Update copyright notices with scripts/update-copyrights
[glibc.git] / sysdeps / ieee754 / dbl-64 / e_log.c
blob0b2889cb3b4980ba3f21dc71257ce796c07a0211
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001-2014 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 /*********************************************************************/
20 /* */
21 /* MODULE_NAME:ulog.c */
22 /* */
23 /* FUNCTION:ulog */
24 /* */
25 /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
26 /* mpexp.c mplog.c mpa.c */
27 /* ulog.tbl */
28 /* */
29 /* An ultimate log routine. Given an IEEE double machine number x */
30 /* it computes the correctly rounded (to nearest) value of log(x). */
31 /* Assumption: Machine arithmetic operations are performed in */
32 /* round to nearest mode of IEEE 754 standard. */
33 /* */
34 /*********************************************************************/
37 #include "endian.h"
38 #include <dla.h>
39 #include "mpa.h"
40 #include "MathLib.h"
41 #include <math_private.h>
42 #include <stap-probe.h>
44 #ifndef SECTION
45 # define SECTION
46 #endif
48 void __mplog (mp_no *, mp_no *, int);
50 /*********************************************************************/
51 /* An ultimate log routine. Given an IEEE double machine number x */
52 /* it computes the correctly rounded (to nearest) value of log(x). */
53 /*********************************************************************/
54 double
55 SECTION
56 __ieee754_log (double x)
58 #define M 4
59 static const int pr[M] = { 8, 10, 18, 32 };
60 int i, j, n, ux, dx, p;
61 double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
62 sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
63 t1, t2, t7, t8, t, ra, rb, ww,
64 a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
65 #ifndef DLA_FMS
66 double t3, t4, t5, t6;
67 #endif
68 number num;
69 mp_no mpx, mpy, mpy1, mpy2, mperr;
71 #include "ulog.tbl"
72 #include "ulog.h"
74 /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
76 num.d = x;
77 ux = num.i[HIGH_HALF];
78 dx = num.i[LOW_HALF];
79 n = 0;
80 if (__builtin_expect (ux < 0x00100000, 0))
82 if (__builtin_expect (((ux & 0x7fffffff) | dx) == 0, 0))
83 return MHALF / 0.0; /* return -INF */
84 if (__builtin_expect (ux < 0, 0))
85 return (x - x) / 0.0; /* return NaN */
86 n -= 54;
87 x *= two54.d; /* scale x */
88 num.d = x;
90 if (__builtin_expect (ux >= 0x7ff00000, 0))
91 return x + x; /* INF or NaN */
93 /* Regular values of x */
95 w = x - 1;
96 if (__builtin_expect (ABS (w) > U03, 1))
97 goto case_03;
99 /*--- Stage I, the case abs(x-1) < 0.03 */
101 t8 = MHALF * w;
102 EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
103 EADD (w, a, b, bb);
104 /* Evaluate polynomial II */
105 polII = b7.d + w * b8.d;
106 polII = b6.d + w * polII;
107 polII = b5.d + w * polII;
108 polII = b4.d + w * polII;
109 polII = b3.d + w * polII;
110 polII = b2.d + w * polII;
111 polII = b1.d + w * polII;
112 polII = b0.d + w * polII;
113 polII *= w * w * w;
114 c = (aa + bb) + polII;
116 /* End stage I, case abs(x-1) < 0.03 */
117 if ((y = b + (c + b * E2)) == b + (c - b * E2))
118 return y;
120 /*--- Stage II, the case abs(x-1) < 0.03 */
122 a = d19.d + w * d20.d;
123 a = d18.d + w * a;
124 a = d17.d + w * a;
125 a = d16.d + w * a;
126 a = d15.d + w * a;
127 a = d14.d + w * a;
128 a = d13.d + w * a;
129 a = d12.d + w * a;
130 a = d11.d + w * a;
132 EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
133 ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
134 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
135 ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
136 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
137 ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
138 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
139 ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
140 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
141 ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
142 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
143 ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
144 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
145 ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
146 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
147 ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
148 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
149 ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
150 MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
151 MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
152 ADD2 (w, 0, s3, ss3, b, bb, t1, t2);
154 /* End stage II, case abs(x-1) < 0.03 */
155 if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
156 return y;
157 goto stage_n;
159 /*--- Stage I, the case abs(x-1) > 0.03 */
160 case_03:
162 /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
163 n += (num.i[HIGH_HALF] >> 20) - 1023;
164 num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
165 if (num.d > SQRT_2)
167 num.d *= HALF;
168 n++;
170 u = num.d;
171 dbl_n = (double) n;
173 /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
174 num.d += h1.d;
175 i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
177 /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
178 num.d = u * Iu[i].d + h2.d;
179 j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
181 /* Compute w=(u-ui*vj)/(ui*vj) */
182 p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V);
183 q = u - p0;
184 r0 = Iu[i].d * Iv[j].d;
185 w = q * r0;
187 /* Evaluate polynomial I */
188 polI = w + (a2.d + a3.d * w) * w * w;
190 /* Add up everything */
191 nln2a = dbl_n * LN2A;
192 luai = Lu[i][0].d;
193 lubi = Lu[i][1].d;
194 lvaj = Lv[j][0].d;
195 lvbj = Lv[j][1].d;
196 EADD (luai, lvaj, sij, ssij);
197 EADD (nln2a, sij, A, ttij);
198 B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
199 B = polI + B0;
201 /* End stage I, case abs(x-1) >= 0.03 */
202 if ((y = A + (B + E1)) == A + (B - E1))
203 return y;
206 /*--- Stage II, the case abs(x-1) > 0.03 */
208 /* Improve the accuracy of r0 */
209 EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
210 t = r0 * ((1 - sa) - sb);
211 EADD (r0, t, ra, rb);
213 /* Compute w */
214 MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
216 EADD (A, B0, a0, aa0);
218 /* Evaluate polynomial III */
219 s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
220 EADD (c2.d, s1, s2, ss2);
221 MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
222 MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
223 ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
224 ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
226 /* End stage II, case abs(x-1) >= 0.03 */
227 if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
228 return y;
231 /* Final stages. Use multi-precision arithmetic. */
232 stage_n:
234 for (i = 0; i < M; i++)
236 p = pr[i];
237 __dbl_mp (x, &mpx, p);
238 __dbl_mp (y, &mpy, p);
239 __mplog (&mpx, &mpy, p);
240 __dbl_mp (e[i].d, &mperr, p);
241 __add (&mpy, &mperr, &mpy1, p);
242 __sub (&mpy, &mperr, &mpy2, p);
243 __mp_dbl (&mpy1, &y1, p);
244 __mp_dbl (&mpy2, &y2, p);
245 if (y1 == y2)
247 LIBC_PROBE (slowlog, 3, &p, &x, &y1);
248 return y1;
251 LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1);
252 return y1;
255 #ifndef __ieee754_log
256 strong_alias (__ieee754_log, __log_finite)
257 #endif