Update copyright notices with scripts/update-copyrights
[glibc.git] / nptl / sysdeps / pthread / timer_routines.c
blobce1aa417cd4aa089d7ffe1d99fb8a69799a89c7a
1 /* Helper code for POSIX timer implementation on NPTL.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Kaz Kylheku <kaz@ashi.footprints.net>.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If
18 not, see <http://www.gnu.org/licenses/>. */
20 #include <assert.h>
21 #include <errno.h>
22 #include <pthread.h>
23 #include <stddef.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sysdep.h>
27 #include <time.h>
28 #include <unistd.h>
29 #include <sys/syscall.h>
31 #include "posix-timer.h"
32 #include <pthreadP.h>
35 /* Number of threads used. */
36 #define THREAD_MAXNODES 16
38 /* Array containing the descriptors for the used threads. */
39 static struct thread_node thread_array[THREAD_MAXNODES];
41 /* Static array with the structures for all the timers. */
42 struct timer_node __timer_array[TIMER_MAX];
44 /* Global lock to protect operation on the lists. */
45 pthread_mutex_t __timer_mutex = PTHREAD_MUTEX_INITIALIZER;
47 /* Variable to protext initialization. */
48 pthread_once_t __timer_init_once_control = PTHREAD_ONCE_INIT;
50 /* Nonzero if initialization of timer implementation failed. */
51 int __timer_init_failed;
53 /* Node for the thread used to deliver signals. */
54 struct thread_node __timer_signal_thread_rclk;
56 /* Lists to keep free and used timers and threads. */
57 struct list_links timer_free_list;
58 struct list_links thread_free_list;
59 struct list_links thread_active_list;
62 #ifdef __NR_rt_sigqueueinfo
63 extern int __syscall_rt_sigqueueinfo (int, int, siginfo_t *);
64 #endif
67 /* List handling functions. */
68 static inline void
69 list_init (struct list_links *list)
71 list->next = list->prev = list;
74 static inline void
75 list_append (struct list_links *list, struct list_links *newp)
77 newp->prev = list->prev;
78 newp->next = list;
79 list->prev->next = newp;
80 list->prev = newp;
83 static inline void
84 list_insbefore (struct list_links *list, struct list_links *newp)
86 list_append (list, newp);
90 * Like list_unlink_ip, except that calling it on a node that
91 * is already unlinked is disastrous rather than a noop.
94 static inline void
95 list_unlink (struct list_links *list)
97 struct list_links *lnext = list->next, *lprev = list->prev;
99 lnext->prev = lprev;
100 lprev->next = lnext;
103 static inline struct list_links *
104 list_first (struct list_links *list)
106 return list->next;
109 static inline struct list_links *
110 list_null (struct list_links *list)
112 return list;
115 static inline struct list_links *
116 list_next (struct list_links *list)
118 return list->next;
121 static inline int
122 list_isempty (struct list_links *list)
124 return list->next == list;
128 /* Functions build on top of the list functions. */
129 static inline struct thread_node *
130 thread_links2ptr (struct list_links *list)
132 return (struct thread_node *) ((char *) list
133 - offsetof (struct thread_node, links));
136 static inline struct timer_node *
137 timer_links2ptr (struct list_links *list)
139 return (struct timer_node *) ((char *) list
140 - offsetof (struct timer_node, links));
144 /* Initialize a newly allocated thread structure. */
145 static void
146 thread_init (struct thread_node *thread, const pthread_attr_t *attr, clockid_t clock_id)
148 if (attr != NULL)
149 thread->attr = *attr;
150 else
152 pthread_attr_init (&thread->attr);
153 pthread_attr_setdetachstate (&thread->attr, PTHREAD_CREATE_DETACHED);
156 thread->exists = 0;
157 list_init (&thread->timer_queue);
158 pthread_cond_init (&thread->cond, 0);
159 thread->current_timer = 0;
160 thread->captured = pthread_self ();
