linux: Add MMAP_ABOVE4G from Linux 6.6 to sys/mman.h
[glibc.git] / stdlib / qsort.c
blobfd32a165e7313c3a69387e7a4ac60cb773e5472f
1 /* Copyright (C) 1991-2023 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Lesser General Public
6 License as published by the Free Software Foundation; either
7 version 2.1 of the License, or (at your option) any later version.
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public
15 License along with the GNU C Library; if not, see
16 <https://www.gnu.org/licenses/>. */
18 /* If you consider tuning this algorithm, you should consult first:
19 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
20 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
22 #include <limits.h>
23 #include <memswap.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <stdbool.h>
28 /* Swap SIZE bytes between addresses A and B. These helpers are provided
29 along the generic one as an optimization. */
31 enum swap_type_t
33 SWAP_WORDS_64,
34 SWAP_WORDS_32,
35 SWAP_BYTES
38 /* If this function returns true, elements can be safely copied using word
39 loads and stores. Otherwise, it might not be safe. BASE (as an integer)
40 must be a multiple of the word alignment. SIZE must be a multiple of
41 WORDSIZE. Since WORDSIZE must be a multiple of the word alignment, and
42 WORDSIZE is a power of two on all supported platforms, this function for
43 speed merely checks that BASE and SIZE are both multiples of the word
44 size. */
45 static inline bool
46 is_aligned (const void *base, size_t size, size_t wordsize)
48 return (((uintptr_t) base | size) & (wordsize - 1)) == 0;
51 static inline void
52 swap_words_64 (void * restrict a, void * restrict b, size_t n)
54 typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
57 n -= 8;
58 u64_alias_t t = *(u64_alias_t *)(a + n);
59 *(u64_alias_t *)(a + n) = *(u64_alias_t *)(b + n);
60 *(u64_alias_t *)(b + n) = t;
61 } while (n);
64 static inline void
65 swap_words_32 (void * restrict a, void * restrict b, size_t n)
67 typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
70 n -= 4;
71 u32_alias_t t = *(u32_alias_t *)(a + n);
72 *(u32_alias_t *)(a + n) = *(u32_alias_t *)(b + n);
73 *(u32_alias_t *)(b + n) = t;
74 } while (n);
77 /* Replace the indirect call with a serie of if statements. It should help
78 the branch predictor. */
79 static void
80 do_swap (void * restrict a, void * restrict b, size_t size,
81 enum swap_type_t swap_type)
83 if (swap_type == SWAP_WORDS_64)
84 swap_words_64 (a, b, size);
85 else if (swap_type == SWAP_WORDS_32)
86 swap_words_32 (a, b, size);
87 else
88 __memswap (a, b, size);
91 /* Discontinue quicksort algorithm when partition gets below this size.
92 This particular magic number was chosen to work best on a Sun 4/260. */
93 #define MAX_THRESH 4
95 /* Stack node declarations used to store unfulfilled partition obligations. */
96 typedef struct
98 char *lo;
99 char *hi;
100 size_t depth;
101 } stack_node;
103 /* The stack needs log (total_elements) entries (we could even subtract
104 log(MAX_THRESH)). Since total_elements has type size_t, we get as
105 upper bound for log (total_elements):
106 bits per byte (CHAR_BIT) * sizeof(size_t). */
107 enum { STACK_SIZE = CHAR_BIT * sizeof (size_t) };
109 static inline stack_node *
110 push (stack_node *top, char *lo, char *hi, size_t depth)
112 top->lo = lo;
113 top->hi = hi;
114 top->depth = depth;
115 return ++top;
118 static inline stack_node *
119 pop (stack_node *top, char **lo, char **hi, size_t *depth)
121 --top;
122 *lo = top->lo;
123 *hi = top->hi;
124 *depth = top->depth;
125 return top;
128 /* NB: N is inclusive bound for BASE. */
129 static inline void
130 siftdown (void *base, size_t size, size_t k, size_t n,
131 enum swap_type_t swap_type, __compar_d_fn_t cmp, void *arg)
