* locales/en_US: Add first_weekday and first_workday.
[glibc.git] / crypt / sha512-crypt.c
blob4b8949f5f141b33532ce87b2d98bede2d4b3ca13
1 /* One way encryption based on SHA512 sum.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 #include <assert.h>
22 #include <errno.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/param.h>
28 #include "sha512.h"
31 /* Define our magic string to mark salt for SHA512 "encryption"
32 replacement. */
33 static const char sha512_salt_prefix[] = "$6$";
35 /* Prefix for optional rounds specification. */
36 static const char sha512_rounds_prefix[] = "rounds=";
38 /* Maximum salt string length. */
39 #define SALT_LEN_MAX 16
40 /* Default number of rounds if not explicitly specified. */
41 #define ROUNDS_DEFAULT 5000
42 /* Minimum number of rounds. */
43 #define ROUNDS_MIN 1000
44 /* Maximum number of rounds. */
45 #define ROUNDS_MAX 999999999
47 /* Table with characters for base64 transformation. */
48 static const char b64t[64] =
49 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
52 /* Prototypes for local functions. */
53 extern char *__sha512_crypt_r (const char *key, const char *salt,
54 char *buffer, int buflen);
55 extern char *__sha512_crypt (const char *key, const char *salt);
58 char *
59 __sha512_crypt_r (key, salt, buffer, buflen)
60 const char *key;
61 const char *salt;
62 char *buffer;
63 int buflen;
65 unsigned char alt_result[64]
66 __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
67 unsigned char temp_result[64]
68 __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
69 struct sha512_ctx ctx;
70 struct sha512_ctx alt_ctx;
71 size_t salt_len;
72 size_t key_len;
73 size_t cnt;
74 char *cp;
75 char *copied_key = NULL;
76 char *copied_salt = NULL;
77 char *p_bytes;
78 char *s_bytes;
79 /* Default number of rounds. */
80 size_t rounds = ROUNDS_DEFAULT;
81 bool rounds_custom = false;
83 /* Find beginning of salt string. The prefix should normally always
84 be present. Just in case it is not. */
85 if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
86 /* Skip salt prefix. */
87 salt += sizeof (sha512_salt_prefix) - 1;
89 if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
90 == 0)
92 const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
93 char *endp;
94 unsigned long int srounds = strtoul (num, &endp, 10);
95 if (*endp == '$')
97 salt = endp + 1;
98 rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
99 rounds_custom = true;
103 salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
104 key_len = strlen (key);
106 if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
108 char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t));
109 key = copied_key =
110 memcpy (tmp + __alignof__ (uint64_t)
111 - (tmp - (char *) 0) % __alignof__ (uint64_t),
112 key, key_len);
113 assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0);
116 if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
118 char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
119 salt = copied_salt =
120 memcpy (tmp + __alignof__ (uint64_t)
121 - (tmp - (char *) 0) % __alignof__ (uint64_t),
122 salt, salt_len);
123 assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0);
126 /* Prepare for the real work. */
127 __sha512_init_ctx (&ctx);
129 /* Add the key string. */
130 __sha512_process_bytes (key, key_len, &ctx);
132 /* The last part is the salt string. This must be at most 8
133 characters and it ends at the first `$' character (for
134 compatibility with existing implementations). */
135 __sha512_process_bytes (salt, salt_len, &ctx);