161 thread->clock_id = clock_id;
165 /* Initialize the global lists, and acquire global resources. Error
166 reporting is done by storing a non-zero value to the global variable
167 timer_init_failed. */
168 static void
169 init_module (void)
171 int i;
173 list_init (&timer_free_list);
174 list_init (&thread_free_list);
175 list_init (&thread_active_list);
177 for (i = 0; i < TIMER_MAX; ++i)
179 list_append (&timer_free_list, &__timer_array[i].links);
180 __timer_array[i].inuse = TIMER_FREE;
183 for (i = 0; i < THREAD_MAXNODES; ++i)
184 list_append (&thread_free_list, &thread_array[i].links);
186 thread_init (&__timer_signal_thread_rclk, 0, CLOCK_REALTIME);
190 /* This is a handler executed in a child process after a fork()
191 occurs. It reinitializes the module, resetting all of the data
192 structures to their initial state. The mutex is initialized in
193 case it was locked in the parent process. */
194 static void
195 reinit_after_fork (void)
197 init_module ();
198 pthread_mutex_init (&__timer_mutex, 0);
202 /* Called once form pthread_once in timer_init. This initializes the
203 module and ensures that reinit_after_fork will be executed in any
204 child process. */
205 void
206 __timer_init_once (void)
208 init_module ();
209 pthread_atfork (0, 0, reinit_after_fork);
213 /* Deinitialize a thread that is about to be deallocated. */
214 static void
215 thread_deinit (struct thread_node *thread)
217 assert (list_isempty (&thread->timer_queue));
218 pthread_cond_destroy (&thread->cond);
222 /* Allocate a thread structure from the global free list. Global
223 mutex lock must be held by caller. The thread is moved to
224 the active list. */
225 struct thread_node *
226 __timer_thread_alloc (const pthread_attr_t *desired_attr, clockid_t clock_id)
228 struct list_links *node = list_first (&thread_free_list);
230 if (node != list_null (&thread_free_list))
232 struct thread_node *thread = thread_links2ptr (node);
233 list_unlink (node);
234 thread_init (thread, desired_attr, clock_id);
235 list_append (&thread_active_list, node);
236 return thread;
239 return 0;
243 /* Return a thread structure to the global free list. Global lock
244 must be held by caller. */
245 void
246 __timer_thread_dealloc (struct thread_node *thread)
248 thread_deinit (thread);
249 list_unlink (&thread->links);
250 list_append (&thread_free_list, &thread->links);
254 /* Each of our threads which terminates executes this cleanup
255 handler. We never terminate threads ourselves; if a thread gets here
256 it means that the evil application has killed it. If the thread has
257 timers, these require servicing and so we must hire a replacement
258 thread right away. We must also unblock another thread that may
259 have been waiting for this thread to finish servicing a timer (see
260 timer_delete()). */
262 static void
263 thread_cleanup (void *val)
265 if (val != NULL)
267 struct thread_node *thread = val;
269 /* How did the signal thread get killed? */
270 assert (thread != &__timer_signal_thread_rclk);
272 pthread_mutex_lock (&__timer_mutex);
274 thread->exists = 0;
276 /* We are no longer processing a timer event. */
277 thread->current_timer = 0;
279 if (list_isempty (&thread->timer_queue))
280 __timer_thread_dealloc (thread);
281 else
282 (void) __timer_thread_start (thread);
284 pthread_mutex_unlock (&__timer_mutex);
286 /* Unblock potentially blocked timer_delete(). */
287 pthread_cond_broadcast (&thread->cond);
292 /* Handle a timer which is supposed to go off now. */
293 static void
294 thread_expire_timer (struct thread_node *self, struct timer_node *timer)
296 self->current_timer = timer; /* Lets timer_delete know timer is running. */
298 pthread_mutex_unlock (&__timer_mutex);