133 while (k <= n / 2)
135 size_t j = 2 * k;
136 if (j < n && cmp (base + (j * size), base + ((j + 1) * size), arg) < 0)
137 j++;
139 if (cmp (base + (k * size), base + (j * size), arg) >= 0)
140 break;
142 do_swap (base + (size * j), base + (k * size), size, swap_type);
143 k = j;
147 static inline void
148 heapify (void *base, size_t size, size_t n, enum swap_type_t swap_type,
149 __compar_d_fn_t cmp, void *arg)
151 size_t k = n / 2;
152 while (1)
154 siftdown (base, size, k, n, swap_type, cmp, arg);
155 if (k-- == 0)
156 break;
160 /* A non-recursive heapsort, used on introsort implementation as a fallback
161 routine with worst-case performance of O(nlog n) and worst-case space
162 complexity of O(1). It sorts the array starting at BASE and ending at
163 END, with each element of SIZE bytes. The SWAP_TYPE is the callback
164 function used to swap elements, and CMP is the function used to compare
165 elements. */
166 static void
167 heapsort_r (void *base, void *end, size_t size, enum swap_type_t swap_type,
168 __compar_d_fn_t cmp, void *arg)
170 const size_t count = ((uintptr_t) end - (uintptr_t) base) / size;
172 if (count < 2)
173 return;
175 size_t n = count - 1;
177 /* Build the binary heap, largest value at the base[0]. */
178 heapify (base, size, n, swap_type, cmp, arg);
180 /* On each iteration base[0:n] is the binary heap, while base[n:count]
181 is sorted. */
182 while (n > 0)
184 do_swap (base, base + (n * size), size, swap_type);
185 n--;
186 siftdown (base, size, 0, n, swap_type, cmp, arg);
190 static inline void
191 insertion_sort_qsort_partitions (void *const pbase, size_t total_elems,
192 size_t size, enum swap_type_t swap_type,
193 __compar_d_fn_t cmp, void *arg)
195 char *base_ptr = (char *) pbase;
196 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
197 char *tmp_ptr = base_ptr;
198 #define min(x, y) ((x) < (y) ? (x) : (y))
199 const size_t max_thresh = MAX_THRESH * size;
200 char *thresh = min(end_ptr, base_ptr + max_thresh);
201 char *run_ptr;
203 /* Find smallest element in first threshold and place it at the
204 array's beginning. This is the smallest array element,
205 and the operation speeds up insertion sort's inner loop. */
207 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
208 if (cmp (run_ptr, tmp_ptr, arg) < 0)
209 tmp_ptr = run_ptr;
211 if (tmp_ptr != base_ptr)
212 do_swap (tmp_ptr, base_ptr, size, swap_type);
214 /* Insertion sort, running from left-hand-side up to right-hand-side. */
216 run_ptr = base_ptr + size;
217 while ((run_ptr += size) <= end_ptr)
219 tmp_ptr = run_ptr - size;
220 while (cmp (run_ptr, tmp_ptr, arg) < 0)
221 tmp_ptr -= size;
223 tmp_ptr += size;
224 if (tmp_ptr != run_ptr)
226 char *trav;
228 trav = run_ptr + size;
229 while (--trav >= run_ptr)
231 char c = *trav;
232 char *hi, *lo;
234 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
235 *hi = *lo;
236 *hi = c;
242 /* Order size using quicksort. This implementation incorporates
243 four optimizations discussed in Sedgewick:
245 1. Non-recursive, using an explicit stack of pointer that store the
246 next array partition to sort. To save time, this maximum amount
247 of space required to store an array of SIZE_MAX is allocated on the
248 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
249 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
250 Pretty cheap, actually.
252 2. Chose the pivot element using a median-of-three decision tree.
253 This reduces the probability of selecting a bad pivot value and
254 eliminates certain extraneous comparisons.
256 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
257 insertion sort to order the MAX_THRESH items within each partition.
258 This is a big win, since insertion sort is faster for small, mostly
259 sorted array segments.
