Update copyright notices with scripts/update-copyrights
[glibc.git] / sysdeps / ieee754 / ldbl-96 / s_fmal.c
blob05643213548cd89ff117e55cd89f17e9ca3e10d5
1 /* Compute x * y + z as ternary operation.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <float.h>
21 #include <math.h>
22 #include <fenv.h>
23 #include <ieee754.h>
24 #include <math_private.h>
25 #include <tininess.h>
27 /* This implementation uses rounding to odd to avoid problems with
28 double rounding. See a paper by Boldo and Melquiond:
29 http://www.lri.fr/~melquion/doc/08-tc.pdf */
31 long double
32 __fmal (long double x, long double y, long double z)
34 union ieee854_long_double u, v, w;
35 int adjust = 0;
36 u.d = x;
37 v.d = y;
38 w.d = z;
39 if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
40 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS
41 - LDBL_MANT_DIG, 0)
42 || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
43 || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
44 || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
45 || __builtin_expect (u.ieee.exponent + v.ieee.exponent
46 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0))
48 /* If z is Inf, but x and y are finite, the result should be
49 z rather than NaN. */
50 if (w.ieee.exponent == 0x7fff
51 && u.ieee.exponent != 0x7fff
52 && v.ieee.exponent != 0x7fff)
53 return (z + x) + y;
54 /* If z is zero and x are y are nonzero, compute the result
55 as x * y to avoid the wrong sign of a zero result if x * y
56 underflows to 0. */
57 if (z == 0 && x != 0 && y != 0)
58 return x * y;
59 /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
60 x * y + z. */
61 if (u.ieee.exponent == 0x7fff
62 || v.ieee.exponent == 0x7fff
63 || w.ieee.exponent == 0x7fff
64 || x == 0
65 || y == 0)
66 return x * y + z;
67 /* If fma will certainly overflow, compute as x * y. */
68 if (u.ieee.exponent + v.ieee.exponent
69 > 0x7fff + IEEE854_LONG_DOUBLE_BIAS)
70 return x * y;
71 /* If x * y is less than 1/4 of LDBL_DENORM_MIN, neither the
72 result nor whether there is underflow depends on its exact
73 value, only on its sign. */
74 if (u.ieee.exponent + v.ieee.exponent
75 < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2)
77 int neg = u.ieee.negative ^ v.ieee.negative;
78 long double tiny = neg ? -0x1p-16445L : 0x1p-16445L;
79 if (w.ieee.exponent >= 3)
80 return tiny + z;
81 /* Scaling up, adding TINY and scaling down produces the
82 correct result, because in round-to-nearest mode adding
83 TINY has no effect and in other modes double rounding is
84 harmless. But it may not produce required underflow
85 exceptions. */
86 v.d = z * 0x1p65L + tiny;
87 if (TININESS_AFTER_ROUNDING
88 ? v.ieee.exponent < 66
89 : (w.ieee.exponent == 0
90 || (w.ieee.exponent == 1
91 && w.ieee.negative != neg
92 && w.ieee.mantissa1 == 0
93 && w.ieee.mantissa0 == 0x80000000)))
95 volatile long double force_underflow = x * y;
96 (void) force_underflow;
98 return v.d * 0x1p-65L;
100 if (u.ieee.exponent + v.ieee.exponent
101 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG)
103 /* Compute 1p-64 times smaller result and multiply
104 at the end. */
105 if (u.ieee.exponent > v.ieee.exponent)
106 u.ieee.exponent -= LDBL_MANT_DIG;
107 else
108 v.ieee.exponent -= LDBL_MANT_DIG;
109 /* If x + y exponent is very large and z exponent is very small,
110 it doesn't matter if we don't adjust it. */
111 if (w.ieee.exponent > LDBL_MANT_DIG)
112 w.ieee.exponent -= LDBL_MANT_DIG;
113 adjust = 1;
115 else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
117 /* Similarly.
