 / 3, low part. */
140 wp *= -w_hi;
141 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
142 wp / 4.0L);
143 /* Subsequent terms are small enough that they only need be computed
144 to 64 bits. */
145 for (int i = 5; i <= 17; i++)
147 wp *= -w_hi;
148 acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
149 wp / i);
152 /* Convert LOG_X_FRAC_HI + LOG_X_FRAC_LO to a base-2 logarithm. */
153 long double log2_x_frac_hi, log2_x_frac_lo;
154 long double log_x_frac_hi32, log_x_frac_lo64;
155 GET_LDOUBLE_WORDS (se, i0, i1, log_x_frac_hi);
156 i1 = 0;
157 SET_LDOUBLE_WORDS (log_x_frac_hi32, se, i0, i1);
158 log_x_frac_lo64 = (log_x_frac_hi - log_x_frac_hi32) + log_x_frac_lo;
159 long double log2_x_frac_hi1 = log_x_frac_hi32 * log2e_hi;
160 long double log2_x_frac_lo1
161 = log_x_frac_lo64 * log2e_hi + log_x_frac_hi * log2e_lo;
162 log2_x_frac_hi = log2_x_frac_hi1 + log2_x_frac_lo1;
163 log2_x_frac_lo = (log2_x_frac_hi1 - log2_x_frac_hi) + log2_x_frac_lo1;
165 /* Correct for the masking off of W_LO. */
166 long double log2_1p_w_lo;
167 asm ("fyl2xp1"
168 : "=t" (log2_1p_w_lo)
169 : "0" (w_lo / (1.0L + w_hi)), "u" (1.0L)
170 : "st(1)");
171 acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo,
172 log2_1p_w_lo);
174 /* Correct for the masking off of X_FRAC_LOW. */
175 acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo,
176 x_frac_low * M_LOG2El);
178 /* Add the integer and fractional parts of the base-2 logarithm. */
179 long double log2_x_hi, log2_x_lo;
180 log2_x_hi = x_int_exponent + log2_x_frac_hi;
181 log2_x_lo = ((x_int_exponent - log2_x_hi) + log2_x_frac_hi) + log2_x_frac_lo;
183 /* Compute the base-2 logarithm of the result. */
184 long double log2_res_hi, log2_res_lo;
185 long double log2_x_hi32, log2_x_lo64;
186 GET_LDOUBLE_WORDS (se, i0, i1, log2_x_hi);
187 i1 = 0;
188 SET_LDOUBLE_WORDS (log2_x_hi32, se, i0, i1);
189 log2_x_lo64 = (log2_x_hi - log2_x_hi32) + log2_x_lo;
190 long double y_hi32, y_lo32;
191 GET_LDOUBLE_WORDS (se, i0, i1, y);
192 i1 = 0;
193 SET_LDOUBLE_WORDS (y_hi32, se, i0, i1);
194 y_lo32 = y - y_hi32;
195 log2_res_hi = log2_x_hi32 * y_hi32;
196 log2_res_lo = log2_x_hi32 * y_lo32 + log2_x_lo64 * y;
198 /* Split the base-2 logarithm of the result into integer and
199 fractional parts. */
200 long double log2_res_int = __roundl (log2_res_hi);
201 long double log2_res_frac = log2_res_hi - log2_res_int + log2_res_lo;
203 /* Compute the final result. */
204 long double res;
205 asm ("f2xm1" : "=t" (res) : "0" (log2_res_frac));
206 res += 1.0L;
207 asm ("fscale" : "=t" (res) : "0" (res), "u" (log2_res_int));
208 return res;
211 libm_hidden_def (__powl_helper)