Update copyright notices with scripts/update-copyrights
[glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_expl.c
blobda71bb3b42e1458f27f72f4744e562a9881cec9c
1 /* Quad-precision floating point e^x.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5 Partly based on double-precision code
6 by Geoffrey Keating <geoffk@ozemail.com.au>
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, see
20 <http://www.gnu.org/licenses/>. */
22 /* The basic design here is from
23 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
24 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
25 pp. 410-423.
27 We work with number pairs where the first number is the high part and
28 the second one is the low part. Arithmetic with the high part numbers must
29 be exact, without any roundoff errors.
31 The input value, X, is written as
32 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
33 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
35 where:
36 - n is an integer, 16384 >= n >= -16495;
37 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
38 - t1 is an integer, 89 >= t1 >= -89
39 - t2 is an integer, 65 >= t2 >= -65
40 - |arg1[t1]-t1/256.0| < 2^-53
41 - |arg2[t2]-t2/32768.0| < 2^-53
42 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
44 Then e^x is approximated as
46 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
47 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
48 * p (x + xl + n * ln(2)_1))
49 where:
50 - p(x) is a polynomial approximating e(x)-1
51 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
52 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
53 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
55 If it happens that n_1 == 0 (this is the usual case), that multiplication
56 is omitted.
59 #ifndef _GNU_SOURCE
60 #define _GNU_SOURCE
61 #endif
62 #include <float.h>
63 #include <ieee754.h>
64 #include <math.h>
65 #include <fenv.h>
66 #include <inttypes.h>
67 #include <math_private.h>
68 #include <sysdeps/ieee754/ldbl-128/t_expl.h>
70 static const long double C[] = {
71 /* Smallest integer x for which e^x overflows. */
72 #define himark C[0]
73 709.78271289338399678773454114191496482L,
75 /* Largest integer x for which e^x underflows. */
76 #define lomark C[1]
77 -744.44007192138126231410729844608163411L,
79 /* 3x2^96 */
80 #define THREEp96 C[2]
81 59421121885698253195157962752.0L,
83 /* 3x2^103 */
84 #define THREEp103 C[3]
85 30423614405477505635920876929024.0L,
87 /* 3x2^111 */
88 #define THREEp111 C[4]
89 7788445287802241442795744493830144.0L,
91 /* 1/ln(2) */
92 #define M_1_LN2 C[5]
93 1.44269504088896340735992468100189204L,
95 /* first 93 bits of ln(2) */
96 #define M_LN2_0 C[6]
97 0.693147180559945309417232121457981864L,
99 /* ln2_0 - ln(2) */
100 #define M_LN2_1 C[7]
101 -1.94704509238074995158795957333327386E-31L,
103 /* very small number */
104 #define TINY C[8]
105 1.0e-308L,
107 /* 2^16383 */
108 #define TWO1023 C[9]
109 8.988465674311579538646525953945123668E+307L,
111 /* 256 */
112 #define TWO8 C[10]
113 256.0L,
115 /* 32768 */
116 #define TWO15 C[11]
117 32768.0L,
119 /* Chebyshev polynom coefficients for (exp(x)-1)/x */
120 #define P1 C[12]
121 #define P2 C[13]
122 #define P3 C[14]
123 #define P4 C[15]
124 #define P5 C[16]
125 #define P6 C[17]
126 0.5L,
127 1.66666666666666666666666666666666683E-01L,
128 4.16666666666666666666654902320001674E-02L,
129 8.33333333333333333333314659767198461E-03L,
130 1.38888888889899438565058018857254025E-03L,
131 1.98412698413981650382436541785404286E-04L,
134 long double
135 __ieee754_expl (long double x)
137 long double result, x22;
138 union ibm_extended_long_double ex2_u, scale_u;
139 int unsafe;
141 /* Check for usual case. */
142 if (isless (x, himark) && isgreater (x, lomark))
144 int tval1, tval2, n_i, exponent2;
145 long double n, xl;
147 SET_RESTORE_ROUND (FE_TONEAREST);
149 n = __roundl (x*M_1_LN2);
150 x = x-n*M_LN2_0;
151 xl = n*M_LN2_1;
153 tval1 = __roundl (x*TWO8);
154 x -= __expl_table[T_EXPL_ARG1+2*tval1];
155 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
157 tval2 = __roundl (x*TWO15);
158 x -= __expl_table[T_EXPL_ARG2+2*tval2];
159 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
161 x = x + xl;
163 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
164 ex2_u.ld = (__expl_table[T_EXPL_RES1 + tval1]
165 * __expl_table[T_EXPL_RES2 + tval2]);
166 n_i = (int)n;
167 /* 'unsafe' is 1 iff n_1 != 0. */
168 unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
169 ex2_u.d[0].ieee.exponent += n_i >> unsafe;
170 /* Fortunately, there are no subnormal lowpart doubles in
171 __expl_table, only normal values and zeros.
172 But after scaling it can be subnormal. */
173 exponent2 = ex2_u.d[1].ieee.exponent + (n_i >> unsafe);
174 if (ex2_u.d[1].ieee.exponent == 0)
175 /* assert ((ex2_u.d[1].ieee.mantissa0|ex2_u.d[1].ieee.mantissa1) == 0) */;
176 else if (exponent2 > 0)
177 ex2_u.d[1].ieee.exponent = exponent2;
178 else if (exponent2 <= -54)
180 ex2_u.d[1].ieee.exponent = 0;
181 ex2_u.d[1].ieee.mantissa0 = 0;
182 ex2_u.d[1].ieee.mantissa1 = 0;
184 else
186 static const double
187 two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
188 twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
189 ex2_u.d[1].d *= two54;
190 ex2_u.d[1].ieee.exponent += n_i >> unsafe;
191 ex2_u.d[1].d *= twom54;
194 /* Compute scale = 2^n_1. */
195 scale_u.ld = 1.0L;
196 scale_u.d[0].ieee.exponent += n_i - (n_i >> unsafe);
198 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
199 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
200 less than 4.8e-39. */
201 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
203 /* Now we can test whether the result is ultimate or if we are unsure.
204 In the later case we should probably call a mpn based routine to give
205 the ultimate result.
206 Empirically, this routine is already ultimate in about 99.9986% of
207 cases, the test below for the round to nearest case will be false
208 in ~ 99.9963% of cases.
209 Without proc2 routine maximum error which has been seen is
210 0.5000262 ulp.
212 union ieee854_long_double ex3_u;
214 #ifdef FE_TONEAREST
215 fesetround (FE_TONEAREST);
216 #endif
217 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
218 ex2_u.d = result;
219 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
220 - ex2_u.ieee.exponent;
221 n_i = abs (ex3_u.d);
222 n_i = (n_i + 1) / 2;
223 fesetenv (&oldenv);
224 #ifdef FE_TONEAREST
225 if (fegetround () == FE_TONEAREST)
226 n_i -= 0x4000;
227 #endif
228 if (!n_i) {
229 return __ieee754_expl_proc2 (origx);
233 /* Exceptional cases: */
234 else if (isless (x, himark))
236 if (__isinfl (x))
237 /* e^-inf == 0, with no error. */
238 return 0;
239 else
240 /* Underflow */
241 return TINY * TINY;
243 else
244 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
245 return TWO1023*x;
247 result = x22 * ex2_u.ld + ex2_u.ld;
248 if (!unsafe)
249 return result;
250 return result * scale_u.ld;
252 strong_alias (__ieee754_expl, __expl_finite)