261 4. The larger of the two sub-partitions is always pushed onto the
262 stack first, with the algorithm then concentrating on the
263 smaller partition. This *guarantees* no more than log (total_elems)
264 stack size is needed (actually O(1) in this case)! */
266 void
267 __qsort_r (void *const pbase, size_t total_elems, size_t size,
268 __compar_d_fn_t cmp, void *arg)
270 char *base_ptr = (char *) pbase;
272 const size_t max_thresh = MAX_THRESH * size;
274 if (total_elems <= 1)
275 /* Avoid lossage with unsigned arithmetic below. */
276 return;
278 enum swap_type_t swap_type;
279 if (is_aligned (pbase, size, 8))
280 swap_type = SWAP_WORDS_64;
281 else if (is_aligned (pbase, size, 4))
282 swap_type = SWAP_WORDS_32;
283 else
284 swap_type = SWAP_BYTES;
286 /* Maximum depth before quicksort switches to heapsort. */
287 size_t depth = 2 * (sizeof (size_t) * CHAR_BIT - 1
288 - __builtin_clzl (total_elems));
290 if (total_elems > MAX_THRESH)
292 char *lo = base_ptr;
293 char *hi = &lo[size * (total_elems - 1)];
294 stack_node stack[STACK_SIZE];
295 stack_node *top = push (stack, NULL, NULL, depth);
297 while (stack < top)
299 if (depth == 0)
301 heapsort_r (lo, hi, size, swap_type, cmp, arg);
302 top = pop (top, &lo, &hi, &depth);
303 continue;
306 char *left_ptr;
307 char *right_ptr;
309 /* Select median value from among LO, MID, and HI. Rearrange
310 LO and HI so the three values are sorted. This lowers the
311 probability of picking a pathological pivot value and
312 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
313 the while loops. */
315 char *mid = lo + size * ((hi - lo) / size >> 1);
317 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
318 do_swap (mid, lo, size, swap_type);
319 if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
320 do_swap (mid, hi, size, swap_type);
321 else
322 goto jump_over;
323 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
324 do_swap (mid, lo, size, swap_type);
325 jump_over:;
327 left_ptr = lo + size;
328 right_ptr = hi - size;
330 /* Here's the famous ``collapse the walls'' section of quicksort.
331 Gotta like those tight inner loops! They are the main reason
332 that this algorithm runs much faster than others. */
335 while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
336 left_ptr += size;
338 while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
339 right_ptr -= size;
341 if (left_ptr < right_ptr)
343 do_swap (left_ptr, right_ptr, size, swap_type);
344 if (mid == left_ptr)
345 mid = right_ptr;
346 else if (mid == right_ptr)
347 mid = left_ptr;
348 left_ptr += size;
349 right_ptr -= size;
351 else if (left_ptr == right_ptr)
353 left_ptr += size;
354 right_ptr -= size;
355 break;
358 while (left_ptr <= right_ptr);
360 /* Set up pointers for next iteration. First determine whether
361 left and right partitions are below the threshold size. If so,
362 ignore one or both. Otherwise, push the larger partition's
363 bounds on the stack and continue sorting the smaller one. */
365 if ((size_t) (right_ptr - lo) <= max_thresh)
367 if ((size_t) (hi - left_ptr) <= max_thresh)
368 /* Ignore both small partitions. */
369 top = pop (top, &lo, &hi, &depth);
370 else
371 /* Ignore small left partition. */
372 lo = left_ptr;
374 else if ((size_t) (hi - left_ptr) <= max_thresh)
375 /* Ignore small right partition. */
376 hi = right_ptr;
377 else if ((right_ptr - lo) > (hi - left_ptr))
379 /* Push larger left partition indices. */
380 top = push (top, lo, right_ptr, depth - 1);
381 lo = left_ptr;
383 else
385 /* Push larger right partition indices. */
386 top = push (top, left_ptr, hi, depth - 1);
387 hi = right_ptr;
392 /* Once the BASE_PTR array is partially sorted by quicksort the rest
393 is completely sorted using insertion sort, since this is efficient
394 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
395 of the array to sort, and END_PTR points at the very last element in
396 the array (*not* one beyond it!). */
397 insertion_sort_qsort_partitions (pbase, total_elems, size, swap_type, cmp,
398 arg);
400 libc_hidden_def (__qsort_r)
401 weak_alias (__qsort_r, qsort_r)
403 void
404 qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
406 return __qsort_r (b, n, s, (__compar_d_fn_t) cmp, NULL);
408 libc_hidden_def (qsort)