118 If z exponent is very large and x and y exponents are
119 very small, adjust them up to avoid spurious underflows,
120 rather than down. */
121 if (u.ieee.exponent + v.ieee.exponent
122 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG)
124 if (u.ieee.exponent > v.ieee.exponent)
125 u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
126 else
127 v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
129 else if (u.ieee.exponent > v.ieee.exponent)
131 if (u.ieee.exponent > LDBL_MANT_DIG)
132 u.ieee.exponent -= LDBL_MANT_DIG;
134 else if (v.ieee.exponent > LDBL_MANT_DIG)
135 v.ieee.exponent -= LDBL_MANT_DIG;
136 w.ieee.exponent -= LDBL_MANT_DIG;
137 adjust = 1;
139 else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
141 u.ieee.exponent -= LDBL_MANT_DIG;
142 if (v.ieee.exponent)
143 v.ieee.exponent += LDBL_MANT_DIG;
144 else
145 v.d *= 0x1p64L;
147 else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
149 v.ieee.exponent -= LDBL_MANT_DIG;
150 if (u.ieee.exponent)
151 u.ieee.exponent += LDBL_MANT_DIG;
152 else
153 u.d *= 0x1p64L;
155 else /* if (u.ieee.exponent + v.ieee.exponent
156 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */
158 if (u.ieee.exponent > v.ieee.exponent)
159 u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
160 else
161 v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
162 if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6)
164 if (w.ieee.exponent)
165 w.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
166 else
167 w.d *= 0x1p130L;
168 adjust = -1;
170 /* Otherwise x * y should just affect inexact
171 and nothing else. */
173 x = u.d;
174 y = v.d;
175 z = w.d;
178 /* Ensure correct sign of exact 0 + 0. */
179 if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0))
180 return x * y + z;
182 fenv_t env;
183 feholdexcept (&env);
184 fesetround (FE_TONEAREST);
186 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
187 #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
188 long double x1 = x * C;
189 long double y1 = y * C;
190 long double m1 = x * y;
191 x1 = (x - x1) + x1;
192 y1 = (y - y1) + y1;
193 long double x2 = x - x1;
194 long double y2 = y - y1;
195 long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
197 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
198 long double a1 = z + m1;
199 long double t1 = a1 - z;
200 long double t2 = a1 - t1;
201 t1 = m1 - t1;
202 t2 = z - t2;
203 long double a2 = t1 + t2;
204 feclearexcept (FE_INEXACT);
206 /* If the result is an exact zero, ensure it has the correct
207 sign. */
208 if (a1 == 0 && m2 == 0)
210 feupdateenv (&env);
211 /* Ensure that round-to-nearest value of z + m1 is not
212 reused. */
213 asm volatile ("" : "=m" (z) : "m" (z));
214 return z + m1;
217 fesetround (FE_TOWARDZERO);
218 /* Perform m2 + a2 addition with round to odd. */
219 u.d = a2 + m2;
221 if (__builtin_expect (adjust == 0, 1))
223 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
224 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
225 feupdateenv (&env);
226 /* Result is a1 + u.d. */
227 return a1 + u.d;
229 else if (__builtin_expect (adjust > 0, 1))
231 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
232 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
233 feupdateenv (&env);
234 /* Result is a1 + u.d, scaled up. */
235 return (a1 + u.d) * 0x1p64L;
237 else
239 if ((u.ieee.mantissa1 & 1) == 0)
240 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
241 v.d = a1 + u.d;
242 /* Ensure the addition is not scheduled after fetestexcept call. */
243 math_force_eval (v.d);
244 int j = fetestexcept (FE_INEXACT) != 0;
245 feupdateenv (&env);
246 /* Ensure the following computations are performed in default rounding
247 mode instead of just reusing the round to zero computation. */
248 asm volatile ("" : "=m" (u) : "m" (u));
249 /* If a1 + u.d is exact, the only rounding happens during
250 scaling down. */
251 if (j == 0)
252 return v.d * 0x1p-130L;
253 /* If result rounded to zero is not subnormal, no double
254 rounding will occur. */
255 if (v.ieee.exponent > 130)
256 return (a1 + u.d) * 0x1p-130L;
257 /* If v.d * 0x1p-130L with round to zero is a subnormal above
258 or equal to LDBL_MIN / 2, then v.d * 0x1p-130L shifts mantissa
259 down just by 1 bit, which means v.ieee.mantissa1 |= j would
260 change the round bit, not sticky or guard bit.
261 v.d * 0x1p-130L never normalizes by shifting up,
262 so round bit plus sticky bit should be already enough
263 for proper rounding. */
264 if (v.ieee.exponent == 130)
266 /* If the exponent would be in the normal range when
267 rounding to normal precision with unbounded exponent
268 range, the exact result is known and spurious underflows
269 must be avoided on systems detecting tininess after
270 rounding. */
271 if (TININESS_AFTER_ROUNDING)
273 w.d = a1 + u.d;
274 if (w.ieee.exponent == 131)
275 return w.d * 0x1p-130L;
277 /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
278 v.ieee.mantissa1 & 1 is the round bit and j is our sticky
279 bit. */
280 w.d = 0.0L;
281 w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
282 w.ieee.negative = v.ieee.negative;
283 v.ieee.mantissa1 &= ~3U;
284 v.d *= 0x1p-130L;
285 w.d *= 0x1p-2L;
286 return v.d + w.d;
288 v.ieee.mantissa1 |= j;
289 return v.d * 0x1p-130L;
292 weak_alias (__fmal, fmal)