300 switch (__builtin_expect (timer->event.sigev_notify, SIGEV_SIGNAL))
302 case SIGEV_NONE:
303 break;
305 case SIGEV_SIGNAL:
306 #ifdef __NR_rt_sigqueueinfo
308 siginfo_t info;
310 /* First, clear the siginfo_t structure, so that we don't pass our
311 stack content to other tasks. */
312 memset (&info, 0, sizeof (siginfo_t));
313 /* We must pass the information about the data in a siginfo_t
314 value. */
315 info.si_signo = timer->event.sigev_signo;
316 info.si_code = SI_TIMER;
317 info.si_pid = timer->creator_pid;
318 info.si_uid = getuid ();
319 info.si_value = timer->event.sigev_value;
321 INLINE_SYSCALL (rt_sigqueueinfo, 3, info.si_pid, info.si_signo, &info);
323 #else
324 if (pthread_kill (self->captured, timer->event.sigev_signo) != 0)
326 if (pthread_kill (self->id, timer->event.sigev_signo) != 0)
327 abort ();
329 #endif
330 break;
332 case SIGEV_THREAD:
333 timer->event.sigev_notify_function (timer->event.sigev_value);
334 break;
336 default:
337 assert (! "unknown event");
338 break;
341 pthread_mutex_lock (&__timer_mutex);
343 self->current_timer = 0;
345 pthread_cond_broadcast (&self->cond);
349 /* Thread function; executed by each timer thread. The job of this
350 function is to wait on the thread's timer queue and expire the
351 timers in chronological order as close to their scheduled time as
352 possible. */
353 static void
354 __attribute__ ((noreturn))
355 thread_func (void *arg)
357 struct thread_node *self = arg;
359 /* Register cleanup handler, in case rogue application terminates
360 this thread. (This cannot happen to __timer_signal_thread, which
361 doesn't invoke application callbacks). */
363 pthread_cleanup_push (thread_cleanup, self);
365 pthread_mutex_lock (&__timer_mutex);
367 while (1)
369 struct list_links *first;
370 struct timer_node *timer = NULL;
372 /* While the timer queue is not empty, inspect the first node. */
373 first = list_first (&self->timer_queue);
374 if (first != list_null (&self->timer_queue))
376 struct timespec now;
378 timer = timer_links2ptr (first);
380 /* This assumes that the elements of the list of one thread
381 are all for the same clock. */
382 clock_gettime (timer->clock, &now);
384 while (1)
386 /* If the timer is due or overdue, remove it from the queue.
387 If it's a periodic timer, re-compute its new time and
388 requeue it. Either way, perform the timer expiry. */
389 if (timespec_compare (&now, &timer->expirytime) < 0)
390 break;
392 list_unlink_ip (first);
394 if (__builtin_expect (timer->value.it_interval.tv_sec, 0) != 0
395 || timer->value.it_interval.tv_nsec != 0)
397 timer->overrun_count = 0;
398 timespec_add (&timer->expirytime, &timer->expirytime,
399 &timer->value.it_interval);
400 while (timespec_compare (&timer->expirytime, &now) < 0)
402 timespec_add (&timer->expirytime, &timer->expirytime,
403 &timer->value.it_interval);
404 if (timer->overrun_count < DELAYTIMER_MAX)
405 ++timer->overrun_count;
407 __timer_thread_queue_timer (self, timer);
410 thread_expire_timer (self, timer);
412 first = list_first (&self->timer_queue);
413 if (first == list_null (&self->timer_queue))
414 break;
416 timer = timer_links2ptr (first);
420 /* If the queue is not empty, wait until the expiry time of the
421 first node. Otherwise wait indefinitely. Insertions at the
422 head of the queue must wake up the thread by broadcasting
423 this condition variable. */
424 if (timer != NULL)
425 pthread_cond_timedwait (&self->cond, &__timer_mutex,
426 &timer->expirytime);
427 else
428 pthread_cond_wait (&self->cond, &__timer_mutex);
430 /* This macro will never be executed since the while loop loops
431 forever - but we have to add it for proper nesting. */
432 pthread_cleanup_pop (1);
436 /* Enqueue a timer in wakeup order in the thread's timer queue.
