Update copyright notices with scripts/update-copyrights
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_jnl.c
blobc2a49235c3984ac41135abcb176dba21f1cd08b3
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, see
31 <http://www.gnu.org/licenses/>. */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include <errno.h>
60 #include <math.h>
61 #include <math_private.h>
63 static const long double
64 invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
65 two = 2.0e0L,
66 one = 1.0e0L,
67 zero = 0.0L;
70 long double
71 __ieee754_jnl (int n, long double x)
73 u_int32_t se;
74 int32_t i, ix, sgn;
75 long double a, b, temp, di;
76 long double z, w;
77 ieee854_long_double_shape_type u;
80 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
81 * Thus, J(-n,x) = J(n,-x)
84 u.value = x;
85 se = u.parts32.w0;
86 ix = se & 0x7fffffff;
88 /* if J(n,NaN) is NaN */
89 if (ix >= 0x7fff0000)
91 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
92 return x + x;
95 if (n < 0)
97 n = -n;
98 x = -x;
99 se ^= 0x80000000;
101 if (n == 0)
102 return (__ieee754_j0l (x));
103 if (n == 1)
104 return (__ieee754_j1l (x));
105 sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
106 x = fabsl (x);
108 if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
109 b = zero;
110 else if ((long double) n <= x)
112 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
113 if (ix >= 0x412D0000)
114 { /* x > 2**302 */
116 /* ??? Could use an expansion for large x here. */
118 /* (x >> n**2)
119 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
120 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
121 * Let s=sin(x), c=cos(x),
122 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
124 * n sin(xn)*sqt2 cos(xn)*sqt2
125 * ----------------------------------
126 * 0 s-c c+s
127 * 1 -s-c -c+s
128 * 2 -s+c -c-s
129 * 3 s+c c-s
131 long double s;
132 long double c;
133 __sincosl (x, &s, &c);
134 switch (n & 3)
136 case 0:
137 temp = c + s;
138 break;
139 case 1:
140 temp = -c + s;
141 break;
142 case 2:
143 temp = -c - s;
144 break;
145 case 3:
146 temp = c - s;
147 break;
149 b = invsqrtpi * temp / __ieee754_sqrtl (x);
151 else
153 a = __ieee754_j0l (x);
154 b = __ieee754_j1l (x);
155 for (i = 1; i < n; i++)
157 temp = b;
158 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
159 a = temp;
163 else
165 if (ix < 0x3fc60000)
166 { /* x < 2**-57 */
167 /* x is tiny, return the first Taylor expansion of J(n,x)
168 * J(n,x) = 1/n!*(x/2)^n - ...
170 if (n >= 400) /* underflow, result < 10^-4952 */
171 b = zero;
172 else
174 temp = x * 0.5;
175 b = temp;
176 for (a = one, i = 2; i <= n; i++)
178 a *= (long double) i; /* a = n! */
179 b *= temp; /* b = (x/2)^n */
181 b = b / a;
184 else
186 /* use backward recurrence */
187 /* x x^2 x^2
188 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
189 * 2n - 2(n+1) - 2(n+2)
191 * 1 1 1
192 * (for large x) = ---- ------ ------ .....
193 * 2n 2(n+1) 2(n+2)
194 * -- - ------ - ------ -
195 * x x x
197 * Let w = 2n/x and h=2/x, then the above quotient
198 * is equal to the continued fraction:
200 * = -----------------------
202 * w - -----------------
204 * w+h - ---------
205 * w+2h - ...
207 * To determine how many terms needed, let
208 * Q(0) = w, Q(1) = w(w+h) - 1,
209 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
210 * When Q(k) > 1e4 good for single
211 * When Q(k) > 1e9 good for double
212 * When Q(k) > 1e17 good for quadruple
214 /* determine k */
215 long double t, v;
216 long double q0, q1, h, tmp;
217 int32_t k, m;
218 w = (n + n) / (long double) x;
219 h = 2.0L / (long double) x;
220 q0 = w;
221 z = w + h;
222 q1 = w * z - 1.0L;
223 k = 1;
224 while (q1 < 1.0e17L)
226 k += 1;
227 z += h;
228 tmp = z * q1 - q0;
229 q0 = q1;
230 q1 = tmp;
232 m = n + n;
233 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
234 t = one / (i / x - t);
235 a = t;
236 b = one;
237 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
238 * Hence, if n*(log(2n/x)) > ...