138 /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
139 final result will be added to the first context. */
140 __sha512_init_ctx (&alt_ctx);
142 /* Add key. */
143 __sha512_process_bytes (key, key_len, &alt_ctx);
145 /* Add salt. */
146 __sha512_process_bytes (salt, salt_len, &alt_ctx);
148 /* Add key again. */
149 __sha512_process_bytes (key, key_len, &alt_ctx);
151 /* Now get result of this (64 bytes) and add it to the other
152 context. */
153 __sha512_finish_ctx (&alt_ctx, alt_result);
155 /* Add for any character in the key one byte of the alternate sum. */
156 for (cnt = key_len; cnt > 64; cnt -= 64)
157 __sha512_process_bytes (alt_result, 64, &ctx);
158 __sha512_process_bytes (alt_result, cnt, &ctx);
160 /* Take the binary representation of the length of the key and for every
161 1 add the alternate sum, for every 0 the key. */
162 for (cnt = key_len; cnt > 0; cnt >>= 1)
163 if ((cnt & 1) != 0)
164 __sha512_process_bytes (alt_result, 64, &ctx);
165 else
166 __sha512_process_bytes (key, key_len, &ctx);
168 /* Create intermediate result. */
169 __sha512_finish_ctx (&ctx, alt_result);
171 /* Start computation of P byte sequence. */
172 __sha512_init_ctx (&alt_ctx);
174 /* For every character in the password add the entire password. */
175 for (cnt = 0; cnt < key_len; ++cnt)
176 __sha512_process_bytes (key, key_len, &alt_ctx);
178 /* Finish the digest. */
179 __sha512_finish_ctx (&alt_ctx, temp_result);
181 /* Create byte sequence P. */
182 cp = p_bytes = alloca (key_len);
183 for (cnt = key_len; cnt >= 64; cnt -= 64)
184 cp = mempcpy (cp, temp_result, 64);
185 memcpy (cp, temp_result, cnt);
187 /* Start computation of S byte sequence. */
188 __sha512_init_ctx (&alt_ctx);
190 /* For every character in the password add the entire password. */
191 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
192 __sha512_process_bytes (salt, salt_len, &alt_ctx);
194 /* Finish the digest. */
195 __sha512_finish_ctx (&alt_ctx, temp_result);
197 /* Create byte sequence S. */
198 cp = s_bytes = alloca (salt_len);
199 for (cnt = salt_len; cnt >= 64; cnt -= 64)
200 cp = mempcpy (cp, temp_result, 64);
201 memcpy (cp, temp_result, cnt);
203 /* Repeatedly run the collected hash value through SHA512 to burn
204 CPU cycles. */
205 for (cnt = 0; cnt < rounds; ++cnt)
207 /* New context. */
208 __sha512_init_ctx (&ctx);
210 /* Add key or last result. */
211 if ((cnt & 1) != 0)
212 __sha512_process_bytes (p_bytes, key_len, &ctx);
213 else
214 __sha512_process_bytes (alt_result, 64, &ctx);
216 /* Add salt for numbers not divisible by 3. */
217 if (cnt % 3 != 0)
218 __sha512_process_bytes (s_bytes, salt_len, &ctx);
220 /* Add key for numbers not divisible by 7. */
221 if (cnt % 7 != 0)
222 __sha512_process_bytes (p_bytes, key_len, &ctx);
224 /* Add key or last result. */
225 if ((cnt & 1) != 0)
226 __sha512_process_bytes (alt_result, 64, &ctx);
227 else
228 __sha512_process_bytes (p_bytes, key_len, &ctx);
230 /* Create intermediate result. */
231 __sha512_finish_ctx (&ctx, alt_result);
234 /* Now we can construct the result string. It consists of three
235 parts. */
236 cp = __stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
237 buflen -= sizeof (sha512_salt_prefix) - 1;
239 if (rounds_custom)
241 int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
242 sha512_rounds_prefix, rounds);
243 cp += n;
244 buflen -= n;
247 cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
248 buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
250 if (buflen > 0)
252 *cp++ = '$';
253 --buflen;
256 #define b64_from_24bit(B2, B1, B0, N) \