437 Returns 1 if the timer was inserted at the head of the queue,
438 causing the queue's next wakeup time to change. */
441 __timer_thread_queue_timer (struct thread_node *thread,
442 struct timer_node *insert)
444 struct list_links *iter;
445 int athead = 1;
447 for (iter = list_first (&thread->timer_queue);
448 iter != list_null (&thread->timer_queue);
449 iter = list_next (iter))
451 struct timer_node *timer = timer_links2ptr (iter);
453 if (timespec_compare (&insert->expirytime, &timer->expirytime) < 0)
454 break;
455 athead = 0;
458 list_insbefore (iter, &insert->links);
459 return athead;
463 /* Start a thread and associate it with the given thread node. Global
464 lock must be held by caller. */
466 __timer_thread_start (struct thread_node *thread)
468 int retval = 1;
470 assert (!thread->exists);
471 thread->exists = 1;
473 if (pthread_create (&thread->id, &thread->attr,
474 (void *(*) (void *)) thread_func, thread) != 0)
476 thread->exists = 0;
477 retval = -1;
480 return retval;
484 void
485 __timer_thread_wakeup (struct thread_node *thread)
487 pthread_cond_broadcast (&thread->cond);
491 /* Compare two pthread_attr_t thread attributes for exact equality.
492 Returns 1 if they are equal, otherwise zero if they are not equal
493 or contain illegal values. This version is NPTL-specific for
494 performance reason. One could use the access functions to get the
495 values of all the fields of the attribute structure. */
496 static int
497 thread_attr_compare (const pthread_attr_t *left, const pthread_attr_t *right)
499 struct pthread_attr *ileft = (struct pthread_attr *) left;
500 struct pthread_attr *iright = (struct pthread_attr *) right;
502 return (ileft->flags == iright->flags
503 && ileft->schedpolicy == iright->schedpolicy
504 && (ileft->schedparam.sched_priority
505 == iright->schedparam.sched_priority)
506 && ileft->guardsize == iright->guardsize
507 && ileft->stackaddr == iright->stackaddr
508 && ileft->stacksize == iright->stacksize
509 && ((ileft->cpuset == NULL && iright->cpuset == NULL)
510 || (ileft->cpuset != NULL && iright->cpuset != NULL
511 && ileft->cpusetsize == iright->cpusetsize
512 && memcmp (ileft->cpuset, iright->cpuset,
513 ileft->cpusetsize) == 0)));
517 /* Search the list of active threads and find one which has matching
518 attributes. Global mutex lock must be held by caller. */
519 struct thread_node *
520 __timer_thread_find_matching (const pthread_attr_t *desired_attr,
521 clockid_t desired_clock_id)
523 struct list_links *iter = list_first (&thread_active_list);
525 while (iter != list_null (&thread_active_list))
527 struct thread_node *candidate = thread_links2ptr (iter);
529 if (thread_attr_compare (desired_attr, &candidate->attr)
530 && desired_clock_id == candidate->clock_id)
531 return candidate;
533 iter = list_next (iter);
536 return NULL;
540 /* Grab a free timer structure from the global free list. The global
541 lock must be held by the caller. */
542 struct timer_node *
543 __timer_alloc (void)
545 struct list_links *node = list_first (&timer_free_list);
547 if (node != list_null (&timer_free_list))
549 struct timer_node *timer = timer_links2ptr (node);
550 list_unlink_ip (node);
551 timer->inuse = TIMER_INUSE;
552 timer->refcount = 1;
553 return timer;
556 return NULL;
560 /* Return a timer structure to the global free list. The global lock
561 must be held by the caller. */
562 void
563 __timer_dealloc (struct timer_node *timer)
565 assert (timer->refcount == 0);
566 timer->thread = NULL; /* Break association between timer and thread. */
567 timer->inuse = TIMER_FREE;
568 list_append (&timer_free_list, &timer->links);
572 /* Thread cancellation handler which unlocks a mutex. */
573 void
574 __timer_mutex_cancel_handler (void *arg)
576 pthread_mutex_unlock (arg);