239 * single 8.8722839355e+01
240 * double 7.09782712893383973096e+02
241 * long double 1.1356523406294143949491931077970765006170e+04
242 * then recurrent value may overflow and the result is
243 * likely underflow to zero
245 tmp = n;
246 v = two / x;
247 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
249 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
251 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
253 temp = b;
254 b *= di;
255 b = b / x - a;
256 a = temp;
257 di -= two;
260 else
262 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
264 temp = b;
265 b *= di;
266 b = b / x - a;
267 a = temp;
268 di -= two;
269 /* scale b to avoid spurious overflow */
270 if (b > 1e100L)
272 a /= b;
273 t /= b;
274 b = one;
278 /* j0() and j1() suffer enormous loss of precision at and
279 * near zero; however, we know that their zero points never
280 * coincide, so just choose the one further away from zero.
282 z = __ieee754_j0l (x);
283 w = __ieee754_j1l (x);
284 if (fabsl (z) >= fabsl (w))
285 b = (t * z / b);
286 else
287 b = (t * w / a);
290 if (sgn == 1)
291 return -b;
292 else
293 return b;
295 strong_alias (__ieee754_jnl, __jnl_finite)
297 long double
298 __ieee754_ynl (int n, long double x)
300 u_int32_t se;
301 int32_t i, ix;
302 int32_t sign;
303 long double a, b, temp;
304 ieee854_long_double_shape_type u;
306 u.value = x;
307 se = u.parts32.w0;
308 ix = se & 0x7fffffff;
310 /* if Y(n,NaN) is NaN */
311 if (ix >= 0x7fff0000)
313 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
314 return x + x;
316 if (x <= 0.0L)
318 if (x == 0.0L)
319 return ((n < 0 && (n & 1) != 0) ? 1.0L : -1.0L) / 0.0L;
320 if (se & 0x80000000)
321 return zero / (zero * x);
323 sign = 1;
324 if (n < 0)
326 n = -n;
327 sign = 1 - ((n & 1) << 1);
329 if (n == 0)
330 return (__ieee754_y0l (x));
331 if (n == 1)
332 return (sign * __ieee754_y1l (x));
333 if (ix >= 0x7fff0000)
334 return zero;
335 if (ix >= 0x412D0000)
336 { /* x > 2**302 */
338 /* ??? See comment above on the possible futility of this. */
340 /* (x >> n**2)
341 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
342 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
343 * Let s=sin(x), c=cos(x),
344 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
346 * n sin(xn)*sqt2 cos(xn)*sqt2
347 * ----------------------------------
348 * 0 s-c c+s
349 * 1 -s-c -c+s
350 * 2 -s+c -c-s
351 * 3 s+c c-s
353 long double s;
354 long double c;
355 __sincosl (x, &s, &c);
356 switch (n & 3)
358 case 0:
359 temp = s - c;
360 break;
361 case 1:
362 temp = -s - c;
363 break;
364 case 2:
365 temp = -s + c;
366 break;
367 case 3:
368 temp = s + c;
369 break;
371 b = invsqrtpi * temp / __ieee754_sqrtl (x);
373 else
375 a = __ieee754_y0l (x);
376 b = __ieee754_y1l (x);
377 /* quit if b is -inf */
378 u.value = b;
379 se = u.parts32.w0 & 0xffff0000;
380 for (i = 1; i < n && se != 0xffff0000; i++)
382 temp = b;
383 b = ((long double) (i + i) / x) * b - a;
384 u.value = b;
385 se = u.parts32.w0 & 0xffff0000;
386 a = temp;
389 /* If B is +-Inf, set up errno accordingly. */
390 if (! __finitel (b))
391 __set_errno (ERANGE);
392 if (sign > 0)
393 return b;
394 else
395 return -b;
397 strong_alias (__ieee754_ynl, __ynl_finite)