257 do { \
258 unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
259 int n = (N); \
260 while (n-- > 0 && buflen > 0) \
262 *cp++ = b64t[w & 0x3f]; \
263 --buflen; \
264 w >>= 6; \
266 } while (0)
268 b64_from_24bit (alt_result[0], alt_result[21], alt_result[42], 4);
269 b64_from_24bit (alt_result[22], alt_result[43], alt_result[1], 4);
270 b64_from_24bit (alt_result[44], alt_result[2], alt_result[23], 4);
271 b64_from_24bit (alt_result[3], alt_result[24], alt_result[45], 4);
272 b64_from_24bit (alt_result[25], alt_result[46], alt_result[4], 4);
273 b64_from_24bit (alt_result[47], alt_result[5], alt_result[26], 4);
274 b64_from_24bit (alt_result[6], alt_result[27], alt_result[48], 4);
275 b64_from_24bit (alt_result[28], alt_result[49], alt_result[7], 4);
276 b64_from_24bit (alt_result[50], alt_result[8], alt_result[29], 4);
277 b64_from_24bit (alt_result[9], alt_result[30], alt_result[51], 4);
278 b64_from_24bit (alt_result[31], alt_result[52], alt_result[10], 4);
279 b64_from_24bit (alt_result[53], alt_result[11], alt_result[32], 4);
280 b64_from_24bit (alt_result[12], alt_result[33], alt_result[54], 4);
281 b64_from_24bit (alt_result[34], alt_result[55], alt_result[13], 4);
282 b64_from_24bit (alt_result[56], alt_result[14], alt_result[35], 4);
283 b64_from_24bit (alt_result[15], alt_result[36], alt_result[57], 4);
284 b64_from_24bit (alt_result[37], alt_result[58], alt_result[16], 4);
285 b64_from_24bit (alt_result[59], alt_result[17], alt_result[38], 4);
286 b64_from_24bit (alt_result[18], alt_result[39], alt_result[60], 4);
287 b64_from_24bit (alt_result[40], alt_result[61], alt_result[19], 4);
288 b64_from_24bit (alt_result[62], alt_result[20], alt_result[41], 4);
289 b64_from_24bit (0, 0, alt_result[63], 2);
291 if (buflen <= 0)
293 __set_errno (ERANGE);
294 buffer = NULL;
296 else
297 *cp = '\0'; /* Terminate the string. */
299 /* Clear the buffer for the intermediate result so that people
300 attaching to processes or reading core dumps cannot get any
301 information. We do it in this way to clear correct_words[]
302 inside the SHA512 implementation as well. */
303 __sha512_init_ctx (&ctx);
304 __sha512_finish_ctx (&ctx, alt_result);
305 memset (temp_result, '\0', sizeof (temp_result));
306 memset (p_bytes, '\0', key_len);
307 memset (s_bytes, '\0', salt_len);
308 memset (&ctx, '\0', sizeof (ctx));
309 memset (&alt_ctx, '\0', sizeof (alt_ctx));
310 if (copied_key != NULL)
311 memset (copied_key, '\0', key_len);
312 if (copied_salt != NULL)
313 memset (copied_salt, '\0', salt_len);
315 return buffer;
318 #ifndef _LIBC
319 # define libc_freeres_ptr(decl) decl
320 #endif
321 libc_freeres_ptr (static char *buffer);
323 /* This entry point is equivalent to the `crypt' function in Unix
324 libcs. */
325 char *
326 __sha512_crypt (const char *key, const char *salt)
328 /* We don't want to have an arbitrary limit in the size of the
329 password. We can compute an upper bound for the size of the
330 result in advance and so we can prepare the buffer we pass to
331 `sha512_crypt_r'. */
332 static int buflen;
333 int needed = (sizeof (sha512_salt_prefix) - 1
334 + sizeof (sha512_rounds_prefix) + 9 + 1
335 + strlen (salt) + 1 + 86 + 1);
337 if (buflen < needed)
339 char *new_buffer = (char *) realloc (buffer, needed);
340 if (new_buffer == NULL)
341 return NULL;
343 buffer = new_buffer;
344 buflen = needed;
347 return __sha512_crypt_r (key, salt, buffer, buflen);
350 #ifndef _LIBC
351 static void
352 __attribute__ ((__destructor__))
353 free_mem (void)
355 free (buffer);
357 #endif